نوشته‌ها

کار با Thread ها در زبان سی شارپ – آشنایی با Thread های Foreground و Background در دات نت

زمانی که یک Thread جدید در برنامه های دات نت ایجاد می شوند، این Thread ها می توانند به دو صورت Foreground و Background اجرا شوند:

  1. Thread های Foreground: زمانی که کی Thread در حالت Foreground اجرا می شود باعث می شود که Thread اصلی برنامه تا زمان کامل شدن اجرای Thread ایجاد شده در حالت اجرا بماند. یعنی از Shut-down شدن Primary Thread توسط CLR جلوگیری می شود.
  2. Thread های Background: این Thread ها که با نام Daemon Thread شناخته می شوند به CLR می گوید که اجرای این Thread آنقدر اهمیت ندارد که Thread اصلی برنامه بخواهد منتظر بماند تا عملیات آن به اتمام برسد و می تواند در هر زمان که Thread اصلی برنامه به اتمام رسید، به صورت خودکار Thread های Background را نیز از بین ببرد.

توجه کنید که کلیه Thread هایی که در برنامه ها ایجاد می کنیم به صورت پیش فرض در حالت Foreground قرار دارند. برای آشنایی بیشتر با این موضوع نمونه کد زیر را در نظر بگیرید:

static void Main(string[] args)
{
    var thread = new Thread(PrintNumbers);
    thread.Start();
}

public static void PrintNumbers()
{
    for (int counter = 1; counter < 10; counter++)
    {
        Console.WriteLine(counter);
        Thread.Sleep(200);
    }
}

همانطور که گفتیم Thread ایجاد شده به صورت پیش فرض از نوع Foreground است و به همین دلیل تا زمانی که روند اجرای Thread ایجاد شده به اتمام نرسد از برنامه خارج نمی شویم و کلیه اعداد در خروجی چاپ می شوند. اما در کد زیر Thread ایجاد شده به صورت Background است و خواهیم دید که پس از اجرای برنامه به دلیل اینکه Thread اصلی زودتر از Thread ایجاد شده به اتمام می رسد، CLR به صورت خودکار Thread ایجاد شده را از بین می برد و اعداد به صورت کامل در خروجی نمایش داده نمی شوند:

static void Main(string[] args)
{
    var thread = new Thread(PrintNumbers);
    thread.IsBackground = true;
    thread.Start();
}

public static void PrintNumbers()
{
    for (int counter = 1; counter < 10; counter++)
    {
        Console.WriteLine(counter);
        Thread.Sleep(200);
    }
}

در برنامه های واقعی باید با دقت نوع Thread ها را انتخاب کرد، برای مثال فرض کنید که در برنامه شما در یک Thread جداگانه عملیاتی بر روی داده های بانک اطلاعاتی انجام می شود و نتیجه این عملیات در انتها باید در جایی ذخیره شود، می توانید برای اینکار یک Thread از نوع Foreground ایجاد کرده تا پس از خروج از برنامه، Thread اصلی منتظر اتمام انجام عملیات شده و سپس عملیات خروج کامل انجام شود. در مبحث بعدی در مورد موضوع همزمانی یا Concurrency صحبت می کنیم که از مشکلات اساسی در زمینه برنامه نویسی asynchronous می باشد و در مورد راهکار های حل این مشکل نیز صحبت خواهیم کرد.

منبع


قسمت اول آموزش-برنامه نویسی Asynchronous – آشنایی با Process ها، Thread ها و AppDomain ها

قسمت دوم آموزش- آشنایی با ماهیت Asynchronous در Delegate ها

قسمت سوم آموزش-آشنایی با فضای نام System.Threading و کلاس Thread

قسمت چهارم آموزش- آشنایی با Thread های Foreground و Background در دات نت

قسمت پنجم آموزش- آشنایی با مشکل Concurrency در برنامه های Multi-Threaded و راهکار های رفع این مشکل

قسمت ششم آموزش- آشنایی با کلاس Timer در زبان سی شارپ

قسمت هفتم آموزش-آشنایی با CLR ThreadPool در دات نت

قسمت هشتم آموزش- مقدمه ای بر Task Parallel Library و کلاس Parallel در دات نت

قسمت نهم آموزش- برنامه نویسی Parallel:آشنایی با کلاس Task در سی شارپ

قسمت دهم آموزش-برنامه نویسی Parallel در سی شارپ :: متوقف کردن Task ها در سی شارپ – کلاس CancellationToken

قسمت یازدهم آموزش- برنامه نویسی Parallel در سی شارپ :: کوئری های Parallel در LINQ

قسمت دوازدهم آموزش- آشنایی با کلمات کلیدی async و await در زبان سی شارپ

قسمت سیزدهم آموزش- استفاده از متد WhenAll برای اجرای چندین Task به صورت همزمان در سی شارپ

برای پی بردن به این موضوع که کدامیک از دو تکنولوژی CCD یا CMOS بهتر است و تصویر بهتری در اختیار کاربر قرار میدهد، لازم است تا ابتدا نحوه ی عملکرد هرکدام از این تکنولوژی ها را فرا بگیریم :

CCD چطور کار میکند ؟

نحوه کار CCD

همانطور که در شکل مشاهده میفرمایید، CCD دارای دو بخش اصلی مجزا از هم می باشد، بخش نارنجی رنگ که پیکسل ها را مشخص میکند و در حقیقت همان فتودیود است و بخش آبی رنگ که ترانزیستورهای مختلف، آی سی سیستم را تشکیل می دهند.
بدلیل جدا بودن فتودیود از ترانزیستورها، امکان جذب نور در این تکنولوژی در حالت حداکثر ممکن میباشد و با توجه به اینکه از یک آی سی جداگانه برای پردازش تصاویر تهیه شده توسط فتودیودها استفاده میشود هم میتوان امکانات بیشتری ( از جمله الگوریتم های حذف نویز، تشخیص چهره، تشخیص حرکت و … ) را به سیستم تصویربرداری اضافه کرد.

CMOS چطور کار میکند ؟

نحوه کار CMOS

تفاوت اصلی تکنولوژی CMOS با CCD همانطور که در شکل کاملا مشخص می باشد در این است که فتودیودها و ترانزیستورها در تکنولوژی CMOS بر روی یک برد سوار میشوند.

این روش باعث پایین آمدن مصرف انرژی نسبت به CCD و کمترشدن قیمت تمام شده ی محصول تهیه شده با تکنولوژی CMOS می شود ولی با توجه به کیفیت پایین تر و حساسیت به نور کمتر نمیتوان گفت که دوربین هایی که از تکنولوژی CMOS استفاده میکنند کارایی بهتری نسبت به دوربین های مشابه با تکنولوژی CCD دارند.

تفاوت CCD و CMOS

مقایسه CCD با CMOS :

در شکل بالا تصاویر تهیه شده توسط دو دوربین با لنزها و شرایط نوردهی یکسان توسط CCD و CMOS نمایش داده شده است. همانطور که در شکل ملاحظه می فرمایید تصاویر تهیه شده با CCD از نویز کمتری برخوردار بوهد و رنگ ها شفافیت و واقعیت بیشتری دارند.

بطور کلی اگر بخواهیم این دو تکنولوژی را با هم مقایسه کنیم میتوانیم به موارد زیر توجه کنیم :
• دوربین های CMOS حساسیت به نور کمتری دارند، لذا تصاویر دریافت شده از کیفیت پایینتری نسبت به تکنولوژی همرده در دوربین های CCD برخوردار است.
• دوربین های CMOS حساسیت بیشتری به نویز دارند.
• دوربین های CMOS در هنگام استفاده از سیستم “دید در شب” چون از راهکار “مادون قرمز” استفاده میشود که نور تک رنگ با قدرت کم در محیط وجود دارد، تصاویر مناسبی ارائه نمیدهند.
• دوربین های CMOS ارزانتر از دوربین های CCD میباشند و این به دلیل عدم استفاده از یک بورد جداگانه برای عمل پردازش تصویر می باشد.
• دوربین های CMOS مصرف انرژی کمتری نسبت به دوربین های CCD دارند و درصورتی که شما از سیستم های امنیت تصویری با باتری یا سیستم پشتیبان ( یو پی اس ) استفاده میکنید بکاربردن دوربین های CMOS به صرفه تر است.
• قابلیت های دوربین های CMOS برای تشخیص چهره، حرکت و … پایین تر از دوربین های CCD می باشد.
• دوربین های CCD با سرعت بیشتری عمل Shuttering را انجام می دهند به این معنی که عمل تصویربرداری از اجسام متحرک بهتر و واضح تر انجام می شود.

منبع

در دوربین های مداربسته ی آنالوگ، رزولوشن با TV Line اندازه گیری می شود. در اکثر دوربین های آنالوگ جدید، TVL بین ۴۲۰ تا ۷۰۰ متغیر است. اگر چه ۴۲۰TVL پایین ترین محسوب می شود، سیستم های امنیت تصویری وجود دارد که لازم است فقط یک فاصله ی کوتاه پوشش داده شود و در اینگونه موارد دوربین های ۴۲۰TVL خوب کار می کنند.

دوربین های ۶۰۰TVL به بالا، تصاویر دقیق تر و کنتراست بالایی دارند. اگر نیاز به تصویر صاف و دقیق دارید، دوربین های بالای ۶۰۰TVL را انتخاب کنید هر چند فاکتور های مهم دیگری مانند میزان لوکس، WDR و … در تصویر دریافتی از دوربین تاثیر گذار هستند.

وقتی دوربین ها تصاویر را دریافت می کنند، آن را از طریق کابل به DVR می فرستند. در DVR، تصاویر از حالت آنالوگ به حالت دیجیتال تبدیل می شوند تا هم روی هارد ذخیره شوند و هم از طریق مانیتور نمایش داده شوند. این مهمترین بخش زنجیره ی دریافت و ذخیره ی تصاویر در دوربین های مدار بسته است.

بهترین دوربین ها با بالاترین کیفیت هم در صورتی که از یک DVR با توانایی تبدیل پایین استفاده شود نمی تواند تصویر خوبی به شما بدهد. DVR ها دو مدل رزولوشن پرکاربرد دارند : D1 , Cif

Cif سایز ۳۲۰*۲۴۰ پیکسل به شما می دهد و D1 سایز ۷۲۰*۴۸۰ و همانطور که مشخص است، D1 چهار برابر بزرگتر از Cif است پس تصویر کمتر فشرده می شود و در نتیجه جزئیات بیشتری را نشان می دهد.

برای انتخاب DVR، رزولوشن ضبط تصاویر را در نظر داشته باشید. بعضی از DVR ها هر دو گزینه را دارند ولی معمولا تعداد فریم بر ثانیه را پایین می آورد تا تصاویر پر کیفیت تری ارائه دهد.

 

رزولوشن در دوربین های مدار بسته

 

دوربین های آی پی (IP) قابلیت این را دارند که تصاویر با رزولوشن خیلی خیلی بالاتر داشته باشند. اولین چیزی که باید در مورد دوربین های آی پی بدانید این است که تصاویر را به صورت دیجیتال دریافت می کند به همین خاطر نیازی به تبدیل یا فشرده سازی وجود ندارد. دومین مسئله این است که دوربین های آی پی تصاویر را از طریق کابل های Ca45 یا Ca46 منتقل می کند که قابلیت گذردهی خیلی بیشتری دارند.

دوربین های ۱٫۳ مگاپیکسل معمولا کوچکترین رزولوشن دوربین های آی پی است( البته رزولوشن های پایین تر هم وجود دارد) که خیلی خیلی بزرگتر و با کیفیت تر از هر دوربین آنالوگ دیگری است.

با این وجود اگر حتی تصاویر ۱۲۸۰*۱۰۲۴ پیکسل هم برایتان کوچک است می توانید از دوربین های ۳ مگا پیکسل که رزولوشن ۲۰۴۸*۱۵۳۶ پیکسل دارند استفاده کنید یا حتی اگر این هم کم است می توانید دوربین های ۵ مگا پیکسل (۱۹۴۴*۲۵۹۲) استفاده کنید.

خلاصه اینکه با دوربین های آنالوگ و استفاده از DVR شما نهایت تصاویر D1, 4Cif, 2Cif ,Cif خواهید داشت که ممکن است بتوانند نیازهای شما را برآورده کنند. ولی اگر نیاز به رزولوشن بالاتری دارید باید دوربین های آی پی را در نظر بگیرید و از آنها استفاده کنید.

 

منبع : http://www.elmcctv.ir

 

موازی سازی(Parallelism) چیست؟

ﺷﺮﮐﺖ ﻫﺎی ﺗﻮﻟﯿﺪ ﮐﻨﻨﺪه ﭘﺮدازﺷﮕﺮ ﺑﺮای اﻓﺰاﯾﺶ ﺳﺮﻋﺖ ﭘﺮدازﻧﺪه ﻣﺠﺒﻮر ﺑﻪ ﺑﺎﻻﺑﺮدن ﻓﺮﮐﺎﻧﺲ ﭘﺮدازﺷﮕﺮ ﺑﻮدﻧﺪ. ﯾﮏ راه اﻓﺰاﯾﺶ وﻟﺘﺎژ ﻣﺼﺮﻓﯽ ﭘﺮدازﻧﺪه ﺑﻮد ﮐﻪ دارای ﻧﻘﺎط ﺿﻌﻔﯽ ﻣﺎﻧﻨﺪ اﻓﺰاﯾﺶ دﻣﺎ و اﻓﺰاﯾﺶ ﻣﺼﺮف ﺑﺎﻃﺮی ﻧﯿﺰ ﺑﻮد. از ﻃﺮﻓﯽ ﺗﻮﻟﯿﺪ ﮐﻨﻨﺪﮔﺎن ﭘﺮدازﻧﺪه ﺑﻪ ﮐﻤﮏ ﺑﺮﻧﺎﻣﻪ ﻧﻮﯾﺴﺎن ﭘﯽ ﺑﻪ ﺑﯿﮑﺎری زﯾﺎد ﭘﺮدازﺷﮕﺮﻫﺎ در زﻣﺎن ﺳﻮﯾﭻ ﮐﺮدن ﻓﺮاﯾﻨﺪ ﻫﺎ و ﻧﺦ ﻫﺎ ﺷﺪﻧﺪ ﮐﻪ ﺣﺪود ﻧﯿﻤﯽ از زﻣﺎن ﭘﺮدازش را ﺑﻪ ﻫﺪر ﻣﯽ داد. ﺑﺮاي ﺟﺒﺮان ﺣﺎﻓﻈﻪ ﮐﺶ را ﮔﺴﺘﺮش دادﻧﺪ اﻣﺎ ﺑﻪ دﻟﯿﻞ ﮔﺮان ﺑﻮدﻧﺶ ﺑﺎز دﭼﺎر ﻣﺤﺪودﯾﺖ ﺑﻮدﻧﺪ. ﺑﻨﺎﺑﺮاﯾﻦ ﭘﺮدازﻧﺪه ﻫﺎﯾﯽ ﺗﻮﻟﯿﺪ ﮐﺮدﻧﺪ ﮐﻪ ﺑﺘﻮاﻧﺪ ﭘﺮازش ﻣﻮازي را (در اﺑﺘﺪا) در دو ﻫﺴﺘﻪ ﺑﻪ اﺟﺮا ﺑﺮﺳﺎﻧﻨﺪ.

ﻧﺎم اﯾﻦ ﻫﺴﺘﻪ ﻫﺎ ﻫﺴﺘﻪ ﻫﺎی ﺳﺨﺖ اﻓﺰاری ﯾﺎ ﻓﯿﺰﯾﮑﯽ ﮔﺬاﺷﺘﻨﺪ. اﻧﺪك زﻣﺎﻧﯽ ﺑﻌﺪ ﻓﻨﺎوری ای ﺑﺮای رﺳﯿﺪن ﺑﻪ ﭘﺮدازش ﻣﻮازی اﻣﺎ در ﺳﻄﺢ ﻣﺤﺪود Hyper ﺗﺮی و ارزان ﺗﺮ ﺑﺎ ﻧﺎم اﺑﺮ ﻧﺨﯽ ﯾﺎ Hyper-Threading اراﺋﻪ ﮐﺮدﻧﺪ و ﻧﺎم آن را ﻫﺴﺘﻪ ﻫﺎی ﻣﻨﻄﻘﯽ ﯾﺎ ﻧﺦ ﻫﺎی ﺳﺨﺖ اﻓﺰاری ﮔﺬاﺷﺘﻨﺪ. ﺣﺎل ﻧﻮﺑﺖ ﺑﺮﻧﺎﻣﻪ ﻧﻮﯾﺴﺎن ﺑﻮد ﺗﺎ ﺑﺮﻧﺎﻣﻪ ﻫﺎی ﺑﺮاي اﺳﺘﻔﺎده از اﯾﻦ ﻓﻨﺎوری ﻫﺎی ﻧﻮﯾﻦ ﺑﻨﻮﯾﺴﻨﺪ. ﺑﺮﻧﺎﻣﻪ ﻧﻮﯾﺴﯽ ﻣﻮازی ﻋﻨﻮاﻧﯽ اﺳﺖ، ﮐﻪ ﻣﻮﺿﻮﻋﯽ ﮔﺴﺘﺮده در دﻧﯿﺎي ﻧﺮم اﻓﺰار اﯾﺠﺎد ﮐﺮده است.

روش موازی سازی(Parallelism(

ﺳﺎده ﺗﺮﯾﻦ ﺷﯿﻮه ﻣﻮازي ﺳﺎزي در ﻗﺎﻟﺐ Task ها ﺻﻮرت ﻣﯽ ﮔﯿﺮد، در ﻫﺮ Task ﺗﺎﺑﻊ ﯾﺎ ﻗﻄﻌﻪ ﮐﺪي ﻧﻮﺷﺘﻪ ﻣﯽ ﺷﻮد و ﺳﭙﺲ ﺑﻮﺳﯿﻠﻪ Delegate اي ﮐﻪ ﮐﺎر ﻣﺪﯾﺮﯾﺖ Task ﻫﺎ را ﺑﺮ ﻋﻬﺪه دارد اﯾﻦ  Task ﻫﺎ ﺑﺼﻮرت ﻣﻮازی ﺑﺴﺘﻪ ﺑﻪ ﻫﺴﺘﻪ ﻫﺎی ﻣﻨﻄﻘﯽ در دﺳﺘﺮس اﺟﺮا ﻣﯽ ﺷﻮﻧﺪ. روش ﻫﺎی ﺑﺴﯿﺎری ﺑﺮاي ﻣﻮازی ﺳﺎزی وﺟﻮد دارد ﻣﺎﻧﻨﺪ اﺳﺘﻔﺎده از ﮐﻼس Parallel.For یا Parallel.ForEach ﮐﻪ در ﺟﺎي ﺧﻮد ﮐﺎرﺑﺮد ﻫﺎی ﻣﺨﺘﺺ ﺑﻪ ﺧﻮدﺷﺎن را دارﻧﺪ. همیشه الگورﯾﺘﻢ ﻫﺎی ﺗﺮﺗﯿﺒﯽ را ﻧﻤﯽ ﺗﻮان ﺑﻪ الگورﯾﺘﻤﯽ ﻣﻮازي ﺗﺒﺪﯾﻞ ﮐﺮد ﭼﺮا ﮐﻪ ﮐﺪ ﻫﺎی ﺗﺮﺗﯿﺒﯽ ای ﻫﺴﺘﻨﺪ ﮐﻪ اﺟﺮاي ﮐﺪ ﻫﺎي دﯾﮕﺮ ﻧﯿﺎز ﺑﻪ ﺗﮑﻤﯿﻞ ﺷﺪن آن ﻫﺎ دارد. ﺑﺴﺘﻪ ﺑﻪ الگورﯾﺘﻢ درﺻﺪی از آن را ﻣﯽ ﺗﻮان ﻣﻮازی ﮐﺮد. ﻗﺒﻞ از ﻣﻮازی ﺳﺎزی ﺑﺎﯾﺪ ﻣﻮازی ﺳﺎزی را در ذﻫﻨﺘﺎن ﻃﺮاﺣﯽ ﮐﻨﯿﺪ.


Parallel Programming  یا برنامه نویسی موازی یعنی تقسیم یک مسئله به مسائل کوچکتر و سپردن آن ها به واحد های جداگانه برای پردازش کردن.این مسائل کوچک به صورت همزمان شروع به اجرا می کنند. Parallel Programming وظیفه یا Task را به اجزا مختلفی تقسیم می کند.

فرم های مختلفی از Parallel وجود دارد .مانند bit-level ،  instruction-level، data ، taskدر این آموزش راجع به Data Parallelism و Task Parallelism بحث خواهیم کرد.

تصور کنید هسته CPUمتشکل از چندین ریزپردازنده است که همه این ها به حافظه اصلی دسترسی دارند.هر کدام از این ریزپردازنده ها قسمتی از مسئله را حل می کنند.

Data Parallelism

این مورد بر روی توزیع دیتا در نقاط مختلف تمرکز می کند.یعنی داده را به بخش های مختلفی می شکند.هر کدام از این بخش ها به Thread جداگانه ای برای پردازش داده می شود.

Task Parallelism

این مفهوم وظایف یا Taskها را به بخش هایی شکسته و هر کدام را به یک Thread جهت پردازش می دهد.

در پروژه ای که به صورت ضمیمه این مقاله می باشد (در پروژه DataParallisem)به سه صورت مختلف وظیفه یا Task تعریف شده است.

۱-به صورت Function

۲- به صورت Delegate

۳-به صورت لامبدا

کد این قسمت به صورت زیر می باشد

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
  
namespace TPL_part_1_creating_simple_tasks
{
    class Program
    {
        static void Main(string[] args)
        {
            //Action delegate
            Task task1 = new Task(new Action(HelloConsole));
 
            //anonymous function
            Task task2 = new Task(delegate
            {
                HelloConsole();
            });
             
            //lambda expression
                Task task3 = new Task(() = > HelloConsole());                 
             
            task1.Start();
            task2.Start();
            task3.Start();
             
            Console.WriteLine("Main method complete. Press any key to finish.");
            Console.ReadKey();
        }
        static void HelloConsole()
        {
            Console.WriteLine("Hello Task");
        }
    }
}

 

بعد از اجرا، هر کدام از Task ها اجرا شده البته به صورت همزمان و کارهای محوله به آنها را انجام میدهند.

آموزش موازی سازی در سی شارپ

 

در این آموزش بر روی مفهوم Data Parallelism تمرکز خواهیم کرد.توسط Data Parallelism عملیات یکسانی بر روی المانهای یک مجموعه یا آرایه به صورت همزمان انجام خواهد شد. که در فضای نام System.Threading.Tasks.Parallel قرار دارد. روش اصلی برای انجام Data Parallelismنوشتن یک تابع است که یک حلقه ساده بدون Thread دارد .

public static void DataOperationWithForeachLoop()
       {
           var mySource = Enumerable.Range(0, 1000).ToList();
           foreach (var item in mySource)
           {
               Console.WriteLine("Square root of {0} is {1}", item, item * item);
           }
       }

 

خروجی برنامه را در زیر می بینید

آموزش موازی سازی در سی شارپ

 

عملیات Data Parallelism را می توان با یک حلقه foreach موازی هم انجام داد.

public static void DataOperationWithDataParallelism()
        {
            var mySource = Enumerable.Range(0, 1000).ToList();
            Parallel.ForEach(mySource, values = > CalculateMyOperation(values));
        }
 
        public static  void CalculateMyOperation(int values)
        {
            Console.WriteLine("Square root of {0} is {1}", values, values * values);
        }

بعد از اجرا شکل زیر را خواهید دید.

آموزش موازی سازی در سی شارپ

 

در این کد در داخل حلقه Foreach  یک تابع Delegate قرار دادیم در این تابع به ازای هر تکرار حلقه بر روی مجموعه تابعی که درون Delegate فراخوانی کرده ایم اجرا خواهد شد.

Data Parallelism توسط PLINQ

PLINQ به معنای Parallel LINQ است .این نسخه از لینک جهت پیاده سازی لینک بر روی پردازنده های چند هسته ای نوشته شده است.

توسط لینک می توان اطلاعات را از چندین منبع بازیابی کرد.و در نهایت این نتایج با هم ترکیب می شوند تا نتیجه نهایی Query به دست آید.اما اگر از PLINQاستفاده کنیم این دستورات به جای اینکه پشت سر هم اجرا شوند به صورت موازی اجرا می شوند.

برای این که از PLINQ استفاده کرد فقط کافی است که در انتهای عبارت لینک از AsParallel استفاده کنیم.به کد زیر توجه کنید

public static void DataOperationByPLINQ()
    {
        long mySum = Enumerable.Range(1, 10000).AsParallel().Sum();
        Console.WriteLine("Total: {0}", mySum);
    }

بعد از اجرا شکل زیر را خواهید دید

آموزش موازی سازی در سی شارپ

 

برای به دست آوردن اعداد فرد در این مجموعه توسط Plinq از کد زیر استفاده می کنیم

public static void ShowEvenNumbersByPLINQ()
      {
          var numers = Enumerable.Range(1, 10000);
          var evenNums = from number in numers.AsParallel()
                         where number % 2 == 0
                         select number;
 
          Console.WriteLine("Even Counts :{0} :", evenNums.Count());
      }

پس از اجرا شکل زیر را خواهید دید

آموزش موازی سازی در سی شارپ

 

توسط متد Parallel.Invoke() می توانید چندین متد را مانند شکل زیر به صورت همزمان اجرا کنید.

Parallel.Invoke(    
() = > Method1(mycollection),    
() = > Method2(myCollection1, MyCollection2),    
() = > Method3(mycollection));

 MaxDegreeOfParallelism

ماکزیمم تعداد پردازش های موازی را مشخص می کند در کد زیر و در داخل Foreach در پارامتر دوم ماکزیمم تعداد پردازش های موازی مشخص شده اشت.

loopState.Break()

توسط این کد به Thread هایی که پردازش آنها طول کشیده اجازه می دهیم که بعدا Break شوند.به کد زیر توجه کنید.

var mySource = Enumerable.Range(0, 1000).ToList();    
int data = 0;    
Parallel.ForEach(    
    mySource,    
    (i, state) = >    
    {    
        data += i;    
        if (data  >  100)    
        {    
            state.Break();    
            Console.WriteLine("Break called iteration {0}. data = {1} ", i, data);    
        }    
    });    
Console.WriteLine("Break called data = {0} ", data);    
Console.ReadKey();

منبع

 


فایل ضمیمه این آموزش

TPL_part_1_creating_simple_tasks

رمز فایل: behsanandish.com


دانلود کتاب آموزش برنامه نویسی موازی با #C

Parallel Programming In Csharp

رمز فایل: behsanandish.com

 

تکنولوژی EFFIO-V و EFFIO-A چیست؟

تکنولوژی EFFIO-V و EFFIO-A که توسط شرکت سونی به بازار عرضه شده اند با قابلیت و عملکردهای بسیار توسعه یافته به عنوان نسل سوم سری EFFIO در نظر گرفته می شود.

این دو محصول جدید میتوانند با سنسور تصویر ۹۶۰H ترکیب شده تا بتوانند کیفیت تصویری بالاتر از ۷۰۰ تی وی لاین را ایجاد نماید. همچنین این آی سی ها بهبود یافتند تا قابلیت هایی از قبیل کاهش نویز سه بعدی (۳D-NR)و قرار گرفتن در معرض مادون قرمز و طیف گسترده ای پویا (WDR) و یا مه زدا DEFOG)) و نمایش تصاویر در شرایط مختلف مانند نور کم ، نور مادون قرمز و نور زیاد که کاملا توسعه یافته در عملکرد خود داشته باشند. علاوه بر این این آی سی ها برای اولین بار قابلیت تشخیص اتوماتیک به صورت صنعتی و انتخاب صحنه را دارا هستند.

EFFIO-V و EFFIO-A ، اصلاح شده تا پردازشگر سیگنال را با وضوح بالا انجام دهد و رزولوشن بالای ۷۰۰تی وی لاین را ایجاد کند که این رزولوشن بالاتر از رزولوشن سری های EFFIOموجود ۶۵۰ تی وی لاین است .

EFFIO-V و EFFIO-A

قابلیت کاهش نویز سه بعدی

این تکنولوژی تاری موضوعات در حال حرکت ، روشنی و سیگنال به نویز تصاویری که حتی در محیط های کم نور هستند را کاهش می دهد. همچنین به طور موثر از شرایط زمانی که انعکاس نور مادون قرمز بیش از حد شده باشد و یا جزئیات نفر پنهان شده باشد و یا زمانی که در اطراف لبه ای بیرونی تصاویر و یا گوشه های تاریک شده (سایه) باشد جلوگیری می کند.
بنابراین قابلیت این تکنولوژی بهبود بخشیدن تصاویر در محیط های کم نور می باشد.

این محصولات عملکرد مناسب در هر شرایطی برای تنظیم تصاویر را دارا هستند . بعضی از نصب ها زمان زیادی برای تنظیم چند دوربین با ویژگی های مختلف برای کیفیت بهتر را از ما می گیرند . اما EFFIO-V و EFFIO-A قابلیت تشخیص اتوماتیک صحنه را دارند و فقط نیاز به یک عملکرد برای ۴۰الگو در صحنه های تصاویر را برای تصویری ایده آل مثل محدوده دینامیکی ، درجه حرارت ، رنگ را دارد. قابلیت انتخاب صحنه از پیش تنظیم شده برای صحنه های عمومی از جمله دوربین های محیط داخل و محیط خارج نصب شده یا نظارت ترافیکی و یا نور پس زمینه تنظیمات اتوماتیک آنها بر پایه تنظیمات برای کیفیت تصویر ایده آل می باشد .

این قابلیت تنظیمات اتوماتیک برای آسان تر شدن نصب و راه اندازی تصاویر با کیفیت است .

 

EFFIO-V و EFFIO-A

 

 

 

استفاده از EFFIO-V و EFFIO-A

استفاده از EFFIO-V و EFFIO-A

 

 

تاری در سایر ccd ها

سایر ccd ها

 

 

منبع

 
ItemEffio-VEffio-A
Supported CCDs۷۶۰ H, 960 H WDR/normal CCD۷۶۰ H, 960 H normal CCD
 

 

 

 

 

 

 

 

 

 

Functions

ResolutionHorizontal over 700 TV lines
WDR
ATR-EX2
Noise reduction۲D-NR, 3D-NR
Day & Night
Polygon privacy maskUp to 20 masks
E-zoom
Slow shutter
Digital image stabilizer
BLC/HLC
Automatic scene detection function
Scene selection function
AF detector
Motion detection
White pixel detection compensationStatic and dynamic
OSDFlexible 8 languages
Lens shading compensation
Defog
Automatic mechanical iris adjustment
External synchronizationLL, VSL
RS-485
Coaxial communication✔ (Coaxitron by Pelco)
OutputsAnalog outputsY/C separate, composite
Digital outputsITU-R BT.656 compliant
(۲۷ MHz / 36 MHz)
Package۹۷-pin LFBGA

چرا از فضای رنگی مختلف استفاده می کنیم؟

از فضای رنگی مختلف استفاده می کنیم چون این امکان در آن فضای رنگی به ما داده میشه تا بتوینم رنگ دلخواه مان را به راحتی از محدوده دیگر رنگ ها جدا کنیم .فرض کنید که شما قصد دارید رنگ سبز را در تصویر فیلتر نمایید این بازه شامل طیفی می باشد که یک سمت آن سبز تیره و در سمت دیگر آن سبز روشن می باشد برای جدا کردن آن در فضای رنگی RGB این امکان وجود ندارد که شما بتوان به صورت خطی یعنی هر کانال با یک شرط بازه رنگ دلخواه را انتخاب نمائید پس به خاطر چنین مشکلاتی تصویر را به فضای رنگی HSV انتقال می دهیم که این فضا از اجزای Hue (رنگدانه) ،Saturation(اشباع) و Value(روشنایی) تشکیل شده.برای تفکیک رنگ سبز در این فضای رنگی کافیست محدوده Hue خود که مربوط به رنگ مورد نظر را انتخاب کرده و سپس کل محدوه اشباع و در نهایت انتخاب محدوده دلخواه برای روشنایی پس در این فضای رنگی به راحتی تونستید رنگ دلخواه خودتون را انتخاب کنید.

تبدیل فضای رنگی در opencv

در کتابخانه Opencv می تونیم از تابع cvtColor استفاده کنیم.

مثال:


/*------------------------------------------------------------------------------------------*\
This file contains material supporting chapter 3 of the cookbook:
Computer Vision Programming using the OpenCV Library
Second Edition
by Robert Laganiere, Packt Publishing, 2013.

This program is free software; permission is hereby granted to use, copy, modify,
and distribute this source code, or portions thereof, for any purpose, without fee,
subject to the restriction that the copyright notice may not be removed
or altered from any source or altered source distribution.
The software is released on an as-is basis and without any warranties of any kind.
In particular, the software is not guaranteed to be fault-tolerant or free from failure.
The author disclaims all warranties with regard to this software, any use,
and any consequent failure, is purely the responsibility of the user.

Copyright (C) 2013 Robert Laganiere, www.laganiere.name
\*------------------------------------------------------------------------------------------*/

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

#include <iostream>
#include <vector>

void detectHScolor(const cv::Mat& image, // input image
double minHue, double maxHue, // Hue interval
double minSat, double maxSat, // saturation interval
cv::Mat& mask) { // output mask

// convert into HSV space
cv::Mat hsv;
cv::cvtColor(image, hsv, CV_BGR2HSV);

// split the 3 channels into 3 images
std::vector<cv::Mat> channels;
cv::split(hsv, channels);
// channels[0] is the Hue
// channels[1] is the Saturation
// channels[2] is the Value

// Hue masking
cv::Mat mask1; // under maxHue
cv::threshold(channels[0], mask1, maxHue, 255, cv::THRESH_BINARY_INV);
cv::Mat mask2; // over minHue
cv::threshold(channels[0], mask2, minHue, 255, cv::THRESH_BINARY);

cv::Mat hueMask; // hue mask
if (minHue < maxHue)
hueMask = mask1 & mask2;
else // if interval crosses the zero-degree axis
hueMask = mask1 | mask2;

// Saturation masking
// under maxSat
cv::threshold(channels[1], mask1, maxSat, 255, cv::THRESH_BINARY_INV);
// over minSat
cv::threshold(channels[1], mask2, minSat, 255, cv::THRESH_BINARY);

cv::Mat satMask; // saturation mask
satMask = mask1 & mask2;

// combined mask
mask = hueMask&satMask;
}

int main()
{
// read the image
cv::Mat image= cv::imread("boldt.jpg");
if (!image.data)
return 0;

// show original image
cv::namedWindow("Original image");
cv::imshow("Original image",image);

// convert into HSV space
cv::Mat hsv;
cv::cvtColor(image, hsv, CV_BGR2HSV);

// split the 3 channels into 3 images
std::vector<cv::Mat> channels;
cv::split(hsv,channels);
// channels[0] is the Hue
// channels[1] is the Saturation
// channels[2] is the Value

// display value
cv::namedWindow("Value");
cv::imshow("Value",channels[2]);

// display saturation
cv::namedWindow("Saturation");
cv::imshow("Saturation",channels[1]);

// display hue
cv::namedWindow("Hue");
cv::imshow("Hue",channels[0]);

// image with fixed value
cv::Mat newImage;
cv::Mat tmp(channels[2].clone());
// Value channel will be 255 for all pixels
channels[2]= 255;
// merge back the channels
cv::merge(channels,hsv);
// re-convert to BGR
cv::cvtColor(hsv,newImage,CV_HSV2BGR);

cv::namedWindow("Fixed Value Image");
cv::imshow("Fixed Value Image",newImage);

// image with fixed saturation
channels[1]= 255;
channels[2]= tmp;
cv::merge(channels,hsv);
cv::cvtColor(hsv,newImage,CV_HSV2BGR);

cv::namedWindow("Fixed saturation");
cv::imshow("Fixed saturation",newImage);

// image with fixed value and fixed saturation
channels[1]= 255;
channels[2]= 255;
cv::merge(channels,hsv);
cv::cvtColor(hsv,newImage,CV_HSV2BGR);

cv::namedWindow("Fixed saturation/value");
cv::imshow("Fixed saturation/value",newImage);

// Testing skin detection

// read the image
image= cv::imread("girl.jpg");
if (!image.data)
return 0;

// show original image
cv::namedWindow("Original image");
cv::imshow("Original image",image);

// detect skin tone
cv::Mat mask;
detectHScolor(image,
۱۶۰, ۱۰, // hue from 320 degrees to 20 degrees
۲۵, ۱۶۶, // saturation from ~0.1 to 0.65
mask);

// show masked image
cv::Mat detected(image.size(), CV_8UC3, cv::Scalar(0, 0, 0));
image.copyTo(detected, mask);
cv::imshow("Detection result",detected);

// A test comparing luminance and brightness

// create linear intensity image
cv::Mat linear(100,256,CV_8U);
for (int i=0; i<256; i++) {

linear.col(i)= i;
}

// create a Lab image
linear.copyTo(channels[0]);
cv::Mat constante(100,256,CV_8U,cv::Scalar(128));
constante.copyTo(channels[1]);
constante.copyTo(channels[2]);
cv::merge(channels,image);

// convert back to BGR
cv::Mat brightness;
cv::cvtColor(image,brightness, CV_Lab2BGR);
cv::split(brightness, channels);

// create combined image
cv::Mat combined(200,256, CV_8U);
cv::Mat half1(combined,cv::Rect(0,0,256,100));
linear.copyTo(half1);
cv::Mat half2(combined,cv::Rect(0,100,256,100));
channels[0].copyTo(half2);

cv::namedWindow("Luminance vs Brightness");
cv::imshow("Luminance vs Brightness",combined);

cv::waitKey();
}

منبع

 

مرحله ۴: سرکوب لبه های غیر حداکثر

آخرین مرحله، پیدا کردن لبه های ضعیف که موازی با لبه های قوی هستند و از بین بردن آنهاست. این عمل، با بررسی پیکسل های عمود بر یک پیکسل لبه خاص و حذف لبه های غیر حداکثرانجام شده است. کد مورد استفاده بسیار مشابه کد ردیابی لبه است.

 

</pre>
<pre>#include "stdafx.h"
#include "tripod.h"
#include "tripodDlg.h"

#include "LVServerDefs.h"
#include "math.h"
#include <fstream>
#include <string>
#include <iostream>
#include <stdlib.h>
#include <stdio.h>


#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

using namespace std;

/////////////////////////////////////////////////////////////////////////////
// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:
	CAboutDlg();

// Dialog Data
	//{{AFX_DATA(CAboutDlg)
	enum { IDD = IDD_ABOUTBOX };
	//}}AFX_DATA

	// ClassWizard generated virtual function overrides
	//{{AFX_VIRTUAL(CAboutDlg)
	protected:
	virtual void DoDataExchange(CDataExchange* pDX);    // DDX/DDV support
	//}}AFX_VIRTUAL

// Implementation
protected:
	//{{AFX_MSG(CAboutDlg)
	//}}AFX_MSG
	DECLARE_MESSAGE_MAP()
};

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
{
	//{{AFX_DATA_INIT(CAboutDlg)
	//}}AFX_DATA_INIT
}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
	CDialog::DoDataExchange(pDX);
	//{{AFX_DATA_MAP(CAboutDlg)
	//}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
	//{{AFX_MSG_MAP(CAboutDlg)
		// No message handlers
	//}}AFX_MSG_MAP
END_MESSAGE_MAP()

/////////////////////////////////////////////////////////////////////////////
// CTripodDlg dialog

CTripodDlg::CTripodDlg(CWnd* pParent /*=NULL*/)
	: CDialog(CTripodDlg::IDD, pParent)
{
	//{{AFX_DATA_INIT(CTripodDlg)
		// NOTE: the ClassWizard will add member initialization here
	//}}AFX_DATA_INIT
	// Note that LoadIcon does not require a subsequent DestroyIcon in Win32
	m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);

	//////////////// Set destination BMP to NULL first 
	m_destinationBitmapInfoHeader = NULL;

}

////////////////////// Additional generic functions

static unsigned PixelBytes(int w, int bpp)
{
    return (w * bpp + 7) / 8;
}

static unsigned DibRowSize(int w, int bpp)
{
    return (w * bpp + 31) / 32 * 4;
}

static unsigned DibRowSize(LPBITMAPINFOHEADER pbi)
{
    return DibRowSize(pbi->biWidth, pbi->biBitCount);
}

static unsigned DibRowPadding(int w, int bpp)
{
    return DibRowSize(w, bpp) - PixelBytes(w, bpp);
}

static unsigned DibRowPadding(LPBITMAPINFOHEADER pbi)
{
    return DibRowPadding(pbi->biWidth, pbi->biBitCount);
}

static unsigned DibImageSize(int w, int h, int bpp)
{
    return h * DibRowSize(w, bpp);
}

static size_t DibSize(int w, int h, int bpp)
{
    return sizeof (BITMAPINFOHEADER) + DibImageSize(w, h, bpp);
}

/////////////////////// end of generic functions


void CTripodDlg::DoDataExchange(CDataExchange* pDX)
{
	CDialog::DoDataExchange(pDX);
	//{{AFX_DATA_MAP(CTripodDlg)
	DDX_Control(pDX, IDC_PROCESSEDVIEW, m_cVideoProcessedView);
	DDX_Control(pDX, IDC_UNPROCESSEDVIEW, m_cVideoUnprocessedView);
	//}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CTripodDlg, CDialog)
	//{{AFX_MSG_MAP(CTripodDlg)
	ON_WM_SYSCOMMAND()
	ON_WM_PAINT()
	ON_WM_QUERYDRAGICON()
	ON_BN_CLICKED(IDEXIT, OnExit)
	//}}AFX_MSG_MAP
END_MESSAGE_MAP()

/////////////////////////////////////////////////////////////////////////////
// CTripodDlg message handlers

BOOL CTripodDlg::OnInitDialog()
{
	CDialog::OnInitDialog();

	// Add "About..." menu item to system menu.

	// IDM_ABOUTBOX must be in the system command range.
	ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);
	ASSERT(IDM_ABOUTBOX < 0xF000);

	CMenu* pSysMenu = GetSystemMenu(FALSE);
	if (pSysMenu != NULL)
	{
		CString strAboutMenu;
		strAboutMenu.LoadString(IDS_ABOUTBOX);
		if (!strAboutMenu.IsEmpty())
		{
			pSysMenu->AppendMenu(MF_SEPARATOR);
			pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);
		}
	}

	// Set the icon for this dialog.  The framework does this automatically
	//  when the application's main window is not a dialog
	SetIcon(m_hIcon, TRUE);			// Set big icon
	SetIcon(m_hIcon, FALSE);		// Set small icon
	
	// TODO: Add extra initialization here

	// For Unprocessed view videoportal (top one)
	char sRegUnprocessedView[] = "HKEY_LOCAL_MACHINE\\Software\\UnprocessedView";
	m_cVideoUnprocessedView.PrepareControl("UnprocessedView", sRegUnprocessedView, 0 );	
	m_cVideoUnprocessedView.EnableUIElements(UIELEMENT_STATUSBAR,0,TRUE);
	m_cVideoUnprocessedView.ConnectCamera2();
	m_cVideoUnprocessedView.SetEnablePreview(TRUE);

	// For binary view videoportal (bottom one)
	char sRegProcessedView[] = "HKEY_LOCAL_MACHINE\\Software\\ProcessedView";
	m_cVideoProcessedView.PrepareControl("ProcessedView", sRegProcessedView, 0 );	
	m_cVideoProcessedView.EnableUIElements(UIELEMENT_STATUSBAR,0,TRUE);
	m_cVideoProcessedView.ConnectCamera2();
	m_cVideoProcessedView.SetEnablePreview(TRUE);

	// Initialize the size of binary videoportal
	m_cVideoProcessedView.SetPreviewMaxHeight(240);
	m_cVideoProcessedView.SetPreviewMaxWidth(320);

	// Uncomment if you wish to fix the live videoportal's size
	// m_cVideoUnprocessedView.SetPreviewMaxHeight(240);
	// m_cVideoUnprocessedView.SetPreviewMaxWidth(320);

	// Find the screen coodinates of the binary videoportal
	m_cVideoProcessedView.GetWindowRect(m_rectForProcessedView);
	ScreenToClient(m_rectForProcessedView);
	allocateDib(CSize(320, 240));

	// Start grabbing frame data for Procssed videoportal (bottom one)
	m_cVideoProcessedView.StartVideoHook(0);

	return TRUE;  // return TRUE  unless you set the focus to a control
}

void CTripodDlg::OnSysCommand(UINT nID, LPARAM lParam)
{
	if ((nID & 0xFFF0) == IDM_ABOUTBOX)
	{
		CAboutDlg dlgAbout;
		dlgAbout.DoModal();
	}
	else
	{
		CDialog::OnSysCommand(nID, lParam);
	}
}

// If you add a minimize button to your dialog, you will need the code below
//  to draw the icon.  For MFC applications using the document/view model,
//  this is automatically done for you by the framework.

void CTripodDlg::OnPaint() 
{
	if (IsIconic())
	{
		CPaintDC dc(this); // device context for painting

		SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);

		// Center icon in client rectangle
		int cxIcon = GetSystemMetrics(SM_CXICON);
		int cyIcon = GetSystemMetrics(SM_CYICON);
		CRect rect;
		GetClientRect(&rect);
		int x = (rect.Width() - cxIcon + 1) / 2;
		int y = (rect.Height() - cyIcon + 1) / 2;

		// Draw the icon
		dc.DrawIcon(x, y, m_hIcon);
	}
	else
	{
		CDialog::OnPaint();
	}
}

// The system calls this to obtain the cursor to display while the user drags
//  the minimized window.
HCURSOR CTripodDlg::OnQueryDragIcon()
{
	return (HCURSOR) m_hIcon;
}

void CTripodDlg::OnExit() 
{
	// TODO: Add your control notification handler code here

	// Kill live view videoportal (top one)
	m_cVideoUnprocessedView.StopVideoHook(0);
    m_cVideoUnprocessedView.DisconnectCamera();	
	
	// Kill binary view videoportal (bottom one)
	m_cVideoProcessedView.StopVideoHook(0);
    m_cVideoProcessedView.DisconnectCamera();	

	// Kill program
	DestroyWindow();	

	

}

BEGIN_EVENTSINK_MAP(CTripodDlg, CDialog)
    //{{AFX_EVENTSINK_MAP(CTripodDlg)
	ON_EVENT(CTripodDlg, IDC_PROCESSEDVIEW, 1 /* PortalNotification */, OnPortalNotificationProcessedview, VTS_I4 VTS_I4 VTS_I4 VTS_I4)
	//}}AFX_EVENTSINK_MAP
END_EVENTSINK_MAP()

void CTripodDlg::OnPortalNotificationProcessedview(long lMsg, long lParam1, long lParam2, long lParam3) 
{
	// TODO: Add your control notification handler code here
	
	// This function is called at the camera's frame rate
    
#define NOTIFICATIONMSG_VIDEOHOOK	۱۰

	// Declare some useful variables
	// QCSDKMFC.pdf (Quickcam MFC documentation) p. 103 explains the variables lParam1, lParam2, lParam3 too 
	
	LPBITMAPINFOHEADER lpBitmapInfoHeader; // Frame's info header contains info like width and height
	LPBYTE lpBitmapPixelData; // This pointer-to-long will point to the start of the frame's pixel data
    unsigned long lTimeStamp; // Time when frame was grabbed

	switch(lMsg) {
		case NOTIFICATIONMSG_VIDEOHOOK:
			{
				lpBitmapInfoHeader = (LPBITMAPINFOHEADER) lParam1; 
				lpBitmapPixelData = (LPBYTE) lParam2;
				lTimeStamp = (unsigned long) lParam3;

				grayScaleTheFrameData(lpBitmapInfoHeader, lpBitmapPixelData);
				doMyImageProcessing(lpBitmapInfoHeader); // Place where you'd add your image processing code
				displayMyResults(lpBitmapInfoHeader);

			}
			break;

		default:
			break;
	}	
}

void CTripodDlg::allocateDib(CSize sz)
{
	// Purpose: allocate information for a device independent bitmap (DIB)
	// Called from OnInitVideo

	if(m_destinationBitmapInfoHeader) {
		free(m_destinationBitmapInfoHeader);
		m_destinationBitmapInfoHeader = NULL;
	}

	if(sz.cx | sz.cy) {
		m_destinationBitmapInfoHeader = (LPBITMAPINFOHEADER)malloc(DibSize(sz.cx, sz.cy, 24));
		ASSERT(m_destinationBitmapInfoHeader);
		m_destinationBitmapInfoHeader->biSize = sizeof(BITMAPINFOHEADER);
		m_destinationBitmapInfoHeader->biWidth = sz.cx;
		m_destinationBitmapInfoHeader->biHeight = sz.cy;
		m_destinationBitmapInfoHeader->biPlanes = 1;
		m_destinationBitmapInfoHeader->biBitCount = 24;
		m_destinationBitmapInfoHeader->biCompression = 0;
		m_destinationBitmapInfoHeader->biSizeImage = DibImageSize(sz.cx, sz.cy, 24);
		m_destinationBitmapInfoHeader->biXPelsPerMeter = 0;
		m_destinationBitmapInfoHeader->biYPelsPerMeter = 0;
		m_destinationBitmapInfoHeader->biClrImportant = 0;
		m_destinationBitmapInfoHeader->biClrUsed = 0;
	}
}

void CTripodDlg::displayMyResults(LPBITMAPINFOHEADER lpThisBitmapInfoHeader)
{
	// displayMyResults: Displays results of doMyImageProcessing() in the videoport
	// Notes: StretchDIBits stretches a device-independent bitmap to the appropriate size

	CDC				*pDC;	// Device context to display bitmap data
	
	pDC = GetDC();	
	int nOldMode = SetStretchBltMode(pDC->GetSafeHdc(),COLORONCOLOR);

	StretchDIBits( 
		pDC->GetSafeHdc(),
		m_rectForProcessedView.left,				// videoportal left-most coordinate
		m_rectForProcessedView.top,					// videoportal top-most coordinate
		m_rectForProcessedView.Width(),				// videoportal width
		m_rectForProcessedView.Height(),			// videoportal height
		۰,											// Row position to display bitmap in videoportal
		۰,											// Col position to display bitmap in videoportal
		lpThisBitmapInfoHeader->biWidth,			// m_destinationBmp's number of columns
		lpThisBitmapInfoHeader->biHeight,			// m_destinationBmp's number of rows
		m_destinationBmp,							// The bitmap to display; use the one resulting from doMyImageProcessing
		(BITMAPINFO*)m_destinationBitmapInfoHeader, // The bitmap's header info e.g. width, height, number of bits etc
		DIB_RGB_COLORS,								// Use default 24-bit color table
		SRCCOPY										// Just display
	);
 
	SetStretchBltMode(pDC->GetSafeHdc(),nOldMode);

	ReleaseDC(pDC);

	// Note: 04/24/02 - Added the following:
	// Christopher Wagner cwagner@fas.harvard.edu noticed that memory wasn't being freed

	// Recall OnPortalNotificationProcessedview, which gets called everytime
	// a frame of data arrives, performs 3 steps:
	// (۱) grayScaleTheFrameData - which mallocs m_destinationBmp
	// (۲) doMyImageProcesing
	// (۳) displayMyResults - which we're in now
	// Since we're finished with the memory we malloc'ed for m_destinationBmp
	// we should free it: 
	
	free(m_destinationBmp);

	// End of adds
}

void CTripodDlg::grayScaleTheFrameData(LPBITMAPINFOHEADER lpThisBitmapInfoHeader, LPBYTE lpThisBitmapPixelData)
{

	// grayScaleTheFrameData: Called by CTripodDlg::OnPortalNotificationBinaryview
	// Task: Read current frame pixel data and computes a grayscale version

	unsigned int	W, H;			  // Width and Height of current frame [pixels]
	BYTE            *sourceBmp;		  // Pointer to current frame of data
	unsigned int    row, col;
	unsigned long   i;
	BYTE			grayValue;

	BYTE			redValue;
	BYTE			greenValue;
	BYTE			blueValue;

    W = lpThisBitmapInfoHeader->biWidth;  // biWidth: number of columns
    H = lpThisBitmapInfoHeader->biHeight; // biHeight: number of rows

	// Store pixel data in row-column vector format
	// Recall that each pixel requires 3 bytes (red, blue and green bytes)
	// m_destinationBmp is a protected member and declared in binarizeDlg.h

	m_destinationBmp = (BYTE*)malloc(H*3*W*sizeof(BYTE));

	// Point to the current frame's pixel data
	sourceBmp = lpThisBitmapPixelData;

	for (row = 0; row < H; row++) {
		for (col = 0; col < W; col++) {

			// Recall each pixel is composed of 3 bytes
			i = (unsigned long)(row*3*W + 3*col);
        
			// The source pixel has a blue, green andred value:
			blueValue  = *(sourceBmp + i);
			greenValue = *(sourceBmp + i + 1);
			redValue   = *(sourceBmp + i + 2);

			// A standard equation for computing a grayscale value based on RGB values
			grayValue = (BYTE)(0.299*redValue + 0.587*greenValue + 0.114*blueValue);

			// The destination BMP will be a grayscale version of the source BMP
			*(m_destinationBmp + i)     = grayValue;
			*(m_destinationBmp + i + 1) = grayValue;
			*(m_destinationBmp + i + 2) = grayValue;
			
		}
	}
}


void CTripodDlg::doMyImageProcessing(LPBITMAPINFOHEADER lpThisBitmapInfoHeader)
{
	// doMyImageProcessing:  This is where you'd write your own image processing code
	// Task: Read a pixel's grayscale value and process accordingly

	unsigned int	W, H;			// Width and Height of current frame [pixels]
	unsigned int    row, col;		// Pixel's row and col positions
	unsigned long   i;				// Dummy variable for row-column vector
	int	    upperThreshold = 60;	// Gradient strength nessicary to start edge
	int		lowerThreshold = 30;	// Minimum gradient strength to continue edge
	unsigned long iOffset;			// Variable to offset row-column vector during sobel mask
	int rowOffset;					// Row offset from the current pixel
	int colOffset;					// Col offset from the current pixel
	int rowTotal = 0;				// Row position of offset pixel
	int colTotal = 0;				// Col position of offset pixel
	int Gx;							// Sum of Sobel mask products values in the x direction
	int Gy;							// Sum of Sobel mask products values in the y direction
	float thisAngle;				// Gradient direction based on Gx and Gy
	int newAngle;					// Approximation of the gradient direction
	bool edgeEnd;					// Stores whether or not the edge is at the edge of the possible image
	int GxMask[3][3];				// Sobel mask in the x direction
	int GyMask[3][3];				// Sobel mask in the y direction
	int newPixel;					// Sum pixel values for gaussian
	int gaussianMask[5][5];			// Gaussian mask

	W = lpThisBitmapInfoHeader->biWidth;  // biWidth: number of columns
    H = lpThisBitmapInfoHeader->biHeight; // biHeight: number of rows
	
	for (row = 0; row < H; row++) {
		for (col = 0; col < W; col++) {
			edgeDir[row][col] = 0;
		}
	}

	/* Declare Sobel masks */
	GxMask[0][0] = -1; GxMask[0][1] = 0; GxMask[0][2] = 1;
	GxMask[1][0] = -2; GxMask[1][1] = 0; GxMask[1][2] = 2;
	GxMask[2][0] = -1; GxMask[2][1] = 0; GxMask[2][2] = 1;
	
	GyMask[0][0] =  1; GyMask[0][1] =  2; GyMask[0][2] =  1;
	GyMask[1][0] =  0; GyMask[1][1] =  0; GyMask[1][2] =  0;
	GyMask[2][0] = -1; GyMask[2][1] = -2; GyMask[2][2] = -1;

	/* Declare Gaussian mask */
	gaussianMask[0][0] = 2;		gaussianMask[0][1] = 4;		gaussianMask[0][2] = 5;		gaussianMask[0][3] = 4;		gaussianMask[0][4] = 2;	
	gaussianMask[1][0] = 4;		gaussianMask[1][1] = 9;		gaussianMask[1][2] = 12;	gaussianMask[1][3] = 9;		gaussianMask[1][4] = 4;	
	gaussianMask[2][0] = 5;		gaussianMask[2][1] = 12;	gaussianMask[2][2] = 15;	gaussianMask[2][3] = 12;	gaussianMask[2][4] = 2;	
	gaussianMask[3][0] = 4;		gaussianMask[3][1] = 9;		gaussianMask[3][2] = 12;	gaussianMask[3][3] = 9;		gaussianMask[3][4] = 4;	
	gaussianMask[4][0] = 2;		gaussianMask[4][1] = 4;		gaussianMask[4][2] = 5;		gaussianMask[4][3] = 4;		gaussianMask[4][4] = 2;	
	

	/* Gaussian Blur */
	for (row = 2; row < H-2; row++) {
		for (col = 2; col < W-2; col++) {
			newPixel = 0;
			for (rowOffset=-2; rowOffset<=2; rowOffset++) {
				for (colOffset=-2; colOffset<=2; colOffset++) {
					rowTotal = row + rowOffset;
					colTotal = col + colOffset;
					iOffset = (unsigned long)(rowTotal*3*W + colTotal*3);
					newPixel += (*(m_destinationBmp + iOffset)) * gaussianMask[2 + rowOffset][2 + colOffset];
				}
			}
			i = (unsigned long)(row*3*W + col*3);
			*(m_destinationBmp + i) = newPixel / 159;
		}
	}

	/* Determine edge directions and gradient strengths */
	for (row = 1; row < H-1; row++) {
		for (col = 1; col < W-1; col++) {
			i = (unsigned long)(row*3*W + 3*col);
			Gx = 0;
			Gy = 0;
			/* Calculate the sum of the Sobel mask times the nine surrounding pixels in the x and y direction */
			for (rowOffset=-1; rowOffset<=1; rowOffset++) {
				for (colOffset=-1; colOffset<=1; colOffset++) {
					rowTotal = row + rowOffset;
					colTotal = col + colOffset;
					iOffset = (unsigned long)(rowTotal*3*W + colTotal*3);
					Gx = Gx + (*(m_destinationBmp + iOffset) * GxMask[rowOffset + 1][colOffset + 1]);
					Gy = Gy + (*(m_destinationBmp + iOffset) * GyMask[rowOffset + 1][colOffset + 1]);
				}
			}

			gradient[row][col] = sqrt(pow(Gx,2.0) + pow(Gy,2.0));	// Calculate gradient strength			
			thisAngle = (atan2(Gx,Gy)/3.14159) * 180.0;		// Calculate actual direction of edge
			
			/* Convert actual edge direction to approximate value */
			if ( ( (thisAngle < 22.5) && (thisAngle > -22.5) ) || (thisAngle > 157.5) || (thisAngle < -157.5) )
				newAngle = 0;
			if ( ( (thisAngle > 22.5) && (thisAngle < 67.5) ) || ( (thisAngle < -112.5) && (thisAngle > -157.5) ) )
				newAngle = 45;
			if ( ( (thisAngle > 67.5) && (thisAngle < 112.5) ) || ( (thisAngle < -67.5) && (thisAngle > -112.5) ) )
				newAngle = 90;
			if ( ( (thisAngle > 112.5) && (thisAngle < 157.5) ) || ( (thisAngle < -22.5) && (thisAngle > -67.5) ) )
				newAngle = 135;
				
			edgeDir[row][col] = newAngle;		// Store the approximate edge direction of each pixel in one array
		}
	}

	/* Trace along all the edges in the image */
	for (row = 1; row < H - 1; row++) {
		for (col = 1; col < W - 1; col++) {
			edgeEnd = false;
			if (gradient[row][col] > upperThreshold) {		// Check to see if current pixel has a high enough gradient strength to be part of an edge
				/* Switch based on current pixel's edge direction */
				switch (edgeDir[row][col]){		
					case 0:
						findEdge(0, 1, row, col, 0, lowerThreshold);
						break;
					case 45:
						findEdge(1, 1, row, col, 45, lowerThreshold);
						break;
					case 90:
						findEdge(1, 0, row, col, 90, lowerThreshold);
						break;
					case 135:
						findEdge(1, -1, row, col, 135, lowerThreshold);
						break;
					default :
						i = (unsigned long)(row*3*W + 3*col);
						*(m_destinationBmp + i) = 
						*(m_destinationBmp + i + 1) = 
						*(m_destinationBmp + i + 2) = 0;
						break;
					}
				}
			else {
				i = (unsigned long)(row*3*W + 3*col);
					*(m_destinationBmp + i) = 
					*(m_destinationBmp + i + 1) = 
					*(m_destinationBmp + i + 2) = 0;
			}	
		}
	}
	
	/* Suppress any pixels not changed by the edge tracing */
	for (row = 0; row < H; row++) {
		for (col = 0; col < W; col++) {	
			// Recall each pixel is composed of 3 bytes
			i = (unsigned long)(row*3*W + 3*col);
			// If a pixel's grayValue is not black or white make it black
			if( ((*(m_destinationBmp + i) != 255) && (*(m_destinationBmp + i) != 0)) || ((*(m_destinationBmp + i + 1) != 255) && (*(m_destinationBmp + i + 1) != 0)) || ((*(m_destinationBmp + i + 2) != 255) && (*(m_destinationBmp + i + 2) != 0)) ) 
				*(m_destinationBmp + i) = 
				*(m_destinationBmp + i + 1) = 
				*(m_destinationBmp + i + 2) = 0; // Make pixel black
		}
	}

	/* Non-maximum Suppression */
	for (row = 1; row < H - 1; row++) {
		for (col = 1; col < W - 1; col++) {
			i = (unsigned long)(row*3*W + 3*col);
			if (*(m_destinationBmp + i) == 255) {		// Check to see if current pixel is an edge
				/* Switch based on current pixel's edge direction */
				switch (edgeDir[row][col]) {		
					case 0:
						suppressNonMax( 1, 0, row, col, 0, lowerThreshold);
						break;
					case 45:
						suppressNonMax( 1, -1, row, col, 45, lowerThreshold);
						break;
					case 90:
						suppressNonMax( 0, 1, row, col, 90, lowerThreshold);
						break;
					case 135:
						suppressNonMax( 1, 1, row, col, 135, lowerThreshold);
						break;
					default :
						break;
				}
			}	
		}
	}
	
}

void CTripodDlg::findEdge(int rowShift, int colShift, int row, int col, int dir, int lowerThreshold)
{
	int W = 320;
	int H = 240;
	int newRow;
	int newCol;
	unsigned long i;
	bool edgeEnd = false;

	/* Find the row and column values for the next possible pixel on the edge */
	if (colShift < 0) {
		if (col > 0)
			newCol = col + colShift;
		else
			edgeEnd = true;
	} else if (col < W - 1) {
		newCol = col + colShift;
	} else
		edgeEnd = true;		// If the next pixel would be off image, don't do the while loop
	if (rowShift < 0) {
		if (row > 0)
			newRow = row + rowShift;
		else
			edgeEnd = true;
	} else if (row < H - 1) {
		newRow = row + rowShift;
	} else
		edgeEnd = true;	
		
	/* Determine edge directions and gradient strengths */
	while ( (edgeDir[newRow][newCol]==dir) && !edgeEnd && (gradient[newRow][newCol] > lowerThreshold) ) {
		/* Set the new pixel as white to show it is an edge */
		i = (unsigned long)(newRow*3*W + 3*newCol);
		*(m_destinationBmp + i) =
		*(m_destinationBmp + i + 1) =
		*(m_destinationBmp + i + 2) = 255;
		if (colShift < 0) {
			if (newCol > 0)
				newCol = newCol + colShift;
			else
				edgeEnd = true;	
		} else if (newCol < W - 1) {
			newCol = newCol + colShift;
		} else
			edgeEnd = true;	
		if (rowShift < 0) {
			if (newRow > 0)
				newRow = newRow + rowShift;
			else
				edgeEnd = true;
		} else if (newRow < H - 1) {
			newRow = newRow + rowShift;
		} else
			edgeEnd = true;	
	}	
}

void CTripodDlg::suppressNonMax(int rowShift, int colShift, int row, int col, int dir, int lowerThreshold)
{
	int W = 320;
	int H = 240;
	int newRow = 0;
	int newCol = 0;
	unsigned long i;
	bool edgeEnd = false;
	float nonMax[320][3];			// Temporarily stores gradients and positions of pixels in parallel edges
	int pixelCount = 0;					// Stores the number of pixels in parallel edges
	int count;						// A for loop counter
	int max[3];						// Maximum point in a wide edge
	
	if (colShift < 0) {
		if (col > 0)
			newCol = col + colShift;
		else
			edgeEnd = true;
	} else if (col < W - 1) {
		newCol = col + colShift;
	} else
		edgeEnd = true;		// If the next pixel would be off image, don't do the while loop
	if (rowShift < 0) {
		if (row > 0)
			newRow = row + rowShift;
		else
			edgeEnd = true;
	} else if (row < H - 1) {
		newRow = row + rowShift;
	} else
		edgeEnd = true;	
	i = (unsigned long)(newRow*3*W + 3*newCol);
	/* Find non-maximum parallel edges tracing up */
	while ((edgeDir[newRow][newCol] == dir) && !edgeEnd && (*(m_destinationBmp + i) == 255)) {
		if (colShift < 0) {
			if (newCol > 0)
				newCol = newCol + colShift;
			else
				edgeEnd = true;	
		} else if (newCol < W - 1) {
			newCol = newCol + colShift;
		} else
			edgeEnd = true;	
		if (rowShift < 0) {
			if (newRow > 0)
				newRow = newRow + rowShift;
			else
				edgeEnd = true;
		} else if (newRow < H - 1) {
			newRow = newRow + rowShift;
		} else
			edgeEnd = true;	
		nonMax[pixelCount][0] = newRow;
		nonMax[pixelCount][1] = newCol;
		nonMax[pixelCount][2] = gradient[newRow][newCol];
		pixelCount++;
		i = (unsigned long)(newRow*3*W + 3*newCol);
	}

	/* Find non-maximum parallel edges tracing down */
	edgeEnd = false;
	colShift *= -1;
	rowShift *= -1;
	if (colShift < 0) {
		if (col > 0)
			newCol = col + colShift;
		else
			edgeEnd = true;
	} else if (col < W - 1) {
		newCol = col + colShift;
	} else
		edgeEnd = true;	
	if (rowShift < 0) {
		if (row > 0)
			newRow = row + rowShift;
		else
			edgeEnd = true;
	} else if (row < H - 1) {
		newRow = row + rowShift;
	} else
		edgeEnd = true;	
	i = (unsigned long)(newRow*3*W + 3*newCol);
	while ((edgeDir[newRow][newCol] == dir) && !edgeEnd && (*(m_destinationBmp + i) == 255)) {
		if (colShift < 0) {
			if (newCol > 0)
				newCol = newCol + colShift;
			else
				edgeEnd = true;	
		} else if (newCol < W - 1) {
			newCol = newCol + colShift;
		} else
			edgeEnd = true;	
		if (rowShift < 0) {
			if (newRow > 0)
				newRow = newRow + rowShift;
			else
				edgeEnd = true;
		} else if (newRow < H - 1) {
			newRow = newRow + rowShift;
		} else
			edgeEnd = true;	
		nonMax[pixelCount][0] = newRow;
		nonMax[pixelCount][1] = newCol;
		nonMax[pixelCount][2] = gradient[newRow][newCol];
		pixelCount++;
		i = (unsigned long)(newRow*3*W + 3*newCol);
	}

	/* Suppress non-maximum edges */
	max[0] = 0;
	max[1] = 0;
	max[2] = 0;
	for (count = 0; count < pixelCount; count++) {
		if (nonMax[count][2] > max[2]) {
			max[0] = nonMax[count][0];
			max[1] = nonMax[count][1];
			max[2] = nonMax[count][2];
		}
	}
	for (count = 0; count < pixelCount; count++) {
		i = (unsigned long)(nonMax[count][0]*3*W + 3*nonMax[count][1]);
		*(m_destinationBmp + i) = 
		*(m_destinationBmp + i + 1) = 
		*(m_destinationBmp + i + 2) = 0;
	}
}

 

دانلود کد فوق از طریق لینک زیر:

Canny in C++ -No2

رمز فایل : behsanandish.com

الگوریتم Canny در سی پلاس پلاس قسمت ۱
الگوریتم Canny در سی پلاس پلاس قسمت ۲
الگوریتم Canny در سی پلاس پلاس قسمت ۳
الگوریتم Canny در سی پلاس پلاس قسمت ۴

 

مرحله ۳: ردیابی در امتداد لبه ها

گام بعدی در واقع این است که در امتداد لبه ها بر اساس نقاط قوت و جهت های لبه که قبلا محاسبه شده است ردیابی شود. هر پیکسل از طریق استفاده از دو تودرتو برای حلقه ها چرخه می زند. اگر پیکسل فعلی دارای قدرت شیب بیشتر از مقدار upperThreshold تعریف شده باشد، یک سوئیچ اجرا می شود. این سوئیچ توسط جهت لبه پیکسل فعلی تعیین می شود. این ردیف و ستون، پیکسل ممکن بعدی را در این جهت ذخیره می کند و سپس جهت لبه و استحکام شیب آن پیکسل را آزمایش می کند. اگر آن همان جهت لبه و  قدرت گرادیان بزرگتر از lowerThreshold را دارد، آن پیکسل به سفید و پیکسل بعدی در امتداد آن لبه آزمایش می شود. به این ترتیب هر لبه قابل توجه تیز تشخیص داده شده و به سفید تنظیم می شود در حالیکه تمام پیکسل های دیگر به سیاه تنظیم می شود.

 

#include "stdafx.h"
#include "tripod.h"
#include "tripodDlg.h"

#include "LVServerDefs.h"
#include "math.h"
#include <fstream>
#include <string>
#include <iostream>
#include <stdlib.h>
#include <stdio.h>


#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

using namespace std;

/////////////////////////////////////////////////////////////////////////////
// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:
	CAboutDlg();

// Dialog Data
	//{{AFX_DATA(CAboutDlg)
	enum { IDD = IDD_ABOUTBOX };
	//}}AFX_DATA

	// ClassWizard generated virtual function overrides
	//{{AFX_VIRTUAL(CAboutDlg)
	protected:
	virtual void DoDataExchange(CDataExchange* pDX);    // DDX/DDV support
	//}}AFX_VIRTUAL

// Implementation
protected:
	//{{AFX_MSG(CAboutDlg)
	//}}AFX_MSG
	DECLARE_MESSAGE_MAP()
};

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
{
	//{{AFX_DATA_INIT(CAboutDlg)
	//}}AFX_DATA_INIT
}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
	CDialog::DoDataExchange(pDX);
	//{{AFX_DATA_MAP(CAboutDlg)
	//}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
	//{{AFX_MSG_MAP(CAboutDlg)
		// No message handlers
	//}}AFX_MSG_MAP
END_MESSAGE_MAP()

/////////////////////////////////////////////////////////////////////////////
// CTripodDlg dialog

CTripodDlg::CTripodDlg(CWnd* pParent /*=NULL*/)
	: CDialog(CTripodDlg::IDD, pParent)
{
	//{{AFX_DATA_INIT(CTripodDlg)
		// NOTE: the ClassWizard will add member initialization here
	//}}AFX_DATA_INIT
	// Note that LoadIcon does not require a subsequent DestroyIcon in Win32
	m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);

	//////////////// Set destination BMP to NULL first 
	m_destinationBitmapInfoHeader = NULL;

}

////////////////////// Additional generic functions

static unsigned PixelBytes(int w, int bpp)
{
    return (w * bpp + 7) / 8;
}

static unsigned DibRowSize(int w, int bpp)
{
    return (w * bpp + 31) / 32 * 4;
}

static unsigned DibRowSize(LPBITMAPINFOHEADER pbi)
{
    return DibRowSize(pbi->biWidth, pbi->biBitCount);
}

static unsigned DibRowPadding(int w, int bpp)
{
    return DibRowSize(w, bpp) - PixelBytes(w, bpp);
}

static unsigned DibRowPadding(LPBITMAPINFOHEADER pbi)
{
    return DibRowPadding(pbi->biWidth, pbi->biBitCount);
}

static unsigned DibImageSize(int w, int h, int bpp)
{
    return h * DibRowSize(w, bpp);
}

static size_t DibSize(int w, int h, int bpp)
{
    return sizeof (BITMAPINFOHEADER) + DibImageSize(w, h, bpp);
}

/////////////////////// end of generic functions


void CTripodDlg::DoDataExchange(CDataExchange* pDX)
{
	CDialog::DoDataExchange(pDX);
	//{{AFX_DATA_MAP(CTripodDlg)
	DDX_Control(pDX, IDC_PROCESSEDVIEW, m_cVideoProcessedView);
	DDX_Control(pDX, IDC_UNPROCESSEDVIEW, m_cVideoUnprocessedView);
	//}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CTripodDlg, CDialog)
	//{{AFX_MSG_MAP(CTripodDlg)
	ON_WM_SYSCOMMAND()
	ON_WM_PAINT()
	ON_WM_QUERYDRAGICON()
	ON_BN_CLICKED(IDEXIT, OnExit)
	//}}AFX_MSG_MAP
END_MESSAGE_MAP()

/////////////////////////////////////////////////////////////////////////////
// CTripodDlg message handlers

BOOL CTripodDlg::OnInitDialog()
{
	CDialog::OnInitDialog();

	// Add "About..." menu item to system menu.

	// IDM_ABOUTBOX must be in the system command range.
	ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);
	ASSERT(IDM_ABOUTBOX < 0xF000);

	CMenu* pSysMenu = GetSystemMenu(FALSE);
	if (pSysMenu != NULL)
	{
		CString strAboutMenu;
		strAboutMenu.LoadString(IDS_ABOUTBOX);
		if (!strAboutMenu.IsEmpty())
		{
			pSysMenu->AppendMenu(MF_SEPARATOR);
			pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);
		}
	}

	// Set the icon for this dialog.  The framework does this automatically
	//  when the application's main window is not a dialog
	SetIcon(m_hIcon, TRUE);			// Set big icon
	SetIcon(m_hIcon, FALSE);		// Set small icon
	
	// TODO: Add extra initialization here

	// For Unprocessed view videoportal (top one)
	char sRegUnprocessedView[] = "HKEY_LOCAL_MACHINE\\Software\\UnprocessedView";
	m_cVideoUnprocessedView.PrepareControl("UnprocessedView", sRegUnprocessedView, 0 );	
	m_cVideoUnprocessedView.EnableUIElements(UIELEMENT_STATUSBAR,0,TRUE);
	m_cVideoUnprocessedView.ConnectCamera2();
	m_cVideoUnprocessedView.SetEnablePreview(TRUE);

	// For binary view videoportal (bottom one)
	char sRegProcessedView[] = "HKEY_LOCAL_MACHINE\\Software\\ProcessedView";
	m_cVideoProcessedView.PrepareControl("ProcessedView", sRegProcessedView, 0 );	
	m_cVideoProcessedView.EnableUIElements(UIELEMENT_STATUSBAR,0,TRUE);
	m_cVideoProcessedView.ConnectCamera2();
	m_cVideoProcessedView.SetEnablePreview(TRUE);

	// Initialize the size of binary videoportal
	m_cVideoProcessedView.SetPreviewMaxHeight(240);
	m_cVideoProcessedView.SetPreviewMaxWidth(320);

	// Uncomment if you wish to fix the live videoportal's size
	// m_cVideoUnprocessedView.SetPreviewMaxHeight(240);
	// m_cVideoUnprocessedView.SetPreviewMaxWidth(320);

	// Find the screen coodinates of the binary videoportal
	m_cVideoProcessedView.GetWindowRect(m_rectForProcessedView);
	ScreenToClient(m_rectForProcessedView);
	allocateDib(CSize(320, 240));

	// Start grabbing frame data for Procssed videoportal (bottom one)
	m_cVideoProcessedView.StartVideoHook(0);

	return TRUE;  // return TRUE  unless you set the focus to a control
}

void CTripodDlg::OnSysCommand(UINT nID, LPARAM lParam)
{
	if ((nID & 0xFFF0) == IDM_ABOUTBOX)
	{
		CAboutDlg dlgAbout;
		dlgAbout.DoModal();
	}
	else
	{
		CDialog::OnSysCommand(nID, lParam);
	}
}

// If you add a minimize button to your dialog, you will need the code below
//  to draw the icon.  For MFC applications using the document/view model,
//  this is automatically done for you by the framework.

void CTripodDlg::OnPaint() 
{
	if (IsIconic())
	{
		CPaintDC dc(this); // device context for painting

		SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);

		// Center icon in client rectangle
		int cxIcon = GetSystemMetrics(SM_CXICON);
		int cyIcon = GetSystemMetrics(SM_CYICON);
		CRect rect;
		GetClientRect(&rect);
		int x = (rect.Width() - cxIcon + 1) / 2;
		int y = (rect.Height() - cyIcon + 1) / 2;

		// Draw the icon
		dc.DrawIcon(x, y, m_hIcon);
	}
	else
	{
		CDialog::OnPaint();
	}
}

// The system calls this to obtain the cursor to display while the user drags
//  the minimized window.
HCURSOR CTripodDlg::OnQueryDragIcon()
{
	return (HCURSOR) m_hIcon;
}

void CTripodDlg::OnExit() 
{
	// TODO: Add your control notification handler code here

	// Kill live view videoportal (top one)
	m_cVideoUnprocessedView.StopVideoHook(0);
    m_cVideoUnprocessedView.DisconnectCamera();	
	
	// Kill binary view videoportal (bottom one)
	m_cVideoProcessedView.StopVideoHook(0);
    m_cVideoProcessedView.DisconnectCamera();	

	// Kill program
	DestroyWindow();	

	

}

BEGIN_EVENTSINK_MAP(CTripodDlg, CDialog)
    //{{AFX_EVENTSINK_MAP(CTripodDlg)
	ON_EVENT(CTripodDlg, IDC_PROCESSEDVIEW, 1 /* PortalNotification */, OnPortalNotificationProcessedview, VTS_I4 VTS_I4 VTS_I4 VTS_I4)
	//}}AFX_EVENTSINK_MAP
END_EVENTSINK_MAP()

void CTripodDlg::OnPortalNotificationProcessedview(long lMsg, long lParam1, long lParam2, long lParam3) 
{
	// TODO: Add your control notification handler code here
	
	// This function is called at the camera's frame rate
    
#define NOTIFICATIONMSG_VIDEOHOOK	۱۰

	// Declare some useful variables
	// QCSDKMFC.pdf (Quickcam MFC documentation) p. 103 explains the variables lParam1, lParam2, lParam3 too 
	
	LPBITMAPINFOHEADER lpBitmapInfoHeader; // Frame's info header contains info like width and height
	LPBYTE lpBitmapPixelData; // This pointer-to-long will point to the start of the frame's pixel data
    unsigned long lTimeStamp; // Time when frame was grabbed

	switch(lMsg) {
		case NOTIFICATIONMSG_VIDEOHOOK:
			{
				lpBitmapInfoHeader = (LPBITMAPINFOHEADER) lParam1; 
				lpBitmapPixelData = (LPBYTE) lParam2;
				lTimeStamp = (unsigned long) lParam3;

				grayScaleTheFrameData(lpBitmapInfoHeader, lpBitmapPixelData);
				doMyImageProcessing(lpBitmapInfoHeader); // Place where you'd add your image processing code
				displayMyResults(lpBitmapInfoHeader);

			}
			break;

		default:
			break;
	}	
}

void CTripodDlg::allocateDib(CSize sz)
{
	// Purpose: allocate information for a device independent bitmap (DIB)
	// Called from OnInitVideo

	if(m_destinationBitmapInfoHeader) {
		free(m_destinationBitmapInfoHeader);
		m_destinationBitmapInfoHeader = NULL;
	}

	if(sz.cx | sz.cy) {
		m_destinationBitmapInfoHeader = (LPBITMAPINFOHEADER)malloc(DibSize(sz.cx, sz.cy, 24));
		ASSERT(m_destinationBitmapInfoHeader);
		m_destinationBitmapInfoHeader->biSize = sizeof(BITMAPINFOHEADER);
		m_destinationBitmapInfoHeader->biWidth = sz.cx;
		m_destinationBitmapInfoHeader->biHeight = sz.cy;
		m_destinationBitmapInfoHeader->biPlanes = 1;
		m_destinationBitmapInfoHeader->biBitCount = 24;
		m_destinationBitmapInfoHeader->biCompression = 0;
		m_destinationBitmapInfoHeader->biSizeImage = DibImageSize(sz.cx, sz.cy, 24);
		m_destinationBitmapInfoHeader->biXPelsPerMeter = 0;
		m_destinationBitmapInfoHeader->biYPelsPerMeter = 0;
		m_destinationBitmapInfoHeader->biClrImportant = 0;
		m_destinationBitmapInfoHeader->biClrUsed = 0;
	}
}

void CTripodDlg::displayMyResults(LPBITMAPINFOHEADER lpThisBitmapInfoHeader)
{
	// displayMyResults: Displays results of doMyImageProcessing() in the videoport
	// Notes: StretchDIBits stretches a device-independent bitmap to the appropriate size

	CDC				*pDC;	// Device context to display bitmap data
	
	pDC = GetDC();	
	int nOldMode = SetStretchBltMode(pDC->GetSafeHdc(),COLORONCOLOR);

	StretchDIBits( 
		pDC->GetSafeHdc(),
		m_rectForProcessedView.left,				// videoportal left-most coordinate
		m_rectForProcessedView.top,					// videoportal top-most coordinate
		m_rectForProcessedView.Width(),				// videoportal width
		m_rectForProcessedView.Height(),			// videoportal height
		۰,											// Row position to display bitmap in videoportal
		۰,											// Col position to display bitmap in videoportal
		lpThisBitmapInfoHeader->biWidth,			// m_destinationBmp's number of columns
		lpThisBitmapInfoHeader->biHeight,			// m_destinationBmp's number of rows
		m_destinationBmp,							// The bitmap to display; use the one resulting from doMyImageProcessing
		(BITMAPINFO*)m_destinationBitmapInfoHeader, // The bitmap's header info e.g. width, height, number of bits etc
		DIB_RGB_COLORS,								// Use default 24-bit color table
		SRCCOPY										// Just display
	);
 
	SetStretchBltMode(pDC->GetSafeHdc(),nOldMode);

	ReleaseDC(pDC);

	// Note: 04/24/02 - Added the following:
	// Christopher Wagner cwagner@fas.harvard.edu noticed that memory wasn't being freed

	// Recall OnPortalNotificationProcessedview, which gets called everytime
	// a frame of data arrives, performs 3 steps:
	// (۱) grayScaleTheFrameData - which mallocs m_destinationBmp
	// (۲) doMyImageProcesing
	// (۳) displayMyResults - which we're in now
	// Since we're finished with the memory we malloc'ed for m_destinationBmp
	// we should free it: 
	
	free(m_destinationBmp);

	// End of adds
}

void CTripodDlg::grayScaleTheFrameData(LPBITMAPINFOHEADER lpThisBitmapInfoHeader, LPBYTE lpThisBitmapPixelData)
{

	// grayScaleTheFrameData: Called by CTripodDlg::OnPortalNotificationBinaryview
	// Task: Read current frame pixel data and computes a grayscale version

	unsigned int	W, H;			  // Width and Height of current frame [pixels]
	BYTE            *sourceBmp;		  // Pointer to current frame of data
	unsigned int    row, col;
	unsigned long   i;
	BYTE			grayValue;

	BYTE			redValue;
	BYTE			greenValue;
	BYTE			blueValue;

    W = lpThisBitmapInfoHeader->biWidth;  // biWidth: number of columns
    H = lpThisBitmapInfoHeader->biHeight; // biHeight: number of rows

	// Store pixel data in row-column vector format
	// Recall that each pixel requires 3 bytes (red, blue and green bytes)
	// m_destinationBmp is a protected member and declared in binarizeDlg.h

	m_destinationBmp = (BYTE*)malloc(H*3*W*sizeof(BYTE));

	// Point to the current frame's pixel data
	sourceBmp = lpThisBitmapPixelData;

	for (row = 0; row < H; row++) {
		for (col = 0; col < W; col++) {

			// Recall each pixel is composed of 3 bytes
			i = (unsigned long)(row*3*W + 3*col);
        
			// The source pixel has a blue, green andred value:
			blueValue  = *(sourceBmp + i);
			greenValue = *(sourceBmp + i + 1);
			redValue   = *(sourceBmp + i + 2);

			// A standard equation for computing a grayscale value based on RGB values
			grayValue = (BYTE)(0.299*redValue + 0.587*greenValue + 0.114*blueValue);

			// The destination BMP will be a grayscale version of the source BMP
			*(m_destinationBmp + i)     = grayValue;
			*(m_destinationBmp + i + 1) = grayValue;
			*(m_destinationBmp + i + 2) = grayValue;
			
		}
	}
}


void CTripodDlg::doMyImageProcessing(LPBITMAPINFOHEADER lpThisBitmapInfoHeader)
{
	// doMyImageProcessing:  This is where you'd write your own image processing code
	// Task: Read a pixel's grayscale value and process accordingly

	unsigned int	W, H;			// Width and Height of current frame [pixels]
	unsigned int    row, col;		// Pixel's row and col positions
	unsigned long   i;				// Dummy variable for row-column vector
	int	    upperThreshold = 60;	// Gradient strength nessicary to start edge
	int		lowerThreshold = 30;	// Minimum gradient strength to continue edge
	unsigned long iOffset;			// Variable to offset row-column vector during sobel mask
	int rowOffset;					// Row offset from the current pixel
	int colOffset;					// Col offset from the current pixel
	int rowTotal = 0;				// Row position of offset pixel
	int colTotal = 0;				// Col position of offset pixel
	int Gx;							// Sum of Sobel mask products values in the x direction
	int Gy;							// Sum of Sobel mask products values in the y direction
	float thisAngle;				// Gradient direction based on Gx and Gy
	int newAngle;					// Approximation of the gradient direction
	bool edgeEnd;					// Stores whether or not the edge is at the edge of the possible image
	int GxMask[3][3];				// Sobel mask in the x direction
	int GyMask[3][3];				// Sobel mask in the y direction
	int newPixel;					// Sum pixel values for gaussian
	int gaussianMask[5][5];			// Gaussian mask

	W = lpThisBitmapInfoHeader->biWidth;  // biWidth: number of columns
    H = lpThisBitmapInfoHeader->biHeight; // biHeight: number of rows
	
	for (row = 0; row < H; row++) {
		for (col = 0; col < W; col++) {
			edgeDir[row][col] = 0;
		}
	}

	/* Declare Sobel masks */
	GxMask[0][0] = -1; GxMask[0][1] = 0; GxMask[0][2] = 1;
	GxMask[1][0] = -2; GxMask[1][1] = 0; GxMask[1][2] = 2;
	GxMask[2][0] = -1; GxMask[2][1] = 0; GxMask[2][2] = 1;
	
	GyMask[0][0] =  1; GyMask[0][1] =  2; GyMask[0][2] =  1;
	GyMask[1][0] =  0; GyMask[1][1] =  0; GyMask[1][2] =  0;
	GyMask[2][0] = -1; GyMask[2][1] = -2; GyMask[2][2] = -1;

	/* Declare Gaussian mask */
	gaussianMask[0][0] = 2;		gaussianMask[0][1] = 4;		gaussianMask[0][2] = 5;		gaussianMask[0][3] = 4;		gaussianMask[0][4] = 2;	
	gaussianMask[1][0] = 4;		gaussianMask[1][1] = 9;		gaussianMask[1][2] = 12;	gaussianMask[1][3] = 9;		gaussianMask[1][4] = 4;	
	gaussianMask[2][0] = 5;		gaussianMask[2][1] = 12;	gaussianMask[2][2] = 15;	gaussianMask[2][3] = 12;	gaussianMask[2][4] = 2;	
	gaussianMask[3][0] = 4;		gaussianMask[3][1] = 9;		gaussianMask[3][2] = 12;	gaussianMask[3][3] = 9;		gaussianMask[3][4] = 4;	
	gaussianMask[4][0] = 2;		gaussianMask[4][1] = 4;		gaussianMask[4][2] = 5;		gaussianMask[4][3] = 4;		gaussianMask[4][4] = 2;	
	

	/* Gaussian Blur */
	for (row = 2; row < H-2; row++) {
		for (col = 2; col < W-2; col++) {
			newPixel = 0;
			for (rowOffset=-2; rowOffset<=2; rowOffset++) {
				for (colOffset=-2; colOffset<=2; colOffset++) {
					rowTotal = row + rowOffset;
					colTotal = col + colOffset;
					iOffset = (unsigned long)(rowTotal*3*W + colTotal*3);
					newPixel += (*(m_destinationBmp + iOffset)) * gaussianMask[2 + rowOffset][2 + colOffset];
				}
			}
			i = (unsigned long)(row*3*W + col*3);
			*(m_destinationBmp + i) = newPixel / 159;
		}
	}

	/* Determine edge directions and gradient strengths */
	for (row = 1; row < H-1; row++) {
		for (col = 1; col < W-1; col++) {
			i = (unsigned long)(row*3*W + 3*col);
			Gx = 0;
			Gy = 0;
			/* Calculate the sum of the Sobel mask times the nine surrounding pixels in the x and y direction */
			for (rowOffset=-1; rowOffset<=1; rowOffset++) {
				for (colOffset=-1; colOffset<=1; colOffset++) {
					rowTotal = row + rowOffset;
					colTotal = col + colOffset;
					iOffset = (unsigned long)(rowTotal*3*W + colTotal*3);
					Gx = Gx + (*(m_destinationBmp + iOffset) * GxMask[rowOffset + 1][colOffset + 1]);
					Gy = Gy + (*(m_destinationBmp + iOffset) * GyMask[rowOffset + 1][colOffset + 1]);
				}
			}

			gradient[row][col] = sqrt(pow(Gx,2.0) + pow(Gy,2.0));	// Calculate gradient strength			
			thisAngle = (atan2(Gx,Gy)/3.14159) * 180.0;		// Calculate actual direction of edge
			
			/* Convert actual edge direction to approximate value */
			if ( ( (thisAngle < 22.5) && (thisAngle > -22.5) ) || (thisAngle > 157.5) || (thisAngle < -157.5) )
				newAngle = 0;
			if ( ( (thisAngle > 22.5) && (thisAngle < 67.5) ) || ( (thisAngle < -112.5) && (thisAngle > -157.5) ) )
				newAngle = 45;
			if ( ( (thisAngle > 67.5) && (thisAngle < 112.5) ) || ( (thisAngle < -67.5) && (thisAngle > -112.5) ) )
				newAngle = 90;
			if ( ( (thisAngle > 112.5) && (thisAngle < 157.5) ) || ( (thisAngle < -22.5) && (thisAngle > -67.5) ) )
				newAngle = 135;
				
			edgeDir[row][col] = newAngle;		// Store the approximate edge direction of each pixel in one array
		}
	}

	/* Trace along all the edges in the image */
	for (row = 1; row < H - 1; row++) {
		for (col = 1; col < W - 1; col++) {
			edgeEnd = false;
			if (gradient[row][col] > upperThreshold) {		// Check to see if current pixel has a high enough gradient strength to be part of an edge
				/* Switch based on current pixel's edge direction */
				switch (edgeDir[row][col]){		
					case 0:
						findEdge(0, 1, row, col, 0, lowerThreshold);
						break;
					case 45:
						findEdge(1, 1, row, col, 45, lowerThreshold);
						break;
					case 90:
						findEdge(1, 0, row, col, 90, lowerThreshold);
						break;
					case 135:
						findEdge(1, -1, row, col, 135, lowerThreshold);
						break;
					default :
						i = (unsigned long)(row*3*W + 3*col);
						*(m_destinationBmp + i) = 
						*(m_destinationBmp + i + 1) = 
						*(m_destinationBmp + i + 2) = 0;
						break;
					}
				}
			else {
				i = (unsigned long)(row*3*W + 3*col);
					*(m_destinationBmp + i) = 
					*(m_destinationBmp + i + 1) = 
					*(m_destinationBmp + i + 2) = 0;
			}	
		}
	}
	
	/* Suppress any pixels not changed by the edge tracing */
	for (row = 0; row < H; row++) {
		for (col = 0; col < W; col++) {	
			// Recall each pixel is composed of 3 bytes
			i = (unsigned long)(row*3*W + 3*col);
			// If a pixel's grayValue is not black or white make it black
			if( ((*(m_destinationBmp + i) != 255) && (*(m_destinationBmp + i) != 0)) || ((*(m_destinationBmp + i + 1) != 255) && (*(m_destinationBmp + i + 1) != 0)) || ((*(m_destinationBmp + i + 2) != 255) && (*(m_destinationBmp + i + 2) != 0)) ) 
				*(m_destinationBmp + i) = 
				*(m_destinationBmp + i + 1) = 
				*(m_destinationBmp + i + 2) = 0; // Make pixel black
		}
	}

	/* Non-maximum Suppression */
	for (row = 1; row < H - 1; row++) {
		for (col = 1; col < W - 1; col++) {
			i = (unsigned long)(row*3*W + 3*col);
			if (*(m_destinationBmp + i) == 255) {		// Check to see if current pixel is an edge
				/* Switch based on current pixel's edge direction */
				switch (edgeDir[row][col]) {		
					case 0:
						suppressNonMax( 1, 0, row, col, 0, lowerThreshold);
						break;
					case 45:
						suppressNonMax( 1, -1, row, col, 45, lowerThreshold);
						break;
					case 90:
						suppressNonMax( 0, 1, row, col, 90, lowerThreshold);
						break;
					case 135:
						suppressNonMax( 1, 1, row, col, 135, lowerThreshold);
						break;
					default :
						break;
				}
			}	
		}
	}
	
}

void CTripodDlg::findEdge(int rowShift, int colShift, int row, int col, int dir, int lowerThreshold)
{
	int W = 320;
	int H = 240;
	int newRow;
	int newCol;
	unsigned long i;
	bool edgeEnd = false;

	/* Find the row and column values for the next possible pixel on the edge */
	if (colShift < 0) {
		if (col > 0)
			newCol = col + colShift;
		else
			edgeEnd = true;
	} else if (col < W - 1) {
		newCol = col + colShift;
	} else
		edgeEnd = true;		// If the next pixel would be off image, don't do the while loop
	if (rowShift < 0) {
		if (row > 0)
			newRow = row + rowShift;
		else
			edgeEnd = true;
	} else if (row < H - 1) {
		newRow = row + rowShift;
	} else
		edgeEnd = true;	
		
	/* Determine edge directions and gradient strengths */
	while ( (edgeDir[newRow][newCol]==dir) && !edgeEnd && (gradient[newRow][newCol] > lowerThreshold) ) {
		/* Set the new pixel as white to show it is an edge */
		i = (unsigned long)(newRow*3*W + 3*newCol);
		*(m_destinationBmp + i) =
		*(m_destinationBmp + i + 1) =
		*(m_destinationBmp + i + 2) = 255;
		if (colShift < 0) {
			if (newCol > 0)
				newCol = newCol + colShift;
			else
				edgeEnd = true;	
		} else if (newCol < W - 1) {
			newCol = newCol + colShift;
		} else
			edgeEnd = true;	
		if (rowShift < 0) {
			if (newRow > 0)
				newRow = newRow + rowShift;
			else
				edgeEnd = true;
		} else if (newRow < H - 1) {
			newRow = newRow + rowShift;
		} else
			edgeEnd = true;	
	}	
}

void CTripodDlg::suppressNonMax(int rowShift, int colShift, int row, int col, int dir, int lowerThreshold)
{
	int W = 320;
	int H = 240;
	int newRow = 0;
	int newCol = 0;
	unsigned long i;
	bool edgeEnd = false;
	float nonMax[320][3];			// Temporarily stores gradients and positions of pixels in parallel edges
	int pixelCount = 0;					// Stores the number of pixels in parallel edges
	int count;						// A for loop counter
	int max[3];						// Maximum point in a wide edge
	
	if (colShift < 0) {
		if (col > 0)
			newCol = col + colShift;
		else
			edgeEnd = true;
	} else if (col < W - 1) {
		newCol = col + colShift;
	} else
		edgeEnd = true;		// If the next pixel would be off image, don't do the while loop
	if (rowShift < 0) {
		if (row > 0)
			newRow = row + rowShift;
		else
			edgeEnd = true;
	} else if (row < H - 1) {
		newRow = row + rowShift;
	} else
		edgeEnd = true;	
	i = (unsigned long)(newRow*3*W + 3*newCol);
	/* Find non-maximum parallel edges tracing up */
	while ((edgeDir[newRow][newCol] == dir) && !edgeEnd && (*(m_destinationBmp + i) == 255)) {
		if (colShift < 0) {
			if (newCol > 0)
				newCol = newCol + colShift;
			else
				edgeEnd = true;	
		} else if (newCol < W - 1) {
			newCol = newCol + colShift;
		} else
			edgeEnd = true;	
		if (rowShift < 0) {
			if (newRow > 0)
				newRow = newRow + rowShift;
			else
				edgeEnd = true;
		} else if (newRow < H - 1) {
			newRow = newRow + rowShift;
		} else
			edgeEnd = true;	
		nonMax[pixelCount][0] = newRow;
		nonMax[pixelCount][1] = newCol;
		nonMax[pixelCount][2] = gradient[newRow][newCol];
		pixelCount++;
		i = (unsigned long)(newRow*3*W + 3*newCol);
	}

	/* Find non-maximum parallel edges tracing down */
	edgeEnd = false;
	colShift *= -1;
	rowShift *= -1;
	if (colShift < 0) {
		if (col > 0)
			newCol = col + colShift;
		else
			edgeEnd = true;
	} else if (col < W - 1) {
		newCol = col + colShift;
	} else
		edgeEnd = true;	
	if (rowShift < 0) {
		if (row > 0)
			newRow = row + rowShift;
		else
			edgeEnd = true;
	} else if (row < H - 1) {
		newRow = row + rowShift;
	} else
		edgeEnd = true;	
	i = (unsigned long)(newRow*3*W + 3*newCol);
	while ((edgeDir[newRow][newCol] == dir) && !edgeEnd && (*(m_destinationBmp + i) == 255)) {
		if (colShift < 0) {
			if (newCol > 0)
				newCol = newCol + colShift;
			else
				edgeEnd = true;	
		} else if (newCol < W - 1) {
			newCol = newCol + colShift;
		} else
			edgeEnd = true;	
		if (rowShift < 0) {
			if (newRow > 0)
				newRow = newRow + rowShift;
			else
				edgeEnd = true;
		} else if (newRow < H - 1) {
			newRow = newRow + rowShift;
		} else
			edgeEnd = true;	
		nonMax[pixelCount][0] = newRow;
		nonMax[pixelCount][1] = newCol;
		nonMax[pixelCount][2] = gradient[newRow][newCol];
		pixelCount++;
		i = (unsigned long)(newRow*3*W + 3*newCol);
	}

	/* Suppress non-maximum edges */
	max[0] = 0;
	max[1] = 0;
	max[2] = 0;
	for (count = 0; count < pixelCount; count++) {
		if (nonMax[count][2] > max[2]) {
			max[0] = nonMax[count][0];
			max[1] = nonMax[count][1];
			max[2] = nonMax[count][2];
		}
	}
	for (count = 0; count < pixelCount; count++) {
		i = (unsigned long)(nonMax[count][0]*3*W + 3*nonMax[count][1]);
		*(m_destinationBmp + i) = 
		*(m_destinationBmp + i + 1) = 
		*(m_destinationBmp + i + 2) = 0;
	}
}

الگوریتم Canny در سی پلاس پلاس قسمت ۱
الگوریتم Canny در سی پلاس پلاس قسمت ۲
الگوریتم Canny در سی پلاس پلاس قسمت ۳
الگوریتم Canny در سی پلاس پلاس قسمت ۴

مرحله ۲: پیدا کردن قدرت و جهت گرادیان لبه.

گام بعدی استفاده از Mask های Sobel برای پیدا کردن قدرت و جهت گرادیان لبه برای هر پیکسل است. ابتدا ماسک های Sobel به محدوده پیکسل ۳×۳ پیکسل فعلی در هر دو جهت x و y اعمال می شود. سپس مجموع مقدار هر ماسک ضربدر پیکسل مربوطه به ترتیب به عنوان مقادیر Gx و Gy محاسبه می شود. ریشه دوم مربع Gx به اضافه Gy مربع برابر قدرت لبه است. Tangent معکوس Gx / Gy جهت لبه را تولید می کند. سپس جهت لبه تقریب شده است به یکی از چهار مقادیر ممکن که ایجاد می کند جهت های ممکن را که  یک لبه می تواند در یک تصویر از یک شبکه پیکسل مربع باشد. این جهت لبه در edgeDir [row] [col] ذخیره می شود و قدرت گرادیان در  array gradient[row] [col] ذخیره می شود.

 

CannyEdgeWeel

هر زاویه لبه در ۱۱٫۲۵ درجه از یکی از  زاویه های ممکن به آن مقدار تغییر می کند.

 

#include "stdafx.h"
#include "tripod.h"
#include "tripodDlg.h"

#include "LVServerDefs.h"
#include "math.h"
#include <fstream>
#include <string>
#include <iostream>
#include <stdlib.h>
#include <stdio.h>


#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

using namespace std;

/////////////////////////////////////////////////////////////////////////////
// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:
	CAboutDlg();

// Dialog Data
	//{{AFX_DATA(CAboutDlg)
	enum { IDD = IDD_ABOUTBOX };
	//}}AFX_DATA

	// ClassWizard generated virtual function overrides
	//{{AFX_VIRTUAL(CAboutDlg)
	protected:
	virtual void DoDataExchange(CDataExchange* pDX);    // DDX/DDV support
	//}}AFX_VIRTUAL

// Implementation
protected:
	//{{AFX_MSG(CAboutDlg)
	//}}AFX_MSG
	DECLARE_MESSAGE_MAP()
};

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
{
	//{{AFX_DATA_INIT(CAboutDlg)
	//}}AFX_DATA_INIT
}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
	CDialog::DoDataExchange(pDX);
	//{{AFX_DATA_MAP(CAboutDlg)
	//}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
	//{{AFX_MSG_MAP(CAboutDlg)
		// No message handlers
	//}}AFX_MSG_MAP
END_MESSAGE_MAP()

/////////////////////////////////////////////////////////////////////////////
// CTripodDlg dialog

CTripodDlg::CTripodDlg(CWnd* pParent /*=NULL*/)
	: CDialog(CTripodDlg::IDD, pParent)
{
	//{{AFX_DATA_INIT(CTripodDlg)
		// NOTE: the ClassWizard will add member initialization here
	//}}AFX_DATA_INIT
	// Note that LoadIcon does not require a subsequent DestroyIcon in Win32
	m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);

	//////////////// Set destination BMP to NULL first 
	m_destinationBitmapInfoHeader = NULL;

}

////////////////////// Additional generic functions

static unsigned PixelBytes(int w, int bpp)
{
    return (w * bpp + 7) / 8;
}

static unsigned DibRowSize(int w, int bpp)
{
    return (w * bpp + 31) / 32 * 4;
}

static unsigned DibRowSize(LPBITMAPINFOHEADER pbi)
{
    return DibRowSize(pbi->biWidth, pbi->biBitCount);
}

static unsigned DibRowPadding(int w, int bpp)
{
    return DibRowSize(w, bpp) - PixelBytes(w, bpp);
}

static unsigned DibRowPadding(LPBITMAPINFOHEADER pbi)
{
    return DibRowPadding(pbi->biWidth, pbi->biBitCount);
}

static unsigned DibImageSize(int w, int h, int bpp)
{
    return h * DibRowSize(w, bpp);
}

static size_t DibSize(int w, int h, int bpp)
{
    return sizeof (BITMAPINFOHEADER) + DibImageSize(w, h, bpp);
}

/////////////////////// end of generic functions


void CTripodDlg::DoDataExchange(CDataExchange* pDX)
{
	CDialog::DoDataExchange(pDX);
	//{{AFX_DATA_MAP(CTripodDlg)
	DDX_Control(pDX, IDC_PROCESSEDVIEW, m_cVideoProcessedView);
	DDX_Control(pDX, IDC_UNPROCESSEDVIEW, m_cVideoUnprocessedView);
	//}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CTripodDlg, CDialog)
	//{{AFX_MSG_MAP(CTripodDlg)
	ON_WM_SYSCOMMAND()
	ON_WM_PAINT()
	ON_WM_QUERYDRAGICON()
	ON_BN_CLICKED(IDEXIT, OnExit)
	//}}AFX_MSG_MAP
END_MESSAGE_MAP()

/////////////////////////////////////////////////////////////////////////////
// CTripodDlg message handlers

BOOL CTripodDlg::OnInitDialog()
{
	CDialog::OnInitDialog();

	// Add "About..." menu item to system menu.

	// IDM_ABOUTBOX must be in the system command range.
	ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);
	ASSERT(IDM_ABOUTBOX < 0xF000);

	CMenu* pSysMenu = GetSystemMenu(FALSE);
	if (pSysMenu != NULL)
	{
		CString strAboutMenu;
		strAboutMenu.LoadString(IDS_ABOUTBOX);
		if (!strAboutMenu.IsEmpty())
		{
			pSysMenu->AppendMenu(MF_SEPARATOR);
			pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);
		}
	}

	// Set the icon for this dialog.  The framework does this automatically
	//  when the application's main window is not a dialog
	SetIcon(m_hIcon, TRUE);			// Set big icon
	SetIcon(m_hIcon, FALSE);		// Set small icon
	
	// TODO: Add extra initialization here

	// For Unprocessed view videoportal (top one)
	char sRegUnprocessedView[] = "HKEY_LOCAL_MACHINE\\Software\\UnprocessedView";
	m_cVideoUnprocessedView.PrepareControl("UnprocessedView", sRegUnprocessedView, 0 );	
	m_cVideoUnprocessedView.EnableUIElements(UIELEMENT_STATUSBAR,0,TRUE);
	m_cVideoUnprocessedView.ConnectCamera2();
	m_cVideoUnprocessedView.SetEnablePreview(TRUE);

	// For binary view videoportal (bottom one)
	char sRegProcessedView[] = "HKEY_LOCAL_MACHINE\\Software\\ProcessedView";
	m_cVideoProcessedView.PrepareControl("ProcessedView", sRegProcessedView, 0 );	
	m_cVideoProcessedView.EnableUIElements(UIELEMENT_STATUSBAR,0,TRUE);
	m_cVideoProcessedView.ConnectCamera2();
	m_cVideoProcessedView.SetEnablePreview(TRUE);

	// Initialize the size of binary videoportal
	m_cVideoProcessedView.SetPreviewMaxHeight(240);
	m_cVideoProcessedView.SetPreviewMaxWidth(320);

	// Uncomment if you wish to fix the live videoportal's size
	// m_cVideoUnprocessedView.SetPreviewMaxHeight(240);
	// m_cVideoUnprocessedView.SetPreviewMaxWidth(320);

	// Find the screen coodinates of the binary videoportal
	m_cVideoProcessedView.GetWindowRect(m_rectForProcessedView);
	ScreenToClient(m_rectForProcessedView);
	allocateDib(CSize(320, 240));

	// Start grabbing frame data for Procssed videoportal (bottom one)
	m_cVideoProcessedView.StartVideoHook(0);

	return TRUE;  // return TRUE  unless you set the focus to a control
}

void CTripodDlg::OnSysCommand(UINT nID, LPARAM lParam)
{
	if ((nID & 0xFFF0) == IDM_ABOUTBOX)
	{
		CAboutDlg dlgAbout;
		dlgAbout.DoModal();
	}
	else
	{
		CDialog::OnSysCommand(nID, lParam);
	}
}

// If you add a minimize button to your dialog, you will need the code below
//  to draw the icon.  For MFC applications using the document/view model,
//  this is automatically done for you by the framework.

void CTripodDlg::OnPaint() 
{
	if (IsIconic())
	{
		CPaintDC dc(this); // device context for painting

		SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);

		// Center icon in client rectangle
		int cxIcon = GetSystemMetrics(SM_CXICON);
		int cyIcon = GetSystemMetrics(SM_CYICON);
		CRect rect;
		GetClientRect(&rect);
		int x = (rect.Width() - cxIcon + 1) / 2;
		int y = (rect.Height() - cyIcon + 1) / 2;

		// Draw the icon
		dc.DrawIcon(x, y, m_hIcon);
	}
	else
	{
		CDialog::OnPaint();
	}
}

// The system calls this to obtain the cursor to display while the user drags
//  the minimized window.
HCURSOR CTripodDlg::OnQueryDragIcon()
{
	return (HCURSOR) m_hIcon;
}

void CTripodDlg::OnExit() 
{
	// TODO: Add your control notification handler code here

	// Kill live view videoportal (top one)
	m_cVideoUnprocessedView.StopVideoHook(0);
    m_cVideoUnprocessedView.DisconnectCamera();	
	
	// Kill binary view videoportal (bottom one)
	m_cVideoProcessedView.StopVideoHook(0);
    m_cVideoProcessedView.DisconnectCamera();	

	// Kill program
	DestroyWindow();	

	

}

BEGIN_EVENTSINK_MAP(CTripodDlg, CDialog)
    //{{AFX_EVENTSINK_MAP(CTripodDlg)
	ON_EVENT(CTripodDlg, IDC_PROCESSEDVIEW, 1 /* PortalNotification */, OnPortalNotificationProcessedview, VTS_I4 VTS_I4 VTS_I4 VTS_I4)
	//}}AFX_EVENTSINK_MAP
END_EVENTSINK_MAP()

void CTripodDlg::OnPortalNotificationProcessedview(long lMsg, long lParam1, long lParam2, long lParam3) 
{
	// TODO: Add your control notification handler code here
	
	// This function is called at the camera's frame rate
    
#define NOTIFICATIONMSG_VIDEOHOOK	۱۰

	// Declare some useful variables
	// QCSDKMFC.pdf (Quickcam MFC documentation) p. 103 explains the variables lParam1, lParam2, lParam3 too 
	
	LPBITMAPINFOHEADER lpBitmapInfoHeader; // Frame's info header contains info like width and height
	LPBYTE lpBitmapPixelData; // This pointer-to-long will point to the start of the frame's pixel data
    unsigned long lTimeStamp; // Time when frame was grabbed

	switch(lMsg) {
		case NOTIFICATIONMSG_VIDEOHOOK:
			{
				lpBitmapInfoHeader = (LPBITMAPINFOHEADER) lParam1; 
				lpBitmapPixelData = (LPBYTE) lParam2;
				lTimeStamp = (unsigned long) lParam3;

				grayScaleTheFrameData(lpBitmapInfoHeader, lpBitmapPixelData);
				doMyImageProcessing(lpBitmapInfoHeader); // Place where you'd add your image processing code
				displayMyResults(lpBitmapInfoHeader);

			}
			break;

		default:
			break;
	}	
}

void CTripodDlg::allocateDib(CSize sz)
{
	// Purpose: allocate information for a device independent bitmap (DIB)
	// Called from OnInitVideo

	if(m_destinationBitmapInfoHeader) {
		free(m_destinationBitmapInfoHeader);
		m_destinationBitmapInfoHeader = NULL;
	}

	if(sz.cx | sz.cy) {
		m_destinationBitmapInfoHeader = (LPBITMAPINFOHEADER)malloc(DibSize(sz.cx, sz.cy, 24));
		ASSERT(m_destinationBitmapInfoHeader);
		m_destinationBitmapInfoHeader->biSize = sizeof(BITMAPINFOHEADER);
		m_destinationBitmapInfoHeader->biWidth = sz.cx;
		m_destinationBitmapInfoHeader->biHeight = sz.cy;
		m_destinationBitmapInfoHeader->biPlanes = 1;
		m_destinationBitmapInfoHeader->biBitCount = 24;
		m_destinationBitmapInfoHeader->biCompression = 0;
		m_destinationBitmapInfoHeader->biSizeImage = DibImageSize(sz.cx, sz.cy, 24);
		m_destinationBitmapInfoHeader->biXPelsPerMeter = 0;
		m_destinationBitmapInfoHeader->biYPelsPerMeter = 0;
		m_destinationBitmapInfoHeader->biClrImportant = 0;
		m_destinationBitmapInfoHeader->biClrUsed = 0;
	}
}

void CTripodDlg::displayMyResults(LPBITMAPINFOHEADER lpThisBitmapInfoHeader)
{
	// displayMyResults: Displays results of doMyImageProcessing() in the videoport
	// Notes: StretchDIBits stretches a device-independent bitmap to the appropriate size

	CDC				*pDC;	// Device context to display bitmap data
	
	pDC = GetDC();	
	int nOldMode = SetStretchBltMode(pDC->GetSafeHdc(),COLORONCOLOR);

	StretchDIBits( 
		pDC->GetSafeHdc(),
		m_rectForProcessedView.left,				// videoportal left-most coordinate
		m_rectForProcessedView.top,					// videoportal top-most coordinate
		m_rectForProcessedView.Width(),				// videoportal width
		m_rectForProcessedView.Height(),			// videoportal height
		۰,											// Row position to display bitmap in videoportal
		۰,											// Col position to display bitmap in videoportal
		lpThisBitmapInfoHeader->biWidth,			// m_destinationBmp's number of columns
		lpThisBitmapInfoHeader->biHeight,			// m_destinationBmp's number of rows
		m_destinationBmp,							// The bitmap to display; use the one resulting from doMyImageProcessing
		(BITMAPINFO*)m_destinationBitmapInfoHeader, // The bitmap's header info e.g. width, height, number of bits etc
		DIB_RGB_COLORS,								// Use default 24-bit color table
		SRCCOPY										// Just display
	);
 
	SetStretchBltMode(pDC->GetSafeHdc(),nOldMode);

	ReleaseDC(pDC);

	// Note: 04/24/02 - Added the following:
	// Christopher Wagner cwagner@fas.harvard.edu noticed that memory wasn't being freed

	// Recall OnPortalNotificationProcessedview, which gets called everytime
	// a frame of data arrives, performs 3 steps:
	// (۱) grayScaleTheFrameData - which mallocs m_destinationBmp
	// (۲) doMyImageProcesing
	// (۳) displayMyResults - which we're in now
	// Since we're finished with the memory we malloc'ed for m_destinationBmp
	// we should free it: 
	
	free(m_destinationBmp);

	// End of adds
}

void CTripodDlg::grayScaleTheFrameData(LPBITMAPINFOHEADER lpThisBitmapInfoHeader, LPBYTE lpThisBitmapPixelData)
{

	// grayScaleTheFrameData: Called by CTripodDlg::OnPortalNotificationBinaryview
	// Task: Read current frame pixel data and computes a grayscale version

	unsigned int	W, H;			  // Width and Height of current frame [pixels]
	BYTE            *sourceBmp;		  // Pointer to current frame of data
	unsigned int    row, col;
	unsigned long   i;
	BYTE			grayValue;

	BYTE			redValue;
	BYTE			greenValue;
	BYTE			blueValue;

    W = lpThisBitmapInfoHeader->biWidth;  // biWidth: number of columns
    H = lpThisBitmapInfoHeader->biHeight; // biHeight: number of rows

	// Store pixel data in row-column vector format
	// Recall that each pixel requires 3 bytes (red, blue and green bytes)
	// m_destinationBmp is a protected member and declared in binarizeDlg.h

	m_destinationBmp = (BYTE*)malloc(H*3*W*sizeof(BYTE));

	// Point to the current frame's pixel data
	sourceBmp = lpThisBitmapPixelData;

	for (row = 0; row < H; row++) {
		for (col = 0; col < W; col++) {

			// Recall each pixel is composed of 3 bytes
			i = (unsigned long)(row*3*W + 3*col);
        
			// The source pixel has a blue, green andred value:
			blueValue  = *(sourceBmp + i);
			greenValue = *(sourceBmp + i + 1);
			redValue   = *(sourceBmp + i + 2);

			// A standard equation for computing a grayscale value based on RGB values
			grayValue = (BYTE)(0.299*redValue + 0.587*greenValue + 0.114*blueValue);

			// The destination BMP will be a grayscale version of the source BMP
			*(m_destinationBmp + i)     = grayValue;
			*(m_destinationBmp + i + 1) = grayValue;
			*(m_destinationBmp + i + 2) = grayValue;
			
		}
	}
}


void CTripodDlg::doMyImageProcessing(LPBITMAPINFOHEADER lpThisBitmapInfoHeader)
{
	// doMyImageProcessing:  This is where you'd write your own image processing code
	// Task: Read a pixel's grayscale value and process accordingly

	unsigned int	W, H;			// Width and Height of current frame [pixels]
	unsigned int    row, col;		// Pixel's row and col positions
	unsigned long   i;				// Dummy variable for row-column vector
	int	    upperThreshold = 60;	// Gradient strength nessicary to start edge
	int		lowerThreshold = 30;	// Minimum gradient strength to continue edge
	unsigned long iOffset;			// Variable to offset row-column vector during sobel mask
	int rowOffset;					// Row offset from the current pixel
	int colOffset;					// Col offset from the current pixel
	int rowTotal = 0;				// Row position of offset pixel
	int colTotal = 0;				// Col position of offset pixel
	int Gx;							// Sum of Sobel mask products values in the x direction
	int Gy;							// Sum of Sobel mask products values in the y direction
	float thisAngle;				// Gradient direction based on Gx and Gy
	int newAngle;					// Approximation of the gradient direction
	bool edgeEnd;					// Stores whether or not the edge is at the edge of the possible image
	int GxMask[3][3];				// Sobel mask in the x direction
	int GyMask[3][3];				// Sobel mask in the y direction
	int newPixel;					// Sum pixel values for gaussian
	int gaussianMask[5][5];			// Gaussian mask

	W = lpThisBitmapInfoHeader->biWidth;  // biWidth: number of columns
    H = lpThisBitmapInfoHeader->biHeight; // biHeight: number of rows
	
	for (row = 0; row < H; row++) {
		for (col = 0; col < W; col++) {
			edgeDir[row][col] = 0;
		}
	}

	/* Declare Sobel masks */
	GxMask[0][0] = -1; GxMask[0][1] = 0; GxMask[0][2] = 1;
	GxMask[1][0] = -2; GxMask[1][1] = 0; GxMask[1][2] = 2;
	GxMask[2][0] = -1; GxMask[2][1] = 0; GxMask[2][2] = 1;
	
	GyMask[0][0] =  1; GyMask[0][1] =  2; GyMask[0][2] =  1;
	GyMask[1][0] =  0; GyMask[1][1] =  0; GyMask[1][2] =  0;
	GyMask[2][0] = -1; GyMask[2][1] = -2; GyMask[2][2] = -1;

	/* Declare Gaussian mask */
	gaussianMask[0][0] = 2;		gaussianMask[0][1] = 4;		gaussianMask[0][2] = 5;		gaussianMask[0][3] = 4;		gaussianMask[0][4] = 2;	
	gaussianMask[1][0] = 4;		gaussianMask[1][1] = 9;		gaussianMask[1][2] = 12;	gaussianMask[1][3] = 9;		gaussianMask[1][4] = 4;	
	gaussianMask[2][0] = 5;		gaussianMask[2][1] = 12;	gaussianMask[2][2] = 15;	gaussianMask[2][3] = 12;	gaussianMask[2][4] = 2;	
	gaussianMask[3][0] = 4;		gaussianMask[3][1] = 9;		gaussianMask[3][2] = 12;	gaussianMask[3][3] = 9;		gaussianMask[3][4] = 4;	
	gaussianMask[4][0] = 2;		gaussianMask[4][1] = 4;		gaussianMask[4][2] = 5;		gaussianMask[4][3] = 4;		gaussianMask[4][4] = 2;	
	

	/* Gaussian Blur */
	for (row = 2; row < H-2; row++) {
		for (col = 2; col < W-2; col++) {
			newPixel = 0;
			for (rowOffset=-2; rowOffset<=2; rowOffset++) {
				for (colOffset=-2; colOffset<=2; colOffset++) {
					rowTotal = row + rowOffset;
					colTotal = col + colOffset;
					iOffset = (unsigned long)(rowTotal*3*W + colTotal*3);
					newPixel += (*(m_destinationBmp + iOffset)) * gaussianMask[2 + rowOffset][2 + colOffset];
				}
			}
			i = (unsigned long)(row*3*W + col*3);
			*(m_destinationBmp + i) = newPixel / 159;
		}
	}

	/* Determine edge directions and gradient strengths */
	for (row = 1; row < H-1; row++) {
		for (col = 1; col < W-1; col++) {
			i = (unsigned long)(row*3*W + 3*col);
			Gx = 0;
			Gy = 0;
			/* Calculate the sum of the Sobel mask times the nine surrounding pixels in the x and y direction */
			for (rowOffset=-1; rowOffset<=1; rowOffset++) {
				for (colOffset=-1; colOffset<=1; colOffset++) {
					rowTotal = row + rowOffset;
					colTotal = col + colOffset;
					iOffset = (unsigned long)(rowTotal*3*W + colTotal*3);
					Gx = Gx + (*(m_destinationBmp + iOffset) * GxMask[rowOffset + 1][colOffset + 1]);
					Gy = Gy + (*(m_destinationBmp + iOffset) * GyMask[rowOffset + 1][colOffset + 1]);
				}
			}

			gradient[row][col] = sqrt(pow(Gx,2.0) + pow(Gy,2.0));	// Calculate gradient strength			
			thisAngle = (atan2(Gx,Gy)/3.14159) * 180.0;		// Calculate actual direction of edge
			
			/* Convert actual edge direction to approximate value */
			if ( ( (thisAngle < 22.5) && (thisAngle > -22.5) ) || (thisAngle > 157.5) || (thisAngle < -157.5) )
				newAngle = 0;
			if ( ( (thisAngle > 22.5) && (thisAngle < 67.5) ) || ( (thisAngle < -112.5) && (thisAngle > -157.5) ) )
				newAngle = 45;
			if ( ( (thisAngle > 67.5) && (thisAngle < 112.5) ) || ( (thisAngle < -67.5) && (thisAngle > -112.5) ) )
				newAngle = 90;
			if ( ( (thisAngle > 112.5) && (thisAngle < 157.5) ) || ( (thisAngle < -22.5) && (thisAngle > -67.5) ) )
				newAngle = 135;
				
			edgeDir[row][col] = newAngle;		// Store the approximate edge direction of each pixel in one array
		}
	}

	/* Trace along all the edges in the image */
	for (row = 1; row < H - 1; row++) {
		for (col = 1; col < W - 1; col++) {
			edgeEnd = false;
			if (gradient[row][col] > upperThreshold) {		// Check to see if current pixel has a high enough gradient strength to be part of an edge
				/* Switch based on current pixel's edge direction */
				switch (edgeDir[row][col]){		
					case 0:
						findEdge(0, 1, row, col, 0, lowerThreshold);
						break;
					case 45:
						findEdge(1, 1, row, col, 45, lowerThreshold);
						break;
					case 90:
						findEdge(1, 0, row, col, 90, lowerThreshold);
						break;
					case 135:
						findEdge(1, -1, row, col, 135, lowerThreshold);
						break;
					default :
						i = (unsigned long)(row*3*W + 3*col);
						*(m_destinationBmp + i) = 
						*(m_destinationBmp + i + 1) = 
						*(m_destinationBmp + i + 2) = 0;
						break;
					}
				}
			else {
				i = (unsigned long)(row*3*W + 3*col);
					*(m_destinationBmp + i) = 
					*(m_destinationBmp + i + 1) = 
					*(m_destinationBmp + i + 2) = 0;
			}	
		}
	}
	
	/* Suppress any pixels not changed by the edge tracing */
	for (row = 0; row < H; row++) {
		for (col = 0; col < W; col++) {	
			// Recall each pixel is composed of 3 bytes
			i = (unsigned long)(row*3*W + 3*col);
			// If a pixel's grayValue is not black or white make it black
			if( ((*(m_destinationBmp + i) != 255) && (*(m_destinationBmp + i) != 0)) || ((*(m_destinationBmp + i + 1) != 255) && (*(m_destinationBmp + i + 1) != 0)) || ((*(m_destinationBmp + i + 2) != 255) && (*(m_destinationBmp + i + 2) != 0)) ) 
				*(m_destinationBmp + i) = 
				*(m_destinationBmp + i + 1) = 
				*(m_destinationBmp + i + 2) = 0; // Make pixel black
		}
	}

	/* Non-maximum Suppression */
	for (row = 1; row < H - 1; row++) {
		for (col = 1; col < W - 1; col++) {
			i = (unsigned long)(row*3*W + 3*col);
			if (*(m_destinationBmp + i) == 255) {		// Check to see if current pixel is an edge
				/* Switch based on current pixel's edge direction */
				switch (edgeDir[row][col]) {		
					case 0:
						suppressNonMax( 1, 0, row, col, 0, lowerThreshold);
						break;
					case 45:
						suppressNonMax( 1, -1, row, col, 45, lowerThreshold);
						break;
					case 90:
						suppressNonMax( 0, 1, row, col, 90, lowerThreshold);
						break;
					case 135:
						suppressNonMax( 1, 1, row, col, 135, lowerThreshold);
						break;
					default :
						break;
				}
			}	
		}
	}
	
}

void CTripodDlg::findEdge(int rowShift, int colShift, int row, int col, int dir, int lowerThreshold)
{
	int W = 320;
	int H = 240;
	int newRow;
	int newCol;
	unsigned long i;
	bool edgeEnd = false;

	/* Find the row and column values for the next possible pixel on the edge */
	if (colShift < 0) {
		if (col > 0)
			newCol = col + colShift;
		else
			edgeEnd = true;
	} else if (col < W - 1) {
		newCol = col + colShift;
	} else
		edgeEnd = true;		// If the next pixel would be off image, don't do the while loop
	if (rowShift < 0) {
		if (row > 0)
			newRow = row + rowShift;
		else
			edgeEnd = true;
	} else if (row < H - 1) {
		newRow = row + rowShift;
	} else
		edgeEnd = true;	
		
	/* Determine edge directions and gradient strengths */
	while ( (edgeDir[newRow][newCol]==dir) && !edgeEnd && (gradient[newRow][newCol] > lowerThreshold) ) {
		/* Set the new pixel as white to show it is an edge */
		i = (unsigned long)(newRow*3*W + 3*newCol);
		*(m_destinationBmp + i) =
		*(m_destinationBmp + i + 1) =
		*(m_destinationBmp + i + 2) = 255;
		if (colShift < 0) {
			if (newCol > 0)
				newCol = newCol + colShift;
			else
				edgeEnd = true;	
		} else if (newCol < W - 1) {
			newCol = newCol + colShift;
		} else
			edgeEnd = true;	
		if (rowShift < 0) {
			if (newRow > 0)
				newRow = newRow + rowShift;
			else
				edgeEnd = true;
		} else if (newRow < H - 1) {
			newRow = newRow + rowShift;
		} else
			edgeEnd = true;	
	}	
}

void CTripodDlg::suppressNonMax(int rowShift, int colShift, int row, int col, int dir, int lowerThreshold)
{
	int W = 320;
	int H = 240;
	int newRow = 0;
	int newCol = 0;
	unsigned long i;
	bool edgeEnd = false;
	float nonMax[320][3];			// Temporarily stores gradients and positions of pixels in parallel edges
	int pixelCount = 0;					// Stores the number of pixels in parallel edges
	int count;						// A for loop counter
	int max[3];						// Maximum point in a wide edge
	
	if (colShift < 0) {
		if (col > 0)
			newCol = col + colShift;
		else
			edgeEnd = true;
	} else if (col < W - 1) {
		newCol = col + colShift;
	} else
		edgeEnd = true;		// If the next pixel would be off image, don't do the while loop
	if (rowShift < 0) {
		if (row > 0)
			newRow = row + rowShift;
		else
			edgeEnd = true;
	} else if (row < H - 1) {
		newRow = row + rowShift;
	} else
		edgeEnd = true;	
	i = (unsigned long)(newRow*3*W + 3*newCol);
	/* Find non-maximum parallel edges tracing up */
	while ((edgeDir[newRow][newCol] == dir) && !edgeEnd && (*(m_destinationBmp + i) == 255)) {
		if (colShift < 0) {
			if (newCol > 0)
				newCol = newCol + colShift;
			else
				edgeEnd = true;	
		} else if (newCol < W - 1) {
			newCol = newCol + colShift;
		} else
			edgeEnd = true;	
		if (rowShift < 0) {
			if (newRow > 0)
				newRow = newRow + rowShift;
			else
				edgeEnd = true;
		} else if (newRow < H - 1) {
			newRow = newRow + rowShift;
		} else
			edgeEnd = true;	
		nonMax[pixelCount][0] = newRow;
		nonMax[pixelCount][1] = newCol;
		nonMax[pixelCount][2] = gradient[newRow][newCol];
		pixelCount++;
		i = (unsigned long)(newRow*3*W + 3*newCol);
	}

	/* Find non-maximum parallel edges tracing down */
	edgeEnd = false;
	colShift *= -1;
	rowShift *= -1;
	if (colShift < 0) {
		if (col > 0)
			newCol = col + colShift;
		else
			edgeEnd = true;
	} else if (col < W - 1) {
		newCol = col + colShift;
	} else
		edgeEnd = true;	
	if (rowShift < 0) {
		if (row > 0)
			newRow = row + rowShift;
		else
			edgeEnd = true;
	} else if (row < H - 1) {
		newRow = row + rowShift;
	} else
		edgeEnd = true;	
	i = (unsigned long)(newRow*3*W + 3*newCol);
	while ((edgeDir[newRow][newCol] == dir) && !edgeEnd && (*(m_destinationBmp + i) == 255)) {
		if (colShift < 0) {
			if (newCol > 0)
				newCol = newCol + colShift;
			else
				edgeEnd = true;	
		} else if (newCol < W - 1) {
			newCol = newCol + colShift;
		} else
			edgeEnd = true;	
		if (rowShift < 0) {
			if (newRow > 0)
				newRow = newRow + rowShift;
			else
				edgeEnd = true;
		} else if (newRow < H - 1) {
			newRow = newRow + rowShift;
		} else
			edgeEnd = true;	
		nonMax[pixelCount][0] = newRow;
		nonMax[pixelCount][1] = newCol;
		nonMax[pixelCount][2] = gradient[newRow][newCol];
		pixelCount++;
		i = (unsigned long)(newRow*3*W + 3*newCol);
	}

	/* Suppress non-maximum edges */
	max[0] = 0;
	max[1] = 0;
	max[2] = 0;
	for (count = 0; count < pixelCount; count++) {
		if (nonMax[count][2] > max[2]) {
			max[0] = nonMax[count][0];
			max[1] = nonMax[count][1];
			max[2] = nonMax[count][2];
		}
	}
	for (count = 0; count < pixelCount; count++) {
		i = (unsigned long)(nonMax[count][0]*3*W + 3*nonMax[count][1]);
		*(m_destinationBmp + i) = 
		*(m_destinationBmp + i + 1) = 
		*(m_destinationBmp + i + 2) = 0;
	}
}

الگوریتم Canny در سی پلاس پلاس قسمت ۱
الگوریتم Canny در سی پلاس پلاس قسمت ۲
الگوریتم Canny در سی پلاس پلاس قسمت ۳
الگوریتم Canny در سی پلاس پلاس قسمت ۴

عامل‌ های هوشمند

عامل هوشمند یا کارگزار هوشمند (به انگلیسی: Intelligent agent)، در مبحث هوش مصنوعی به موجودی گفته می‌شود که در یک محیط، اطراف خود را شناخته و اعمالی را روی محیط انجام می‌دهد و کلیه اعمالی که انجام می‌دهد در جهت نیل به اهدافش می‌باشد. این سیستم‌ها امکان یادگیری دارند و سپس از دانش اکتسابی خود برای انجام اهداف خود استفاده می‌کنند. این عامل ها ممکن است بسیار ساده یا پیچیده باشند. بطور مثال ماشین‌های کوکی که با برخورد به دیوار، راه خود را عوض می‌کنند نمونه‌ای از عامل های هوشمند هستند.

تعریف عامل:

عامل هر چیزی است که می‌تواند محیطش را از طریق حسگرها درک کند و بر روی محیطش از طریق عمل‌کننده‌ها تأثیر گذارد. یک عامل انسانی دارای حس‌کننده‌هایی از قبیل چشم، گوش، لامسه و امثال آن می‌باشد. و میتوان از دست، پا، صحبت کردن و اعمال ارادی به عنوان عمل‌کننده‌ها نام برد. ورودی یک عامل نرم‌افزاری میتوانند چندین متغیر باشد که مقدار آن‌ها را عامل میخواند سپس بر اساس مکانیزم تصمیم‌گیری یک تصمیم اخذ می‌کند و عملگرهای آن میتوانند دستورهای مقداردهی چند متغیر دیگر باشد. به عنوان مثال فرض کنید یک عامل قرار است متغیر x را بخواند و توان دوم آن را حساب کند و در y قرار دهد. این عامل x را میخوانند و سپس توان دوم آن را حساب می‌کند و در y قرار می‌دهد.

نحوه کار عامل:

یک عامل چگونه باید بفهمد که بهترین عمل ممکن چیست؟ عمل درست عملی است که باعث شود عامل موفق‌ترین باشد. این امر ما را با مسئله تصمیم‌گیری در مورد چگونگی و زمان ارزیابی کردن موفقیت عامل روبرو میکند. اصطلاح میزان کارایی برای موفقیت عامل تعریف می‌کنیم. گفتنی است که میزان کارایی برای عاملهای مختلف متفاوت می‌باشد. نکته خیلی مهم این است که میزان کارایی یک عامل باید بر اساس محیط تعریف شود. به عنوان مثال فرض کنیم که یک عامل کارش جمع‌آوری آشغال‌ها از یک اتاق و دفع آن‌ها باشد، اگر عامل میزان کارایی اش بر حسب اشغال جمع شده تعریف شود آنگاه عامل می‌تواند آشغال‌ها را جمع کند و سپس دوباره در اباق بریزد تا بهترین کارایی را کسب کند. اما اگر میزان کارایی بر اساس محیط تعریف شود آنگاه عامل یک بار کار تمیز کردن را انجام می‌دهد. پس یک عامل محیطش را حس می‌کند و سپس بر اساس آن تصمیم میگیرد. این مستلزم آن است که با عامل خود مختار و انواع محیط‌ها آشنا شویم.

عامل خود مختار

به عاملی خود مختار میگوییم که تصمیم‌گیری اش بر اساس ادراکاتش باشد نه بر اساس دانش تزریق شده به آن. در واقع هر چه دانش قبلی یک عامل بیشتر باشد از خودمختاری آن کاهش مییابد و هر چه دانش قبلی کمتر باشد و مکانیزم یادگیری عامل قوی تر باشد، آن عامل خود مختار تر است.

انواع محیط ها

قابل مشاهده و غیر قابل مشاهده: اگر عامل به کل محیط دسترسی داشته باشد و بتواند آن را حس کند می‌گوییم محیط قابل مشاهده است، در غیر این صورت آن را غیر قابل مشاهده یا تا حدودی قابل مشاهده می نامیم. مثلاً در محیط عامل شطرنج باز کل محیط قابل مشاهده است. طبیعی است که یک مسئله با محیط قابل مشاهده برای طراحان عاملها مطلوب تر می‌باشد.

قطعی و غیر قطعی: اگر بتوان حالت بعدی را از حالت فعلی، عمل فعلی و کنشهایی که تاکنون انجام شده به دست بیاوریم، میگوییم که محیط قطعی است. بازهم میتوان از بازی شطرنج برای محیط قطعی مثال زد، چون با محیط فعلی و حرکت فعلی می‌شود حالت بعدی را به صورت دقیق یافت. قابل توجه است که بدانیم اگر محیط کاملاً قابل مشاهده نباشد آنگاه قطعی نخواهد بود. اما اگر با یک حرکت ممکن باشد به چندین حالت برویم محیط غیر قطعی است.

دوره‌ای یا غیر دوره ای: اگر هر دوره از دوره‌های دیگر مستقل باشد میگوییم محیط دوره‌ای است. مانند دوره‌های مختلف در مذاکرات چند عامله. محیط‌های غیر دوره‌ای به عنوان محیط‌های ترتیبی نیز یاد می‌شوند.

ایستا و پویا: اگر محیط در زمان تصمیم‌گیری عامل تغییر کند آنگاه محیط پویا است. و در غیر آن صورت محیط ایستا است. اما اگر محیط در زمان تصمیم‌گیری ثابت بماند اما زمان، کارایی عامل را کاهش دهد، محیط را نیمه پویا مینامیم.

گسسته و پیوسته: اگر مشاهدات و کنش‌های مختلف مجزا و تعریف شده باشند، محیط پیوسته است. مانند شطرنج. اما یک عامل بهینه ساز معادلات در محیط پیوسته کار میکند.

ساختار عامل های هوشمند

تا کنون در مورد محیط‌ها و کلیات مربوط به عاملها صحبت کردیم. حال نوبت بررسی ساختارهای مختلف عاملها است. مهم‌ترین وظیفه ما طراحی برنامه عامل است. برنامه عامل تابعی است که ادراکات را به یک عمل‌ها نگاشت میکند. معماری عامل ساختاری است که برنامه محاسباتی عامل تر روی آن پیاده‌سازی می‌شود. پس در کل معماری از طریق حسگرها ورودی را میگیرد، توسط برنامه تصمیم می‌گیرد و در نهایت با عملگرها عمل می‌کند و روی محیط تأثیر میگذارد.

عامل های واکنشی ساده

در این گونه عاملها سعی بر این است که به ازای هر حالت ممکن در دنیا یک عمل مناسب انجام دهیم. برای این کار می‌توانیم حالت محیط را در ستون اول یک جدول قرار دهیم و عمل مربوط به آن را در ستون دوم نکه داری کنیم. به چنین عاملی وابسته به جدول نیز می‌گویند. و به این جدول، جدول حالت-قانون نیز میگویند. در همان ابتدا مشخص می‌شود که برای طراحی چنین عاملی محیط باید کاملاً قابل مشاهده باشد. مهمترین مشکلی که در راه طراحی این عامل به وجود می‌آید این است در مسائل دنیای واقعی پر کردن چنین جدولی غیرممکن است. مثلاً برای شطرنج ۳۵۱۰۰ حالت مختلف برای محیط وجود دارد. حال اگر فرض کنیم توانایی پر کردن جدول را داشته باشیم، آنگاه اولا حافظه لازم را نخواهیم داشت و ثانیا جستجو جهت یافتن جواب زمان زیادی خواهد گرفت. ساختار این عامل در شکل زیر دیده می‌شود.

منبع


 به هر موجودیت که از طریق گیرنده ها و سنسورهایش محیط اطراف خود را مشاهده نموده و از طریق اندام های خود در آن محیط عمل مینماید (بر روی آن محیط تاثیر میگذارد) عامل (Agent) میگویند. برای مثال انسان به عنوان یک عامل از گوش ها، چشم ها و دیگر اندام های خود جهت دریافت اطلاعات از محیط استفاده کرده و از طریق دست و پا و زبان  برای عمل نمودن در همان محیط استفاده مینماید. به همین ترتیب یک عامل رباتیک نیز از سنسورهای خود به عنوان دریافت کننده و از بازو های خود به عنوان عمل کننده، در محیط اطراف استفاده مینماید.

ساختار یک عامل

هر موجودیت که نسبت به مشاهدات خود از محیط اطراف واکنش نشان میدهد را عامل مینامند.

عامل هوشمند (Rational Agent)

 عاملی است که در محیط خود کار صحیح را انجام میدهد. قطعا انجام کار صحیح بهتر از انجام کار اشتباه است! اما سوالی که پیش می آید این است که براستی تعریف کار صحیح چیست؟

در حال حاضر میتوان بطور تقریبی اینگونه به این سوال پاسخ داد که کار صحیح کاریست که باعث کسب موفقیت توسط عامل هوشمند میشود. با این حال توجه داشته باشید که همین تعریف تقریبی هم ما را با دو سوال چگونه و چه زمان در ابهام باقی میگذار. اگر اینگونه تفسیر نمایید که چگونه به موفقیت برسیم؟ و چه زمان به موفقیت رسیده ایم؟ این ابهام برای شما ملموس تر خواهد شد.

برای رفع ابهام در مورد موفقیت عامل هوشمند، مفهومی با عنوان اندازه گیری عملکرد یا performance measure تعریف میشود. اندازه گیری عملکرد در واقع مجموعه ای از قوانین هستند که ما به عنوان طراحان یا شاهدان عملکرد عامل هشومند، وضع مینماییم تا بتوانیم عامل هوشمند خود را مورد سنجش قرار دهیم.

فرض کنید که ما بعنوان سازنده، عامل هوشمندی ساخته ایم که در واقع یک ربات نظافت گر خودکار میباشد. برای مثال یک معیار اندازه گیری عملکرد برای این ربات میتواند میزان جمع آوری گرد غبار در طول مدت یک شیفت کاری باشد. یا مثلا برای توانمند تر ساختن ربات میتوان مقدار انرژی الکتریکی مصرف شده و سر و صدای تولید شده توسط آن را به مجموعه معیار های اندازه گیری اضافه نمود. برای مثال میتوانیم بگوئیم اگر ربات ما در طول یک ساعت حداقل  x لیتر غبار جمع آوری و کمتر از y  انرژی مصرف نمود، کار خود به درستی انجام داده است.

تفاوت ِعقلانیت و علم لایتناهی

نکته ای که از اهمیت بسیاری برخوردا است، تمیز دادن بین دو مفهوم عقلانیت و علم لایتناهی میباشد. یک عامل با علم لایتناهی نتیجه خروجی تمامی اعمال خود را میداند که بسیار هم عالی و خوب است! اما در دنیای واقعی عملا همچین عاملی وجود نخواهد داشت! به مثالی که در ادامه آماده توجه فرمایید.

شما در یک منطقه دورافتاده و بی آب و علف هستید که ناگهان یک دختر بسیار زیبا را در طرف دیگر خیابان مشاهده مینمایید. هیچ ماشینی در حال تردد در خیابان نیست و شما نیز مجرد و تنها هستید! بنظر میرسد که با توجه به شرایط اطراف عاقلانه ترین کار این است که از عرض خیابان رد شده، به سراغ دختر زیبا بروید و او را به صرف یک نوشیدنی دعوت نمایید. در همین لحظه در ارتفاع ۳۳۰۰۰ پایی یک هواپیمای بار بری در حال عبور از منطقه شماست که ناگهان درب هواپیما کنده شده و به سمت زمین پرتاب میشود و با شما برخورد میکند. نتیجتا قبل از اینکه شما  به طرف دیگر برسید مانند گوجه فرنگی در کف خیابان له خواهید شد!

سوالی که پیش می آید این است که تصمیم شما برای عبور از خیابان یک تصمیم اشتباه و غیر هوشمندانه بوده است؟ آیا از عمل شما به عنوان یک عمل غیر عقلانی یاد خواهد شد؟

اینجاست که باید بگوییم که در واقع، عقلانیت، با موفقیتی که ناشی از مجموعه مشاهدات عامل است تعریف میشود. (در مثال بالا، شخص عبور کننده توانایی دیدن درب هواپیما را نداشته برای همین تصمیم به عبور از خیابان گرفته است) به زبان دیگر ما نمیتوانیم یک عامل را که به خاطر عدم توانایی در مشاهده تمام محیط اطراف، شکست خورده است، سرزنش نماییم. نتیجه این بحث میتواند این باشد که در شرایط واقعی نمیتوان همیشه از عامل هوشمند خود انتظار داشت که کار صحیح را انجام دهد.

بطور خلاصه میتوان گفت که هوشمند بودن یک موجودیت به چهار عامل بستگی دارد.

اندازه گیری عملکرد که درجات موفقیت را مشخص مینماید.
هر آن چیز که عامل  اخیرا مشاهده و یا در یافت نموده است.توالی مشاهدات.
هر آنچه که عامل از مورد محیط خود میداند.
مجموعه عمل هایی که عامل میتواند در محیط انجام دهد.

عامل هوشمند ایده آل

مجموعه تعاریف و مطالب فوق، ما را به سمت تعرف مفوهم عامل هوشمند ایده آل هدایت مینماید. عامل هوشمند ایده آل، عاملی است که برای هر مجموعه از توالی مشاهدات، با توجه به شواهد موجود در محیط و دانش پیش ساخته خود، آن عملِ مورد انتظاری را انجام دهد که باعث افزایش اندازه عملکرد و یا همان performance measure بشود.

توجه داشته باشید در نگاه اول ممکن است بنظر برسد که این تعریف باعث ساخت عامل های هوشمندانه ای خواهد شد که خود را در شرایطی که به انجام عمل غیر عقلانی ختم میشود قرار خواهد داد. در واقع ممکن است عامل هوشمند به خیال خود در حال افزایش اندازه عملکرد باشد در حالی که برای این افزایش آن از بسیاری از مسائل چشم پوشی نماید.

برای مثال اگر عامل برای عبور از خیابان به طرفین نگاه نکند (در حالی که هدفش عبور از خیابان است) توالی مشاهداتش او را از خطر تصادف با یک کامیون که با سرعت به طرف او می آید آگاه نخواهد کرد. در نتیجه طبق تعریف، عبور از خیابان برای عامل، عملی هوشمندانه به حساب آمده و او به راه خود ادامه خواهد. در صورتی که چنین تفسیری به دو دلیل اشتباه میباشد. اول آنکه بطور کلی ریسک عبور از خیابان بدون نگاه بطرفین بسیار بالا میباشد. دوم آنکه در صورت نتیجه گیری صحیح از تعریف عامل هوشمند ایده آل، چنین عاملی برای افزایش اندازه عملکرد خود باید به طرفین نگاه کند.

نگاشت ایده آل، از توالی مشاهدات به عمل

با توجه به مطالب فوق میتوان نتیجه گیری کرد از آنجا که رفتار عامل ما بر اساس توالی مشاهداتش میباشد، میتوان برای عامل ها با رسم جدول، مشاهده و عمل را به یکدیگر نگاشت نمود. با این حال باید توجه داشت  که برای تمامی عامل ها چنین جدولی بسیار طولانی و یا دارای بی نهایت سطر میباشد مگر آنکه محدودیتی در طول مشاهدات، از طرف طراح برای آن جدول تعیین شده باشد.

به چنین جدولی، جدول “نگاشت مشاهدات به عمل” میگویند. در اصول میتوان با تست اینکه چه عملی برای مشاهدات مناسب است این جدول را تکمیل نمود. باید توجه نمود که اگر میتوانیم از روی نگاشت، عامل هوشمند داشته باشیم از روی نگاشت ایده آل نیز میتوان به عامل هوشمند ایده آل رسید.

البته معنی توضیحات بالا این نیست که ما باید همیشه و بطور ضمنی و دقیق جدولی تهیه نماییم. در واقع در بسیاری از موارد به جای یک جدول ضمنی میتوان از یک تعریف مشخص که خود تولید کننده سطرهای جدول میباشد استفاده نماییم. برای مثال فرض کنید که ما یک عامل هوشمند بسیار ساده داریم که قرار است توان اعداد را محاسبه نمایید. برای طراحی چنین عاملی احتیاجی به ایجاد یک جدول واقعی نخواهیم داشت و عملا میتوان سطرهای این جدول را با فرمول توان یک عدد به عدد دیگر محاسبه نمود.