تعریف رسمی

زنجیره مارکوف زمان گسسته

یک زنجیره مارکوف دنباله‌ای از متغیرهای تصادفی X۱،X۲،X۳،… است که دارای خاصیت مارکوف هستند یعنی:

 

 

مقادیر ممکن برای Xi مجموعه قابل شمارشی را می‌سازند که فضای حالت نام دارد.

زنجیره مارکوف اغلب توسط دنباله‌ای از گراف‌های جهت‌دار نشان داده می‌شود، که در آن یال‌های گراف n توسط احتمال از رفتن از یک حالت در زمان n به حالت‌های دیگر در زمان n + 1 برچسب گذاری شده‌است. همان اطلاعات در ماتریس انتقال از زمان n به زمان n + 1 درج می‌شود که در آن عنصر سطر i و ستون j، احتمال تغییر وضعیت از حالت i-1 به حالت j-1 است. مجموع عناصر هر سطر برابر یک است اما الزاماً مجموع عناصر هر ستون یک نمی‌شود. در نظریه ماتریس‌ها اگر تمام عناصر ماتریسی نامنفی و مجموع عناصر هر سطر یک باشد، در این صورت آن ماتریس را ماتریس مارکوف می‌گویند. علت آن است که برای چنین ماتریس‌هایی می‌توانیم یک فضای نمونه بسازیم به طوری که عناصر ماتریس، احتمال‌های تغیر وضعیت تمام پیشامدهای فضای نمونه باشند و سپس یک زنجیر مارکوف برای فضای نمونه تعریف کنیم. با این حال، زنجیره‌های مارکوف اغلب به صورت یکنواخت در زمان فرض می‌شوند در این صورت گراف و ماتریس مستقل از n هستند و به این ترتیب به شکل یک توالی ارائه نمی‌شوند.

تعریف دیگری به شرح ذیل عنوان شده‌است: هرگاه فرایند تعمیرات برای سیستم‌های تعمیر پذیر لحظه‌ای یا به عبارتی با زمان کوتاه و قابل اغماض در مقایسه با زمان عملکرد سیستم را نتوان مفروض داشت، روش‌هایی مانند زنجیرهٔ پیوسته مارکوف برای تحلیل سیستم به کار گرفته می‌شود. روش مارکوف برای مدلسازی رفتار اتفاقی به صورت پیوسته و ناپیوسته نسبت به زمان یا در فضای حالت تقسیم‌بندی می‌گردد. این تغییرات پیوسته یا ناپیوسته اتفاقی را اصطلاحاً فرایندهای اتفاقی می‌نامند. در حقیقت به‌کارگیری روش مارکوف نیازمند این امر است که سیستم نماینگر فقدان حافظه باشد. یعنی حالت و وضعیت آیندهٔ سیستم مستقل از وضعیتهای گذشته آن بوده و تنها به آخرین جزء آن وابسته باشد.

زنجیره‌های مارکوف یکنواخت در زمان

زنجیره‌های مارکوف یکنواخت در زمان، یا ایستا، زنجیره‌هایی هستند که در آن‌ها:

 

 

که رابطه بالا برای هر n صحیح است. در واقع احتمال انتقال مستقل از n است. چنین زنجیره‌هایی را می‌توان تنها با یک ماتریس احتمال انتقال توصیف کرد. ماتریس احتمال انتقال  مستقل از زمان n است و درایهٔ (i,j) ام آن، یعنی ، بیانگر احتمال انتقال از حالت i به حالت j می‌باشد.

زنجیره مارکوف مرتبه m

زنجیره مارکوف مرتبه m (که در آن m متناهی است) فرایندی است که در آن:

 

 

به عبارت دیگر حالت بعدی به m حالت قبلی وابسته‌است. می‌توان یک {Yn} از {Xn} ساخت به طوری که در فرم کلاسیک خاصیت مارکوف صدق کند؛ که در این صورت Y یک چندتایی مرتب از Xها است یعنی:

زنجیره مارکوف افزاینده

یک زنجیره مارکوف افزاینده مرتبه m با رابطه زیر توصیف می‌شود:

زنجیره مارکوف زمان پیوسته

لامپی را در نظر بگیرید که یا روشن است یا خاموش. اگر لامپ در زمان t روشن باشد X(t) = 1 و اگر خاموش باشد X(t) = 0. در این صورت متغیر تصادفی X زمان گسسته نیست زیرا پس از ورود به حالتی برای یک مدت زمانی که خود نیز متغیری تصادفی است، در آن جا می‌ماند و سپس به حالت دیگری منتقل می‌شود. این قبیل فرایندها را زنجیره مارکوف زمان پیوسته می‌نامیم.

یک زنجیره پیوسته مارکف توسط یک فضای حالت متناهی یا شمارا، یک ماتریس نرخ انتقال Q با ابعادی برابر با فضای حالت است. برای i ≠ j، هر عنصر qij غیر منفی است و نرخ انتقال فرایند را از حالت i به حالت j توصیف می‌کند.

سه تعریف برای فرایندهای مارکوف زمان پیوسته وجود دارد:

تعریف حدی

اگر متغیر تصادفی وضعیت زنجیره درلحظهٔ t با Xt نشان دهیم و فرض کنیم زنجیره در زمان t در حالت i قرار دارد. با توجه به این که Xt = i و Xt+h به مقادیر گذشته وابسته نیستند، هنگامی که h → ۰ برای هر j و t داریم:

 

که در این معادله دلتای کرونکر است و همچنین از نماد o کوچک استفاده شده‌است. qij می‌تواند معیاری از سرعت تغییر حالت از i به j باشد.

تعریف زنجیره پرش یا زمان نگهداری

اگر متغیر تصادفی Yn نشان‌دهندهٔ nامین پرش (تغییر حالت) در زنجیره باشد و متغیرهای  زمان ایستایی در هر حالت را نشان دهند، هر کدام از Siها از توزیعی نمایی با پارامترپیروی می‌کنند.

تعریف احتمال انتقال

برای هر مقدار و زمان‌های با حالت‌های  داریم:

 

 

که در آن pij در دو مجموعه معادلات دیفرانسیلی به نام‌های معادلات پیشرو کولموگروف و معادلات پسرو کولموگروف en:Kolmogorov equations صدق می‌کنند.

 

زنجیره مارکوف (Markov Approach modeling) قسمت 1
زنجیره مارکوف (Markov Approach modeling) قسمت 2
زنجیره مارکوف (Markov Approach modeling) قسمت 3
زنجیره مارکوف (Markov Approach modeling) قسمت 4
زنجیره مارکوف (Markov Approach modeling) قسمت 5

زنجیره مارکوف مدلی تصادفی برای توصیف یک توالی از رویدادهای احتمالی است که در آن احتمال هر رویداد فقط به حالت رویداد قبلی بستگی دارد. زنجیره مارکوف که به افتخار آندری مارکوفریاضی‌دان اهل روسیه این گونه نام‌گذاری شده یک سیستم ریاضی است که در آن انتقال میان حالات شمارا، از حالتی به حالت دیگر صورت می‌گیرد. زنجیره مارکوف یک فرایند تصادفی بدون حافظه‌است بدین معنی که توزیع احتمال شرطی حالت بعد تنها به حالت فعلی بستگی دارد و مستقل از گذشتهٔ آن است. این نوع بدون حافظه بودن خاصیت مارکوف نام دارد. زنجیره مارکوف درمدل‌سازی دنیای واقعی کاربردهای زیادی دارد.

نمونه‌ای از زنجیره مارکوف با سه حالت

نمونه‌ای از زنجیره مارکوف با سه حالت

معرفی

زنجیره مارکوف (Markov Approach modeling) یک فرایند تصادفی گسسته در زمان با خاصیت مارکوف است. اگرچه برخی از نویسندگان در مورد فرایندهای پیوسته در زمان هم از اصطلاح زنجیره مارکوف استفاده می‌کنند. یک فرایند تصادفی گسسته در زمان شامل سیستمی است که در هر مرحله در حالت خاص و مشخصی قرار دارد و به صورت تصادفی در هر مرحله تغییر حالت می‌دهد. مراحل اغلب به عنوان لحظه‌های زمانی در نظر گرفته می‌شوند ولی می‌توان آن‌ها را فاصله فیزیکی یا هر متغیر گسسته دیگری در نظر گرفت. خاصیت مارکوف بیان می‌کند که توزیع احتمال شرطی برای سیستم در مرحله بعد فقط به حالت فعلی سیستم بستگی دارد و به حالت‌های قبل بستگی ندارد. چون سیستم به صورت تصادفی تغییر می‌کند به‌طور کلی پیش‌بینی حالت زنجیره مارکوف در نقطه‌ای خاص در آینده غیرممکن است. با این حال ویژگی‌های آماری سیستم در آینده قابل پیش‌بینی است که در بسیاری از کاربردها همین ویژگی‌های آماری بسیار حائز اهمیت است.

تغییرات حالات سیستم انتقال نام دارند و احتمال‌هایی که به این تغییر حالت‌ها نسبت داده می‌شوند احتمال انتقال نام دارند. یک فرایند مارکوف با یک فضای حالت شمارا، یک ماتریس گذار برای توصیف احتمال‌های هر انتقال و یک حالت اولیه (یا توزیع اولیه) در فضای حالت مشخص می‌شود. اگر فضای حالت متناهی باشد زنجیر مارکوف را زنجیر مارکوف متناهی یا زنجیر مارکوف با فضای حالت متناهی می‌گوییم و اگر نامتناهی باشد زنجیر مارکوف را زنجیر مارکوف نامتناهی یا زنجیر مارکوف با فضای حالت نامتناهی می‌گوییم. طبق قرار داد، فرض می‌کنیم همیشه حالت بعدی وجود دارد و در نتیجه فرایند تا ابد ادامه پیدا می‌کند.

یکی از معروف‌ترین زنجیره‌های مارکوف که موسوم به «پیاده‌روی می خواره» است یک پیاده‌روی تصادفی است که در آن در هر قدم موقعیت با احتمال برابر به اندازه ۱+ یا ۱- تغییر می‌کند. در هر مکان دو انتقال ممکن وجود دارد یکی به عدد صحیح بعدی(۱+) و یکی به عدد صحیح قبلی(۱-). احتمال هر انتقال فقط به حالت کنونی بستگی دارد. برای مثال احتمال انتقال از ۵ به ۶ برابر با احتمال انتقال از ۵ به ۴ است و هر دوی این احتمالات برابر با ۰٫۵ هستند. این احتمالات مستقل از حالت قبلی (که یا ۴ بوده یا ۶) هستند.

مثالی دیگر عادات غذایی موجودی است که فقط انگور، پنیر و کاهو می‌خورد و عادات غذایی او از قوانین زیر پیروی می‌کند:

  • او فقط یک بار در روز غذا می‌خورد.
  • اگر امروز پنیر بخورد فردا انگور یا کاهو را با احتمال برابر خواهد خورد.
  • اگر امروز انگور بخورد فردا با احتمال ۰٫۱ انگور، با احتمال ۰٫۴ پنیر و با احتمال ۰٫۵ کاهو خواهد خورد.
  • اگر امروز کاهو بخورد فردا با احتمال ۰٫۴ انگور و با احتمال ۰٫۶ پنیر خواهد خورد.

عادات غذایی این موجود را می‌توان با یک زنجیره مارکوف مدل‌سازی کرد به دلیل این که چیزی که فردا می‌خورد (حالت بعدی) تنها به چیزی که امروز خورده‌است (حالت فعلی) بستگی دارد. یکی از ویژگی‌های آماری که می‌توان در مورد این زنجیره محاسبه کرد امید ریاضی درصد روزهایی است که انگور خورده‌است (در یک دوره طولانی).

مثال‌هایی از زنجیره مارکوف

ورشکستگی قمارباز

ورشکستگی قمارباز مسئله‌ای معروف از زنجیره مارکوف است. در این مسئله دو فرد تاس می‌اندازند و هر بار که سکه شیر آمد شخص A یک دلار از B می‌برد و هر بار سکه خط بیاید، شخص B یک دلار از A می‌برد. در ابتدای بازی A مقدار a دلار و B مقدار b دلار دارد. فرض کنید Xi دارایی A پس از i مرحله بازی باشد. یکی از خواص دنباله {Xi} این است که اگر در مرحلهٔ nام مقدار Xi را بدانیم در این صورت سرمایه A از آن مرحله به بعد تنها به Xn و نه به X0, X1, …, Xn-1 وابسته است. یعنی اگر سرمایهٔ A در زمان حال معلوم باشد، سرمایهٔ آیندهٔ او مستقل از پولی است که در هر مرحله از بازی در گذشته برنده شده یا باخته‌است.

فرایند زاد مرگ

اگر صد دانه ذرت در فری قرار دهیم، هر دانه در زمانی مستقل که از توزیع نمایی پی‌روی می‌کند، منفجر می‌شود. این مثالی از زنجیره زمان پیوسته مارکوف است. اگر Xt نشان‌دهنده تعداد دانه‌های ذرتی باشد که تا زمان t منفجر شده‌اند، مسئله را می‌توان به صورت تعداد دانه‌هایی که بعد از t منفجر می‌شوند مطرح نمود. دانستن زمان انفجار دیگر دانه‌ها اهمیتی ندارد و تنها دانستن تعداد دانه‌هایی که تا کنون منفجر شده‌اند کافیست. فرایند شرح داده شده در این‌جا، تقریبی از یک فرایند پواسونی است. در حالت کلی فرایندهای پواسون نیز فرایند مارکوف هستند.

بازی‌های تخته‌ای با تاس

بازی مار و پله یا هر بازی دیگری که حرکات با تاس تعیین می‌شود یک زنجیرهٔ مارکوف هستند. این نوع بازی‌ها در نقطه مقابل بازی‌های کارتی مانند blackjack هستند که کارت‌ها مانند حافظهٔ حرکت قبلی عمل می‌کنند. برای درک این تفاوت‌ها احتمال یک حرکت مشخص را در بازی در نظر بگیرید. در بالا به بازی‌هایی که با تاس بازی می‌شوند اشاره کردیم، تنها چیزی که اهمیت دارد حالت کنونی روی تخته است. حالت بعدی روی تخته به حالت کنونی و چرخش بعدی تاس بستگی دارد و وابسته به اینکه که مهره‌ها چگونه در حالت کنونی قرار گرفته‌اند، نیست. در بازی مانند blackjack، بازیکن می‌تواند با به خاطر سپردن این که کدام کارت‌ها تاکنون نشان داده شده‌اند، برتری کسب کنند؛ بنابراین حالت بعدی بازی مستقل از حالت کنونی نیست.

گام‌های تصادفی متمایل به مرکز

یک حرکت تصادفی روی تعدادی خط را در نظر بگیرید، موقعیت کنونی (که x نامیده می‌نامیم) با احتمالات زیر می‌تواند به +۱ (به راست) یا -۱(به چپ) تغییر کند:

(c یک عدد ثابت بزرگتر از ۰ است)

به عنوان مثال اگر عدد ثابت c برابر ۱ باشد، احتمال حرکت به چپ از موقعیت x=-۲,-۱٬۰٬۱٬۲ به ترتیب برابرست با:.

یک گام تصادفی یک اثر مرکزی دارد به‌طوری‌که با افزایش تضعیف c می‌شود. از آنجایی که احتمالات تنها به وضعیت کنونی بستگی دارد (مقدار x) و وابسته به هیچ‌یک از موقعیت‌های قبلی نیست، این گام تصادفی متمایل به مرکز در تعریف زنجیرهٔ مارکوف صدق می‌کند.

یک مدل آب و هوایی بسیار ساده

نمونه‌ای ساده از یک مدل آب‌وهوایی

نمونه‌ای ساده از یک مدل آب‌وهوایی

احتمال وضعیت آب و هوایی که آب و هوا در طول روز را نشان می‌دهد و هم به صورت بارانی و هم آفتابی مدل می‌شود، توسط یک ماتریس انتقال ارائه داده می‌شود. ماتریس P یک مدل آب و هوایی را نشان می‌دهد به‌طوری‌که روز بعد یک روز آفتابی، با احتمال %۹۰ آفتابی است و روز بعد یک روز بارانی، با احتمال %۵۰ آفتابی است. ستونها و سطرها با آفتابی و بارانی برچسب‌گذاری می‌شوند.

(P)i j احتمال این است که هوای امروز از نوع i باشد و فردا از نوع j باشد.

در نظر داشته باشید که حاصل جمع احتمالات سطر P برابر ۱ است.

حالت ثابت آب و هوا

در این مثال، پیش‌بینی هوا در روزهای دور از هم غلط از آب در می‌آید و متمایل به بردار حالت پایدار است. این بردار احتمال هوای آفتابی و بارانی را در همهٔ روزها نشان می‌دهد و مستقل از آب وهوای اولیه است.

بردار حالت ثابت به این صورت تعریف می‌شود:

 

ولی تنها زمانی به یک مقدار منظم همگراست که p یک ماتریس انتقال منظم باشد (بعبارت دیگر حداکثر یک Pn با ورودیهای غیر صفر وجود دارد)

از آنجایی که q مستقل از شرایط اولیه است، زمانی که بوسیلهٔ P ترجمه می‌شود، بایستی بدون تغییر بماند؛ که این باعث می‌شود که q تبدیل به بردار ویژه شود، به این معنی که از P مشتق شود. برای مثال آب و هوا:

 

 

 

 

 

 

 

 

 

 

 

پس و از آنجایی که این دو بردار احتمال هستند، داریم

حل این دو معادله یک توزیع حالت یکنواخت را می‌دهد:

 

 

در نتیجه %۸۳ روزها آفتابی است.

 

زنجیره مارکوف (Markov Approach modeling) قسمت 1
زنجیره مارکوف (Markov Approach modeling) قسمت 2
زنجیره مارکوف (Markov Approach modeling) قسمت 3
زنجیره مارکوف (Markov Approach modeling) قسمت 4
زنجیره مارکوف (Markov Approach modeling) قسمت 5

مقدمه

منطق فازی شاید بیشترین امید به پیشرفت و شتاب در جامعه هوش مصنوعی در تاریخچه اخیر آن باشد. اما چرا بعضی واژه های نامعلوم به درستی پشت واژه « فازی» قرار می گیرند؟ چرا « فازی » موجب پیشرفت هوش مصنوعی می شود؟
پاسخ این سوالات در مقاله زیر داده شده است.

تاریخچه منطق فازی

Fuzzy logic یک نوع منطق است که روش های متنوع نتیجه گیری در مغزبشر را جایگزین الگوهای ساده تر ماشینی می کند. مفهوم منطق فازی نخستین بار درجهان، توسط دانشمند برجسته ایرانی، پروفسور لطفی زاده، پروفسور دانشگاه برکلی در کالیفرنیا در سال 1965 ارائه گردید و نه تنها به عنوان یک متدولوژی کنترل در حوزه هوش مصنوعی ارائه شد، بلکه راهی برای پردازش داده ها، بر مبنای مجاز کردن عضویت گروهی کوچک، به جای عضویت گروهی دسته ای، ارائه کرد.
به عبارتی پروفسورلطفی زاده اینطور استدلال کرد که مغز بشر به ورودی های اطلاعاتی دقیق نیازی ندارد، بلکه قادراست تا کنترل تطبیقی را به صورت بالایی انجام دهد و این در مورد ماشین نیز صادق است.

منطق فازی چیست؟

ساده ترین تلقی برای تعریف منطق فازی این است که ” منطق فازی جواب یک سوال را به جای تقسیم به دو بخش درست یا نادرست،در اصل به یک محدوده جواب در این بین توسعه داده است”. نمونه معمول آن،وجود رنگ خاکستری در طیف رنگی بین سیاه و سفید است.
اما دایره عمل منطق فازی،از این هم گسترده تر است و می توان با استفاده از قواعد منطق فازی ، جواب های فازی متناسب با پرسش را ارائه نمود. برای مثال، جمله ” زمانی که باران می بارد، شما خیس می شوید” جمله نامفهومی نمی باشد، اما جمله ” زمانی که مقداری باران می بارد، شما مقداری خیس می شوید” می تواند از نظرمقدار بارش باران یا مقدار خیس شدن ، واژه های مختلفی را به جای واژه ” مقداری ” بپذیرد.

واژگانی از قبیل { کم ، زیاد، خیلی کم ، خیلی زیاد، قدری و … } این واژه ها واژه های زبان شناختی نام دارند، یعنی با مقادیر ریاضی نمی توان مقدار مشخصی را به آنها ربط داد.
اینجاست که منطق فازی وارد عمل می شود و با استفاده از مجموعه های فازی،برای متغیر میزان بارش باران، مجموعه ای را به شکل زیر صورت می دهد:
میزان بارش باران= { کم ، زیاد، خیلی کم ، خیلی زیاد، قدری و … }

باید پذیرفت قواعدی نظیر این زیبا هستند، زیرا این ها قواعد بشری هستند. آنها نمونه خوبی هستند برای اینکه ما چطورفکر می کنیم و چطور نتیجه می گیریم. بیایید به سراغ نمونه دیگری برویم:
ازشما سوال می شود” آیا شغلتان را دوست دارید؟” پاسخ شما لزوماً بله یا خیر نمی باشد؛ بنابراین مجموعه جواب به صورت زیر خواهد بود:
جواب= { تا حدی، نه خیلی، تقریباً، اصلاً ، کم و بیش، خیلی و… }
به هر یک از این مقادیر،مقداری به عنوان ” درجه عضویت” نسبت داده می شود، بدین معنا که مقدار مربوطه تا چه حد در این مجموعه عضو می باشد.

مجموعه های فازی و زبان طبیعی

لازم به ذکر است، در مجموعه های قطعی، یک شیء قطعاً ، یا عضو مجموعه، است یا نیست:

اگر xعضو مجموعه A باشد
اگر X عضو مجموعه A نباشد

اما در مجموعه های فازی، یک شیء می تواند تا حدودی به یک مجموعه متعلق باشد:

که در این حالت تابع عضویت، یک عدد حقیقی است:

بدین معنا که شیء مورد نظر به طور نسبی در یک مجموعه وجود دارد. همچنین مقدار جزئی تابع عضویت، درجه عضویت نامیده می شود.
از سوی دیگر در نظر داشته باشید: مفاهیم ومجموعه های فازی ،عموماً در زبان طبیعی بکار می روند نظیر:
” جان قد بلند است.”
” هوا گرم است.”

کلمات مشخص شده، به اسامی مقداری و مجموعه های فازی اشاره دارند. به عبارتی دیگر گزاره فازی که شامل لغاتی نظیر ” بلند” و ” گرم ” است، نشان دهنده مجموعه فازی مربوطه است. برای روشن شدن مفهوم ، مجموعه فازی بلند می تواند از تابع عضویت زیر بهره بگیرد:

پایین

قدری

تقریباً

متوسط

کم

بین

بالا

زیاد

به مقدار زیاد

خیلی

بیشتر

اصلاً

بیشترین

کم و بیش

در حدود

دراین تئوری، عضویت اعضای مجموعه از طریق تابع U ( X) مشخص می شود که X نمایانگر یک عضو مشخص و U تابعی فازی است که درجه عضویت X در مجموعه مربوطه را تعیین می کند و مقدار آن بین صفر و یک است:

همچنین به عنوان یک مجموعه متناهی از عناصر، برای عبارت بلند قد می توان زیر مجموعه فازی ذیل را تعریف کرد:
{ ( 8،1 )، ( 1، 705 )، ( 1، 7 )، (875،65 )، ( 05، 6 )،( 0125، 55 )،(0 ، 5 )}= بلند قد
در این مجموعه فازی، علامت “، ” درجه عضویت را از اعداد مربوطه به قد افراد جدا می سازد.

متغیرهای زبانی

” متغیرهای زبانی، متغیرهایی هستند که مقادیرشان اعداد نیستند،بلکه لغات یا جملات یک زبان طبیعی یا ساختگی هستند.”
به طورکلی، متغیرها به 2 دسته تقسیم می شوند:
زبانی: مانند کلمات و عبارات مربوطه به یک زبان طبیعی می باشد.
عددی: که متغیرها دارای مقادیرعددی هستند.

یک متغیر زبانی در واقع، یک عبارت زبان طبیعی است که به یک مقدار کمیت خاص اشاره دارد و اصطلاحاً مانند مترجم عمل می کند و به کمک تابع عضویت ،نشان داده می شود. مانند واژه ” سرد” در جمله ” هوا سرد است”. در اینجا سردی خود متغیری است برای دمای هوا که می تواند مقادیر مختلفی به خود اختصاص دهد و در واقع یک تابع عضویت برای آن تعریف می شود.

درعین حال متغیرهای زبانی می توانند از الحاق تشکیل شوند که هر کدام از uiها، عباتی تجزیه ناپذیر است. مانند ” تا حدی سرد “، که در مجموع به 4 دسته زیر تقسیم می شود:
عبارات اصلی: که به عنوان برچسب هایی برای مجموعه های فازی در نظر گرفته می شوند و مانند ” سرد” در عبارات بالا، یا عباراتی از قبیل : کوتاه، بلند و … که هر کدام تابع عضویت مخصوص خود را دارند.

حروف ربط: مانند و، یا…
پیراینده: که روی عبارات اولیه اعمال شده و اثر تشدید یا تضعیف در مفهوم آن عبارت را به همراه دارد. مانند تا حدی، اندکی ، بسیار و …
حروف نشانه: مانند پرانتز و …
بنابراین از مجموعه های فازی و متغیرهای زبانی، می توان برای کمیت بخشیدن به مفاهیم زبان طبیعی استفاده کرد.
چند متغیر زبانی و مقادیر نوعی که ممکن است به آنها اختصاص یابد:

متغیر زبانی

متغیر قابل پذیرش

ارتفاع قد
تعداد
مراحل زندگی
رنگ
روشنی
دسر

کوتوله، کوتاه، متوسط، بلند، خیلی بلند
تقریباً، هیچ، چند تا، کمی ، تعداد زیاد،
نوزاد، نوپا، کودک، نوجوان، بالغ
قرمز، آبی، سبز، زرد، نارنجی
تاریک، تیره، معمولی، روشن، سیر
کلوچه، کیک ، بستنی

اما چگونه منطق فازی به کار گرفته می شود؟

منطق فازی معمولاً از قوانین ” اگر و آنگاه” ( IF/THEN) استفاده می کند، اما این بررسی ،به صورت بررسی مقادیر خشک منطق کلاسیک نمی باشد، بلکه این بررسی توسط متغیرهای معنایی صورت می گیرد.این قوانین معمولاً به شکل زیر بیان می شود:
اگر( متغیر ) ( حالت ) است، آنگاه ( عملکرد ).

برای مثال ،یک دستگاه تنظیم کننده درجه حرارت را در نظر بگیرید که قانون منطق فازی را می توان اینگونه برایش تعریف کرد:
● اگر ( درجه حرارات) ( بسیار سرد) است، آنگاه ( فن را متوقف کن ).
● اگر درجه حرارت سرد است، آنگاه سرعت فن را کم کن.
● اگر درجه حرارت متعادل است، آنگاه همین سرعت فن را حفظ کن.
به طورکلی روش کار منطق فازی را می توان به شکل زیر نشان داد:

منطق کلاسیک

کاربرد هوش مصنوعی

هدف هوش مصنوعی، نزدیک نمودن رفتار و پاسخ یک سیستم کامپیوتری به الگوهایی است که انسان بر اساس آن ها رفتار می کندو پاسخ می دهد. در حقیقت گاه سیستم های طراحی می شوند که قدرت تجزیه و تحلیل آنها از انسان بیشتر است، ولی همچنان از الگوی ما استفاده می کنند. بر همین مبنا، هوش مصنوعی، با سیستم فازی یا سیستمی که انسان بر طبق آن تصمیم می گیرد،رابطه تنگاتنگی دارد.

قاعده Soft Computing

این قاعده کلیدی، عبارت است از بهره گیری از خطای مجاز به خاطر عدم دقت، نامعلومی، حقایق جزء به جزء برای دست یابی به قدرت و سهولت و یافتن راه حل با هزینه کم. البته ایده اساسی این قاعده، با بسیاری از توانایی های اولیه تئوری مجموعه های فازی، پیوند دارد.
همچنین هوش مصنوعی کلاسیک، بر روی دقت ارائه سیستم های مصنوعی متمرکز شده بود، اما با عملی کردن و رشد این سیستم ها ، مشخص شد که نمی توان منطق محض را در کاربردها به کار بست.

در واقع بر همین مبناست که منطق فازی به خوبی نشان می دهد که چرا منطق دو ارزشی < صفر و یک > در ریاضیات کلاسیک، قادر به تبیین و توصیف مفاهیم نادقیقی همچون < گرما و سرما> که مبنای بسیاری از تصمیم گیری های هوشمند را تشکیل می دهند ، نیست.
این در حالیست که نحوه استنتاج سیستم های هوشمند با استفاده از منطق فازی، به سرعت باعث پیشرفت این علم شد و باعث شد تا هوش مصنوعی ،حقیقتاً در جهشی فوق العاده ،به هوش انسانی نزدیک تر گردد.

زمینه های کاربرد منطق فازی درهوش مصنوعی

● هوش مصنوعی رویداد گرا: در این نوع، سیستم بر اساس هر رویدادی که انجام می شود، یک واکنش هوشمندانه انجام می دهد. در این حالت با استفاده از قواعد IF/THEN فازی، می توان برای حالات و رویدادهای جزء شده و طبقه بندی شده ،عکس العمل مناسبی تعیین کرد.
● هوش مصنوعی هدف گرا: این نوع هوش مصنوعی،هدف با ارزش بیشتر را بر می گزیند و آن را با تقسیم به زیرهدفهای کوچکتر، پردازش می کند.
در این نوع هوش نیز با کمک منطق فازی می توان با توجه به درجه عضویت، هدف مورد نظر را انتخاب کرد.

نمونه هایی از کاربرد عملی منطق فازی در هوش مصنوعی

جهت ملموس شدن بحث منطق فازی،دراین بخش به تعدادی از ادوات و ماشین هایی که بر اساس منطق فازی طراحی و به بازار عرضه شده اند اشاره می شود. ناگفته نماند در حال حاضر در بازار، نمونه هایی از این دستگاه ها، از نوع فاقد منطق فازی وجود دارد که به آنها صفت انواع عادی را اطلاق می کنیم، ضمن اینکه در اینجا قطعاً بحث بر سرنمونه های دارای منطق فازی و نحوه عملکرد این ماشین ها در طیف و محدوده این منطق می باشد.

● ماشین لباسشویی که استراتژی شستشو را براساس تشخیص میزان چرک، نوع پارچه، اندازه بارگیری، و میزان آب تنظیم می کند.
● دستگاه های تهویه مطبوع
● سیستم تشخیص گلف که چوب گلف را براساس فیزیک بدنی و ضربات گلف باز انتخاب می کند .
● شبکه عصبی برای تنظیم علایق و چشایی کاربران.
● سیستم کنترل کامپیوتر از طریق مغز
● هوش مصنوعی بازی های تصویری و جلوه های ویژه سینمایی
● قطارهای هوشمند
● ربات های هوشمند از جمله ربات ظرف شو

نتیجه

دریک کلام،منطق فازی معتقد است که ابهام همیشه و همواره در جوهره و ماهیت علم بوده و می توان از آن بهره جست. برخلاف آنچه اکثراً معتقدند که باید تقریب ها را دقیق تر کرد تا در نتیجه آن بهره وری افزایش یابد.ضمن اینکه در منطق فازی باید به دنبال ساختن ماشین آلات و مدل هایی بود که ابهام را به عنوان بخشی از سیستم ،هضم نموده و مدل کند.
زیرا تنها در این صورت است که می توان در سیستم های مبتنی بر هوش مصنوعی، رفتار و عکس العمل این گونه سیستم ها را به رفتار انسانی نزدیک نموده و به نتیجه دلخواه دست یافت.
بر همین اساس کاربرد منطق فازی در حل مسائل هوش مصنوعی،بیش از پیش درحال گسترش است. البته باید توجه داشت که مسائل بسیاری وجود دارند که حل آنها جز با انجام محاسبات دقیق ریاضی و پردازش حجم زیادی از داده ها ممکن نیست.

در نتیجه چنین به نظر می رسد که تلفیق منطق ” دو ارزشی و منطق فازی” بتواند توان عملیاتی کامپیوترها و بسیاری از تجهیزات و ادوات مورد استفاده بشر را، به میزان چشمگیری افزایش دهد و سهم مهمی در پیشرفت هوش مصنوعی تا حد نزدیک به هوش انسان ،داشته باشد.

منبع

تشخیص پلاک خودرو

چکیده– شماره پلاک خودرو یکی از مناسب ترین اقلام اطلاعات جهت احراز هویت خودروها می باشد.سامانه تشخیص پلاک خودرو یک سیستم کاملاً مکانیزه است. در این مقاله به بررسی و نحوه کار یک سیستم اتوماتیک تشخیص پلاک میپردازیم که امروزه نمی توان کاربرد مفید و چشمگیر آن را نادیده گرفت. این سیستم با استفاده از پردازش تصویر خودروهای عبوری از یک مکان، شماره پلاک آنها را استخراج کرده و به صورت عددی مورد استفاده قرار می دهد.

کلمات کلیدی– تشخیص پلاک خودرو، تشخیص کاراکتر نوری، پردازش تصویر، OCR

فایل PDF – در 7 صفحه- نویسنده : مریم زارع

تشخیص پلاک خودرو

پسورد فایل : behsanandish.com


تشخیص اتوماتیک پلاک خودرو فارسی به کمک روش های پردازش تصویر و شبکه های عصبی

چکیده- شماره پلاک خودرو یکی از مناسب ترین اقلام اطلاعاتی جهت احراز هویت خودروها می باشد. سیستم تشخیص پلاک خودرو یک سیستم مکانیزه است که با عکس گرفتن از خودروها، شماره پلاک آنها را استخراج می کند.روشی که در این مقاله استفاده شده شامل دو قسمت می باشد. در قسمت اول با استفاده از لبه یابی و عملیات مورفولوژی محل پلاک شناسایی شده و در قسمت دوم با استفاده از شبکه عصبی هاپفیلد کاراکترها شناسایی می شوند. این روش بر روی 500 تصویر مختلف از نظر پس زمینه، فاصله و زاویه دید مورد آزمایش قرار گرفته است، که نرخ استخراج صحیح پلاک را 95% و همچنین نرخ خواندن صحیح پلاک را 90% بدست آوردیم.

کلمات کلیدی– تشخیص پلاک خودرو، شبکه عصبی هاپفیلد، عملیات مورفولوژی، لبه یابی، هیستوگرام.

فایل PDF – در 8 صفحه- نویسندگان : محمدصادق معمارزاده، همایون مهدوی نسب، پیمان معلم.

تشخیص اتوماتیک پلاک خودرو فارسی به کمک روش های پردازش تصویر و شبکه عصبی

پسورد فایل : behsanandish.com


روش ﺟﺪﯾﺪ ﻣﮑﺎنﯾﺎﺑﯽ ﭘﻼك ﺧﻮدرو در ﺗﺼﺎوﯾﺮ رﻧﮕﯽ

ﭼﮑﯿﺪه – اﯾﻦ ﻣﻘﺎﻟه روش ﺟدﯾﺪی ﺟﻬﺖ ﻣﮑﺎنﯾﺎﺑﯽ ﭘﻼك ﺧﻮدرو اراﺋﻪ میﮐﻨﺪ. روش پیشنهادی ﺑﻪ ﻋﻠﺖ ﻋﺪم اﺳﺘﻔﺎده از  عملیاتﻫﺎي ﭘﺮﻫﺰﯾﻨﻪ ﭘﺮدازش ﺗﺼﻮﯾﺮ، داراي ﺳﺮﻋﺖ پاسخگویی ﺑﺎلاتري نسبت ﺑﻪ روشﻫﺎی ﻣﺸﺎﺑﻪ اﺳﺖ. روش ﭘﯿﺸﻨﻬﺎدي در اﯾﻦ ﻣﻘﺎﻟﻪ، ﻣﺒﺘﻨﯽ ﺑﺮ ﺷﻨﺎﺳﺎﯾﯽ اﻟﮕﻮ و ﺑﻮده و ﺑﺎ اﺳﺘﻔﺎده از پیمایش ﺳﺘﻮﻧﯽ ﺑﺮاي ﯾﺎﻓﺘﻦ اﻟﮕﻮﯾﯽ اﺳﺘﺎﻧﺪارد در ﺗﺼﻮﯾﺮ رنگی، ﭘﻼك ﺧﻮدرو را ﻣﮑﺎن یابی و آن را از تصویر اﺳﺘﺨﺮاج می کند. از ﺧﺼﻮﺻﯿﺎت روش ﻣﺬﮐﻮر، ﺳﺮﻋﺖ ﺑﺎلای ﭘﺮدازش و ﭘﺎﺳﺦ گویی ﺳﺮﯾﻊ، قابلیت ﻧﺼﺐ و اﺟـﺮ در ریزپردازنده ها، ﻗﺎبلیت شناسایی چندین پلاک ﻣﻮﺟﻮد دریک تصویر و پردازش بر روی تصویر رنگی بدون تغییر اندازه ی آن، ﻣﯽﺑﺎﺷﺪ. روش اراﺋﻪ ﺷﺪه، دارای کاربردهای عملی از قبیل صدور برگ جریمه الکترونیکی، اﯾﺠﺎد ﺳﺎﻣﺎﻧﮥ ﻫﻮﺷﻤﻨﺪ ﭘﺮداﺧﺖ ﻋﻮارض، کنترل ﺗﻮﻧﻞ ﻫﺎ، بزرگراه ها، پارکینگ ها، ﻣﺤﺪوده ﻃﺮح ترافیک و ﻏﯿﺮه، ﻣﯽﺑﺎﺷﺪ. ﻧﺘﺎﯾﺞ آزﻣﺎﯾﺸﺎت ﺑﺮ روي ﯾﮏ ﻣﺠﻤﻮﻋﻪ داده دﻟﺨﻮاه از ﺗﺼﺎوﯾﺮ دورﺑﯿﻦﻫﺎي ﮐﻨﺘﺮل ﺳﺮﻋﺖ در ﺑﺰرﮔﺮاه ﻫﺎي ﮐﺸﻮر، ﮐﺎراﯾﯽ، دﻗﺖ، اﻃﻤﯿﻨﺎن و ﺳﺮﻋﺖ ﺳﯿﺴﺘﻢ ﭘﯿﺸﻨﻬﺎدي را ﺗﺎﯾﯿﺪ ﮐﺮد ﺑﻪ ﻃﻮري ﮐﻪ در آزﻣﺎﯾﺸﺎت  دﻗـﺖ تشخیص 96 درصد را به خود اختصاص داده است.

کلمات کلیدی– مکان یابی پلاک خودرو، تشخیص پلاک خودرو، شناسایی الگو.

فایل PDF – در 6 صفحه- نویسندگان : امیرحسین اشتری و محمود فتحی.

روش جدید مکانیابی پلاك خودرو در تصاویر رنگی

پسورد فایل : behsanandish.com


شرکت بهسان اندیش تولید کننده سامانه های هوشمند مفتخر به تولید یکی از دقیقترین و سریعترین سامانه های جامع کنترل تردد خودرو می باشد که می توانید جهت آشنایی با قابلیت ها و امکانات این محصول به لینک :سامانه جامع کنترل تردد خودرو بهسان(پلاک خوان) مراجعه فرمایید.


ﺭﻭﺷﯽ ﺟﺪﻳﺪ ﻭ ﺳﺮﻳﻊ ﺑﺮﺍﯼ ﺗﺸﺨﻴﺺ ﻣﺤﻞ ﭘﻼﮎ ﺧﻮﺩﺭﻭ ﺍﺯ ﺗﺼﺎﻭﻳﺮ ﭘﻴﭽﻴﺪﻩ ﺑﺮ ﺍﺳﺎﺱ ﻋﻤﻠﻴﺎﺕ ﻣﻮﺭﻓﻮﻟﻮﮊﻳﮑﯽ

 ﭼﮑﻴﺪﻩ – ﺗﺸﺨﻴﺺ ﻣﺤﻞ ﭘﻼﮎ ﺧﻮﺩﺭو ﻣﻬﻤﺘﺮﻳﻦ ﻣﺮﺣﻠﻪ ﺷﻨﺎﺳﺎﻳﯽ ﭘﻼک ﺧﻮﺩﺭو ﺩﺭ ﺳﻴﺴﺘﻤﻬﺎﯼ حمل ﻭ ﻧﻘﻞ هوشمند ﺍﺳﺖ . ﺩﺭ ﺍﻳﻦ ﻣﻘﺎﻟﻪ روشی  بلادرنگ ﻭ ﺳﺮﻳﻊ ﺑﺮﺍﯼ ﭘﻴﺪﺍ ﮐﺮﺩﻥ ﭘﻼﮎ ﺧﻮﺩﺭﻭﻫﺎ ﺩﺭ ﺗﺼﺎﻭﻳﺮ ﭘﻴﭽﻴﺪﻩ ﻣﻌﺮﻓﯽ ﻣﯽ شود. ﺩﺭ ﺍﻟﮕﻮﺭﻳﺘﻢ ﭘﻴﺸﻨﻬﺎﺩﯼ ﺍﺑﺘﺪﺍ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻋﻤﻠﮕﺮ ﺳﻮﺑﻞ ﺍﻗﺪﺍﻡ ﺑﻪ ﻳﺎﻓﺘﻦ لبه ﻫﺎﯼ ﻋﻤﻮﺩﯼ ﺗﺼﻮﻳﺮ می ﮐﻨﻴﻢ، ﺳﭙﺲ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ تحلیل ﻫﻴﺴﺘﻮﮔﺮﺍﻡ ﻭ ﺗﺮﮐﻴﺒﯽ ﺍﺯ ﻋﻤﻠﮕﺮﻫﺎﯼ ﻣﻮﺭﻓﻮﻟﻮﮊیکی ﭘﻼک ﺧﻮﺩﺭﻭ ﺭﺍ ﺍﺯ ﺗﺼﻮﻳﺮ ﺍﺳﺘﺨﺮﺍﺝ می کنیم.ﺭﻭﺵ ﭘﻴﺸﻨﻬﺎﺩﯼ را ﺭﻭﯼ پاﻳﮕﺎﻩ ﺩﺍﺩﻩ ﺍﯼ ﺷﺎﻣﻞ 300 ﺗﺼﻮﻳﺮ ﻣﺨﺘﻠﻒ ﺍﺯ نظر ﭘﺲ ﺯﻣﻴﻨﻪ، ﺍﻧﺪﺍﺯﻩ، ﻓﺎﺻﻠﻪ، ﺯﺍﻭﻳﻪ ﺩﻳﺪ ﻭ ﺷﺮﺍﻳﻂ ﻧﻮﺭی ﻣﻮﺭﺩ ﺁﺯﻣﺎﻳﺶ ﻗﺮﺍﺭ ﺩﺍﺩﻩ ﻭ ﻧﺮﺥ ﺍﺳﺘﺨﺮﺍﺝ ﺻﺤﻴﺢ ﭘﻼﮎ  را 81/3% بدست آوردیم.
کلمات کلیدی– تشخیص محل، پلاک خودرو، ﻫﻴﺴﺘﻮﮔﺮﺍﻡ، ﻋﻤﻠﻴﺎﺕ ﻣﻮﺭﻓﻮﻟﻮﮊﻳﮑﯽ.
فایل PDF – در 7 صفحه- نویسندگان : فرهاد فرجی و رضا صفابخش

ﺭﻭﺷﯽ ﺟﺪﻳﺪ ﻭ ﺳﺮﻳﻊ ﺑﺮﺍﯼ ﺗﺸﺨﻴﺺ ﻣﺤﻞ ﭘﻼﮎ ﺧﻮﺩﺭﻭ ﺍﺯ ﺗﺼﺎﻭﻳﺮ ﭘﻴﭽﻴﺪﻩ ﺑﺮ ﺍﺳﺎﺱ ﻋﻤﻠﻴﺎﺕ ﻣﻮﺭﻓﻮﻟﻮﮊﻳﮑﯽ

پسورد فایل : behsanandish.com


شناسایی پلاک خودروهای ایرانی با روش جایابی فازی پلاک

چکیده– یکی از مهم ترین زیرسامانه های حمل و نقل هوشمند، سامانه ی تشخیص و شناسایی پلاک خودرو است. دشواری تشخیص و شناسایی صحیح پلاک خودرو در شرایط مختلف محیطی موجب شده تا پژوهش در این زمینه ی پژوهشی هم چنان ادامه داشته باشد. مسئله ی تشخیص پلاک خودرو را می توان به سه زیر مسئله ی “جایابی پلاک”، “استخراج نویسه های پلاک” و “شناسایی نویسه ها” تقسیم کرد. در این مقاله تلاش شده به کمک قواعد فازی، الگوریتم های جایابی پلاک خودروهای ایرانی و شناسایی نویسه های آن بهبود یابد. جایابی پلاک با لبه یابی، تحلیل ریخت شناسانه و استفاده از قواعد فازی و شناسایی نویسه ها با استفاده از ماشین بردار پشتیبانی فازی انجام شده است. با آزمایش الگوریتم یاد شده بر روی پنجاه تصویر صحت جایابی پلاک خودرو 90 درصد و صحت شناسایی نویسه ها 94 درصد به دست آمد که در مقایسه با روش های مرسوم توانمندی چشمگیری دارد.

کلمات کلیدی– پلاک خودروف شناسایی الگو، ماشین بردار پشتیبانی، نظریه ی فازی.

فایل PDF – در 10 صفحه- نویسندگان : غلامعلی منتظر و محمد شایسته فر

شناسایی پلاک خودروهای ایرانی با روش جایابی فازی پلاک

پسورد فایل : behsanandish.com


Vehicle License Plate Identification & Recognition

شناسایی و به رسمیت شناختن شماره پلاک خودرو

Abstract- Existing vehicle license plate identification and recognition systems are potent for either their accuracy
or speed but not a combination of both. The algorithm proposed in this dissertation attempts to achieve
this fine balance between the accuracy and speed that such a system must posses. The mathematical
morphology operators of dilation and erosion are utilized to identify the region within an image which
contains the license plate. Using the concept of color coherence vectors, an image recognition algorithm
is presented which utilizes this extracted region and compares it as a whole to other images of license
plates, in the database. The application developed for the testing of this algorithm works with an
accuracy of eighty eight percent and an average processing time of two seconds per image.
Key Words and Phrases: Vehicle license plate recognition, color coherence vectors, mathematical
morphology

فایل PDF – در 10 صفحه- نویسندگان : SANJAY GOEL, PRIYANK SINGH

Vehicle License Plate Identification & Recognition

پسورد فایل : behsanandish.com


Sensor network based vehicle classification and license plate identification system

طبقه بندی وسایل نقلیه بر اساس شبکه حسگر و سیستم شناسایی پلاک وسایل نقلیه

Abstract—Typically, for energy efficiency and scalability purposes, sensor networks have been used in the context of environmental and traffic monitoring applications in which operations at the sensor level are not computationally intensive. But increasingly, sensor network applications require data and compute intensive sensors such video cameras and microphones. In this paper, we describe the design and implementation of two such systems: a vehicle classifier based on acoustic signals and a license plate identification system using a camera. The systems are implemented in an energy-efficient manner to the extent possible using commercially available hardware, the Mica motes and the Stargate platform. Our experience in designing these systems leads us to consider an alternate more flexible, modular, low-power mote architecture that uses a combination of FPGAs, specialized embedded processing units and sensor data acquisition systems.
Keywords: wireless sensor networks, seismic, acoustic vehicle classification, license plate detection

فایل PDF – در 4 صفحه- نویسندگان :Jan Frigo, Vinod Kulathumani, Sean Brennan∗, Ed Rosten, Eric Raby

Sensor network based vehicle classification and

پسورد فایل : behsanandish.com


Real Time Automatic License Plate Recognition in Video Streams

تشخیص خودکار زمان واقعی شماره پلاک وسایل نقلیه در جریان های ویدیویی

Abstract
In recent years there has been an increased commercial interest in systems for automatic license plate recognition. Some of the existing systems process single images only, some even requiring vehicles to stop in front of a gate so that a still image of good quality can be taken. This thesis presents an approach that makes it possible to process 25 images per second on a standard PC from 2004, allowing identication decisions to be based on information from several images instead of just a single one. Thus, the impact of a single bad image is reduced, and vehicles can be allowed to drive past the camera without hindrance. In order to reach the necessary processing speed, a simplied StauerGrimson background estimation algorithm has been used, enabling the system to only search for license plates on objects that are in motion. The main method for nding license plates has been a computational-wise economical connected component labeling algorithm. A basic pixel-by-pixel comparison OCR algorithm %has also been implemented. A real life test running for twelve days has shown the complete system to have a rate of successful identification at 80 .

فایل PDF – در 28 صفحه- نویسنده : Fredrik Trobro

Real Time Automatic License Plate Recognition

پسورد فایل : behsanandish.com


Proposal for Automatic License and Number Plate Recognition System for Vehicle Identification

طرح پیشنهادی برای سیستم شناسایی خودکار شماره پلاک و مجوز برای شناسایی خودرو

Abstract— In this paper, we propose an automatic and mechanized license and number plate recognition (LNPR) system which can extract the license plate number of the vehicles passing through a given location using image processing algorithms. No additional devices such as GPS or radio frequency identification (RFID) need to be installed for implementing the proposed system. Using special cameras, the system takes pictures from each passing vehicle and forwards the image to the computer for being processed by the LPR software. Plate recognition software uses different algorithms such as localization, orientation, normalization, segmentation and finally optical character recognition (OCR). The resulting data is applied to compare with the records on a database. Experimental results reveal that the presented system successfully detects and recognizes the vehicle number plate on real images. This system can also be used for security and traffic control.

(Keywords— License and number plate recognition (LNPR) system, image processing, orientation, normalization, segmentation, identification, optical character recognition (OCR

فایل PDF – در 5 صفحه- نویسنده : Hamed Saghaei

Proposal for Automatic License and Number Plate

پسورد فایل : behsanandish.com


LICENSE PLATE MATCHING TECHNIQUES

تکنیک های انطباق پلاک وسیله نقلیه

فایل PDF – در 42 صفحه- نویسنده : U.S.Department of Transportation-Federal Highway Administration(وزارت راه و ترابری آمریکا-مدیریت بزرگراه فدرال)

LICENSE PLATE MATCHING TECHNIQUES

پسورد فایل : behsanandish.com


Development of a New Automatic License Plate Recognition (LPR) System

توسعه یک سیستم تشخیص پلاک خودکار جدید

ABSTRACT In Japan, automatic license plate recognition systems have been used for more than ten years for the purposes of measuring the travel time of vehicles and for some applications which need detailed plate information identification. Due to their efficacy, they are now being utilized throughout the country. Ordinarily, compared to when used for travel time measurements, considering the types of uses for the number information, higher recognition accuracy is often desired when used for some applications which need detailed plate information identification. We have advanced the development of number plate reading for the purpose of travel time measurement applications, refining these technologies for their application to other various applications. In order to fulfill the requirements expected to be met for various applications, we have implemented a variety of innovations in both software and hardware and developed a new LPR system that has many features such as high recognition rate, low false rate, compact design and high reliability by image processing algorithms and an advanced camera unit. We will seek to expand abroad by applying these technologies.

KEYWORDS: Automatic license plate recognition, Automatic number plate recognition, Automatic vehicle identification, Image processing, Vehicle detection, Plate extraction, Character recognition

فایل PDF – در 10 صفحه- نویسنده : Takehiko Kato ,Masatoshi Asada , Kayo Tanaka , Yusuke Yasuhara, Toshihiro Asai , Yasuo Ogiuchi

Development of a New Automatic License Plate Recognition (LPR) System

پسورد فایل : behsanandish.com


Development of a License Plate Number Recognition System Incorporating LowResolution Cameras

توسعه یک سیستم شناسایی شماره پلاک شامل دوربین های با رزولوشن پایین

A multi-lane free flow (MLFF) toll collection system installed on a simplified gantry requires compact cameras for supervising enforcement. Because these compact cameras have low image resolution, it is also necessary to develop vehicle license plate recognition technology that uses dynamic image processing. Mitsubishi Heavy Industries, Ltd. (MHI) has developed three technologies based on the conventional license plate recognition system using still images; these technologies improve image quality, process plural images of a single vehicle, and utilize a reference database. Laboratory evaluation tests have verified that even a lowresolution camera system can successfully recognize license plate numbers at a rate of 95% or better, comparable to results from the conventional still image system. MHI is enhancing system robustness to enable application of these technologies to actual products.

فایل PDF – در 5 صفحه- نویسنده : KENTA NAKAO, KIICHI SUGIMOTO, MAYUMI SAITOH, TAKUMA OKAZAKI

Development of a License

پسورد فایل : behsanandish.com


Automatic Number Plate Recognition System

سیستم شناسایی شماره پلاک خودکار

Abstract. Automatic recognition of car license plate number became a very important in our daily life because of the unlimited increase of cars and transportation systems which make it impossible to be fully managed and monitored by humans, examples are so many like traffic monitoring, tracking stolen cars, managing parking toll, red-light violation enforcement, border and customs checkpoints. Yet it’s a very challenging problem, due to the diversity of plate formats, different scales, rotations and non-uniform illumination conditions during image acquisition. This paper mainly introduces an Automatic Number Plate Recognition System (ANPR) using Morphological operations, Histogram manipulation and Edge detection Techniques for plate localization and characters segmentation. Artificial Neural Networks are used for character classification and recognition.
2010 Mathematics Subject Classification. Primary 68T10; Secondary 68T45.

Key words and phrases. license plate recognition, plate region extraction, segmentation, neural networks, optical character recognition, Hough transform, ANPR.

فایل PDF – در 10 صفحه- نویسنده :Amr Badr, Mohamed M. Abdelwahab, Ahmed M. Thabet, and Ahmed M. Abdelsadek

Automatic Number Plate Recognition System

پسورد فایل : behsanandish.com


Automatic License Plate Recognition

شناسایی شماره پلاک خودکار

فایل PDF – در 5 صفحه- نویسنده :Jason Grant

Automatic License Plate Recognition

پسورد فایل : behsanandish.com


A Real-Time Mobile Vehicle License Plate Detection and Recognition

یک تشخیص و ردیابی شماره پلاک وسایل نقلیه موبایل زمان واقعی

Abstract
In this paper we present a instant and real-time mobile vehicle license plate recognition system in an open environment. Using a nonfixed video camera installed in the car, the system tries to capture the image of the car in front and to process instant vehicle license plate detection and recognition. We utilize the color characteristics of the barking lights to carry out license plate detection. We first detect the location of the two barking lights in the captured image. Then set license plate detection region using the probability distribution of the license plate between the two lights. This method can eliminate any environmental interference during the license plate detection and improve the rate of accuracy of license plate detection and recognition. Moreover, we use the morphology method Black Top-Hat to enhance the level of separation of the license plate characters. Experiments show that the system can effectively and quickly capture the vehicle image,detect and recognize the license plate whether it is in daytime, nighttime, clear day, raining day or under complicated environment.
Key Words: Real-Time, Wavelet, License Plate, Black Top-Hat

فایل PDF – در 10 صفحه- نویسنده :Kuo-Ming Hung and Ching-Tang Hsieh

A Real-Time Mobile Vehicle License Plate

پسورد فایل : behsanandish.com

مقالات پردازش تصویر عبارت اند از:

Basics of digital image processing

مفاهیم اولیه پردازش تصویر

فایل PDF – در 57 صفحه – نویسنده : ناشناس

Basics of digital image processing

پسوردفایل : behsanandish.com


Digital Image Processing Laboratory Manual

کتابچه راهنمای آزمایشگاه پردازش تصویر دیجیتال

فایل PDF – در 19 صفحه – نویسنده :  Bhaskar Mondal

Digital Image Processing laboratory manual

پسوردفایل : behsanandish.com


Fundamentals of Digital Image Processing

اصول پردازش تصویر دیجیتال

فایل PDF – در 8 صفحه – نویسنده : ناشناس

Fundamentals of Digital Image Processing

پسوردفایل : behsanandish.com


Fundamentals of Image Processing

اصول پردازش تصویر

فایل PDF – در 112 صفحه – نویسنده : Ian T. Young , Jan J. Gerbrands  , Lucas J. van Vliet

Image Processing Fundamentals–An Overview

پسوردفایل : behsanandish.com


Image Processing Manual

دستورالعمل پردازش تصویر

فایل PDF – در 164 صفحه – تهیه کننده : انستیتو ملی اسناد آمریکا

Image processing manual

پسوردفایل : behsanandish.com


Image Processing Tutorial-Basic Concepts 

آموزش پردازش تصویر-مفاهیم پایه

فایل PDF – در 55 صفحه – تهیه کننده : شرکت CCDWare Publishing

Image Processing Tutorial

پسوردفایل : behsanandish.com


Intel® Image Processing Library-Reference Manual

کتابخانه پردازش تصویر اینتل-دستورالعمل مرجع

فایل PDF – در 319 صفحه – نویسنده :  شرکت Intel

Intel Image Processing Library-reference manual

پسوردفایل : behsanandish.com


آنالیز و پردازش تصویر

فایل Word – در 15 صفحه – نویسنده :  ناشناس

pardazesh tasvir

پسوردفایل : behsanandish.com


مفاهیم پایه پردازش تصویر-محیط های چند رسانه ای

فایل PDF – در 109 صفحه – نویسنده :  احمد محمودی ازناوه (دانشگاه شهید بهشتی)

مفاهیم_پایه_پردازش_تصویر_دانشگاه

پسوردفایل : behsanandish.com

بینایی کامپیوتری (Computer vision) چیست؟

 بینایی کامپیوتری (Computer vision) یا بینایی ماشین (Machine vision) یکی از شاخه‌های علوم کامپیوتر است که شامل روش‌های مربوط به دستیابی تصاویر، پردازش، آنالیز و درک محتوای آن‌ها است. معمولاً این پردازش‌ها تصاویر تولید شده در دنیای واقعی را به عنوان ورودی دریافت و داده‌هایی عددی یا سمبلیک را به عنوان خروجی تولید می‌کنند، مانند در شکل‌هایی از تصمیم‌گیری. یکی رویه‌های توسعهٔ این شاخه بر اساس شبیه‌سازی توانایی بینایی انسان در رایانه می باشدنرم.

تصویر هنری از مریخ نورد NASA بر روی سطح سیاره مریخ. مثالی از خودروهای زمینی بدون سرنشین

بینایی رایانه‌ای به مسائل مختلفی از جمله استخراج داده از عکس، فیلم، مجموعه چند عکس از زوایای مختلف و پردازش تصاویر پزشکی می‌پردازد. معمولاً ترکیبی از روش‌های مربوط به پردازش تصاویر و ابزارهای یادگیری ماشینی و آمار برای حل مسایل مختلف در این شاخه استفاده می‌گردد.

کاوش در داده‌ها

بینایی ماشینی را می‌توان یکی از مصادیق و نمونه‌های بارز زمینهٔ مادر و اصلی‌تر کاوش‌های ماشینی داده‌ها به‌حساب آورد که در آن داده‌ها تصاویر دوبعدی یا سه‌بعدی هستند، که آن‌ها را با استفاده از هوش مصنوعی آنالیز می‌کنند.

وظایف اصلی در بینایی رایانه‌ای(بینایی کامپیوتری)

تشخیص شیء

تشخیص حضور و/یا حالت شیء در یک تصویر. به عنوان مثال:

  • جستجو برای تصاویر دیجیتال بر اساس محتوای آن‌ها (بازیابی محتوامحور تصاویر).
  • شناسایی صورت انسان‌ها و موقعیت آن‌ها در عکس‌ها.
  • تخمین حالت سه‌بعدی انسان‌ها و اندام‌هایشان.

پیگیری

پیگیری اشیاء شناخته شده در میان تعدادی تصویر پشت سر هم. به عنوان مثال:

  • پیگیری یک شخص هنگامی که در یک مرکز خرید راه می‌رود.

تفسیر منظره

ساختن یک مدل از یک تصویر/تصویر متحرک. به‌عنوان مثال:

  • ساختن یک مدل از ناحیهٔ پیرامونی به کمک تصاویری که از دوربین نصب شده بر روی یک ربات گرفته می‌شوند.

خودمکان‌یابی

مشحص کردن مکان و حرکت خود دوربین به عنوان عضو بینایی رایانه. به‌عنوان مثال:

  • مسیریابی یک ربات درون یک موزه.

سامانه‌های بینایی رایانه‌ای یا بینایی کامپیوتری

یک سامانهٔ نوعی بینایی رایانه‌ای را می‌توان به زیرسامانه‌های زیر تقسیم کرد:

تصویربرداری

تصویر یا دنباله تصاویر با یک سامانه تصویربرداری(دوربین، رادار، لیدار، سامانه توموگرافی) برداشته می‌شود. معمولاً سامانه تصویربرداری باید پیش از استفاده تنظیم شود.

پیش‌پردازش

در گام پیش‌پردازش، تصویر در معرض اَعمال «سطح پایین» قرار می‌گیرد. هدف این گام کاهش نوفه (کاهش نویز – جدا کردن سیگنال از نویز) و کم‌کردن مقدار کلی داده‌ها است. این کار نوعاً با به‌کارگیری روش‌های گوناگون پردازش تصویر(دیجیتال) انجام می‌شود. مانند:

  • زیرنمونه‌گیری تصویر.
  • اعمال فیلترهای دیجیتال.
    • پیچشها.
    • همبستگیها یا فیلترهای خطی لغزش‌نابسته.
      • عملگر سوبل.
      • محاسبهٔ گرادیان x و y(و احتمالاً گرادیان زمانی).
  • تقطیع تصویر.
    • آستانه‌گیری پیکسلی.
  • انجام یک ویژه‌تبدیل بر تصویر.
    • تبدیل فوریه.
  • انجام تخمین حرکت برای ناحیه‌های محلی تصویرکه به نام تخمین شارش نوری هم شناخته می‌شود.
  • تخمین ناهمسانی در تصاویر برجسته‌بینی.
  • تحلیل چنددقتی.

استخراج ویژگی

هدف از استخراج ویژگی کاهش دادن بیش تر داده‌ها به مجموعه‌ای از ویژگی‌هاست، که باید به اغتشاشاتی چون شرایط نورپردازی، موقعیت دوربین، نویز و اعوجاج ایمن باشند. نمونه‌هایی از استخراج ویژگی عبارت‌اند از:

  • انجام آشکارسازی لبه.
  • استخراج ویژگی‌های گوشه ای.
  • استخراج تصاویر چرخش از نقشه‌های ژرفا.
  • بدست آوردن خطوط تراز و احتمالاً گذر از صفرهای خمش.

ثبت

هدف گام ثبت برقراری تناظر میان ویژگی‌های مجموعه برداشت شده و ویژگی‌های اجسام شناخته‌شده در یک پایگاه داده‌های مدل و/یا ویژگی‌های تصویر قبلی است. در گام ثبت باید به یکفرضیه نهایی رسید. چند روش این کار عبارت‌اند از:

  • تخمین کمترین مربعات.
  • تبدیل هاگ در انواع گوناگون.
  • درهم‌سازی هندسی.
  • پالودن ذره‌ای.

بینایی و تفسیر تصاویر در انسان‌ها

lز آنجایی که هدف نهایی computer vision ساخت مفسر قدرتمند اجسام 3D , رنگ‌ها و عمق تصاویر هست. دانستن این موضوع که چگونه مغز موجودات، بینایی و دیدن را تفسیر می‌کند و اینکه چند درصد نورون‌های کل مغز در گیر این پروسه هستند نسبتاً اهمیت پیدا می‌کند. مقاله زیر می‌تواند یک نگاه کلی از این روند پیچیده بدهد.

حل مسئله تفسیر نور به ایده‌ها از جهان، درک بصری ویژگی‌ها و اشیا، عملی خیلی پیچیده و به مراتب فراتر از توانایی‌های قدرتمندترین ابرکامپیوترهای جهان است. بینایی نیازمند جدا کردن پیش زمینه از پس زمینه هست. تشخیص اشیا قرار گرفته در طیف گسترده ای از جهت‌ها، تفسیر نشانه‌های فضایی با دقت بالا. مکانیزم‌های نورونی در شبکه‌های عصبی ادراک بصری نگاه کلی از چگونگی محاسبه مغز در وضعیت‌های پیچیده برای تفسیر بینایی را به ما می‌دهد.

ادراک بینایی زمانی آغاز می‌شوند که چشم نور را بر روی شبکیه چشم یا (retina) متمرکز می‌کند، که در آن جا توسط یک لایه از سلول‌های گیرنده نوری جذب می‌شود. این سلول‌ها نور را به سیگنال‌های الکتروشیمیایی تبدیل می‌کنند و به دو نوع، میله ای و مخروطی تقسیم می‌شوند (بر اساس شکل هایشان). سلولهای میله ای مسئول دید ما در شب هستند و به نور کم پاسخ خیلی خوبی می‌دهند. سلول‌های میله ای (Rod cells) عمدتاً در مناطق پیرامونی از شبکیه چشم (حول یا اطراف شبکیه) یافت می‌شوند و بنابراین اکثر مردم این موضوع را فهمیده اندکه اگر نگاه خود را در شب متمرکز کنند می‌توانند منطقه مورد تمرکز را بهتر ببینند.

جریان dorsal بصری (سبز رنگ در تصویر) و جریان ventral(بنفش) در تصویر مشخص شده. قسمت‌های بسیار زیادی ازcerebral cortex در پروسه بینایی نقش دارند.

سلولهای مخروطی (Cone cells) در یک منطقه مرکزی شبکیه متمرکز به نام گودال متمرکز شده‌اند که فرورفتگی (یا fovea) هم نام دارد. آنها مسئول وظایف سنگین و دقیقی مثل خواندن هستند. سلول‌های Cone بسته به اینکه به نور آبی، قرمز، سبز چگونه واکنش می‌دهند به سه دسته تقسیم می‌شوند، و در مجموع این سه نوع از Cone ما را قادر به درک رنگ‌ها می‌کنند. سیگنال‌ها از سلول‌های گیرنده نوری (photoreceptor cells) از طریق شبکه ای از interneuronsها در لایه دوم شبکیه چشم به سلول‌های ganglion در لایه سوم منتقل می‌شوند. نورون‌های موجود در این دو لایه از شبکیه زمینه پذیرای پیچیده ای که آنها را قادر به تشخیص تضادهای تغییراتی در یک تصویر می‌کند را ارائه می‌دهند: این تغییرات ممکن است لبه‌ها یا سایه‌ها را نشان دهند. سلول‌های Ganglion این اطلاعات را به همراه دیگر اطلاعات در مورد رنگ جمع‌آوری می‌کنند و خروجی خود را به مغز از طریق عصب بینایی ارسال می‌کنند. عصب یا Nerve بینایی در درجه اول اطلاعات را از طریق thalamus به قشاء مغزی (cerebral cortex) ارسال می‌کند. پس از ارسال اطلاعات در قسمت cerebral cortex ادراک بصری انسان به وقوع می‌پیوندد. اما در عین حال این عصب (Nerve) حامل اطلاعات مورد نیاز برای مکانیک دید نیز هست که به دو قسمت از ساقه مغز (brainstem) این اطلاعات را منتقل می‌کند. اولین قسمت از brainstem گروهی از سلول‌های هسته هستند که pretectum نام دارند که کنترل غیرارادی اندازه مردمک در پاسخ به شدت نور را بر عهده دارند. اطلاعات مربوط به اهداف متحرک و اطلاعات ساکن اسکن شده توسط چشم نیز به قسمت دوم در brainstem منتقل می‌شود، یک هسته که با نام superior colliculus شناخته می‌شود مسئول حرکات چشم در پرش‌های کوتاه هست. بخش دیگر از این دو قسمت saccades هست که به مغز اجازه درک یک اسکن هموار را با کمک چسباندن یک سری از تصاویر نسبتاً ثابت می‌دهد. Saccadic eye movement مشکل تاری شدید- که می‌تواند برای تصویر پیش بیاید – را حل می‌کند. چشم می‌تواند به صورت یکنواخت در سراسر چشم‌انداز بصری حرکت کند؛ saccadesها در بعضی از وضعیت‌ها تجربه بصری را ممکن و آسان می‌کنند مانند مشاهده چشم فرد دیگری برای شما، در حالی که آن فرد در تلاش برای نگاه کردن سرتاسر اتاق هست.

محل دقیق قسمت thalamus(تالاموس) در عمق مغز در تصویر سه بعدی

بسیاری از تصاویر از شبکیه چشم (retina) از طریق عصب بینایی به بخشی از thalamus که به نام (lateral geniculate nucleus) شناخته شده است و در اختصار (LGN) هم کفته می‌شود منتقل می‌شوند، thalamus در عمق مرکز مغز قرار گرفته. LGN ورودی شبکیه (retinal) را به جریان‌های موازی ای مورد جداسازی قرار می‌دهد که یکی حاوی رنگ و ساختار ثابت و دیگری حاوی تضادها (contrast) و حرکات هست. سلول‌هایی که پردازش رنگ و ساختار را انجام می‌دهند چهار لایه بالایی از شش لایه LGN را تشکیل می‌دهند. این چهار لایه به علت کوچکی سلول‌ها، parvocellular نامیده می‌شوند. سلول‌هایی که پردازش حرکات و تضادهای تصویر را انجام می‌دهند دو لایه پایینی LGN رو تشکیل می‌دهند و به علت بزرگی سلول‌های این قسمت، لایه magnocellular نامیده می‌شوند.

سلول‌های لایه‌های magnocellular و parvocellular همه راه‌ها را به بخش‌های پشت مغز و به سمت قشر بینایی اولیه (Visual cortex _ V1) طرح‌ریزی می‌کنند. سلول‌ها در V1 در چندین مسیر مرتب شده‌اند که این مسئله اجازه می‌دهد سیستم بینایی محل اشیاء را در فضا محاسبه کند. در ابتدا سلول‌های V1 به صورت retinotopically یا موضعی سازمان یافته‌اند، که به معنای این است که نقطه به نقطه روی نقشه بین شبکیه و قشر بینایی اولیه وجود دارد و مناطق همجوار در شبکیه چشم با مناطق همجوار در V1 مطابقت دارد؛ که این به V1 اجازه می‌دهد که موقعیت اشیا را در دو بعد از جهان بصری که افقی و عمودی (مختصات (x , y)) تعیین کند. بعد سوم و عمق نیز با مقایسه سیگنال‌های دو چشم توسط V1 نقشه‌برداری و تعیین می‌شود. این سیگنال‌ها در پشته سلولها که ستون ocular dominance نامیده می‌شوند پردازش می‌شوند، که یک الگوی شطرنجی اتصالات متناوب بین سمت چپ و چشم راست است. اختلافی جزئی در موقعیت یک شی نسبت به هر چشم وجود دارد که اجازه می‌دهد تا عمق توسط مثلث محاسبه شود.

در نهایت، V1 به ستون‌های جهت گیری سازمان یافته است، پشته از سلول‌ها که به شدت توسط خطوط یک جهت گیری داده شده، فعال می‌شوند. ستون‌های جهت امکان تشخیص لبه‌های اشیاء در جهان بصری را برایV1 را فراهم می‌سازند، و به طوری که آنها کار پیچیده ای از تشخیص بصری را شروع می‌کنند. سازمان ستونی از قشر بینایی اولیه برای اولین بار توسط David Hubel و Torsten Wiesel توصیف شده است، که در نتیجه بخاطر این موضوع جایزه نوبل ۱۹۸۱ را دریافت کرده‌اند.

جالب توجه است که این الگوی شطرنجی، سازمان ستونی V1 در هنگام تولد بسیار مبهم است. قشر بینایی یک نوزاد تازه متولد شده رشد بیش از حد (hypertrophy) , یا اتصالات اتفاقی دارد که باید به دقت و بر اساس تجربه بصری در بلند مدت هرس شوند، و در نهایت به ستون‌های جداگانه تعریف شده تبدیل شوند- این در واقع یک کاهش در تعداد اتصالات و نه افزایش اتصالات خواهد بود -که در نهایت توانایی نوزاد برای دیدن جزئیات ریز و به رسمیت شناختن اشکال و الگوها را بهبود می‌بخشد.

primary visual cortex (V1)

این نوع از پالایش وابسته، به فعالیت به V1 محدود نمی‌شود و در بسیاری از مناطق سراسر قشر مغز (cerebral cortex) رخ می‌دهد. در همان زمان که توانایی تبعیض خطوط و لبه در قشر بینایی اولیه بهبود می‌یابد، سلول‌ها را در قشر بینایی ثانویه (secondary visual cortex V2) , توانایی خود را برای تفسیر رنگ پالایش می‌کنند. V2 تا حد زیادی مسئول پدیده ثبات رنگ است؛ و این حقیقت را توضیح می‌دهد که واقعیت یک گل سرخ تحت تأثیر بسیاری از رنگ‌های مختلف نور توسط ما هنوز هم به رنگ سرخ به نظر می‌رسد. این طور گمان می‌شود که ثبات رنگ وقتی رخ می‌دهد که V2 می‌تواند یک شیء و نور محیط را مقایسه کند و می‌تواند برآورد رنگ روشنایی را کاهش دهد. با اینحال این پروسه با توجه به اینکه بیننده انتظار دارد که شیء بخصوص به چه رنگی داشته باشد، به شدت تحت تأثیر قرار می‌گیرد.

در حقیقت، تقریباً تمام ویژگی‌های مرتبه بالاتر از بینایی و منظره توسط انتظارات بر اساس تجربه گذشته تحت تأثیر قرار می‌گیرد. این ویژگی به گسترش رنگ و درک فرم موجود در V3 و V4، به چهره و تشخیص شیء در لوب temporal (جایی که تصویر ذهنی سه بعدی از آنچه که می‌بینیم در نهایت تشکیل می‌شود) و به حرکت و آگاهی از فضای موجود در لوب parietal می‌انجامد. هرچند چنین روش و تأثیراتی گاهی اجازه می‌دهد مغز تحت تأثیر تصورات نادرست فریب بخورد، برای مثال در مواقع خطای دید در برخی از تصاویر، ولی این روش پردازش به ما توانایی دیدن و پاسخ سریع به جهان بصری را داده است. از تشخیص روشنایی و تاریکی در شبکیه چشم (retina) تا خطوط انتزاعی در V1 تا تفسیر اشیا و روابط فضاییشان در ناحیه‌های بصری بالاتر، هر وظیفه ای در ادراک بصری کارایی و قدرت سیستم بینایی انسان را نشان می‌دهد.

موارد حال حاضر استفاده از تکنولوژی computer vision

  • کاربردهای غیرنظامی
    1. سرچ پیدا کردن تصاویر مشابه در سرویس‌های Google یا Bing
    2. سرویس‌های شناختی Microsoft
      1. پیدا کردن افراد یکسان در تصاویر حتی در صورتی که آنها تغییر فیافه داده باشند
      2. سرویس تشخیص احساسات لحظه ای افراد مبتنی بر تصاویر
      3. سرویس تشخیص سن افراد و جنسیت و . . . در تصاویر
      4. سرویس PhotoDNA
      5. سرویس قدرتمند تبدیل نوشته‌های موجود در تصاویر به متن
      6. تشخیص چهره در ویدئو به صورت real time
      7. تبدیل گفتار به متن
      8. تشخیص لحن گفتار بر پایه متن
      9. سرویس پیدا کردن مفاهیم بر پایه محتویات متنی
      10. سرویس‌های تشخیص زبان‌های طبیعی
      11. سرویس توصیف تصاویر
      12. ربات‌های چت پیشرفته (از جمله این ربات‌ها می شه به Tay در twitter اشاره کرد)
      13. و سرویس‌های دیگر . . . .
    3. سرویس‌های شناختی IBM
      1. تشخیص احساسات بر پایه تصاویر
      2. سرویس اپن سورس توصیف تصاویر با node.js (سورس code)
      3. توصیف محتواهای متنی
      4. سرویس شناختی آنالیز شبکه‌های اجتماعی
      5. ربات‌های خودکار پاسخ دهنده هوشمند به کاربران
      6. تشخیص احساسات بر پایهٔ محتوای متنی
      7. سرویس گراف‌های شناختی از داده‌های تاریک
      8. کسب و کارهای شناختی
      9. تشخیص real time ایتم‌های مختلف با تراشه SyNAPSE
      10. و سرویس‌های دیگر . . . .
    4. خودروهای خودران Google و بقیه شرکت‌ها
    5. استفاده برای تشخیص چهره درگرفتن عکس در تلفن‌های همراه همچنین استفاده در سرویس شبکه اجتماعی فیسبوک جهت نوشتن نام‌ها بر روی تصاویر
    6. استفاده در فروشگاه‌ها برای دنبال کردن سلایق بازدید کننده گان
    7. استفاده در تشخیص پلاک خودرو
    8. درمان بیماری‌ها و تومورها و سرطان با Nanobots های که انرژی خود را از برخورد اتفاقی با سلول‌ها به دست می آورند

 

ناو ACTUV

تصویری از رونمایی کشتی جنگی بدون سرنشین ضد زیر دریایی با قابلیت ردیابی ممتد یا به اختصار (ACTUV)

  • کاربردهای نظامی
    • تشخیص و شناسایی چهره افراد در فرودگاها و مراکز حساس دیگر
    • وسایل حرکتی بدون سرنشین _ مستقل (Uncrewed vehicle)
      1. خودروهای زمینی بدون سرنشین نظامی چند منظوره با قابلیت‌های استفاده موتوریزه و انتقال نیروها و تجهیزات . . . (Unmanned ground vehicle)
      2. زیردریایی بدون سرنشین: زیردریایی شرکت بوئینگ (Boeing submarine) که قابلیت ماه‌ها ماندن در زیر دریا و بررسی و ارسال اطلاعات به طور کاملاً مستقل را قادر می‌باشند
      3. ناوهای بدون سرنشین: ناوهای ضد زیردریایی ACTUV ساخت DARPA (سازمان پروژه‌های تحقیقاتی پیشرفتهٔ دفاعی)
      4. هواپیماهای بدون سرنشین و پهپادها با کنترل مستقل (Unmanned aerial vehicle)
      5. سیستم دفاع موشکی هوش مصنوعی (Artificially Intelligent Missile Defense System)
      6. فضاپیمای بدون سرنشین (Unmanned spacecraft)
      7. ربات‌های Humanoid (پروژه Atlas robot)
      8. Nanobots

منبع

مطالب مرتبط :

تفاوت بینایی ماشین و بینایی کامپیوتر

آشنایی با ماشین بینایی

آشنایی با بینایی ماشین و بینایی رایانه ای

تشخیص اثر انگشت

 اثر انگشت در انسان، اثری از سایش شیارهای پایانهٔ انگشت است. با توجه به اینکه هیچ دو انسانی اثر انگشت مشابه ندارند، می‌توان از این اثر برای شناسایی افراد بهره‌برد.

اثر انگشت برجستگی‌های بسیار ریز (قابل رؤیت با چشم غیره مسلح) است که در لایه اپیدرم پوست کف دست‌ها و پاها وجود دارد. به علت ترشحات چربی زیر پوست این آثار انگشت بر اجسام صاف قرار می‌گیرد که همچنین برای و ضوح آن می‌توان از پودری استفاده کرد که جذب این چربی‌ها شده و آنها را به صورت واضح نمایان سازد. اثر انگشت افراد منحصربه‌فرد است و در طول عمر فرد تغییر نمی‌کند، بنابراین می‌توان از آن به عنوان یک امضا یا ابزار تشخیص هویت استفاده کرد.

 

دستگاه اثر انگشت

امروزه در بسیاری از کشورها برای خواندن و ثبت اثر انگشت، از دستگاه‌های پیشرفته استفاده می‌شود.

این روش در تعیین هویت از دقت ۱۰۰٪ برخوردار بوده و حتی در دوقلوهای یکسان (تک‌تخمکی) نیز اثر انگشت متفاوت است. به‌گونه‌ای که امکان شباهت اثر انگشت دو نفر انسان، یک شصت و چهار میلیاردم می‌باشد.

ایجاد اثر انگشت یک صفت ارثی- محیطی است که هر عامل قبل از تولد می‌تواند بر آن اثر گذارد مانند فشارهای روحی و روانی بر مادر و حتی فشاری که نوزاد وقت تولد متحمل می‌شود و حتی کمی تفاوت در درازای بند ناف باعث تغییر خطوط سرانگشت می‌شود. اثر انگشت کمی پس از تولد کاملاً تثبیت شده و غیرقابل تغییر است.

در انگشت نگاری مشخصات نقاطی که در آنها خطوط ریز انگشت با هم تلاقی داشته‌اند، انشعاب داشته‌اند یا پایان یافته‌اند بررسی می‌شود. اثر انگشتان یک دست یا دو دست هیچ شباهت یا رابطه‌ای با هم ندارند به همین دلیل در تشخیص هویت و انگشت نگاری از همه انگشتان دو دست نمونه برداری می‌شود.

تاریخچه

هفت‌هزار سال پیش‌از میلاد مسیح، کوزه گران چینی از اثر انگشت شصت خود جهت مشخص نمودن کوزه‌ها و آثارشان استفاده می‌کردند. تاریخ‌نگار و پزشک ایرانیرشیدالدین فضل‌الله همدانی در کتاب جامع التواریخ بیان کرده است که چینی‌ها از اثر انگشت برای تشخیص هویت هم استفاده می‌کرده‌اند. وی در ادامه ذکر می‌کند که تجربه نشان داده است که اثر انگشت دو نفر کاملاً شبیه هم نیست. کتابها و متون یافته شده در کاوشهای باستانی چین، عمدتاً دارای مهری سفالینه منقش به اثر انگشت پدیدآورنده کتاب بوده‌است. در هزاره دوم پیش‌از میلاد نیز در کاوش‌های بابل، به لوح‌های گلی مربوط به ثبت اثر انگشت افراد اشاره شده‌است. با ابداع کاغذ و ابریشم در چین، قراردادهای رسمی با فشردن دست بر روی اسناد مهر می‌گردید.

۸۵۰ سال قبل از میلاد یک بازرگان عرب با نام ابو زید حسن شاهد رسمیت یافتن اسناد وامها در چین بوده‌است. تا سال ۷۰۲ قبل از میلاد، ژاپنی‌ها نیز از روش چینی‌ها برای رسمیت بخشیدن به اسناد استفاده می‌کردند. گرچه احتمالاً مردم در دوران باستان نمییدانستند که اثر انگشت می‌تواند افراد را به صورت منحصربه‌فرد شناسایی نماید، اما در زمان حمورابی، کسانی که دستگیر می‌شدند انگشت نگاری می‌شدند. رشید الدین همدانی، طبیب برجسته ایرانی در کتاب جامع التواریخ به رسم چینی‌ها در شناسایی افراد از طریق اثر انگشت اشاره کرده و توضیح داده‌است که «شواهد و تجربیات نشان می‌دهد که هیچ دو نفری اثر انگشت کاملاً یکسان ندارند». در این زمان در ایران نیز از اثر انگشت شصت برای مهر نمودن اسناد استفاده می‌کردند. همچنین بر دیوار مقبره‌های باستانی مصر و یونان نیز آثار انگشت یافت شده‌است.

 

اثر انگشت سبابه

 

در اوایل قرن بیستم استفاده از تکنیکهای تشخیص اثر انگشت برای تحقیقات جنایی در غرب با الهام از تمدن شرق متداول گشت. در آن زمان لازم بود تصویر هر ۱۰ انگشت با جوهر خاصی ثبت گردد. اما در اواخر دهه ۱۹۶۰، ابداع سیستمهای ثبت اثر انگشت زنده (به صورت الکترونیکی) Live-Scan Systems انقلابی در صنعت تشخیص اثر انگشت به وجود آورد. به سرعت پایگاه‌های داده از اثر انگشت افراد ایجاد شد و محققان هر روز فناوری تازه‌ای معرفی می‌کردند که با دقت و سرعت بیشتری فرد مور نظر را از بین انبوهی از افراد شناسایی می‌کرد.

با پیشرفت تکنولوژی، تبهکاران نیز دست به کار شده و روشهای پیچیده‌ای از تقلب Fake Fingerprint را ابداع نمودند. ساده‌ترین روش تقلب، ثبت اثر انگشت فرد بر روی کاغذ (۲ بعدی) است. فناوری با ترکیب روشهای امنیتی (الکترواستاتیک، ترمودینامیک و…) مختلف به جنگ تقلب در سیستمهای امنیتی رفته‌است.

امروزه تشخیص اثر انگشت به عنوان دقیقترین و سریعترین روش بیومتریک در جهان نظیر کاربردهای امنیتی در سیستمهای کنترل دسترسی و کاربردهای تجاری نظیر ساعتهای حضور و غیاب کاربرد بسیاری دارد.

تحقیقات علمی

زمانی که برای اولین بار انگشت‌نگاری برای تشخیص هویت به کار رفت، بعضی از وکلای دادگستری ایراد گرفتند که ممکن است آثار انگشتانی پیدا کرد که یکسان باشند ولی فرانسیس گالتون،انسان‌شناس معروف انگلیسی در جست و جوهای خود راجع به اثرانگشت و موضوع وراثتی بودن آن به این نتیجه رسید که نقوش سرانگشت توارثی نیست و در کتاب آثار انگشتان از طریق علوم ریاضی ثابت کرد که ممکن نیست بتوانید اثرات انگشت مشابه بیابید. پس از گالتون نیز دانشمند دیگری به نام فورژ و در سال ۱۷۹۲ مطالعه‌ای را روی خانواده‌هایی که ازدواج فامیلی در آنها رسم بود، آغاز کرد و تا سه نسل پیش رفت اما در نهایت به این نتیجه رسید که اثرات انگشت مشابه وجود ندارد.

کاربرد

گذرنامه بیومتریک اروپایی، اثرانگشت دیجیتال دارنده، ثبت‌شده در جلد پاسپورت.

طی سال‌های اخیر وبا توجه به ارزانی و دردسترس بودن وسایل و تجهیزات مربوط به خوانش و ثبت اثر انگشت، تقریباً در همه گروه‌های کاری ازآن استفاده می‌شود. از اثر انگشت برای تشخیص هویت افراد در موارد مختلف استفاده می‌شود و به عنوان مثال تشکیل پرونده‌های قضایی افراد یا دستگاه‌های حضور غیاب پرسنل یا ورود به سیستم بعضی از رایانه‌ها یا تلفن همراه از اثر انگشت برای تشخیص هویت یا صاحب دستگاه استفاده می‌شود.

از کاربردهای مهم انگشت‌نگاری، می‌توان به کنترل روند اقامتهای طولانی‌مدت در کشورهای دیگر، توسط اداره مهاجرت کشور میزبان اشاره نمود. برطبق قوانین مهاجرتی، هرگاه تبعه خارجی قصد اقامت بلندمدت را در کشوری میزبان داشته‌باشد، موظف به انگشت‌نگاری و ثبت اطلاعات فردی در سیستم رایانه‌ای است. هرچند جمهوری اسلامی ایران، این مورد را توهین به شهروندان خود می‌انگارد اما برطبق قوانین تازه بین‌المللی، برای سفر به برخی کشورها، انگشت‌نگاری یک امر بدیهی و طبیعی است. امروزه بسیاری کشورهای عضو پیمان کنترل مهاجرت غیرقانونی و نیز ضد تروریسم، برای متقاضیان گذرنامه در همان کشور مطبوع، اطلاعات فردی و اثر انگشت درون چیپ‌های درون جلد گذرنامه، ثبت و ذخیره شده تا مسافران در هنگام ورود به کشورهای مقصد، درگیر بروکراسی کنترل اثر انگشت نباشند.

منبع


كلمه بيومتريك از كلمه يونانی bios به معنای زندگی و كلمه metrikos به معنای اندازه گيری تشكيل شده است. همه ما می دانيم كه ما برای شناسايی همديگر از يك سری ويژگی هايی استفاده می كنيم كه برای هر شخص به طور انحصاری است و از شخصی به شخص ديگر فرق می كند كه از آن جمله می توان به صورت و گفتار و طرز راه رفتن اشاره كرد. امروزه در زمينه های فراوانی ما به وسايلی نياز داريم كه هويت اشخاص را شناسایی كند و بر اساس ويژگيهای بدن اشخاص آن ها را بازشناسی كند و اين زمينه هر روز بيشتر و بيشتر رشد پيدا می كند و علاقه مندان فراوانی را پيدا كرده است. علاوه بر اين ها امروزه password و ID كارتهايی كه بكار برده می شوند دسترسی را محدود می كنند، اما اين روشها به راحتی می توانند شكسته شوند و لذا غير قابل اطمينان هستند. بيومتری را نمی توان امانت داد يا گرفت، نمی توان خريد يا فراموش كرد و جعل آن هم عملا غير ممكن است.

يك سيستم بيویمتری اساساً يك سيستم تشخيص الگو است كه يك شخص را بر اساس بردار ويژگی های خاص فيزيولوژيك خاص يا رفتاری كه دارد باز شناسی می كند. بردار ويژگی ها پس از استخراج معمولا در پايگاه داده ذخيره می گردد. يك سيستم بيومتری بر اساس ويژگی های فيزيولوژيك اصولا دارای ضريب اطمينان بالایی است. سيستم های بيومتری می توانند در دو مد تاييد و  شناسایی كار كنند. در حالی كه شناسايی شامل مقايسه اطلاعات كسب شده در قالب خاصی با تمام كاربران در پايگاه داده است، تاييد فقط شامل مقايسه با يك قالب خاص می شود كه ادعا شده است. بنابراين لازم است كه به اين دو مسئله به صورت جدا پرداخته شود.

يك سيستم بيومتری ساده دارای چهار بخش اساسی است :

1) بلوك سنسور: كه كار دريافت اطلاعات بيومتری را بر عهده دارد.
2) بلوك استخراج ويژگيها: كه اطلاعات گرفته شده را می گيرد و بردار ويژگی هاي آن را استخراج می كند.
3) بلوك مقايسه: كه كار مقايسه بردار حاصل شده با قالبها را بر عهده دارد.
4) بلوك تصميم: كه اين قسمت هويت را شنااسايي مي كند يا هويت را قبول كرده يا رد مي كند.

هر خصيصه اي از انسان مي تواند به عنوان يك ويژگي در بيو متري بكار برده شود به شرطي كه شروط زير ر ا بر آورده كند :
1) عمومي بودن : هر شخصي آن خصيصه را داشته باشد.
2) متفاوت بودن : در اشخاص ، متفاوت باشد و دو تا شبيه هم نباشد.
3) دوام داشتن : در يك بازه زماني ثابت باشد.
4) قابل بدست آوردن باشد.
در كاربردهاي زندگي روزمره سه فاكتور ديگر نيز بايد رعايت شود: كارايي (دقت، سرعت)، دسترسي (براي كاربران بي ضرر باشد) امنيت بالا.
در اين مقاله ما به معرفي تعدادي از عواملي كه دربيو متري مورد استفاده قرار مي گيرند مي پردازيم.

باز شناسي هويت از طريق اثر انگشت

اين روش قديمي ترين روش آزمايش تشخيص هويت از راه دور است. اگرچه قبلاً اثر انگشت تنها در زمينه جرم قابل بحث بود، تحقيقات در بسياري كشورها سطحي از پذيرش را نشان ميدهد كه به اين روش اجازه استفاده در برنامه هاي عمومي را مي دهد. سيستمها ميتوانند جزئياتي از اثر انگشت (نقاطي مانند تقاطعها يا كناره هاي برجستگيها) يا كل تصوير را بگيرند. الگوهاي مرجع كه براي حفظ اين جزئيات بكار ميرود در حدود 100 بايت هستند كه در مقايسه با تصوير كاملي كه از اثر انگشت با حجم 500 تا 1500 بايت ميباشد، بسيار كوچكتر هستند.

در برنامه هاي عمومي مشكلاتي در ثبات وجود دارد. بعضي كارگران و معتادان شديد به سيگار, اغلب انگشتاني دارند كه تحليل اثرانگشت آنان مشكل است. با اين وجود، طرحهاي بلند مدت و موفق زيادي در استفاده از اثر انگشت وجود داشته است. در حال حاضر اثر انگشت خوانهاي زيادي در دامنه وسيعي وجود دارند كه به همراه بعضي كارتخوانها استفاده ميشوند. اگرچه در حال حاضر قيمت آنها چندان پايين نيست اما ميزان عرضه آنان در فروشگاههاي كامپيوتر عادي باعث افت سريع قيمت آنان خواهد شد. به طور مثال شركت هواپيمايي آلماني لوفتانزا، آزمايش بليت هاي بيومتريك را آغاز كرده است. اين بليت ها با اطلاعات مربوط به اثر انگشت شصت مسافران رمزگذاري شده اند و انتظار ميرود سرعت كنترل را بدون پيچيدگي هاي امنيتي افزايش دهند.

نكته قابل توجه ديگر در سيستم هاي توليد توليد شده با استفاده از فناوري بيومتريك (اثر انگشت) قابل ملاحظه است، استقبال رو به گسترش مردم از خريد اين محصولات است. به طور مثال، شركت لنوو (Lenovo) با فروش بيش از يك ميليون كامپيوترهاي كيفي بيومتريكي كه اثر انگشت فرد صاحب آن را اسكن مي كند، به يكي از بزرگترين فروشندگان كامپيوترهاي بيومتريكي در جهان تبديل شده است.
در اين بخش سعي بر آن شده است كه اصول كلي، موانع و محدوديت هاي سيستمهاي تشخيص اثر انگشت بررسي شوند.

اصول كلي در سيستمهاي تشخيص اثر انگشت:

همانگونه كه اشاره شد، اثر انگشت يكي از روشهاي مطمئن براي شناسايي افراد مي باشد و در زمينه هايي نظير رسيدگي به جرم، سيستم هاي كنترل حوادث، كنترل مرزهاي ملي و … به كار مي رود. دليل اصلي انتخاب اثر انگشت براي شناسايي افراد اين است كه اثر انگشت هر فرد منحصر به فرد بوده و بعضي از ويژگي هاي آن تا آخر عمر ثابت باقي مي ماند و از همين ويژگي ها در تطبيق اثر انگشت استفاده مي شود. براي تطبيق دستي اثر انگشت روشهاي استانداردي وجود دارد، اما روش دستي تطبيق اثر انگشت كاري مشكل و بسيار وقت گير بوده و كارايي لازم را ندارد.البته از آنجا كه بانكهاي اطلاعاتي داراي ميليونها اثر انگشت مي باشد، عملاً تطبيق دستي اثر انگشت امري محال مي شود.

به منظور اتوماتيك كردن تطبيق بايد روشي براي تصوير و يا كد كردن اثر انگشت تعريف گردد. اين بيان تصوير بايستي شرايط زير را داشته باشد:
1) توانايي تمايز هر اثر انگشت در سطوح مختلف رزولوشن،
2)  محاسبات ساده
3)  قابليت بكارگيري در الگوريتم هاي تطبيق اتوماتيك،
4)  پايداري و عدم تغيير با نويز و خرابي ها
5) كارا بودن و نشان دادن تصاوير به صورت فشرده

اگر تصوير به صورت خام ذخيره شود، حافظه زيادي مورد نياز است و سيستم كارايي لازم را نخواهد داشت. در روشهاي ساختاري ويژگي ها از تصوير استخراج و تصوير با اين ويژگي ها شناخته شده و همچنين با استفاده از همين ويژگيها عمل تطبيق صورت مي گيرد.

اثر انگشت از برآمدگي ها و فرو رفتگي اي فلو مانندي تشكيل شده است كه بسته به وضعيت قرار گرفتن آنها ويژگي هاي مختلفي به وجود مي آيد. تا كنون 18 ويژگي براي اثر انگشت شناخته شده است كه دو ويژگي مهم آن، انتهاي برآمدگي و دوشاخه شدن برآمدگي مي باشدكه اصطلاحاً به آنها مينوتيا مي گويند. در شكل زير اين دو ويژگي نشان داده شده است:

 

 

 

اطلاعات مينوتيا در مولفه هاي x , y و زاويه برآمدگي ها آنها قرار دارد. ساختار توپولوژيكي مينوتاي يك اثر انگشت منحصر به فرد بوده و با گذشت زمان تغيير نمي كند. در نتيجه مي توان تشخيص اثر انگشت را بر مبناي تطبيق ساختار توپولوژيكي مينوتيا استوار ساخت. در يك تصوير انگشت با كيفيت نسبتاً خوب در حدود 70 تا 80 مينوتا وجود دارد كه البته اين تعداد در تصويرهاي جزئي به حدود 20 تا 30 ويژگي كاهش مي يابد، اما باز هم بااين تعداد مي توان عمل تطبيق اثر انگشت را انجام داد.

اكثر سيستمهاي تشخيص اثر انگشت، ساختاري بر مبناي مينوتيا دارند. در اين سيستمها سه مرحله اساسي براي تشخيص وجود دارد كه عبارتند از:
1)  پيش پردازش
2) استخراج مينوتيا
3) تطبيق مينوتيا
مرحله اول براي افزايش كيفيت تصوير انجام مي گيرد، مرحله دوم براي استخراج ويژگي هاي تصوير و مرحله آخر براي مقايسه مورد استفاده قرار مي گيرد.

در مورد تطبيق، روشهاي گوناگوني وجود دارد كه از جمله مي توان به موارد ذيل اشاره كرد:
1)  تطبيق مجموعه نقاط
2) تطبيق گراف
3) همشكلي دو زير گراف
البته عمل تطبيق بنا به دلايل زير نياز به محاسبات پيچيده دارد:
1) معمولاً كيفيت اثر انگشت پايين است.
2) بانك اطلاعاتي اثر انگشت ها بزرگ است.
3) تصوير هايي كه به صورت ساختاري آسيب ديده اند، به الگوريتم هاي نيرومندي جهت تطبيق نياز دارند.

در سيستمهاي تشخيص اثر انگشت موجود دربازار كه از اين دو ويژگي (انتهاي برآمدگي و دوشاخه شدن برآمدگي) استفاده مي شود، به علت بزرگ بودن بانك اطلاعاتي و نويز دار بودن تصاوير، يك تطبيق يك به يك عملاً مشكل بوده و از اين رو يكسري از تصوير هاي تطبيق يافته تهيه و سپس تطبيق نهايي توسط افراد متخصص انجام مي گيرد.

  استخراج ساير ويژگي ها:

علاوه بر ويژگي هاي بيان شده، در بسياري از سيستمهاي تشخيص اثر انگشت، از ويژگي هاي سطح بالا نيز استفاده مي شود. اين امر باعث افزايش صحت عمل تطبيق مي گردد. يكي از اين ويژگي هاي مهم كلاس الگوي اثر انگشت مي باشد.

اثر انگشت به پنج كلاس اصلي تقسيم مي شود كه عبارت است از:
1) كمان
2) كمان مايل
3) حلقه چپ
4) حلقه راست
5) مارپيچ

در تصاوير نويز دار و جزئي ممكن است كلاس الگو نامشخص باشد، كه در اينصورت از يك ويژگي سطح بالاتري به نام چگالي برآمدگي ها به جاي كلاس الگو استفاده مي شود كه بيانگر تعداد برآمدگي ها در واحد طول تعريف مي شود. به منظور مستقل كردن چگالي برآمدي ها از جهت تصوير، تعداد برآمدگي ها بين دو نقطه منفرد محاسبه مي شود. نقاط منفرد در اثر انگشت هسته و دلتا مي باشند. هسته بالاترين نقطه در داخلي ترين برآمدگي و دلتا يك نقطه سه شاخه است كه سه برآمدگي از كنار آن عبور مي كند. در شكل زير اين نقاط نمايش داده شده است:

 

 

 

کد کردن اطلاعات

در ادامه به بررسي مختصري از مراحل كد كردن اطلاعات اثر انگشت مي پردازيم:

  1)  نحوه به دست آمدن تصوير اثر انگشت:

1-1) كاغذ و مركب : در سالهاي گذشته بيشتر از روش كاغذ و مركب استفاده مي شد به اين ترتيب كه در ابتدا اثر انگشت فرد با استفاده از مركب بروي كاغذ ثبت و سپس تصوير اثر انگشت اسكن شده و فايل تصويري آن آماده مي شد، كه اين روش اكنون به علت مشكلات خاص خود و البته پيشرفت تكنولوژي كم كم منسوخ مي شود. معمولا چون كيفيت تصوير به دست آمده پايين است با
استفاده از تكنيك هاي پردازش تصوير اين نقيصه تا حدي مرتفع مي گردد.

       1-2)  روش اسكن مستقيم نوري:

روشهاي گوناگوني براي انجام اين نوع تصوير گيري وجود دارد. نمونه اي از آن در شكل زير آمده است:

 

 

1-3) با استفاده از سنسور LE

در اين روش از تكنولوژي نيمه هادي ها استفاده مي گردد. به اين ترتيب كه انگشت شخص بر روي سنسور LE كه از جنس نيمه هادي مي باشد، قرار گرفته و در نتيجه در محل هاي برآمدگي پوست انگشت كه در تماس با سنسور مي باشند، فوتون آزاد شده و به اين ترتيب اثر انگشت ثبت مي گردد.
امروزه اسكنر هايي كه براي ارتباط با كامپيوتر طراحي شده اند، به راحتي اطلاعات تصويراثر انگشت را تهيه و از طريق درگاه هاي كامپيوتر در اختيار نرم افزارهاي مربوطه قرار مي دهند.

نحوه استخراج ويژگي ها:

در اكثر سيستم ها از روشهاي ساختاري كه بر مبناي مينوتا هستند براي استخراج ويژگي ها استفاده مي شود. در اين سيستم ها در ابتداپيش پردازشهاي اوليه اي مانند يكنواخت كردن هيستوگرام، تشخيص برآمدگي ها و نازك كردن آنها روي تصوير اعمال ميگردد. سپس با استفاده از روشهاي زير به استخراج ويژگي ها و شناسايي اثر انگشت مبادرت مي ورزند:
1) روش فازي
2) روش شبكه هاي عصبي
3) ساختن گراف مربوطه به هر تصوير با استفاده از ميدان جهت دار و الگوريتم راتا
پياده سازي اين روشها يا با استفاده از كامپيوتر انجام گرفته و يا از مدارات مجتمعي كه به همين منظور ساخته شده است، انجام مي گيرد.

منبع

 

تشخیص لبه در تصاویر

آشکارسازی لبه یکی از مفاهیم پردازش تصاویر است. هدف آشکارسازی لبه نشان‌گذاری نقاطی از یک تصویر است که در آنها شدت روشنایی به تندی تغییر می‌کند. تغییرات تند در خصوصیات تصویر معمولاً نمایندهٔ رویدادهای مهم و تغییرات در خصوصیات محیط هستند. شناسایی لبه یک محدودهٔ تحقیقاتی در پردازش تصویر و استخراج ویژگی است.

ویژگی‌های لبه

لبه‌ها ممکن است وابسته به دیدگاه باشند – یعنی می‌توانند با تغییر نقطه دید تغییر کنند، و نوعاً هندسه صحنه، اجسامی که جلوی همدیگر را گرفته‌اند و مانند آن را نشان می‌دهند یا ممکن استنابسته به دیدگاه باشند – که معمولاً نمایانگر ویژگی‌های اجسام دیده‌شده همچون نشان‌گذاری‌ها و شکل سطح باشند. در دو بعد و بالاتر مفهوم تصویر باید در نظر گرفته شود.

یک لبه نوعی ممکن است(برای نمونه) مرز میان یک بخش قرمزرنگ و یک بخش سیاه‌رنگ باشد؛ حال آنکه یک خط می‌تواند تعداد کمی پیکسل‌های ناهمرنگ در یک زمینه یکنواخت باشد. در هر سوی خط یک لبه وجود خواهد داشت. لبه‌ها نقش مهمی در کاربردهای پردازش تصویر دارند.

آشکارسازی لبه

لبه مرز بین نواحی با خواص نسبتاً متفاوت سطح خاکستری است. نظریهٔ پایه در بیشتر روش‌های آشکارسازی لبه، محاسبه یک عملگر مشتق محلی است. در این مقطع توجه شود که لبه (گذر از تاریک به روشن) به صورت یک تغییر آرام، نه سریع، سطح خاکستری مدل می‌شود. این مدل نشان می‌دهد که معمولاً لبه‌های تصاویر رقمی بر اثر نمونه‌برداری، کمی مات می‌شوند. مشتق اول مقطع سطح خاکستری در لبه جلویی گذر، مثبت است، در لبه عقبی آن منفی است و همان طور که مورد انتظار است، در نواحی با سطح خاکستری ثابت صفر است. مشتق دوم برای قسمتی از گذر که در طرف تیره لبه است، مثبت است، برای قسمت دیگر گذر که در طرف روشن لبه است، منفی است، و در نواحی با سطح خاکستری ثابت، صفر است.

بنابراین، از بزرگی مشتق اول می‌توان برای تعیین این که آیا پیکسل در روی لبه قرار دارد، استفاده کرد. مشتق دوم در نقطه وسطی هر گذر سطح خاکستری یک عبور از صفر دارد. عبور از صفرها راهی قوی برای تعیین محل لبه‌های تصویر فراهم می‌آورند. اندازهٔ مشتق اول تصویر در هر نقطه برابر بزرگی گرادیان می باشد. مشتق دوم نیز با استفاده از لاپلاسین به دست می‌آید. اگر یک لبه را به عنوان تغییر در شدت روشنایی که در طول چند پیکسل دیده می‌شود در نظر بگیریم، الگوریتم‌های آشکارسازی لبه به طور کلی مشتقی از این تغییر شدت روشنایی را محاسبه می‌کنند. برای ساده‌سازی، به آشکارسازی لبه در یک بعد می‌پردازیم. در این نمونه، داده‌های ما می‌تواند یک تک‌خط از شدت روشنایی پیکسل‌ها باشد. برای نمونه بین پیکسل‌های چهارم و پنجم در داده‌های ۱-بعدی زیر به روشنی می‌توان لبه‌ای را آشکار کرد

 5  7  6  4  152  148  149

محاسبه مشتق اول

تعداد زیادی از عملگرهای آشکارسازی لبه بر پایه مشتق اول شدت روشنایی کار می‌کنند، یعنی با گرادیان شدت روشنایی داده‌های اصلی سروکار داریم. با این اطلاعات می‌توانیم تصویری را برای قله‌های گرادیان روشنایی جستجو کنیم.

اگر I(x) نماینده شدت روشنایی پیکسل x، و I′(x) نماینده مشتق اول(گرادیان شدت روشنایی) در پیکسل x باشد، بنابراین داریم:

{\displaystyle I'(x)=-1\cdot I(x-1)+0\cdot I(x)+1\cdot I(x+1).\,}

برای پردازش تصویر با عملکرد بهتر، مشتق اول را می‌توان(در یک بعد) با چرخاندن با ماسک زیر روی تصویر بدست آورد:

−1 0 1

محاسبهٔ مشتق دوم

برخی دیگر از الگوریتم‌های آشکارسازی لبه بر اساس مشتق دوم شدت روشنایی کار می‌کنند که در واقع نرخ تغییرات گرادیان شدت روشنایی است و برای آشکارسازی خط‌ها بهترین است، زیرا بدانگونه که در بالا گفتیم هر خط یک لبه دوگانه است، بنابراین در یک سوی خط یک گرادیان روشنایی و در سوی دیگر گرادیان مخالف آن دیده می‌شود. پس می‌توانیم منتظر تغییر بسیار زیاد در گرادیان شدت روشنایی در محل یک خط باشیم. برای یافتن خط‌ها می‌توانیم گذر از صفرهای تغییر گرادیان را در نتایج جستجو کنیم.

اگر I(x) نمایشگر شدت نور در نقطه x و I′′(x) مشتق دوم در نقطه x باشد:

{\displaystyle I''(x)=1\cdot I(x-1)-2\cdot I(x)+1\cdot I(x+1).\,}

اینجا نیز بیشتر الگوریتم‌ها از یک ماسک پیچش برای پردازش سریع داده‌های تصویر سود می‌برند:

+1 −2 +1

آستانه‌گیری

پس از محاسبه مشتق، گام بعدی عبارت است از: اعمال‌کردن یک آستانه برای کشف نقاطی که بخشی از یک لبه هستند. هر چه آستانه کمتر باشد، خط‌های بیشتری آشکارسازی می‌گردند و نتایج بیشتر نسبت به نویز، و ویژگی‌های نامرتبط تصویر حساس می‌شوند، از سوی دیگر یک آستانه زیاد ممکن است خط‌های ضعیف یا بخش‌هایی از خط‌ها را از دست بدهد.

یک مصالحه معمول آستانه‌گیری با پسماند است. این روش از چندین آستانه برای جستن لبه‌ها سود می‌جوید. با آستانه بالایی جستجو را برای پیدا کردن ابتدای خط‌ها آغاز می‌کنیم. هنگامی که یک نقطه آغاز داریم، مسیر لبه را درون تصویر پیکسل به پیکسل با نشانه‌گذاری پیکسل‌هایی که از آستانه پایینی بالاترند پی می‌گیریم. تنها هنگامی که مقدار از آستانه پایینی پایین‌تر رود آن را پایان می‌دهیم. این رهیافت بر اساس این گمان است که لبه‌ها به احتمال زیاد در مسیرهای پیوسته قرار دارند و دنبال کردن بخش ضعیفی از لبه‌ای که از پیش دیده‌ایم ممکن می‌کند، بدون آنکه پیکسل‌های نویزی را به عنوان لبه نشانه‌گذاری کنیم.

عملگرهای آشکارسازی لبه

  • مرتبه نخست: رابرتز، پرویت، سوبل، کنی، اسپیسک
  • مرتبه دوم: لاپلاسی، مار-هیلدرث

اکنون، عملگر کنی و پس از آن مار-هیلدرث بیشترین کاربرد را دارد. عملگرهای زیادی تاکنون منتشر شده‌اند اما هیچیک برتری قابل ملاحظه‌ای بر عملگر کنی در شرایط کلی نداشته‌اند. کار بر روش‌های چندمقیاسی هنوز بیشتر در آزمایشگاه‌هاست.

اخیراً عملگر جدیدی منتشر شده که اجازه جداسازی لبه‌ها را با دقت زیرپیکسل می‌دهد، چیزی که آن را از عملگر کنی نیز بهتر می‌سازد. برای اطلاعات بیشتر مقاله زیر ببینید:

(استجر، ۱۹۹۸)An Unbiased Detector of Curvilinear Structure

بسياري از محصولات شركت هاي توليدي، در سراسر دنيا قابل فروش هستند. با توجه به اين مسئله وجود باركدهاي منحصر به فردي كه آنها را از يكديگر متمايز سازد ضروري به نظر مي رسد.تبديل اعداد به باركد خواندن باركد نياز به استاندارد مشخصي دارد. در حال حاضر در دنيا چند استاندارد براي توليد و استفاده از باركد وجود دارد كه معتبرترين آنها استاندارد EAN/UCC است كه103 كشور در دنيا از آن تبعيت مي كنند و حدود90 درصد تجارت دنيا را پوشش مي دهد.

در ايران به علت ضرورتي كه بنا به توسعه صدور كالاهاي غيرنفتي ايران به بازارهاي جهاني به وجود آمد در سال1374 سازماني با عنوان »مركز ملي شماره گذاري كالا و خدمات« زير نظر موسسه مطالعات و پژوهش هاي بازرگاني تاسيس شد و پس از انجام مطالعات لازم با انتخاب استاندارد EAN/UCC كشور ما به عضويت موسسه بين المللي EAN International درآمد. تاكنون بيش از5 هزار شركت- كه بيشتر آنها شركت هاي توليدكننده محصولات غذايي و شيميايي هستند- به عضويت اين موسسه درآمده و براي كالاها و محصولات خود باركد دريافت كرده اند.
باركد محصولات،12 رقمي است. البته در برخي از كشورها به دلايل مختلف باركد13 رقمي نيز وجود دارد.12 رقم باركد به شرح زير معني دار مي شود:

سه رقم اول نمايانگر كد كشور(626= كد ايران)،5 رقم بعدي كد شركت سازنده،4 رقم بعدي كد كالاي مربوطه و در نهايت1 رقم آخر كد كنترل توسط رايانه به منظور كنترل صحت كد مورد نظر است.
براي مثال باركد زير مربوط به دستمال كاغذي200 برگي يكي از شركت هاي توليدي است به طور حتم تا به حال در هنگام خريد يا پس از خريد كالا به علامت باركد چاپ شده در روي بسته بندي آن توجه كرده ايد و اين سئوال برايتان پيش آمده كه اين خطوط چه هستند و چه كارآيي دارند.

عامه مردم درباره باركد، نظرات متفاوتي دارند. خيلي ها فكر مي كنند باركد نمايانگر قيمت كالاست. برخي ديگر نيز باركد را علامت استاندارد و عده اي باركد را شماره مجوز كالا مي دانند.
باركد شامل يك سري عدد و تعدادي خطوط موازي سياه رنگ با ضخامت هاي مختلف در زمينه سفيد بوده كه از طريق دستگاه پويشگر (Scanner) توسط امواج مادون قرمز قابل خواندن و انتقال به رايانه است. هر يك از اين ميله ها مانند يك بيت ارزشي، معادل صفر و يك دارند.
هر يك از اين كدها در بانك اطلاعاتي مربوط، داراي اطلاعات كاملي شامل شرح، مشخصات دقيق و فني، موجودي، اطلاعات ورود و خروج براي استفاده كنندگان ذي ربط هستند.

استفاده از باركد فقط به محصولات توليدي شركت ها محدود نمي شود. در كارخانه ها و موسسات توليدي به منظور رديابي مداوم اطلاعات كالاهاي توليدي در خطوط مختلف توليد قطعات مصرفي موجود در انبارها، باركدهاي منحصر به فردي ايجاد و با اين سيستم رديابي مي شود. سيستم باركد كمك مي كند تا تغيير اطلاعات را توسط سيستم باركد به بانك هاي اطلاعاتي منتقل كرده و همواره اطلاعات موجودي هاي خود را به روز نگه داريد. در واقع باركد به عنوان يك ترمينال ورودي كمك مي كند تا تغيير يا ثبت اطلاعات با حداقل خطاي اطلاعاتي به رايانه منتقل شود.

در فروشگاه هاي بزرگي كه روزانه مقدار زيادي كالاي ريز و درشت به آنها وارد و يا خارج مي شود و مسئولين براي كنترل موجودي هاي خود همواره به اطلاعات سطوح موجودي نياز دارند استفاده از باركد بسيار ضروري است. در غير اين صورت بايد هرازگاهي با تعطيلي فروشگاه اقدام به شمارش و كنترل موجودي كرد. اين كار نه تنها بسيار دشوار و طاقت فرساست بلكه امكان بروز اشتباه در آن نيز زياد است.

در حال حاضر در كشور ما از باركد براي جمع آوري و ثبت اطلاعات مختلف استفاده هاي متنوعي مي شود. از كارت هاي حضور و غياب پرسنلي گرفته تا قبوض آب و برق و تلفن، اطلاعات خطوط توليد و ردياب محصولات، موجودي هاي انبار، كتب جهت ثبت شماره استاندارد بين المللي كتاب (شابك) و از همه بيشتر براي كالاهاي توليدي شركت ها كه در فروشگاهها ارائه مي گردد و …
براي راه اندازي سيستم هاي مبتني بر باركد، نياز به تجهيزاتي مانند نرم افزار توليد باركد، چاپگر چاپ باركد، پويشگر (Scanner) و برچسب هاي ويژه داريم.
البته توسعه و پيشرفت در زمينه باركد نيز مانند ساير علوم و فن آوريها به سرعت در حال وقوع است.

منبع


بارکد تقریبا در تمام بخشهای زندگی ما وجود دارد , در سوپر مارکتها , بیمارستانها زندانها و حتی در خانه خودمان !

بارکد تقریبا به عنوان بخشی از زندگی روزمره ما مورد قبول همه قرار گرفته اما واقعا بارکد چیست و چه چیزی را نمایش میدهد ؟

مطمئن باشید فقط شما نیستید که دوست دارید سر از راز این خطوط و فضاهای میان آنها دربیاورید خطوطی که هر روز حد اقل بر روی برچسبهای مواد غذائی یا نامه های پستی خود می بینید . همه آنها به نظر یکسان می آیند اما ي نیست زیرا هر صنعتی روش کدگذاری مخصوص به خود را دارد و از آن به عنوان استاندارد استفاده میکند که در بخشهای بعدی این روشها را توضیح خواهیم داد . اگر در فکر بکارگیری تکنولوژی بارکد در شغل خود هستید موارد مهمی است که باید در نظر بگیرید تا این تکنولوژی بر تمام مشکلات شما غلبه کرده و کار شما را سهولت ببخشد .

انواع مختلف روشهای کدگذاری

بارکد در شکلهای مختلف ارائه میشود که ساده ترین نوع آن را حتما در فروشگاهها و یا سوپر مارکتها دیده اید . اما استانداردهای دیگر بارکد هم وجود دارد که در صنایع مختلف استفاده می شود مثل : مراکز درمانی , کارخانه های صنعتی و … که تمام اینها نحوه کدگذاری (Symbology) منحصر به فرد برای خود را دارند که غیر قابل تغییر هستند. حال این سوال پیش می آید که چرا اینهمه کدهای متفاوت وجود دارد ؟ این سوال به سادگی قابل جوابگوئی است چرا که Symbology های مختلف برای حل مشکلات صنایع گوناگون به وجود آمده اند .

حالا با هم نگاهی کوتاه به برخی از Symbology های معمول می اندازیم و ببینیم چگونه و کجا و چرا از آنها استفاده میکنیم :

UPC/EAN
این نوع کدگذاری برای کنترل خروجی ( کنترل نهائی ) به کار برده میشود . کد UPC با طول ثابت میباشد و به طور خاص در فروشگاهها و کارخانجات تولید کننده مواد غذائی کاربرد دارد . این کد برای سوپرها و این چنین مواردی در نظر گرفته شده است که با استفاده از 12 رقم فضای مناسبی برای تعریف محصولات در اختیار ما قرار میدهد .

Code 39
این روش کد گذاری به این دلیل ایجاد شد تا در صنایعی که احتیاج به استفاده از حروف نیز در کنار ارقام دارند به کار برده شود . این روش کدگذاری عمومی ترین روش کدگذاری است که از قدیم به کار برده میشود . این نوع کدگذاری معمول درا تمام صنایع – به استثناء تولید کنندگان موادغذائی – به کار گرفته میشود اما با توجه به اینکه بارکد دارای طول زیادی خواهد بود برای مواردی که اندازه برچسب روی اقلام تولیدی گزینه ای قابل توجه باشد پیشنهاد نمی شود.

Code 128
این روش کدگذاری وقتی به کار می آید که شما انتخاب زیادی از حروف و ارقام داشته باشید . در صنایعی که اندازه برچسب روی اقلام. گزینه قابل توجه باشد این روش کدگذاری انتخابی مناسب برای شماست چرا که فشرده و خوانا است . از این روش کدگذاری معمولا در حمل و نقل استفاده میکنند که در آن اندازه لیبل یک مورد مهم میباشد .

Interleaved 2 of 5
از دیگر روشهای کدگذاری معمول در صنایع حمل و نقل است که در کنار آن کاربرد بسیاری در انبارها و شرکتهای عمده فروش می باشد . این کدها هم به صورت فشرده و کم جا هستند .

PDF417
این روش کدگذاری به عنوان روش دو-بعدی ( 2D ) شناخته شده است که به صورت خطی نبوده و بیشتر شما را به یاد جدول روزنامه ها می اندازد اما تفاوت این کد با سایر کدهائی که در بالا توضیح داده شد این است که PDF417 واقعا یک فایل داده های سیار ( Portable Data File ) است که مثلا میتواند شامل : اسم , آدرس , شماره تلفن منزل , شماره گواهینامه رانندگی و عکس و حتی خلاصه سوابق رانندگی شما باشد !

در نهایت اینکه این روش کدگذاری میتواند اطلاعات کامل و جامعی را در خود جای داده و حجمی در حد یک تمبر پستی داشته باشد البته طبیعی است هر چه اطلاعات شما کاملتر باشد حجم این کد نیز بزرگتر خواهد شد .

بارکدها چگونه خوانده میشوند :

بارکدها با کشیده شدن تابش کوچکی از نور روی کد چاپ شده قابل خواندن هستند . چشمان شما تنها خط قرمزی از نور را میبیند که از بارکد خوان تابیده میشود اما چه اتفاقی در تابش و بازتاب آن نور قرمز در میان این خطوط تیره و روشن می افتد ؟ قطعه ای در بارکدخوان بازتاب نور را دریافت کرده و آنرا به سیگنالهای الکتریکی تبدیل میکند . منبع تابش لیزر شروع به خواندن فضای خالی قبل از اولین خط مشکی میکند و این کار را تا انتهای کد انجام میدهد – اگر بارکد دارای این فضای خالی معین در ابتدا و انتهای خود نباشد قابل خواندن نیست که به این فضا ها Quiet Zone می گوئیم – هر چه کد ما طولانی تر باشد تعداد نوارهای ما نیز بیشتر خواهد بود و هر چه تعداد نوارهای ما بیشتر باشد باید ارتفاع نوارها نیز بیشتر شود تا کد به راحتی قابل خواندن باشد .

بارکد خوانها:

به طور کلی سه مدل بارکد خوان وجود دارد : ثابت , بارکدخوانهای سیار دسته ای و بارکدخوانهای سیار بی سیم

1 – بارکدخوانهای ثابت :

به کامپیوتر متصل میشوند و داده ها را هر بار که خوانده میشوند انتقال میدهند . وقتی یک بارکد اسکن میشود به سرعت از طریق داده الکتریکی به کیبورد منتقل میشود و باعث میشوند تا کاراکترها به سرعت هر چه تمامتر روی صفحه نمایش داده شوند . این دستگاه به قدری سریع است که در بسیاری مواقع کاربران ترجیح میدهند ازآن به عنوان صفحه کلید دوم استفاده کنند . بزرگترین مزیت این دستگاهها این است که بدون احتیاج به تغییر داده ها یا احتیاج به برنامه خاص در تمام برنامه هائی که ورودی داده از صفحه کلید را قبول میکنند مورد استفاده می باشند .
نوع دیگری از این بارکدخوانها نیز موجود است که از طریق کابل RS232 به کامپیوتر متصل میشود و به صورت کد ASCII داده را به برنامه میشناساند .

2 – بارکدخوانهای سیار دسته ای :

این نوع بدون اینکه به طور مستقیم با کامپیوتر متصل باشند اطلاعات را در حافظه خود ذخیره کرده و سپس با استفاده از پایه اطلاعات آن روی کامپیوتر منتقل میشود . . این دستگاهها شامل یک اسکن کننده بارکد , یک صفحه نمایش برای انجام کار مورد نظر و یک صفحه کلید کوچک برای وارد کردن داده های مورد نظر مثل تعداد کالا و … هستند . ضمن اینکه یک پایه (Cradle) نیز برای انتقال اطلاعات به کامپیوتر حتما باید تهیه شود . این مدل بارکدخوانها در مواردی به کار میروند که احتیاج به جابجائی کاربر الزامی و داده های جمع آوری شده در لحظه مورد نیاز نیستند . این دستگاهها به صورتهای زیر استفاده میشوند که برنامه شما تعیین میکند که به کدام صورت استفاده شود :

قرار گرفتن روی دست (Handheld)    قرار گرفتن در کیف (Wearable)        قرار گرفتن در ماشین (Truck)

3 – بارکدخوانهای سیار بی سیم :

این نوع از بارکدخوانها هم اطلاعات را در حافظه نگهداری میکنند اما انتقال اطلاعات به صورت بلادرنگ انجام میشود این مدل از بارکدخوانها در مواردی که دسترسی اطلاعات برای تصمیمات مهم است استفاده میشود . . این دستگاهها شامل یک اسکن کننده بارکد , یک صفحه نمایش برای انجام کار مورد نظر و یک صفحه کلید کوچک برای وارد کردن داده های مورد نظر مثل تعداد کالا و … هستند . ضمن اینکه یک پایه (Cradle) نیز برای انتقال اطلاعات به کامپیوتر حتما باید تهیه شود. وقتی شما احتیاج به انتقال سریع اطلاعات دارید این دستگاههای بی سیم هستند که کار شما را عملی میکنند . این دستگاهها به صورتهای زیر استفاده میشوند که برنامه شما تعیین میکند که به کدام صورت استفاده شود :

قرار گرفتن روی دست (Handheld)      قرار گرفتن در کیف (Wearable)       قرار گرفتن در ماشین (Truck)

اسکنر چکونه کار میکند :

پایه هر دستگاه بارکد خوان یک اسکن کننده , یک رمزگشاینده و یک کابل ارتباطی میان کامپیوتر و دستگاه بارکد خوان میباشد . وظیفه اسکن کننده این است که کد را اسکن کرده و داده های خروجی الکتریکی ایجاد نماید که داده ها با نوارهای مشکی و فاصله بین آنها مرتبط است . این داده های الکتریکی سپس توسط رمز گشا آنالیز شده و بر اساس نوع کدگذاری و محتوی کد به صورت متعارف کامپیوتری ( شامل حروف – اعداد و یا علامتهای دیگر استاندارد مثل ” – ” و ” . ” و … ) نمایش داده می شود .

همچنین اسکن کننده ها میتوانند که این رمزگشا را به صورت داخلی داشته باشند و یا کدها را به صورت رمزگشائی نشده در خود نگهداری کنند که در این حالت احتیاج به وسیله ای دیگر دارند که به آن رابط یا Wedge می گوئیم . در این حالت کدها به محض اتصال به این رابط توسط رابط رمزگشائی میشوند و به مکان مورد نظر ما ( برای مثال بانک داده ها ) منتقل میشوند .

این روش اسکن شدن بیشتر در بارکدخوانهای سیار به کار برده میشود .

کدام بارکدخوان برای کار و نرم افزار شما مناسب است ؟

با تمام انتخابهائی که برای شما وجود دارند مهمترین نکته برای انتخاب درست دستگاه این است که شما به خوبی محیط کار و برنامه خود را قبل از اینکه هر تصمیمی بگیرید مطالعه کنید . برای این منظور سوالات زیر شما را در این انتخاب راهنمائی میکند :

* – دستگاهها در چه محیطی به کار میروند ؟ در یک محیط کاملا سخت صنعتی یا در یک فروشگاه معمولی !

* – استفاده از دستگاه برای مدت مشخصی می باشد یا به طور دائم از آن استفاده خواهد شد ؟

* – آیا به قابلیت سیار بودن دستگاه احتیاج دارید ؟

* – آیا خواندن کدها در نزدیکی کالاها می باشد یا در فاصله دورتر قرار دارند ؟

*- دستگاه چگونه به کامپیوتر متصل میشود ؟

*- آیا اطلاعات خوانده شده باید سریعا منتقل شوند یا خیر ؟

به خاطر داشته باشید که دامنه انتخاب دستگاههای بارکد خوان بسیار وسیع هست که از انها در هر برنامه ای بتوان استفاده کرد پس هرگز اولین دستگاهی را که به نظر مناسب کار شما بود انتخاب نکنید چه بسا ارزانترین دستگاه به راحتی و مفیدتر برای شما مورد استفاده داشته باشد .

آیا دستگاه بارکد خوان با کامپیوتر من سازگار است ؟

هیچ برنامه خاصی لازم نیست که اطلاعات را به کامپیوتر شما انتقال دهد . این دستگاهها به راحتی توسط اسکن کننده و رمزگشای خود اطلاعات را به سیستم شما انتقال میدهند و لازم نیست شما کار دیگری انجام دهید . هرچند کامپیوتر شما برای خواندن کدها مشکل خاصی را نخواهد داشت اما در مواقعی ممکن است قابلیت چاپ کدها را نداشته باشد که در این صورت شما با ارتقاء سیستم خود و یا با خرید برچسبهای از قبل چاپ شده و یا حتی خرید دستگاههای چاپ بارکد به راحتی این مشکل را حل خواهید کرد و برچسبهای خود را بر روی محصولاتتان می چسبانید .

چاپ بارکد :

با داشتن یک برنامه خوب کامپیوتری تمام پرینترهای سوزنی , حرارتی و لیزری قادر هستند تا بارکد را با کیفیتی خوب چاپ کنند اما اگر شما میخواهید که بهترین چاپ را داشته باشید از چاپگرهای مخصوص چاپ برچسب استفاده کنید که برای چاپ تعداد زیادی برچسب هم مناسب هستند . اما اگر احتیاج به چاپ چند لیبل در زمانی خاص دارید میتوانید از چاپگرهای سوزنی نیز استفاده کنید . تقریبا اکثر صنایع – کوچک و بزرگ – از چاپگرهای حرارتی مخصوص برچسب استفاده میکنند زیرا به راحتی رولهای برچسب را چاپ کرده و مهمتر از آن چاپ سریع و با کیفیت بارکدهاست که این پرینترها را در اولویت اول قرار میدهد .

استفاده از بارکد در هر کجا !

تمام صنایع میتوانند از مزیتهای تکنولوژی بارکد سود ببرند . در زیر برخی از موارد کاربردی بارکدها را ذکر میکنیم :

کارخانجات :
کارخانجات بزرگ و کوچک , انبارها میتوانند از مزایای سهولت استفاده از بارکد استفاده کنند که این سیستم با تمام روشهای مدیریتی مثل MRP , WMS و MES سازگار است .

حمل و نقل :
استفاده از بارکد در صنعت حمل و نقل باعث راحتی مدیریت کالاهای ثابت یا در حال حرکت می شود .هماهنگی بارکد با سیستمهای مختلف شبکه ای باعث کاهش هزینه ها و ایجاد خدمات بهتر برای مشتریان می شود .

فروشگاهها :
با استفاده از بارکد در فروشگاهها میتوان کنترل دقیقی روی ورود و خروج کالاها , موجودی انبار و قیمت جنسها در لحظه داشت ضمن اینکه با استفاده از ارتباط بی سیم میتوان به راحتی در لحظه سفارش مشتری را ثبت و خرید را انجام داد .

مراکز درمانی :
استفاده از سیستم بارکد در مراکز درمانی باعث میشود تا مدیریت اطلاعات مهمی نظیر : پیشینه پزشکی بیمار , نوع بیمه و سایر اطلاعات به دست آورد.


بررسی اجمالی استانداردهای رایج برای بارکد و حروف و کاراکترهایی که پشتیبانی می کنند.

استانداردهای رایج برای بارکد

پسورد فایل : behsanandish.com

بارکد چیست؟ قسمت 1
بارکد چیست؟ قسمت 2

بارکد چیست؟

به زبان ساده مى توان گفت: بارکد مجموعه اى است از میله ها یا خطوط سیاه رنگى که معمولاً بر روى زمینه اى سفید چاپ مى شود و به وسیله آن از کالاى خریدارى شده شناسایى لازم به عمل مى آید و قیمت آن مشخص مى شود و اگر به دنبال تعریف دقیق ترى هستید، باید گفت:

بارکد عبارت است از انتقال داده ها از طریق امواج نورى. آنها مجموعه اى از خطوط میله اى موازى با عرضهاى گوناگون (پهن و نازک)هستندکه اندازه هر خط معنا و مفهوم خاصى براى دستگاه بارکدخوان دارد.
در حقیقت دستگاه بارکدخوان ماشینى است که اطلاعات را به شکل بصرى بر روى صفحه نمایش مى دهد.

ضرورت استفاده از بارکد

گرداندن یک فروشگاه کار مشکل و پردردسرى است. مدیران و صاحبان آن باید از میزان موجودى که از هزاران کالاى کوچک و بزرگ دارند، مطلع باشند (کالاهایى که مجبور به خرده فروشى آن هستند و در زمان طولانى از انبارهایشان بیرون مى روند.)

همین طور که فروشگاهها، بزرگ و بزرگتر شدند تا به فروشگاههاى زنجیره اى امروزى رسیدند، کار مشکل و مشکل تر شد. نخست مجبور شدند در فروشگاهها را هرچند وقت یکبار ببندند و تمام کیسه ها و بسته ها و کنسروها را شمارش کنند. کار بسیار دشوارى بود.
این کار سخت و هزینه بردار بیش از یک بار در سال انجام نمى شد (انبارگردانى)، بنابراین مدیران فروشگاهها مجبور بودند بیشتر کارهایشان را بر اساس حدس و گمان انجام دهند و در نهایت این نیاز مادر اختراع شد!

سیستم بارکدگذارى چگونه آغاز شد؟

در سالذ۱۹۳۲ گروهى از دانشجویان رشته مدیریت بازرگانى دانشگاه هاروارد، تصمیم گرفتند روشى را انتخاب کنند تا بر اساس آن مشتریان کالاى مورد نظرشان را از درون کاتالوگى پیدا کنند و سپس با برداشتن کارت هاى خاص چسبانده شده در کنار نام هر کالا و تحویل به مسؤول کنترل و قرار دادن آن در دستگاه کارت خوان و پانچ، مستقیماً کالا را از طریق انبار به باجه کنترل انتقال دهند و صورتحساب کامل را دریافت کنند و مهم تر از همه صاحبان فروشگاه از موجودى انبار خود اطلاعات به روزى داشته باشند. البته ایده سیستم «بارکدینگ» مدرن و پیشرفته از سال ۱۹۴۸ وارد سیستم تجارى شد.

سیستم بارکد امروزى چگونه شروع به کار کرد؟

سال ۱۹۴۸ بود که رئیس یک فروشگاه مواد غذایى در آمریکا از کار کند و بى دقت کارکنان فروشگاه به ستوه آمد و براى پیدا کردن راه حل به مسؤولان دانشگاه (Drexel) مراجعه کرد تا تقاضاى ساخت سیستم کنترل خودکارى را داشته باشد، اما مسؤولان دانشگاه از این نظریه استقبال نکردند.

یکى از دانشجویان فارغ التحصیل این دانشگاه به نام باب سیلور «Bob Silver» این گفت و گو را شنید و آن را با یکى از دوستانش Norman Joseph Woodland در میان گذاشت و تصمیم گرفتند براى ساخت چنین سیستمى شروع به کار کنند. آنها در شروع از رمز و الفباى سیستم مورس الهام گرفتند و سعى کردند با چاپ و طراحى میله هاى پهن و باریک این شیوه را راه اندازى کنند و مدتى بعد هم به فکر سیستم بارکد نقطه اى و دایره اى افتادند.

سال ۱۹۴۹ بود که توانستند اختراع خود را ثبت کنند و در سال ۱۹۵۲ نخستین سیستم بارکدخوان را ساختند. «وودلند» که از سال۱۹۵۱در شرکت IBM مشغول به کار شده بود، توانست با استفاده از موقعیتهایى که در آنجا برایش ایجاد مى شد، به کمک دوستش در سال ۱۹۵۲ دستگاهى به بزرگى یک میز تحریر بسازد و ۲ جزء اصلى در آن تعبیه کرد:

۱- یک حباب (لامپ) ۵۰۰ واتى به عنوان منبع نور.

۲- با استفاده از آنچه در سیستم ساخت فیلم (براى تراک هاى صوتى استفاده مى شد) مجرایى لوله اى ساخت و این لوله را به یک نوسان سنج متصل کرد و سپس یک قسمت کاغذ را به شکل کدهاى خطى در جلوى پرتوى نور خارج شده از منبع نور، علامت گذارى کرد. پرتو منعکس شده به مجرا مى رسید و در طرف دیگر گره اى ناشى از حباب پرقدرت کاغذ را مى سوزاند. او بدون هیچ کم و کاست به آنچه مى خواست، رسیده بود. درحالى که کاغذ حرکت مى کرد، علایم روى دستگاه نوسان سنج تغییراتى مى کرد و در نهایت توانسته بودند دستگاهى داشته باشند که به کمک آن موضوعات چاپ شده، خوانده مى شد.

بعداً متوجه شدند لامپ ۵۰۰ واتى میزان الکتریسیته اى زیادتر از آنچه آنها نیاز داشتند، تولید مى کند و میزان اضافى، علاوه بر بالا بردن هزینه ها، گرماى اضافى هم تولید مى کرد و از طرفى نگاه کردن به آن باعث آسیب چشم مى شد، بنابراین به فکر استفاده از منبعى افتادند که تمام نور مورد نیاز آنها را در فضاى کوچکى متمرکز کند. همان کارى که امروزه «لیزر» انجام مى دهد، اما در سال ۱۹۵۲ لیزر موجود نبود!

بعدها با گسترش و تولید لیزر «Laser» توانستند دستگاههاى بارکدخوان ارزان ترى تولید کنند. گرچه «باب سیلور» فرصت استفاده درست از دانش خود را در شرایط آسان تر نیافت و در ۳۸سالگى فوت کرد، اما همکارش کار را ادامه داد.

در سال ۱۹۷۲ سیستم بارکد نقطه اى نیز در عمل مورد استفاده قرار گرفت، اما این روش چندان موفق نبود (زیرا حین چاپ براحتى مغشوش مى شد.)

در سال ۱۹۷۴ وودلند در IMB سیستم بارکد خطى را گسترش داد و نخستین محصول خرده فروشى (محصولاتى چون آب میوه و آدامس) به این طریق فروخته شد. (و جالب اینکه در حال حاضر یک بسته از آن آدامس در موزه اى در آمریکا نگهدارى مى شود).
و سرانجام آقاى وود در سال ۱۹۹۲ توانست مدال ملى تکنولوژى را بابت به کارگیرى سیستم بارکد دریافت کند. (تنها به خاطر استراق سمع دوستش آقاى سیلور!) خلاصه آنکه، بارکدها و سایر برچسب هاى خوانا در جایى که نیاز به خوانده شدن اطلاعات با پردازش توسط کامپیوتر وجود دارد، استفاده مى شوند و کاربرها به عوض تایپ کردن رشته اى طویل از داده ها، تنها بارکد مورد نظر را جلوى دستگاه بارکدخوان قرار مى دهند و پردازش بدون نیاز به نیروى انسانى به طور کاملاً خودکار انجام مى شود. بنابراین بارکد شیوه شناسایى و تعیین هویت خودکار داده ها است.

رقمى که توسط بارکد تولید مى شود، عموماً محصول خاصى را نشان مى دهد. سیستم بارکدینگ به طور معکوس هم کار مى کند، یعنى قادر است با دریافت رقم مربوط به یک محصول، بارکد مورد نظر را ایجاد بکند و در واقع نوعى خود شناسایى انجام مى شود.
فواید بارکد کردن
۱- مصون بودن از خطاپذیرى به علت کاهش دخالت نیروى انسانى و وارد نشدن دستى اطلاعات.
۲- دسته بندى دقیق اطلاعات.
۳- سرعت بالا به همراه صحت ۱۰۰درصد.
۴- دسترسى آسان به اطلاعات واقعى و حقیقى (در جریان روند مدیریت) البته اگر: با دقت تمام کالاها در فروشگاهها بارکدگذارى شوند تا مراجعه کنندگان دچار دردسرهایى که ما با آن خوب آشنایى داریم، نشوند

منبع


كد 128 امكان كد گذاري همه ی 128 حرف مربوط به مجموعه كاراكترهاي كد اسكي را ارائه مي كند. اين كد با استفاده از خطوط و فضاهاي خالي با 4 پهناي مختلف ، به بيشترين فشردگي ممكن سمبل ها نسبت به روش هاي قديمي تر خود كه از خطوط و فضاهاي خالي با 2 ضخامت مختلف استفاده مي كردند ، رسيده است.

كد 128 ممكن است به صورت دو طرفه (از هر دو جهت ) اسكن شود و محدوديتي هم براي تعداد كاراكترها در هر باركد وجود ندارد. هر چند ممكن است طول باركد با توجه به نوع اسكنر مورد استفاده و يا مكان مورد نظر براي چاپ باركد محدود شود . اما اين روش محدوديتي براي طول باركد ايجاد شده ندارد.

كد 128 سه مجموعه كاراكتري متفاوت دارد كه در جدول مشخصات باركد به نام هاي Code Set a و Code Set B و Code Set C مشخص شده است .هر كدام از اين سه مجموعه كد مي تواند با كاراكتر شروع مربوط به خودش مورد انتخاب واقع شود. كاراكتر خاص `shift` در هر مجموعه به شما امكان مي دهد تا بتوانيد در بين يك كد ست از كد ست هاي ديگر هم استفاده كنيد با اين توصيف امكان استفاده ازچند كد ست در يك بار كد وجود دارد. با استفاده از اين روش طول باركد چاپ شده مي تواند به كمترين حد ممكن خود برسد.

در صورتي كه داده ها فقط شامل اعداد باشد استفاده از مجموعه كد C باعث مي شود تا طول باركد چاپ شده به كمترين حد ممكن تقليل پيدا كند . البته بايد اين نكته را در نظر داشته باشيد كه براي استفاده از Code Set C بايستي تعداد ارقام رشته اي كه مي خواهيد باركد آن را چاپ كنيد زوج بوده و حداقل 4 رقم و يا بيشتر طول داشته باشد.
هر كدام از مجموعه كدهاي a,B,C يك يا چند كاراكتر براي توابع خاص رزرو كرده اند
از ويژگي هاي كد 128 استفاده از رقم كنترل براي بررسي صحت باركد خوانده شده توسط دستگاه اسكنر باركد مي باشد.

ساختار باركد 128 به صورت زير است
• يك فضاي يكنواخت و يا خالي در سمت چپ خطوط باركد
• كاراكتر شروع
• تعداد نامحدودي از داده ها
• رقم كنترل صحت
• كاراكتر خاتمه
• يك فضاي يكنواخت و يا خالي در سمت راست خطوط باركد
پهناي فضاي يكنواخت و يا خالي حداقل بايد 10 برابر پهناي نازكترين خط / نازكترين فاصله خالي در باركد باشد.

هر كاراكتر در باركد 128 تركيبي از 3 خط و 3 فاصله است . (كاراكتر خاتمه داراي 4 خط و 3 فاصله مي باشد ) .هر خط / فاصله خالي مي تواند يكي از 4 واحد پهناي مختلف را داشته باشد . نازكترين خط / فاصله خالي بايد يك چهارم پهن ترين خط/ فاصله خالي باشد. جدول مشخصات باركد پهناي خط/ فاصله خالي براي همه مجموعه كاراكترهاي مربوط به كد 128 را نشان مي دهد. دقت كنيد كه مجموع پهناي خطوط در هر يك از كاراكتر ها عددي زوج و مجموع فواصل خالي براي هر كدام از كاراكترها عددي فرد است. اولين ستون در جدول با عنوان « value » حاوي عددي است كه براي محاسبه رقم كنترل بكار مي رود.

بارکد چیست؟ قسمت 1
بارکد چیست؟ قسمت 2