بایگانی برچسب برای: s

چرا از فضای رنگی مختلف استفاده می کنیم؟

از فضای رنگی مختلف استفاده می کنیم چون این امکان در آن فضای رنگی به ما داده میشه تا بتوینم رنگ دلخواه مان را به راحتی از محدوده دیگر رنگ ها جدا کنیم .فرض کنید که شما قصد دارید رنگ سبز را در تصویر فیلتر نمایید این بازه شامل طیفی می باشد که یک سمت آن سبز تیره و در سمت دیگر آن سبز روشن می باشد برای جدا کردن آن در فضای رنگی RGB این امکان وجود ندارد که شما بتوان به صورت خطی یعنی هر کانال با یک شرط بازه رنگ دلخواه را انتخاب نمائید پس به خاطر چنین مشکلاتی تصویر را به فضای رنگی HSV انتقال می دهیم که این فضا از اجزای Hue (رنگدانه) ،Saturation(اشباع) و Value(روشنایی) تشکیل شده.برای تفکیک رنگ سبز در این فضای رنگی کافیست محدوده Hue خود که مربوط به رنگ مورد نظر را انتخاب کرده و سپس کل محدوه اشباع و در نهایت انتخاب محدوده دلخواه برای روشنایی پس در این فضای رنگی به راحتی تونستید رنگ دلخواه خودتون را انتخاب کنید.

تبدیل فضای رنگی در opencv

در کتابخانه Opencv می تونیم از تابع cvtColor استفاده کنیم.

مثال:


/*------------------------------------------------------------------------------------------*\
This file contains material supporting chapter 3 of the cookbook:
Computer Vision Programming using the OpenCV Library
Second Edition
by Robert Laganiere, Packt Publishing, 2013.

This program is free software; permission is hereby granted to use, copy, modify,
and distribute this source code, or portions thereof, for any purpose, without fee,
subject to the restriction that the copyright notice may not be removed
or altered from any source or altered source distribution.
The software is released on an as-is basis and without any warranties of any kind.
In particular, the software is not guaranteed to be fault-tolerant or free from failure.
The author disclaims all warranties with regard to this software, any use,
and any consequent failure, is purely the responsibility of the user.

Copyright (C) 2013 Robert Laganiere, www.laganiere.name
\*------------------------------------------------------------------------------------------*/

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

#include <iostream>
#include <vector>

void detectHScolor(const cv::Mat& image, // input image
double minHue, double maxHue, // Hue interval
double minSat, double maxSat, // saturation interval
cv::Mat& mask) { // output mask

// convert into HSV space
cv::Mat hsv;
cv::cvtColor(image, hsv, CV_BGR2HSV);

// split the 3 channels into 3 images
std::vector<cv::Mat> channels;
cv::split(hsv, channels);
// channels[0] is the Hue
// channels[1] is the Saturation
// channels[2] is the Value

// Hue masking
cv::Mat mask1; // under maxHue
cv::threshold(channels[0], mask1, maxHue, 255, cv::THRESH_BINARY_INV);
cv::Mat mask2; // over minHue
cv::threshold(channels[0], mask2, minHue, 255, cv::THRESH_BINARY);

cv::Mat hueMask; // hue mask
if (minHue < maxHue)
hueMask = mask1 & mask2;
else // if interval crosses the zero-degree axis
hueMask = mask1 | mask2;

// Saturation masking
// under maxSat
cv::threshold(channels[1], mask1, maxSat, 255, cv::THRESH_BINARY_INV);
// over minSat
cv::threshold(channels[1], mask2, minSat, 255, cv::THRESH_BINARY);

cv::Mat satMask; // saturation mask
satMask = mask1 & mask2;

// combined mask
mask = hueMask&satMask;
}

int main()
{
// read the image
cv::Mat image= cv::imread("boldt.jpg");
if (!image.data)
return 0;

// show original image
cv::namedWindow("Original image");
cv::imshow("Original image",image);

// convert into HSV space
cv::Mat hsv;
cv::cvtColor(image, hsv, CV_BGR2HSV);

// split the 3 channels into 3 images
std::vector<cv::Mat> channels;
cv::split(hsv,channels);
// channels[0] is the Hue
// channels[1] is the Saturation
// channels[2] is the Value

// display value
cv::namedWindow("Value");
cv::imshow("Value",channels[2]);

// display saturation
cv::namedWindow("Saturation");
cv::imshow("Saturation",channels[1]);

// display hue
cv::namedWindow("Hue");
cv::imshow("Hue",channels[0]);

// image with fixed value
cv::Mat newImage;
cv::Mat tmp(channels[2].clone());
// Value channel will be 255 for all pixels
channels[2]= 255;
// merge back the channels
cv::merge(channels,hsv);
// re-convert to BGR
cv::cvtColor(hsv,newImage,CV_HSV2BGR);

cv::namedWindow("Fixed Value Image");
cv::imshow("Fixed Value Image",newImage);

// image with fixed saturation
channels[1]= 255;
channels[2]= tmp;
cv::merge(channels,hsv);
cv::cvtColor(hsv,newImage,CV_HSV2BGR);

cv::namedWindow("Fixed saturation");
cv::imshow("Fixed saturation",newImage);

// image with fixed value and fixed saturation
channels[1]= 255;
channels[2]= 255;
cv::merge(channels,hsv);
cv::cvtColor(hsv,newImage,CV_HSV2BGR);

cv::namedWindow("Fixed saturation/value");
cv::imshow("Fixed saturation/value",newImage);

// Testing skin detection

// read the image
image= cv::imread("girl.jpg");
if (!image.data)
return 0;

// show original image
cv::namedWindow("Original image");
cv::imshow("Original image",image);

// detect skin tone
cv::Mat mask;
detectHScolor(image,
160, 10, // hue from 320 degrees to 20 degrees
25, 166, // saturation from ~0.1 to 0.65
mask);

// show masked image
cv::Mat detected(image.size(), CV_8UC3, cv::Scalar(0, 0, 0));
image.copyTo(detected, mask);
cv::imshow("Detection result",detected);

// A test comparing luminance and brightness

// create linear intensity image
cv::Mat linear(100,256,CV_8U);
for (int i=0; i<256; i++) {

linear.col(i)= i;
}

// create a Lab image
linear.copyTo(channels[0]);
cv::Mat constante(100,256,CV_8U,cv::Scalar(128));
constante.copyTo(channels[1]);
constante.copyTo(channels[2]);
cv::merge(channels,image);

// convert back to BGR
cv::Mat brightness;
cv::cvtColor(image,brightness, CV_Lab2BGR);
cv::split(brightness, channels);

// create combined image
cv::Mat combined(200,256, CV_8U);
cv::Mat half1(combined,cv::Rect(0,0,256,100));
linear.copyTo(half1);
cv::Mat half2(combined,cv::Rect(0,100,256,100));
channels[0].copyTo(half2);

cv::namedWindow("Luminance vs Brightness");
cv::imshow("Luminance vs Brightness",combined);

cv::waitKey();
}

منبع

کد برنامه تشخیص و شمارش خودروهای در حال حرکت در زبان Matlab

در این پروژه سعی داریم با استفاده از روش «رهگیری اهداف چندگانه» اقدام به شناسایی اشیاء در حال حرکت نموده و آنها را شمارش نمائیم. این برنامه می تواند جهت شمارش تعداد خودروهای عبوری، تعداد افراد در حال تردد و… مورد استفاده قرار بگیرد. این الگوریتم توسط شرکت mathwork پیاده سازی گردیده و جهت استفاده علاقه مندان ادامه ارائه می گردد.

باتوجه به توضیحات کامل این پروژه از ذکر توضیحات اضافه اجتناب میکنیم و فقط شرحی مختصر از عماکرد برنامه ارائه می نماییم. ابتدا با استفاده از چند فریم به عنوان نمونه، زمینه(background) را شناسایی می کنیم و سپس به اقدام به تشخیص آبجکت های(foreground) می نماییم. سپس با استفاده از روش کالمن (Kalman) اقدام به رهگیری آبجکت هایی که از مقداری مشخص (اصلاحا blob) بزرگتر هستند می نمائیم.  در ادامه آبجکت ها را رهگیری می کنیم تا هنگامی که از صفحه خارج شوند. نکته جالب توجه این هست که اگر آبجکتی موقتا ناپیدا شود(مثلا زیر پل یا درخت قرار بگیرد) به عنوان «Predicted» برچسب خورده و پس از پیدا شدن مجددا به عنوان همان آبجکت قبلی شناسایی می شود.

 

تشخیص و شمارش خودروهای در حال حرکت

سورس کد برنامه تشخیص و شمارش خودرو:

 

%% Multiple Object Tracking Tutorial
% This example shows how to perform automatic detection and motion-based
% tracking of moving objects in a video. It simplifies the example
% <matlab:helpview(fullfile(docroot,'toolbox','vision','vision.map'),'MotionBasedMultiObjectTrackingExample')
% Motion-Based Multiple Object Tracking> and uses the |multiObjectTracker|
% available in Automated Driving System Toolbox.
%
% Copyright 2016 The MathWorks, Inc.
 
%%
% Detection of moving objects and motion-based tracking are important 
% components of many computer vision applications, including activity
% recognition, traffic monitoring, and automotive safety. The problem of
% motion-based object tracking can be divided into two parts:
%
% # Detecting moving objects in each frame 
% # Tracking the moving objects from frame to frame 
%
% The detection of moving objects uses a background subtraction algorithm
% based on Gaussian mixture models. Morphological operations are applied to
% the resulting foreground mask to eliminate noise. Finally, blob analysis
% detects groups of connected pixels, which are likely to correspond to
% moving objects. 
%
% The tracking of moving objects from frame to frame is done by the
% |multiObjectTracker| object that is responsible for the following:
%
% # Assigning detections to tracks. 
% # Initializing new tracks based on unassigned detections. All tracks are
% initialized as |'Tentative'|, accounting for the possibility that they
% resulted from a false detection.
% # Confirming tracks if they have more than _M_ assigned detections in _N_
% frames.
% # Updating existing tracks based on assigned detections.
% # Coasting (predicting) existing unassigned tracks.
% # Deleting tracks if they have remained unassigned (coasted) for too long.
%
% The assignment of detections to the same object is based solely on
% motion. The motion of each track is estimated by a Kalman filter. The
% filter predicts the track's location in each frame, and determines the
% likelihood of each detection being assigned to each track. To initialize
% the filter that you design, use the |FilterInitializationFcn| property of
% the |multiObjectTracker|.
%
% For more information, see
% <matlab:helpview(fullfile(docroot,'toolbox','vision','vision.map'),'multipleObjectTracking') Multiple Object Tracking>.
%
% This example is a function, with the main body at the top and helper 
% routines in the form of 
% <matlab:helpview(fullfile(docroot,'toolbox','matlab','matlab_prog','matlab_prog.map'),'nested_functions') nested functions> 
% below.
 
function p12_on_video_using_tracking_matlab_sample()
% Create objects used for reading video and displaying the results.
videoObjects = setupVideoObjects('6.mp4');
 
% Create objects used for detecting objects in the foreground of the video.
minBlobArea = 10000; % Minimum blob size, in pixels, to be considered as a detection
detectorObjects = setupDetectorObjects(minBlobArea);
 
%% Create the Multi-Object Tracker
% When creating a |multiObjectTracker|, consider the following: 
%
% # |FilterInitializationFcn|: The likely motion and measurement models. 
% In this case, the objects are expected to have a constant speed motion.
% The |initDemoFilter| function configures a linear Kalman filter to 
% track the motion. See the 'Define a Kalman filter' section for details.
% # |AssignmentThreshold|: How far detections may fall from tracks. 
% The default value for this parameter is 30. If there are detections
% that are not assigned to tracks, but should be, increase this value. If
% there are detections that get assigned to tracks that are too far,
% decrease this value.
% # |NumCoastingUpdates|: How long a track is maintained before deletion.
% In this case, since the video has 30 frames per second, a reasonable
% value is about 0.75 seconds (22 frames).
% # |ConfirmationParameters|: The parameters controlling track confirmation.
% A track is initialized with every unassigned detection. Some of these
% detections might be false, so initially, all tracks are |'Tentative'|. 
% To confirm a track, it has to be detected at least _M_ out of _N_
% frames. The choice of _M_ and _N_ depends on the visibility of the
% objects. This example assumes a visibility of 6 out of 10 frames.
tracker = multiObjectTracker(...
 'FilterInitializationFcn', @initDemoFilter, ...
 'AssignmentThreshold', 30, ...
 'NumCoastingUpdates', 22, ...
 'ConfirmationParameters', [6 10] ...
 );
 
%% Define a Kalman Filter
% When defining a tracking filter for the motion, complete the following
% steps:
%
% *Step 1: Define the motion model and state*
%
% In this example, use a constant velocity model in a 2-D rectangular
% frame.
%
% # The state is |[x;vx;y;vy]|.
% # The state transition model matrix is |A = [1 dt 0 0; 0 1 0 0; 0 0 1 dt; 0 0 0 1]|.
% # Assume that |dt = 1|.
%
% *Step 2: Define the process noise*
%
% The process noise represents the parts of the process that are not taken
% into account in the model. For example, in a constant velocity model, the
% acceleration is neglected.
%
% *Step 3: Define the measurement model*
%
% In this example, only the position (|[x;y]|) is measured. So, the
% measurement model is |H = [1 0 0 0; 0 0 1 0]|.
%
% Note: To preconfigure these parameters, define the |'MotionModel'|
% property as |'2D Constant Velocity'|.
%
% *Step 4: Initialize the state vector based on the sensor measurement*
%
% In this example, because the measurement is |[x;y]| and the state is
% |[x;vx;y;vy]|, initializing the state vector is straightforward. Because
% there is no measurement of the velocity, initialize the |vx| and |vy|
% components to 0.
%
% *Step 5: Define an initial state covariance*
%
% In this example, the measurements are quite noisy, so define the initial 
% state covariance to be quite large: |stateCov = diag([50, 50, 50, 50])|
%
% *Step 6: Create the correct filter*
% 
% In this example, all the models are linear, so use |trackingKF| as the
% tracking filter.
 function filter = initDemoFilter(detection)
 % Initialize a Kalman filter for this example.
 
 % Define the initial state.
 state = [detection.Measurement(1); 0; detection.Measurement(2); 0];
 
 % Define the initial state covariance.
 stateCov = diag([50, 50, 50, 50]);
 
 % Create the tracking filter.
 filter = trackingKF('MotionModel', '2D Constant Velocity', ... 
 'State', state, ...
 'StateCovariance', stateCov, ... 
 'MeasurementNoise', detection.MeasurementNoise(1:2,1:2) ... 
 );
 end
 
%%% 
% The following loop runs the video clip, detects moving objects in the
% video, and tracks them across video frames. 
 
% Count frames to create a sense of time.
frameCount = 0;
while hasFrame(videoObjects.reader)
 % Read a video frame and detect objects in it.
 frameCount = frameCount + 1; % Promote frame count
 frame = readFrame(videoObjects.reader); % Read frame 
 [detections, mask] = detectObjects(detectorObjects, frame); % Detect objects in video frame 
 
 % Run the tracker on the preprocessed detections.
 confirmedTracks = updateTracks(tracker, detections, frameCount);
 
 % Display the tracking results on the video.
 displayTrackingResults(videoObjects, confirmedTracks, frame, mask);
end
%% Create Video Objects
% Create objects used for reading and displaying the video frames.
 
 function videoObjects = setupVideoObjects(filename)
 % Initialize video I/O
 % Create objects for reading a video from a file, drawing the tracked
 % objects in each frame, and playing the video.
 
 % Create a video file reader.
 videoObjects.reader = VideoReader(filename);
 
 % Create two video players: one to display the video,
 % and one to display the foreground mask. 
 videoObjects.maskPlayer = vision.VideoPlayer('Position', [20, 400, 700, 400]);
 videoObjects.videoPlayer = vision.VideoPlayer('Position', [740, 400, 700, 400]);
 end
 
%% Create Detector Objects
% Create objects used for detecting foreground objects.
% Use |minBlobArea| to define the size of the blob, in pixels, that is
% considered to be a detection. 
%
% * Increase |minBlobArea| to avoid detecting small blobs, which are more
% likely to be false detections, or if several detections are created for 
% the same object due to partial occlusion.
% * Decrease |minBlobArea| if objects are detected too late or not at all.
 
 function detectorObjects = setupDetectorObjects(minBlobArea)
 % Create System objects for foreground detection and blob analysis
 
 % The foreground detector segments moving objects from the
 % background. It outputs a binary mask, where the pixel value of 1
 % corresponds to the foreground and the value of 0 corresponds to
 % the background.
 
 detectorObjects.detector = vision.ForegroundDetector('NumGaussians', 3, ...
 'NumTrainingFrames', 40, 'MinimumBackgroundRatio', 0.7);
 
 % Connected groups of foreground pixels are likely to correspond to
 % moving objects. The blob analysis System object finds such
 % groups (called 'blobs' or 'connected components') and computes
 % their characteristics, such as their areas, centroids, and the
 % bounding boxes.
 
 detectorObjects.blobAnalyzer = vision.BlobAnalysis('BoundingBoxOutputPort', true, ...
 'AreaOutputPort', true, 'CentroidOutputPort', true, ...
 'MinimumBlobArea', minBlobArea);
 end
 
%% Detect Objects
% The |detectObjects| function returns the centroids and the bounding boxes
% of the detected objects as a list of |objectDetection| objects. You can
% supply this list as an input to the |multiObjectTracker|. The
% |detectObjects| function also returns the binary mask, which has the same
% size as the input frame. Pixels with a value of 1 correspond to the
% foreground. Pixels with a value of 0 correspond to the background.
%
% The function performs motion segmentation using the foreground detector. 
% It then performs morphological operations on the resulting binary mask to
% remove noisy pixels and to fill the holes in the remaining blobs.
%
% When creating the |objectDetection| list, the |frameCount| serves as the
% time input, and the centroids of the detected blobs serve as the
% measurement. The list also has two optional name-value pairs:
%
% * |MeasurementNoise| - Blob detection is noisy, and this example defines 
% a large measurement noise value.
% * |ObjectAttributes| - The detected bounding boxes that get passed to the
% track display are added to this argument.
 
 function [detections, mask] = detectObjects(detectorObjects, frame)
 % Expected uncertainty (noise) for the blob centroid.
 measurementNoise = 100*eye(2); 
 % Detect foreground.
 mask = detectorObjects.detector.step(frame);
 
 % Apply morphological operations to remove noise and fill in holes.
 mask = imopen(mask, strel('rectangle', [9, 9]));
 mask = imclose(mask, strel('rectangle', [10, 10])); 
 mask=bwareaopen(mask,1500);
 mask = imfill(mask, 'holes');
 
 % Perform blob analysis to find connected components.
 [~, centroids, bboxes] = detectorObjects.blobAnalyzer.step(mask);
 
 % Formulate the detections as a list of objectDetection objects.
 numDetections = size(centroids, 1);
 detections = cell(numDetections, 1);
 for i = 1:numDetections
 detections{i} = objectDetection(frameCount, centroids(i,:), ...
 'MeasurementNoise', measurementNoise, ...
 'ObjectAttributes', {bboxes(i,:)});
 end
 end
 
%% Display Tracking Results
% The |displayTrackingResults| function draws a bounding box and label ID
% for each track on the video frame and foreground mask. It then displays
% the frame and the mask in their respective video players.
 
 function displayTrackingResults(videoObjects, confirmedTracks, frame, mask)
 % Convert the frame and the mask to uint8 RGB.
 frame = im2uint8(frame);
 mask = uint8(repmat(mask, [1, 1, 3])) .* 255;
 
 if ~isempty(confirmedTracks) 
 % Display the objects. If an object has not been detected
 % in this frame, display its predicted bounding box.
 numRelTr = numel(confirmedTracks);
 boxes = zeros(numRelTr, 4);
 ids = zeros(numRelTr, 1, 'int32');
 predictedTrackInds = zeros(numRelTr, 1);
 for tr = 1:numRelTr
 % Get bounding boxes.
 boxes(tr, : ) = confirmedTracks(tr).ObjectAttributes{1}{1};
 
 % Get IDs.
 ids(tr) = confirmedTracks(tr).TrackID;
 
 if confirmedTracks(tr).IsCoasted
 predictedTrackInds(tr) = tr;
 end
 end
 
 predictedTrackInds = predictedTrackInds(predictedTrackInds > 0);
 
 % Create labels for objects that display the predicted rather 
 % than the actual location.
 labels = cellstr(int2str(ids));
 
 isPredicted = cell(size(labels));
 isPredicted(predictedTrackInds) = {' predicted'};
 labels = strcat(labels, isPredicted);
 
 % Draw the objects on the frame.
 frame = insertObjectAnnotation(frame, 'rectangle', boxes, labels);
 
 % Draw the objects on the mask.
 mask = insertObjectAnnotation(mask, 'rectangle', boxes, labels);
 end
 
 % Display the mask and the frame.
 videoObjects.maskPlayer.step(mask); 
 videoObjects.videoPlayer.step(frame);
 end
displayEndOfDemoMessage(mfilename)
end
%% Summary
% In this example, you created a motion-based system for detecting and
% tracking multiple moving objects. Try using a different video to see if
% you can detect and track objects. Try modifying the parameters of the
% |multiObjectTracker|.
%
% The tracking in this example was based solely on motion, with the
% assumption that all objects move in a straight line with constant speed.
% When the motion of an object significantly deviates from this model, the
% example can produce tracking errors. Notice the mistake in tracking the
% person occluded by the tree.
%
% You can reduce the likelihood of tracking errors by using a more complex
% motion model, such as constant acceleration or constant turn. To do that,
% try defining a different tracking filter, such as |trackingEKF| or
% |trackingUKF|. 

تشخیص و شمارش خودروهای در حال حرکت

 

منبع:

https://www.mathworks.com/

 

جهت دانلود بر روی لینک زیر کلیک نمایید.

تشخیص و شمارش خودروهای درحال حرکت

ویدئوی پیوست برنامه تشخیص و شمارش خودورهای در حال حرکت

رمز فایل : behsanandish.com

 

عامل های هدف گرا

با مطالعه عامل هایی که خود را با محیط اطراف وقف میدهند، متوجه شدیم که آگاهی از تغییرات محیط یک امر حیاتی میباشد. اما آیا تنها آگاهی از تغییرات محیط برای آنکه بدانیم چه واکنشی را باید انجام داد کافی است؟ برای مثال فرض کنید که راننده هوشمند در جاده بر سر یک سه راهی رسیده است. مسئله ای که واضح است این است که راننده برای رسیدن به مقصد باید یکی از سه مسیر مستقیم، راست و یا چپ را انتخاب نماید. به زبان دیگر، علاوه بر آگاهی از تغییرات و وضعیت جاری محیط اطراف، باید اطلاعاتی در مورد هدف نهایی در اختیار عامل قرار گیرد.

عامل میتواند اطلاعات وضعیت جاری را با واکنش های انتخابی ممکن ترکیب کرده و از این دو به یک راه حل برای رسیدن به هدف خود برسد. گاهی اوقات این مسئله ساده میباشد و با انتخاب یک واکنش سریعا به هدف خواهیم رسید. گاهی نیز رسیدن به هدف پیچیده بوده و نمیتوان تنها با انتخاب یک واکنش به هدف رسید. در چنین مسائلی با توالی از واکنش ها که به هدف ختم میشوند روبرو خواهیم بود.

برای مثال فرض کنید که راننده هوشمند قصد دارد تا مسیری را از میان خیابان های تو در تو یک شهر بزرگ برای رسیدن به مقصد  انتخاب نماید. (Google Map یک مثال کاربردی آن میباشد) آیا این کار به سادگی انتخاب یک واکنش خواهد بود؟! نکته ی مهمی که باید به آن توجه داشت این است که در عامل های هدف گرا مکانیزم تصمیم گیری شباهتی به مکانیزم استراتژی واکنشی ساده ندارد. در این عامل ها باید همواره به این دو سوال جواب داد.

اگر من این واکنش را انجام دهم چه اتفاقی (اتفاقات ناشی از یک واکنش) خواهد افتاد؟
آیا انجام این واکنش (ها) مرا به هدف میرساند؟
در عامل های واکنشی ساده هیچ گاه چنین سوالاتی به صورت ضمنی مطرح نمیشوند زیرا به علت وضوح مسئله و شرایط پیش آماده، واکنش کاملا واضح و قطعی خواهد بود. همانطور که پیشتر نیز گفتیم به آنها وضعیت شرایط-واکنش میگویند. در واقع در این عامل ها برای شرایط خاص، واکنش های خاصی توسط طراح برنامه نویسی شده است. (مثال ترمز). بر اساس کتاب راسل عامل های هدف گرا در عین انعطاف پذیری بالا در شرایط گوناگون، از بازدهی پایینی برخوردارند. این موضوع را میتوانید شخصا در مطالبی که در مورد روش های جستجو بحث خواهیم کرد بررسی و قضاوت نمایید.

عامل های مبتنی بر سودمندی

گاهی اوقات تنها رسیدن به هدف نیست که در افزایش بازدهی عامل هوشمند موثر است. برای مثال فرض کنید میخواهیم از تهران به چالوس سفر کنیم. برای این سفر انتخاب های متعددی میتواند توسط راننده هوشمند انجام شود. اگر قرار باشد راننده هوشمند در محاسبات خود تنها به رسین به هدف توجه کند ممکن است در طول سفر خود از زاهدان عبور نماییم! دلیل این اتفاق کاملا واضح است. در این مسئله برای عامل هیچ اهمیتی ندارد که کدام مسیر را انتخاب نماید!

تنها موردی که برای عامل اهمپیت دارد رسیدن به هدف است! بدین ترتیب در این مثال سفر 5 ساعته ما به 50 ساعت افزایش پیدا خواهد کرد و عملا هوشمندی عامل مورد نظر شکست خورده و فاقد ارزش میباشد. (در مطالبی که مرتبط با الگورتیم های جستجوی هدف میباشند این مشکل را به وضوح مشاهده خواهید کرد.) پس میتوان نتیجه گیری نمود که  در مسئله فوق عواملی جز هدف وجود دارند که در استراتژی انتخاب واکنش ها تتاثیر چشم گیری میگذارند.

اگر بخواهیم خیلی ساده عامل های مبتنی بر سودمندی را تعریف نماییم میتوانیم بگوییم اگر دو عامل داشته باشیم که برای حل یک مسئله یکسان دو مجموعه واکنش را به عنوان خروجی بازگردانند (دو راه حل متفاوت) بطوری یکی از این دو مجموعه بر دیگری برتری داشته و ترجیح داده شود (هزینه ی کمتری داشته باشد) میگوییم سودمندی یک عامل از دیگری بیشتر است. در کتاب راسل مفهوم سودمندی را فانکشنی دانسته که میتواند وضعیت عامل را به یک عدد حقیقی نسبت داده که این عدد نشان دهنده میزان کسب موفقیت توسط عامل میباشد. استفاده از چنین عاملی در دوحالت باعث گرفتن تصمیم عاقلانه در زمان رخ دادن مشکل بین اهداف میشود.

زمانی که اهداف متضاد داریم که هم زمان نمیتوان به تمام آنها دست یافت. برای مثال بحث سرعت رسیدن به مقصد و امنیت جانی مسافران
زمانی که عامل برای رسیدن به اهدافی تلاش میکند که هیچ کدام از قطعیت کامل برخوردار نیستند. که در اینجا عامل بحث اهمیت اهداف را دخالت خواهد داد.

منبع : http://retro-code.ir


ساختار عامل های هوشمند

کار AI طراحی برنامه ی عامل است که “تابع عامل” را پیاده سازی می کند. تابع عامل، ادراکات را به فعالیت ها نگاشت می کند. فرض میکنیم این برنامه بر روی یک دستگاه محاسباتی با حسگرها و محرک های فیزیکی، یعنی معماری اجرا می شود: برنامه + معماری = عامل

بدیهی است برنامه ای که انتخاب می کنیم باید با معماری تناسب داشته باشد. اگر برنامه بخواهد فعالیتی مثل راه رفتن را انجام دهد، معماری باید دارای پا باشد. معماری ممکن است یک pc معمولی، اتومبیل روباتیک با چند کامپیوتر، دوربین و سایر حسگر ها باشد. بطور کلی معماری، از طریق حسگرهای موجود درک می کند، برنامه را اجرا می کند، و انتخاب های فعالیت برنامه را به محرک ها ارسال می کند.

♦ برنامه های عامل  (agent programs)

برنامه های عامل درک فعلی را به عنوان ورودی از حسگرها (سنسورها) می پذیرند، و فعالیت را از طریق محرک ها انجام می دهند. توجه داشته باشید که ، برنامه عامل درک فعلی را به عنوان ورودی می گیرد، ولی تابع عامل کل سابقه درک را دریافت میکند. برنامه ی عامل، فقط درک فعلی را به عنوان ورودی می پذیرد، زیرا هیچ چیز دیگری از محیط در دسترس نیست. اگر فعالیت های عامل ، به کل “دنباله ی ادراک” بستگی داشته باشد، عامل باید کل ادراک ها را به یاد بیاورد.

برنامه  عامل، از طریق شبه کد ساده ای توصیف میشود. بعنوان مثال، شکل زیر یک برنامه عامل ساده را نشان میدهد که “دنباله ادراک” را ردیابی کرده از آن به عنوان شاخصی در جدول فعالیت ها استفاده می کند تا تصمیم بگیرد چه کاری باید انجام دهد. این جدول، تابع عاملی را صریحا نشان میدهد که در برنامه ی عامل گنجانده شده است. برای ساخت عامل خردمند، باید جدولی بسازیم که برای هر دنباله ی ادراک ممکن ، دارای فعالیت های مناسبی باشد.

function TABLE-DRIVEN-AGENT (percept) returns an action
  presistent: percepts, a sequence, initially empty table, a table of actions, indexed by percept sequences, initially fully specified
    
  append percept to end of percepts
  action  &amp;amp;amp;lt; - -  LOOKUP(percepts,table)
  return action
 

برای هر درک جدید فراخوانی می شود و هر بار فعالیتی را بر می گرداند. با استفاده از برنامه TABLE-DRIVEN-AGENT ساختمان داده های خود، دنباله ادراک را ردیابی می کند.
برنامه TABLE-DRIVEN-AGENT  تابع عامل مطلوب را پیاده سازی میکند. چالش مهم AI، چگونگی نوشتن برنامه ای است که با استفاده از یک کد کوچک (به جای جدول بزرگ)، رفتار عقلایی را انجام دهد. مثال های زیادی داریم که نشان می دهد، این کار امکان پذیر است. به عنوان مثال، جدول های بزرگ ریشه دوم که قبل از دهه 1970 توسط مهندسین و دانش آموزان مورد استفاده قرار گرفت، جای خود را به یک برنامه  5 خطی داده است که از روش نیوتن استفاده میکند و در ماشین حساب های الکترونیکی قابل استفاده است. AI همان کاری را انجام می دهد که نیوتن برای ریشه دوم انجام میدهد.

در ادامه، چهار نوع برنامه عامل را بررسی می کنیم که قواعد مربوط به تمام سیستم های هوشمند را دربر می گیرد. هر نوع برنامه ی عامل, اجزای خاصی را به روش های خاصی با هم ترکیب میکند تا فعالیت را  انجام دهد.

♦ عامل های واکنشی ساده (simple reflex agents)

ساده ترین نوع عامل ها، عامل واکنشی ساده است. این عامل ها فعالیت ها را بر اساس درک فعلی و بدون در نظر گرفتن سابقه ی ادراک، انتخاب میکنند. فرض کنید راننده ی تاکسی خودکار هستید. اگر اتومبیل جلویی ترمز کند و چراغ ترمز آن روشن شود، باید آن را تشخیص دهید و ترمز کنید. به عبارت دیگر ، برخی پردازش ها بر روی دریافت اطلاعات تصویر ورودی صورت می گیرد تا شرایطی که ما آن را “ترمزکردن اتومبیل جلویی” می نامیم رخ دهد، سپس این رویداد موجب فعال شدن برخی اتصالات موجود در برنامه عامل خواهد شد و عمل “اقدام به ترمز” را فعال می سازد. این اتصال را قانون شرط فعالیت یا قانون شرط کنش می نامیم: اگر اتومبیل جلویی ترمز کرد آنگاه اقدام به ترمز کن.

انسان نیز  چنین اتصالاتی دارد، که بعضی از آنها پاسخ های آموخته شده هستند (مثل رانندگی) و بعضی دیگر غریزی هستند (مثل بستن چشم هنگام نزدیک شدن شی ء ای به آن). روش کلی و قابل انعطاف این است که یک مفسر همه منظوره برای قوانین شرط فعالیت ساخته شود و سپس مجموعه ای از قوانین برای محیط های کار خاص ایجاد گردد. در شکل زیر، برنامه ی عامل نشان داده شده است که خیلی ساده است. تابع INTERPRET-INPUT با استفاده از ادراک، یک توصیف انتزاعی از حالت فعلی ایجاد میکند، و تابع RULE-MATCH اولین قانون موجود در مجموعه ای از قوانین را بر می گرداند که با توصیف حالت خاص مطابقت دارد:

function  SIMPLE-REFLEX-AGENT (percept) returns an action
  presistent: ruless, a set of condition-action rules
    
  state  &amp;amp;amp;lt;  - - INTEERPRET-INPUT (percept)
  rule  &amp;amp;amp;lt; - -  RULE-MATCH (state,rules)
  action  &amp;amp;amp;lt;  - -  rule.ACTION
  return action
 

عامل واکنشی ساده براساس قانونی عمل می کند که شرط آن با حالت فعلی که توسط ادراک تعریف شده است، تطبیق می کند.
“عامل های واکنشی ساده”، خواص ساده ولی هوش اندکی دارند. عامل تعریف شده در شکل بالا در صورتی کار میکند که تصمیم درستی براساس ادراک فعلی اتخاذ گردد. یعنی در صورتیکه محیط کاملا قابل مشاهده باشد. حتی عدم قابلیت مشاهده ی کوچک نیز ممکن است مشکلاتی را ایجاد کند.

اجتناب از حلقه های بی نهایت، در صورتی ممکن است که عامل بتواند فعالیت خود را تصادفی کند. در بعضی موارد، “عامل واکنشی ساده ی تصادفی” ممکن است مثل “عامل واکنشی ساده ی قطعی” عمل کند. رفتار تصادفی درست، در بعضی از محیط های چند عاملی میتواند عقلایی باشد. در محیط های تک عاملی، فعالیت تصادفی معمولا عقلایی نیست. این روش، در بعضی از وضعیت ها به عامل واکنشی ساده کمک می کند. اما در اغلب موارد، با استفاده از عامل های قطعی تخصصی، بهتر می توان عمل کرد.

♦ عامل های واکنشی مبتنی بر مدل (model-based reflex  agents)

موثرترین راه برای اداره کردن محیط “پاره ای قابل مشاهده” این است که عامل، بخشی از دنیایی را که فعلا نمیتواند ببیند، نگهداری کند. یعنی عامل باید حالت داخلی را ذخیره کند که به سابقه ی ادراک بستگی دارد و در نتیجه، بعضی از جنبه های مشاهده نشده ی حالت فعلی را منعکس می سازد. برای مسئله ترمز کردن، حالت داخلی چندان گران نیست، زیرا فریم قبلی دوربین، به عامل اجازه می دهد که تشخیص دهد چه زمانی دو لامپ قرمز موجود در لبه های اتومبیل همزمان خاموش یا روشن می شوند. برای کارهای دیگر رانندگی، مثل تغییر مسیر، عامل باید بداند که اتومبیل های دیگر در کجا قرار دارند (اگر نمیتواند همزمان آنها را ببیند).

تغییر این اطلاعات داخلی با مرور زمان، مستلزم دو نوع دانش است که باید در برنامه عامل کدنویسی شود. اولا باید بدانیم که دنیا چگونه مستقل از عامل تکامل می یابد. ثانیا، باید بدانیم که فعالیت های عامل، چه تاثیری در دنیا دارد. این دانش درباره ی “چگونگی عملکرد جهان” چه به صورت مدارهای منطقی ساده پیاده سازی شود یا به صورت تئوری های علمی، مدلی از دنیا نام دارد. عاملی که از چنین مدلی استفاده میکند، عامل مبتنی بر مدل نام دارد. برنامه عامل در شکل زیر نشان داده شده است. بخش جالب، تابع UPDATE-STATE است که مسئول ایجاد توصیف جدیدی از حالت داخلی است. جزئیات چگونگی نمایش مدل ها و حالت ها، به نوع محیط و فناوری استفاده شده در طراحی عامل بستگی دارد.

function  MODEL-BASED-REFLEX-AGENT (percept) returns an action
  presistent: state, the agent's current conception of the world state
              model, a description of how the next state depends on current state and action
              rules, a set of condition-action rules 
              action, the most recent action, initially none
  
  state  &amp;amp;amp;amp;amp;lt; -- UPDATE-STATE (state, action, peercept, model)
  rule  &amp;amp;amp;amp;amp;lt; -- RULE-MATCH (state,rules)
  action  &amp;amp;amp;amp;amp;lt; -- rule.ACTION
  return action
 

عامل واکنشی مبتنی بر مدل، حالت فعلی دنیا را با یک مدل داخلی ردیابی، و همانند عامل واکنشی ساده، فعالیتی را انتخاب میکند.

عامل های هوشمند قسمت 1
عامل های هوشمند قسمت 2
عامل های هوشمند قسمت 3
عامل های هوشمند قسمت 4
عامل های هوشمند قسمت 5

الگوریتم sobel

کد الگوریتم سوبل – متد سوبل لبه ها را با استفاده از تخمین زدن مشتق پیدا می کند، که لبه ها را در آن نقاطی بر می گرداند که گرادیان تصویر I ، max است. پیشنهاد می کنیم جهت آشنایی با الگوریتم های لبه یابی، مطلب «الگوریتم های لبه یابی و انواع آن» را مشاهده نمایید. در فیلتر سوبل دو ماسک به صورت زیر وجود دارد:

ماسک سوبل عمودی         ماسک سوبل افقی

ماسک سوبل افقی بیشتر لبه هاي افقی را مشخص میکند و ماسک سوبل عمودي،لبه هاي عمودي را مشخص میکند.

براي مشخص شدن کلیه لبه ها:
اگر Gو Gy تصاویر فیلتر شده به وسیله ماسک افقی و عمودي باشند، آنگاه تصویر  فرمول الگوریتم سوبل    لبه هاي تصویر را بهتر نشان میدهد. روال فوق به عملگر یا الگورریتم سوبل موسوم است.
در عمل، به منظور کاهش هزینه محاسبات، به جاي  فرمول الگوریتم سوبل  میتوان از تقریب [Gx] + [Gy] استفاده میشود. توجه شود که نتیجه این دو فرمول تقریبا یکسان است ولی فرمول دوم با هزینه کمتري قابل محاسبه می باشد.

تأثیر عملگر سوبل بر لبه یابی تصاویر

 

کد الگوریتم سوبل( Sobel ) در Matlab:

 

clc; clear; close all; warning off; 

I=imread('lena.bmp');
I=im2double(I);
I=imnoise(I, 'gaussian', 0, 0.001);
figure(1);
imshow(I);title('org img');

[height width R]=size(I);

for i=2:height-1
    for j=2:width-1
        Dx(i,j)=[I(i+1,j-1)-I(i-1,j-1)]+2*[I(i+1,j)-I(i-1,j)]+[I(i+1,j+1)-I(i-1,j+1)];
        Dy(i,j)=[I(i-1,j+1)-I(i-1,j-1)]+2*[I(i,j+1)-I(i,j-1)]+[I(i+1,j+1)-I(i+1,j-1)];
        S(i,j)=sqrt(Dx(i,j)^2+Dy(i,j)^2);
        if Dx(i,j)&amp;lt;1
            Dx(i,j)=0;
        else Dx(i,j)=1;
        end
        if Dy(i,j)&amp;lt;1
            Dy(i,j)=0;
        else Dy(i,j)=1;
        end
    end
end
figure(2);
imshow(Dx,[]);

figure(3);
imshow(Dy,[]);

for i=1:255
    for j=1:255
       if (S(i,j)&amp;lt;1)
            S(i,j)=0;
        else S(i,j)=1;
        end
    end
end
figure(4);
imshow(S,[]);
دانلود کد فوق از طریق لینک زیر:

الگوریتم سوبل به زبان متلب

رمز فایل : behsanandish.com


 

کد الگوریتم سوبل( Sobel ) در #C:

1.کد برای فیلتر کانولوشن: بخش اول این تابع برای گرفتن اطلاعات تصویر و ذخیره آن به آرایه اختصاص داده شده است.

 

private static Bitmap ConvolutionFilter(Bitmap sourceImage, 
    double[,] xkernel, 
    double[,] ykernel, double factor = 1, int bias = 0, bool grayscale = false)
{

    //Image dimensions stored in variables for convenience
    int width = sourceImage.Width;
    int height = sourceImage.Height;

     //Lock source image bits into system memory
    BitmapData srcData = sourceImage.LockBits(new Rectangle(0, 0, width, height), ImageLockMode.ReadOnly, PixelFormat.Format32bppArgb);

     //Get the total number of bytes in your image - 32 bytes per pixel x image width x image height -&amp;gt; for 32bpp images
    int bytes = srcData.Stride * srcData.Height;

     //Create byte arrays to hold pixel information of your image
    byte[] pixelBuffer = new byte[bytes];
    byte[] resultBuffer = new byte[bytes];

     //Get the address of the first pixel data
    IntPtr srcScan0 = srcData.Scan0;

     //Copy image data to one of the byte arrays
    Marshal.Copy(srcScan0, pixelBuffer, 0, bytes);

    //Unlock bits from system memory -&amp;gt; we have all our needed info in the array
    sourceImage.UnlockBits(srcData);

 

2.کد تبدیل سیاه و سفید: از آنجایی که اپراتور Sobel اغلب برای تصاویر سیاه و سفید استفاده می شود، در اینجا یک کد برای تبدیل به سیاه و سفید است که توسط پارامتر boolean شما می توانید انتخاب کنید تبدیل کردن را یا نه.

 

//Convert your image to grayscale if necessary
if (grayscale == true)
{
    float rgb = 0;
    for (int i = 0; i &amp;lt; pixelBuffer.Length; i += 4)
    {
        rgb = pixelBuffer[i] * .21f;
        rgb += pixelBuffer[i + 1] * .71f;
        rgb += pixelBuffer[i + 2] * .071f;
        pixelBuffer[i] = (byte)rgb;
        pixelBuffer[i + 1] = pixelBuffer[i];
        pixelBuffer[i + 2] = pixelBuffer[i];
        pixelBuffer[i + 3] = 255;
    }
}

 

3.کد برای تنظیم متغیرهای مورد استفاده در فرآیند کانولوشن:

 

/Create variable for pixel data for each kernel
double xr = 0.0;
double xg = 0.0;
double xb = 0.0;
double yr = 0.0;
double yg = 0.0;
double yb = 0.0;
double rt = 0.0;
double gt = 0.0;
double bt = 0.0;

//This is how much your center pixel is offset from the border of your kernel
//Sobel is 3x3, so center is 1 pixel from the kernel border
int filterOffset = 1;
int calcOffset = 0;
int byteOffset = 0;

//Start with the pixel that is offset 1 from top and 1 from the left side
//this is so entire kernel is on your image
for (int OffsetY = filterOffset; OffsetY &amp;lt; height - filterOffset; OffsetY++)
{
    for (int OffsetX = filterOffset; OffsetX &amp;lt; width - filterOffset; OffsetX++)
    {
        //reset rgb values to 0
        xr = xg = xb = yr = yg = yb = 0;
        rt = gt = bt = 0.0;

        //position of the kernel center pixel
        byteOffset = OffsetY * srcData.Stride + OffsetX * 4;

 

4. اعمال کانولوشن هسته به پیکسل فعلی:

 

//kernel calculations
for (int filterY = -filterOffset; filterY &amp;lt;= filterOffset; filterY++)
{
for (int filterX = -filterOffset; filterX &amp;lt;= filterOffset; filterX++)
{
calcOffset = byteOffset + filterX * 4 + filterY * srcData.Stride;
xb += (double)(pixelBuffer[calcOffset]) * xkernel[filterY + filterOffset, filterX + filterOffset];
xg += (double)(pixelBuffer[calcOffset + 1]) * xkernel[filterY + filterOffset, filterX + filterOffset];
xr += (double)(pixelBuffer[calcOffset + 2]) * xkernel[filterY + filterOffset, filterX + filterOffset];
yb += (double)(pixelBuffer[calcOffset]) * ykernel[filterY + filterOffset, filterX + filterOffset];
yg += (double)(pixelBuffer[calcOffset + 1]) * ykernel[filterY + filterOffset, filterX + filterOffset];
yr += (double)(pixelBuffer[calcOffset + 2]) * ykernel[filterY + filterOffset, filterX + filterOffset];
}
}

//total rgb values for this pixel
bt = Math.Sqrt((xb * xb) + (yb * yb));
gt = Math.Sqrt((xg * xg) + (yg * yg));
rt = Math.Sqrt((xr * xr) + (yr * yr));

//set limits, bytes can hold values from 0 up to 255;
if (bt &amp;gt; 255) bt = 255;
else if (bt &amp;lt; 0) bt = 0;
if (gt &amp;gt; 255) gt = 255;
else if (gt &amp;lt; 0) gt = 0;
if (rt &amp;gt; 255) rt = 255;
else if (rt &amp;lt; 0) rt = 0;

//set new data in the other byte array for your image data
resultBuffer[byteOffset] = (byte)(bt);
resultBuffer[byteOffset + 1] = (byte)(gt);
resultBuffer[byteOffset + 2] = (byte)(rt);
resultBuffer[byteOffset + 3] = 255;
}
}

 

5. کد خروجی تصویر پردازش شده:

 

//Create new bitmap which will hold the processed data
    Bitmap resultImage = new Bitmap(width, height);

    //Lock bits into system memory
    BitmapData resultData = resultImage.LockBits(new Rectangle(0, 0, width, height), ImageLockMode.WriteOnly, PixelFormat.Format32bppArgb);

    //Copy from byte array that holds processed data to bitmap
    Marshal.Copy(resultBuffer, 0, resultData.Scan0, resultBuffer.Length);

    //Unlock bits from system memory
    resultImage.UnlockBits(resultData);

    //Return processed image
    return resultImage;
}

 

6. کد برای هسته سوبل:

 

//Sobel operator kernel for horizontal pixel changes
private static double[,] xSobel
{
    get
    {
        return new double[,]
        {
            { -1, 0, 1 },
            { -2, 0, 2 },
            { -1, 0, 1 }
        };
    }
}

//Sobel operator kernel for vertical pixel changes
private static double[,] ySobel
{
    get
    {
        return new double[,]
        {
            {  1,  2,  1 },
            {  0,  0,  0 },
            { -1, -2, -1 }
        };
    }
}

 

همه این کد در اینجا موجود است (پروژه با ویژوال استودیو 2015 ایجاد شد):

SobelOperatorInC#

رمز فایل : behsanandish.com

 

کد الگوریتم sobel در #C

 


 

کد الگوریتم سوبل( Sobel ) در ++C:

در ادامه دو کد برای الگوریتم Sobel  در ++C آماده کردیم:

1.

 

#include&lt;iostream&gt;
#include&lt;cmath&gt;
#include&lt;opencv2/imgproc/imgproc.hpp&gt;
#include&lt;opencv2/highgui/highgui.hpp&gt;

using namespace std;
using namespace cv;

 
// Computes the x component of the gradient vector
// at a given point in a image.
// returns gradient in the x direction
int xGradient(Mat image, int x, int y)
{
    return image.at&lt;uchar&gt;(y-1, x-1) +
                2*image.at&lt;uchar&gt;(y, x-1) +
                 image.at&lt;uchar&gt;(y+1, x-1) -
                  image.at&lt;uchar&gt;(y-1, x+1) -
                   2*image.at&lt;uchar&gt;(y, x+1) -
                    image.at&lt;uchar&gt;(y+1, x+1);
}

// Computes the y component of the gradient vector
// at a given point in a image
// returns gradient in the y direction

int yGradient(Mat image, int x, int y)
{
    return image.at&lt;uchar&gt;(y-1, x-1) +
                2*image.at&lt;uchar&gt;(y-1, x) +
                 image.at&lt;uchar&gt;(y-1, x+1) -
                  image.at&lt;uchar&gt;(y+1, x-1) -
                   2*image.at&lt;uchar&gt;(y+1, x) -
                    image.at&lt;uchar&gt;(y+1, x+1);
}

int main()
{

      Mat src, dst;
      int gx, gy, sum;

      // Load an image
      src = imread(&quot;lena.jpg&quot;, CV_LOAD_IMAGE_GRAYSCALE);
      dst = src.clone();
      if( !src.data )
      { return -1; }

        for(int y = 0; y &lt; src.rows; y++)
            for(int x = 0; x &lt; src.cols; x++)
                dst.at&lt;uchar&gt;(y,x) = 0.0;

        for(int y = 1; y &lt; src.rows - 1; y++){
            for(int x = 1; x &lt; src.cols - 1; x++){
                gx = xGradient(src, x, y);
                gy = yGradient(src, x, y);
                sum = abs(gx) + abs(gy);
                sum = sum &gt; 255 ? 255:sum;
                sum = sum &lt; 0 ? 0 : sum;
                dst.at&lt;uchar&gt;(y,x) = sum;
            }
        }

        namedWindow(&quot;final&quot;);
        imshow(&quot;final&quot;, dst);

        namedWindow(&quot;initial&quot;);
        imshow(&quot;initial&quot;, src);

      waitKey();

 
    return 0;
}

 

دانلود کد فوق از طریق لینک زیر:

Sobel in C++-Code1

رمز فایل : behsanandish.com

 

2.

 

#include &quot;itkImage.h&quot;
#include &quot;itkImageFileReader.h&quot;
#include &quot;itkImageFileWriter.h&quot;
#include &quot;itkSobelEdgeDetectionImageFilter.h&quot;

int main( int argc, char* argv[] )
{
  if( argc != 3 )
    {
    std::cerr &lt;&lt; &quot;Usage: &quot;&lt;&lt; std::endl;
    std::cerr &lt;&lt; argv[0];
    std::cerr &lt;&lt; &quot;&lt;InputFileName&gt; &lt;OutputFileName&gt;&quot;;
    std::cerr &lt;&lt; std::endl;
    return EXIT_FAILURE;
    }

  constexpr unsigned int Dimension = 2;

  using InputPixelType = unsigned char;
  using InputImageType = itk::Image&lt; InputPixelType, Dimension &gt;;

  using ReaderType = itk::ImageFileReader&lt; InputImageType &gt;;
  ReaderType::Pointer reader = ReaderType::New();
  reader-&gt;SetFileName( argv[1] );

  using OutputPixelType = float;
  using OutputImageType = itk::Image&lt; OutputPixelType, Dimension &gt;;

  using FilterType = itk::SobelEdgeDetectionImageFilter&lt; InputImageType, OutputImageType &gt;;
  FilterType::Pointer filter = FilterType::New();
  filter-&gt;SetInput( reader-&gt;GetOutput() );

  using WriterType = itk::ImageFileWriter&lt; OutputImageType &gt;;
  WriterType::Pointer writer = WriterType::New();
  writer-&gt;SetFileName( argv[2] );
  writer-&gt;SetInput( filter-&gt;GetOutput() );

  try
    {
    writer-&gt;Update();
    }
  catch( itk::ExceptionObject &amp; error )
    {
    std::cerr &lt;&lt; &quot;Error: &quot; &lt;&lt; error &lt;&lt; std::endl;
    return EXIT_FAILURE;
    }

  return EXIT_SUCCESS;
}

 

دانلود کد فوق از طریق لینک زیر:

Sobel in C++-Code2

رمز فایل : behsanandish.com

 


کد الگوریتم سوبل( Sobel ) در C:

 

/* sobel.c */
#include &lt;stdio.h&gt;
#include &lt;stdlib.h&gt;
#include &lt;float.h&gt;
#include &quot;mypgm.h&quot;

void sobel_filtering( )
     /* Spatial filtering of image data */
     /* Sobel filter (horizontal differentiation */
     /* Input: image1[y][x] ---- Outout: image2[y][x] */
{
  /* Definition of Sobel filter in horizontal direction */
  int weight[3][3] = {{ -1,  0,  1 },
      { -2,  0,  2 },
      { -1,  0,  1 }};
  double pixel_value;
  double min, max;
  int x, y, i, j;  /* Loop variable */

  /* Maximum values calculation after filtering*/
  printf(&quot;Now, filtering of input image is performed\n\n&quot;);
  min = DBL_MAX;
  max = -DBL_MAX;
  for (y = 1; y &lt; y_size1 - 1; y++) {
    for (x = 1; x &lt; x_size1 - 1; x++) {
      pixel_value = 0.0;
      for (j = -1; j &lt;= 1; j++) {
    for (i = -1; i &lt;= 1; i++) {
      pixel_value += weight[j + 1][i + 1] * image1[y + j][x + i];
    }
      }
      if (pixel_value &lt; min) min = pixel_value;
      if (pixel_value &gt; max) max = pixel_value;
    }
  }
  if ((int)(max - min) == 0) {
    printf(&quot;Nothing exists!!!\n\n&quot;);
    exit(1);
  }

  /* Initialization of image2[y][x] */
  x_size2 = x_size1;
  y_size2 = y_size1;
  for (y = 0; y &lt; y_size2; y++) {
    for (x = 0; x &lt; x_size2; x++) {
      image2[y][x] = 0;
    }
  }
  /* Generation of image2 after linear transformtion */
  for (y = 1; y &lt; y_size1 - 1; y++) {
    for (x = 1; x &lt; x_size1 - 1; x++) {
      pixel_value = 0.0;
      for (j = -1; j &lt;= 1; j++) {
    for (i = -1; i &lt;= 1; i++) {
      pixel_value += weight[j + 1][i + 1] * image1[y + j][x + i];
    }
      }
      pixel_value = MAX_BRIGHTNESS * (pixel_value - min) / (max - min);
      image2[y][x] = (unsigned char)pixel_value;
    }
  }
}

main( )
{
  load_image_data( );   /* Input of image1 */ 
  sobel_filtering( );   /* Sobel filter is applied to image1 */
  save_image_data( );   /* Output of image2 */
  return 0;
}
دانلود کد فوق از طریق لینک زیر:

Sobel in C

رمز فایل : behsanandish.com


 

کد الگوریتم سوبل( Sobel ) در Visual Basic:

 

Private Sub bEdge_Click(sender As Object, e As EventArgs) _
Handles bEdge.Click

'Sobel Edge'
Dim tmpImage As Bitmap = New Bitmap(picOriginal.Image)
Dim bmpImage As Bitmap = New Bitmap(picOriginal.Image)

Dim intWidth As Integer = tmpImage.Width
Dim intHeight As Integer = tmpImage.Height

Dim intOldX As Integer(,) = New Integer(,) {{-1, 0, 1}, _
{-2, 0, 2}, {-1, 0, 1}}
Dim intOldY As Integer(,) = New Integer(,) {{1, 2, 1}, _
{0, 0, 0}, {-1, -2, -1}}

Dim intR As Integer(,) = New Integer(intWidth - 1, _
intHeight - 1) {}
Dim intG As Integer(,) = New Integer(intWidth - 1, _
intHeight - 1) {}
Dim intB As Integer(,) = New Integer(intWidth - 1, _
intHeight - 1) {}

Dim intMax As Integer = 128 * 128

For i As Integer = 0 To intWidth - 1

For j As Integer = 0 To intHeight - 1

intR(i, j) = tmpImage.GetPixel(i, j).R
intG(i, j) = tmpImage.GetPixel(i, j).G
intB(i, j) = tmpImage.GetPixel(i, j).B

Next

Next

Dim intRX As Integer = 0
Dim intRY As Integer = 0
Dim intGX As Integer = 0
Dim intGY As Integer = 0
Dim intBX As Integer = 0
Dim intBY As Integer = 0

Dim intRTot As Integer
Dim intGTot As Integer
Dim intBTot As Integer

For i As Integer = 1 To tmpImage.Width - 1 - 1

For j As Integer = 1 To tmpImage.Height - 1 - 1

intRX = 0
intRY = 0
intGX = 0
intGY = 0
intBX = 0
intBY = 0

intRTot = 0
intGTot = 0
intBTot = 0

For width As Integer = -1 To 2 - 1

For height As Integer = -1 To 2 - 1

intRTot = intR(i + height, j + width)
intRX += intOldX(width + 1, height + 1) * intRTot
intRY += intOldY(width + 1, height + 1) * intRTot

intGTot = intG(i + height, j + width)
intGX += intOldX(width + 1, height + 1) * intGTot
intGY += intOldY(width + 1, height + 1) * intGTot

intBTot = intB(i + height, j + width)
intBX += intOldX(width + 1, height + 1) * intBTot
intBY += intOldY(width + 1, height + 1) * intBTot

Next

Next

If intRX * intRX + intRY * intRY &gt; intMax OrElse
intGX * intGX + intGY * intGY &gt; intMax OrElse
intBX * intBX + intBY * intBY &gt; intMax Then

bmpImage.SetPixel(i, j, Color.Black)

Else

bmpImage.SetPixel(i, j, Color.Transparent)

End If

Next

Next

picModified.Image = bmpImage

End Sub
دانلود کد فوق از طریق لینک زیر:

Sobel in VB

رمز فایل : behsanandish.com

 

کد الگوریتم sobel در VB

 


 

پیشنهاد می کنیم جهت آشنایی با الگوریتم های لبه یابی، مطلب «الگوریتم های لبه یابی و انواع آن» را مشاهده نمایید.

 

شناسایی حروف توسط شبکه های عصبی

تو این مطلب می خواهیم بصورت عملی از شبکه های عصبی استفاده کنیم! واقعا خیلی جالبه می خوایم به کامپیوتر سه تا حرف الفبای انگلیسی رو یاد بدیم.
نکته ی جالب تر این هست که حتی به کامپیوتر نمی گیم هر کدوم از حرف ها چی هستن! فقط بهش می گیم که این ها سه حرف مختلف هستند! و کامپیوتر خودش تشخیص می ده هر کدوم متعلق به کدوم گروه هست! به این نوع طبقه بندی اصطلاحا Unsupervised میگویند.

سوال : به نظر میرسه باید توی مثال هامون به کامپیوتر بگیم مثلا این A هست و این B هست!
جواب : اون هم نوعی یادگیری هست که بهش اصطلاحا Supervised می گن. اما توی این مثال حالت جالب تر یعنی Unsupervised رو می خوایم بررسی کنیم. به این صورت که فقط به کامپیوتر می گیم ۳ دسته وجود داره و براش چندین مثال می زنیم و خودش مثال ها رو توی ۳ دسته قرار می ده! در نهایت ما مثلا می تونیم بگیم همه ی مثال هایی که در دسته ی دوم قرار گرفتن A هستند.
شاید جالب باشه بدونید گوگل هم برای دسته بندی اطلاعات از همچین روشی استفاده می کنه! البته کمی پیشرفته تر. مثلا ۱۰۰ متن اقتصادی و ۱۰۰ متن ورزشی به کامپیوتر میده و از کامپیوتر می خواد اونها رو به ۲ بخش تقسیم بندی بکنه! ورودی لغت های اون متن ها هستند. “

ابزار مورد نیاز
برای این که شروع کنیم به چند مورد نیاز داریم:

  1. در مورد هوش مصنوعی و شبکه های عصبی یکم اطلاعات داشته باشید.
  2. برنامه ای برای تولید الگو که ورودی شبکه ی عصبی ما خواهد بود. این برنامه رو میتونید از اینجا تهیه کنید.
  3. نرم افزار JOONE Editor. عبارت JOONE مخفف Java Object Oriented Neural Engine هست. که یک ابزار قدرت مند برای بوجود آوردن و آموزش انواع شبکه های عصبی در Java هست. توی این آموزش ما از ویرایشگر این ابزار استفاده می کنیم که محیطی گرافیکی برای تولید شبکه های عصبی داره و کار با اون بسیار ساده هست. این ابزار از اینجا قابل دریافت هست. بدیهیه که برای نصب این ابزار ابتدا باید جاوا روی کامپیوتر شما نصب باشه.
  4. کمی پشتکار و حوصله.

لینک جایگزین برای دانلود JOONE Editor:
https://sourceforge.net/projects/joone/files/

حالا می خوایم یک سری الگو تولید کنیم. الگو همون مثال هایی هست که گفتیم برای کامپیوتر می زنیم تا بتونه یاد بگیره.
برای این کار از برنامه ای که در شماره ی ۲ ابزارها معرفی کردم استفاده می کنیم. این برنامه خیلی ساده کار می کنه و فقط الگو ها رو از حالت تصویری به ۰ و ۱ تبدیل می کنه.
روش کار به این صورت هست که اول تصویر رو به یک ماتریس ۸ در ۸ تقسیم می کنه. یعنی ۶۴ قسمت. وقتی دکمه ی سمت چپ ماوس پایینه در صورتی که ماوس از هر کدوم از اون ۶۴ بخش رد بشه اون بخش رو داخل ماتریس علامت گذاری می کنه (مقدار اون قسمت رو True می کنه). وقتی دکمه ی Learn زده می شه برنامه مقدار تمام قسمت ها رو از بالا به پایین داخل یک فایل ذخیره می کنه. مقدار هر قسمت می تونه ۰ یا False و ۱ یا True باشه. ”
در صورتی که سورس این برنامرو خواستید کافیه توی بخش نظرات بگید تا براتون میل کنم.
کار با این برنامه خیلی آسون هست همونطور که توی شکل مشخصه.

کافیه الگویی که دوست دارید رو داخل فضای سفید بکشید و دکمه ی Learn رو بزنید. Textbox پایینی برای تغییر دادن آدرس فایلی هست که اطلاعات توی اون ذخیره میشه. و Textbox بالایی برای اینه که بگید این الگو چه حرفی هست که توی این مطلب نیازی به پر کردن اون نیست چون ما بحثمون یادگیری Unsupervised هست. توی مطالب بعدی برای یادگیری Supervised به این فیلد نیاز خواهیم داشت.
خوب من برای اینکه مثال پیچیده نشه ۳ حرف رو می خوام به کامپیوتر یاد بدم. A و C و Z!
برای این کار برای هر کدوم از حروف چهار مثال وارد می کنم و دکمه ی Learn رو می زنم. توی شکل زیر می تونید هر ۱۲ الگو رو ببینید.

فایل خروجی مربوط به این الگوهای مثال از اینجا قابل دریافت هست.همونطور که می بینید هر ردیف به نظر من و شما عین هم هستند. اما اگر کمی بیشتر دقت کنیم می بینیم جای مربع های مشکی با هم فرق دارن. به نظر شما کامپیوتر هم خواهد فهمید هر ردیف نشاندهنده ی یک حرف مجزا هست؟
تشکیل شبکه ی عصبیخوب! حالا می خواهیم ساختار شبکه ی عصبی رو طراحی کنیم. برای این کار از JOONE Editor کمک می گیریم.
صفحه ی اول این نرم افزار به این شکل هست:

توی این مثال ما از یک لایه ی ورودی خطی ۶۴ نورونی استفاده می کنیم که هر نورون یک قسمت از ماتریسی که در بخش قبل گفتیم رو به عنوان ورودی می گیره. به عنوان خروجی هم از یک لایه ی ۳ نورونی WinnerTakeAll استفاده می کنیم. در این نوع خروجی یکی از نورون ها ۱ و بقیه ۰ خواهند بود که برای تقسیم بندی بسیار مناسب هست.

برای شروع ابتدا یک لایه ی FileInput ایجاد می کنیم. توسط این ابزار می تونیم یک فایل رو به عنوان ورودی به شبکه بدیم.
روی FileInput کلیک راست کرده و در Properties اون فایل درست شده در مرحله ی قبلی رو به عنوان fileName انتخاب می کنیم و به عنوان Advanced Column Selector مقدار 1-64 رو وارد می کنیم تا برنامه متوجه بشه باید از ستون های ۱ تا ۶۴ به عنوان ورودی استفاده کنه.

ایجاد یک لایه ی خطی:

مرحله ی بعدی ایجاد یک Linear Layer یا لایه ی خطی هست. بعد از ایجاد این لایه Properties اون باید به شکل زیر باشه:

همونطور که می بینید تعداد ردیف ها ۶۴ مقداردهی شده که دلیلش این هست که ۶۴ ورودی داریم.
حالا با انتخاب FileInput و کشیدن نقطه ی آبی رنگ سمت راست اون روی Linear Layer خروجی FileInput یعنی اطلاعات فایل رو به عنوان ورودی Linear Layer انتخاب می کنیم.
تا این لحظه ما یک لایه ی ۶۴ نورونه داریم که ورودی اون مقادیر مثال های تولید شده در مرحله ی قبل هست.

ایجاد لایه ی WinnerTakeAll :

خوب توی این مرحله لایه ی خروجی که یک لایه ی WinnerTakeAll هست رو تولید می کنیم. Properties این لایه باید به شکل زیر تغییر پیدا کنه تا اطمینان پیدا کنیم الگوها به سه دسته تقسیم میشن:

حالا باید بین لایه ی خطی و لایه ی WinnerTakeAll ارتباط برقرار کنیم. برای این کار باید از Kohonen Synapse استفاده کنیم و Full Synapse جواب نخواهد داد. پس روی دکمه ی Kohonen Synapse کلیک کرده و بین لایه ی خطی و لایه ی WinnerTakeAll ارتباط ایجاد می کنیم.
در آموزش های بعدی فرق انواع سیناپس ها رو بررسی خواهیم کرد.آموزش شبکه

تا این لحظه شبکه باید به این شکل باشه. حالا می تونیم آموزش شبکرو شروع کنیم. برای این کار در منوی Tools بخش Control Panel رو انتخاب می کنیم. و در صفحه ی جدید learningRating و epochs و training pattern و learning رو به شکل زیر تغییر می دیم.

epochs تعداد دفعاتی که مرحله ی آموزش تکرار میشرو تعیین می کنه.
learningRate ضریبی هست که در یادگیری از اون استفاده می شه. بزرگ بودن اون باعث میشه میزان تغییر وزن نورون ها در هر مرحله بیشتر بشه و سرعت رسیدن به حالت مطلوب رو زیاد می کنه اما اگر مقدار اون خیلی زیاد شه شبکه واگرا خواهد شد.
training patterns هم تعداد الگو هایی که برای آموزش استفاده می شن رو نشون می ده که در این مثال ۱۲ عدد بود.
بعد از اینکه تمام تغییرات رو ایجاد کردیم دکمه ی Run رو می زنیم و منتظر می شیم تا ۱۰۰۰۰ بار عملیات یادگیری انجام بشه.

تبریک می گم! شما الان به کامپیوتر سه حرف A و C و Z رو یاد دادید!
اما خوب حالا باید ببینید کامپیوتر واقعا یاد گرفته یا نه.
برای این کار از یک لایه ی FileOutput استفاده می کنیم تا خروجی شبکرو داخل یک فایل ذخیره کنیم.
Properties لایه ی FileOutput باید بصورت زیر باشه:

همونطور که می بینید به عنوان fileName مقدار c:\output.txt رو دادیم. یعنی خروجی شبکه در این فایل ذخیره میشه.
حالا کافیه لایه ی WinnerTakeAll رو به لایه ی FileOutput متصل کنیم.
بعد از متصل کردن این دو لایه شکل کلی باید بصورت زیر باشه:

برای اینکه فایل خروجی ساخته بشه باید یک بار این شبکرو اجرا کنیم. برای این کار مجددا در منوی Tools بخش Control Panel رو انتخاب می کنیم و در اون learning رو False و epochs رو ۱ می کنیم تا شبکه فقط یک بار اجرا شه. پس از تغییرات این صفحه باید به شکل زیر باشه:

حالا با توجه به اینکه من اول چهار مثال A رو وارد کردم و بعد به ترتیب چهار مثال C و چهار مثال Z رو ببینیم خروجی این شبکه به چه شکل شده.
باور کردنی نیست! خروجی به این شکل در اومده:

1.0;0.0;0.0
1.0;0.0;0.0
1.0;0.0;0.0
1.0;0.0;0.0
0.0;1.0;0.0
0.0;1.0;0.0
0.0;1.0;0.0
0.0;1.0;0.0
0.0;0.0;1.0
0.0;0.0;1.0
0.0;0.0;1.0
0.0;0.0;1.0

همونطور که می بینید ۴ خط اول که مربوط به A هستن ستون اولشون ۱ هست و در چهار خط دوم ستون دوم و در چهار خط سوم ستون سوم!
این یعنی کامپیوتر بدون اینکه کسی به اون بگه کدوم مثال ها کدوم حرف هست خودش فهمیده و اون ها رو دسته بندی کرده.
سوال :  ممکنه چون پشت هم دادید مثال هر حرف رو اینطوری نشده؟
جواب : نه! کامپیوتر که نمی دونسته من می خوام مثال های هر حرف رو پشت سر هم بدم! من برای راحتی خودم این کار رو کردم. شما می تونی ورودی هاتو غیر مرتب بدی!
سوال : دلیل خاصی داره که در A ستون اول ۱ هست و …
جواب : نه! ممکن بود برای A ستون دوم ۱ بشه و یا هر حالت دیگه. شما اگر امتحان کنید ممکنه تفاوت پیدا کنه. اما مهم اینه در تمام A ها یک ستون خاص مقدارش ۱ و بقیه ی ستون ها مقدارشون صفر می شه. پس یعنی کامپیوتر تونسته به خوبی تقسیم بندی کنه.

حالا می خوایم شبکرو با سه مثال جدید تست کنیم که در مثال های آموزشی نبوده! برای این کار من با استفاده از برنامه ی تولید الگو ۳ مثال جدید درست می کنم و به عنوان فایل ورودی در شبکه فایل جدید رو انتخاب می کنم.
توی شکل زیر سه مثال جدید رو می تونید ببینید:

برای جذابیت علاوه بر این سه مثال ۲ مثال دیگه هم که حروف خاصی نیستند گذاشتم!

فایل خروجی این مثال ها از اینجا قابل دریافت هست.

خوب حالا بگذارید ببینیم کامپیوتر چه جوابی می ده. با توجه به اینکه اول مثال C بعد مثال Z و بعد مثال A رو وارد کردم. دو مثال بعدی هم به ترتیب مثال بد خط سمت چپ و مثال بد خط سمت راست هستند. و اما جواب:

0.0;1.0;0.0
0.0;0.0;1.0
1.0;0.0;0.0
0.0;0.0;1.0
0.0;1.0;0.0

کامپیوتر سه مورد اول رو به خوبی C و Z و A تشخیص داده. و دو مورد بد خط هم به ترتیب از چپ به راست Z و C تشخیص داده!
حتی برای انسان هم سخته فهمیدن اینکه مورد های چهارم و پنجم چی هستند اما اگر خوب دقت کنید می بینید به مواردی که کامپیوتر خروجی داده نزدیک تر هستند.
کامپیوتر شعور نداره! اما ما سعی کردیم طریقه ی عملکرد مغز رو به صورت خیلی ابتدایی و به ساده ترین نحو توش شبیه سازی کنیم! ”
تو  این مطلب دیدیم که کامپیوتر تونست بدون اینکه ما براش مثال هایی بزنیم و بگیم هر کدوم چه حرفی هستند و فقط با دادن تعداد دسته ها، مثال ها رو به سه دسته همونطوری که انسان ها تقسیم می کنند تقسیم کنه. همونطور که گفتیم به این نوع دسته بندی، دسته بندی Unsupervised میگن.
منبع

خوانش پلاک خودرو از تصاویر جاده‌ای

(پیاده سازی شده برای پلاک های ایرانی)

این الگوریتم (تشخیص پلاک خودرو) با نرم افزار MATLAB 2011 نوشته شده است برای خواندن پلاک که بدون نویز و خرابی هستند خوب جواب میدهد…البته دیتا بیس کاراکترها رو خودتون به راحتی میتوانید بیشتر کنید تا پاسخ دهی قویتر شود …فعلا فقط یک تصویر به عنوان آزمایش جهت تست برنامه قرار داده شده .

همچنین به علت ضیق وقت قسمت شناسای کاراکترها و تبدیل آنها به عدد و حروف فارسی رو قوی نکردم…شما میتونید این قسمت را برای جوابدهی بهتر دستکاری کنید… در ضمن اگر خواستین از نحوه فرمولبندی و کارکرد برنامه سر دربیارید حدود 20 صفحه هم گزارش تهیه شده ، فایل پاور پوینتی که برای ارائه پروژه تشخیص پلاک خودرو آماده شده نیز آپلود گردیده است.

فقط قبل از اجرای برنامه این مراحل رو طی کنید:
1- مسیر عکس خودرو(glx.jpg) رو وارد کنید
2-دیتا بیس (فایل زیپ) رو دانلود کنید
3-مسیر دیتا-بیس کاراکترها رو درست وارد کنید.
4-برنامه رو اجرا کنید-نتایج رو صفحه کامند matlab نمایش داده میشود.
5-هر جا خواستید از پشت دستور imshow و figure علامت % رو حذف کنید تا کارهای که روی تصویر انجام میشود رو مرحله به مرحله ببینید.
6-برنامه را اجرا کنید و نتایج را در صفحه متلب ببیند.

 

موضوع: آموزش تشخیص پلاک خودرو های ایرانی توسط نرم افزار متلب

تعداد صفحات پی دی اف : 18

تعداد صفحات پاور پوینت : 18

سورس کد : نرم افزار متلب Matlab

قیمت : رایگان

کلمه عبور فایل : behsanandish.com

 

دانلود

 

 

 

نکته : شرکت بهسان اندیش تولید کننده سامانه های هوشمند مفتخر به تولید یکی از دقیقترین و سریعترین سامانه های جامع کنترل تردد خودرو می باشد که می توانید جهت آشنایی با این محصول به لینک :سامانه جامع کنترل تردد خودرو بهسان(پلاک خوان) مراجعه فرمایید.

سورس برنامه در نرم افزار متلب:


clear all
close all
clc

p0=imread('E:\NIT\DIP\dip data proj\car\glx.jpg');
p=rgb2gray(p0);
p=im2double(p);

f=fspecial('gaussian');
pf=imfilter(p,f,'replicate');
%imshow(pf)
%figure
Pm=mean2(pf); %Average or mean of matrix elements
Pv=((std2(pf))^2); %the variance of an M-by-N matrix is the square of the standard deviation
T=Pm+Pv;

% taerife astane............................................
[m n]=size(pf);
for j=1:n
 for i=1:m
 if pf(i,j)&amp;amp;gt;T;
 pf(i,j)=1;
 else
 pf(i,j)=0;
 end
 end
end

ps=edge(pf,'sobel');
%imshow(ps)
%figure
pd=imdilate(ps,strel('diamond',1));
pe=imerode(pd,strel('diamond',1));
pl=imfill(pe,'holes');
[m n]=size(pl);

%barchasb gozary..............................................
pll=bwlabel(pl);
stat =regionprops(pll,'Area','Extent','BoundingBox','Image','Orientation','Centroid');
index = (find([stat.Area] == max([stat.Area]))); %meghdare barchasb dakhele bozorgtarin masahat ra mikhanad
ppout=stat(index).Image;
%imshow(ppout);
%figure

% biron keshidane mokhtasate pelak.............................
x1 = floor(stat(index).BoundingBox(1)); %shomare stone awalin pixel (B = floor(A) rounds the elements of A to the nearest integers less than or equal to A)
x2 = ceil(stat(index).BoundingBox(3)); %pahnaye abject dar sathe ofoghi(B = ceil(A) rounds the elements of A to the nearest integers greater than or equal to A)
y1 = ceil(stat(index).BoundingBox(2)); %shomare satre avalin pixel(B = ceil(A) rounds the elements of A to the nearest integers greater than or equal to A)
y2 = ceil(stat(index).BoundingBox(4)); %pahnaye abject dar sathe amodi(B = ceil(A) rounds the elements of A to the nearest integers greater than or equal to A)
bx=[y1 x1 y2 x2];
ppc=imcrop(p0(:,:,:),[x1,y1,x2,y2]);
%imshow(ppc)
%figure
ppg=imcrop(p(:,:),[x1,y1,x2,y2]);
%imshow(ppg)
%figure

%plate enhancment..............................................
ppcg=rgb2gray(ppc);
ppcg=imadjust(ppcg, stretchlim(ppcg), [0 1]); % specify lower and upper limits that can be used for contrast stretching image(J = imadjust(I,[low_in; high_in],[low_out; high_out]))
ppg=im2double(ppcg);
pb=im2bw(ppg);%im2bw(I, level) converts the grayscale image I to a binary image
%imshow(pb)
%figure

%rotate correction..............................................
if abs(stat(index).Orientation) &amp;amp;gt;=1; %The orientation is the angle between the horizontal line and the major axis of ellipse=angle
 ppouto=imrotate(ppout,-stat(index).Orientation); %B = imrotate(A,angle) rotates image A by angle degrees in a counterclockwise direction around its center point. To rotate the image clockwise, specify a negative value for angle.
 pbo=imrotate(pb,-stat(index).Orientation);
 angle = stat(index).Orientation;
else
 pbo=pb;
end;
%imshow(pbo)

pbod=imdilate(pbo,strel('line',1,0));
pbodl=imfill(pbod,'holes');
px = xor(pbodl , pbod);

pz= imresize(px, [44 250]); % 4*(57*11)=(chahar barabar size plake khodroye irani)

%barchasb zanye plak..........................................
stat1 = regionprops(bwlabel(pz,4),'Area','Image');
index1 = (find([stat1.Area] == max([stat1.Area])));
maxarea =[stat1(index1).Area];%braye hazfe neweshteye iran va khatahaye ehtemali
pzc=bwareaopen(pz,maxarea-200); %maxarea(1,1) meghdare structur ra adres dehi mikonad,va migoyad object haye ka mte z an ra hazf konad
%histogram plak......
%v=sum(pzc);
%plot(v);

%biron keshidan karakterha......................................
stat2=regionprops(pzc,'Area','BoundingBox','Image','Orientation','Centroid');
cx=cell(1,8);
for i=1:8
 x=stat2(i).Image;
 rx=imresize(x, [60 30]);
 %imshow(rx)
 %figure
 cx{1,i}=rx;
 %fx=mat2gray(cx{1,1});
 %imshow(cx{1,2})
 
 imwrite(rx,['E:\NIT\DIP\dip data proj\char\car\glx\' num2str(i) '.jpg']);
end

%khandane karakterha.........mini database1...................

for i=1:1
 for j=1:8
 temp=imread(['E:\NIT\DIP\dip data proj\char\car\glx\' num2str(j) '.jpg']);
 temp=im2bw(temp);
 nf1=temp.*cx{1,i};
 nf2=sum(sum(nf1));
 nf(j)=nf2/(sum(sum(temp)));
 mx=max(nf(j));
 
 
 if nf(1,1)== mx
 disp(1);
 else
 if nf(1,2)== mx
 disp(5);
 else
 if nf(1,3)== mx
 disp('j');
 else
 if nf(1,4)== mx
 disp(6);
 else
 if nf(1,5)== mx
 disp(3);
 else
 if nf(1,6)== mx
 disp(1);
 else
 if nf(1,7)== mx
 disp(7);
 else
 if nf(1,8)== mx
 disp(2);
 
 
 end
 end
 end
 end
 end
 end
 
 end
 
 end
 
 
 end
 
end