بایگانی برچسب برای: فیلتر گابور

9.آشکار سازی صورت با استفاده فیلترهای گابور و شبکه های عصبی

ﭼﻜﻴﺪه: در این مقاله، روشی قدرتمند برای آشکارسازی صورت از زوایای مختلف با استفاده از ترکیب فیلترهای گابور و شبکه ی عصبی بیان می شود. در ابتدا رابطه ی ریاضی تولید فیلتر گابور ورد بررسی قرار می گیرد و در مرحله بعد با برسسی 75 بانک فیلتر مختلف، محدوده مقادیر پارامترهای مؤثر در تولید فیلتر گابور مشخص شده و سپس بهترین مقدار برای آنها به دست می آید. شبکه ی عصبی مورد استفاده در این نوع مقاله از نوع پیش خور با روش بازگشتی است و بردار ورودی این شبکه عصبی از کانوالو تصویر با تنها یک فیلتر گابور با زاویه  و فرکانس  در خوزه فرکانس به دست می آید. الگوریتم پیشنهادی در این مقاله روی 550 تصویر از 2 پایگاه تصویر فرت با پس زمینه ساده و مارکوس وبر با پس زمینه پیچیده آزمایش شده و دقت آشکارسازی آن به ترتیب 98/4% و 95% است. همچنین به کمک الگوریتم ویولا جونز ناحیه صورت را در 550 نمونه تصویر به دست آورده و مقایسه ای بین نتایج به دست آمده از الگوریتم ویولاجونز و آلگوریتم پیشنهادی آورده می شود.
کلمات کلیدی: آشکار سازی صورت، شبکه عصبی، فیلتر گابور، ویژگی های گابور

فایل PDF – در 13 صفحه- نویسنده : ﻣﺤﻤﻮد ﻣﺤﻠﻮﺟﻲ و رضا محمدیان

آشکار سازی صورت با استفاده فیلترهای گابور و شبکه های عصبی

پسورد فایل : behsanandish.com


10.بهبود روش های ناحیه بندی تصاویر MRI مغز انسان با استفاده از عملگر گابور

 

فایل PDF – در 15 صفحه- نویسنده : فرزاد فلاحی

بهبود روش های ناحیه بندی تصاویر MRI مغز انسان با استفاده از عملگر گابور

پسورد فایل : behsanandish.com


11. بهبود سیستم های ایمنی برای تشخیص اجسام در تصویرهای پرتونگاری بار

 

چکیده: بازرسی چشمی بار در فرودگاهها و مراکز حساس مستلزم صرف زمان زيادی است و اجسام در بسياری از موارد خصوصاً زمانی که در موقعيت و زاويههای خاصی قرار گرفته باشند قابل شناسايی با بازرسیهای سريع چشمی نيستند. امروزه از دستگاههای تصويربرداری پرتو ايکس برای تشخيص اجسام در بار استفاده میشود. تصاوير پرتونگاری حاصل به علت پراکندگی فوتونی دارای ميزانی از مهآلودگی هستند و گاهی تشخيص دقيق اجسام با مشکل مواجه میشود. روشهای پردازش تصوير میتوانند به بهبود کنتراست و در نتيجه بهتر شدن قابليت تشخيص اجسام کمک کنند. در پرتونگاری بار سطح نويز و پراکندگی در تصويرهای مختلف با هم تفاوت زيادی دارند که اين موضوع ضرورت استفاده از روشهای پردازش تصوير خودکار را ايجاب میکند. در اين پژوهش از دو روش موجک و صافی گابور با سطح آستانهی خودکار استفاده شده است. نتايج حاصل نشان میدهد تصويرهای بازسازی شده اگرچه در جزييات دارای اختلافاتی هستنند ولی در ميزان تشخيص اجسام توسط افراد تفاوت زيادی ندارند. در هر دو روش کنتراست و قابليت تشخيص اجسام نسبت به تصويرهای اوليه بهبود قابل ملاحظهای يافته است. زمان اجرای الگوريتم موجک گسسته حدود يک هشتم زمان اجرای صافی گابور است که با توجه به اهميت سرعت پردازش تصوير در بازرسی بار برتری قابل ملاحظهای است.

کلید واژهها: پرتونگاری بار،سیستم بازرسی بار،پرتو ایکس، روش موجک گسسته، فیلتر گابور

 

فایل PDF – در 13 صفحه- نویسندگان : سمانه شیخ ربیعی، بهروز رکرک، عفت یاحقی، بهنام آرضابک

بهبود سیستم های ایمنی برای تشخیص اجسام در تصویرهای پرتونگاری بار

پسورد فایل : behsanandish.com


12. ﺑﻬﺒﻮد کیفیت تصویر اﺛﺮاﻧﮕﺸﺖ ﺑﺎ اﺳﺘﻔﺎده از فیلتر بانک ﮐﻤﺎﻧﯽ گابور

ﭼﮑﯿﺪه: ﺗﺄﯾﯿﺪ و ﺷﻨﺎﺳﺎﯾﯽ ﻫﻮﯾﺖ از روی ﺗﺼﻮﯾﺮ اﺛﺮاﻧﮕﺸﺖ ارﺗﺒﺎط ﻣﺴﺘﻘﯿﻤﯽ ﺑﺎ ﮐﯿﻔﯿﺖ اﯾﻦ ﺗﺼـﻮﯾﺮ دارد. در اﯾـﻦ ﻣﻘﺎﻟـﻪ روش ﺟﺪﯾـﺪی ﺑﺮای ﺑﻬﺒﻮد ﮐﯿﻔﯿﺖ ﺗﺼﻮﯾر اﺛﺮ اﻧﮕﺸﺖ ﺑﺎ اﺳﺘﻔﺎده از ﻓﯿﻠﺘﺮ ﺑﺎﻧﮏ اﺳـﺖ ﮐﻤﺎﻧﯽ ﮔـﺎﺑﻮر اراﺋـﻪ ﺷـﺪه است. ﻓﯿﻠﺘـﺮ ﺑﺎﻧـﮏ ﮐﻤـﺎﻧﯽ ﮔـﺎﺑﻮر در ﺣﻘﯿﻘﺖ ﻧﻮﻋﯽ ﻓﯿﻠﺘﺮ ﺑﺎﻧﮏ ﮔﺎﺑﻮر اﺳﺘﺎﻧﺪارد ﻣﺘﺒﺤﺮ ﺷﺪه ﺑﺮای اﺳﺘﻔﺎده روی ﺗﺼﺎوﯾﺮ اﺛﺮ اﻧﮕﺸﺖ می ﺑﺎﺷﺪ. ارزﯾﺎﺑﯽ ﻣﯿـﺰان ﺗﻮﻓﯿـﻖ روش در بهبود ﮐﯿﻔﯿﺖ ﺗﺼﺎوﯾﺮ اﺛﺮ اﻧﮕﺸﺖ ﺑﻪ دو روش اﻧﺠﺎم ﺷﺪه است. در روش اول، ﻣﻘﺎﯾﺴﻪ ﺑﯿﻦ ﺗﺼﺎوﯾﺮ اﺻـﻠﯽ و ﺗﺼـﺎوﯾﺮ ﺑﻬﺒﻮد ﯾﺎﻓﺘﻪ ﺑﺮاﺳﺎس ﻧﺘﺎﯾﺞ ﺑﺪﺳﺖ آﻣﺪه از ارزﯾﺎﺑﯽ ﺗﺄﯾﯿﺪ و ﺷﻨﺎﺳﺎﯾﯽ ﻫﻮﯾﺖ ﺻﻮرت ﭘﺬﯾﺮﻓﺘﻪ اﺳﺖ که ﺳﯿﺴﺘﻢ ﺗﺸﺨﯿﺺ ﻫﻮﯾـﺖ ﭘﯿﺸﻨﻬﺎدی ﻣﺒﺘﻨﯽ ﺑﺮ معیار ﻫﻤﺒﺴﺘﮕﯽ ﻫﯿﺴﺘﻮﮔﺮام ﻧﺮﻣﺎﻟﯿﺰه ﺷﺪه ویژگی های تصویر آماری باینری شده (BSIF) است. در روش دوم، از ﻣﻌﯿﺎر ﻧﺴﺒﺖ ﺳﯿﮕﻨﺎل ﺑﻪ ﻧﻮﯾﺰ ﺑﯿﺸﯿﻨﻪ (PSNR) به منظور ارزﯾﺎﺑﯽ میزان بهبود ﮐﯿﻔﯿﺖ، اﺳﺘﻔﺎده ﺷـﺪه است. دو ﭘﺎﯾﮕـﺎه DBI و DBII برای اجرای روش و ارزیابی نتایج مورد استفاده ﻗﺮار گرفته اﻧﺪ .ﻧﺮخ ﺗﺴﺎوی ﺧﻄﺎی (EER) ﺗﺄﯾﯿﺪ ﻫﻮﯾـﺖ ﺑﺮای ﺗﺼﺎوﯾﺮ اﺻﻠﯽ از (ﺑﻪ ترتیب % ۱۵/۸۹ و  ۱۱/۷۰%) به ( % ۱۱/۳۵ و  ۸/۰۰%) ﺑـﺮای ﺗﺼـﺎوﯾﺮ ﺑﻬﺒـﻮد ﯾﺎﻓﺘـﻪ کاهش ﯾﺎﻓﺘﻪ اﺳﺖ .ﺑﺮای ﺗﺸﺨﯿﺺ ﻫﻮﯾﺖ ﻧﯿﺰ ﻧﺮخ ﻣﺮﺗﺒﻪ اول ﻣﯿﺰان ﺑﺎزﺷﻨﺎﺳـﯽ ﺻـﺤﯿﺢ ﺑـﺮای ﺗﺼـﺎوﯾﺮ اصلی از مقادیر( ۶۹/۲۸% و ۷۱/۱۶ %) به (۷۸/۸۰% و ۸۱/۷۰ %) ﺑﺮای ﺗﺼﺎوﯾﺮ ﺑﻬﺒﻮد ﯾﺎﻓﺘﻪ اﻓﺰاﯾﺶ ﯾﺎﻓﺘﻪ است.  ﻣﯿﺰان متوسط PSNR ﻣﺮﺑﻮط ﺑﻪ ﺗﺼﺎوﯾﺮ ﺑﻬﺒﻮد ﯾﺎﻓﺘﻪ ﻧﯿﺰ از ﻣﻮرد ﻣﺸﺎﺑﻪ ﺑﺮای ﺗﺼﺎوﯾﺮ اﺻﻠﯽ ﺑﯿﺸﺘﺮ اﺳﺖ.

ﮐﻠﯿﺪ واژهﻫﺎ: ﮐﯿﻔﯿﺖ ﺗﺼﻮﯾﺮ، ﻓﯿﻠﺘﺮﺑﺎﻧﮏ اﺛﺮاﻧﮕﺸﺖ، ﺑﻬﺒﻮد ﮐﻤﺎﻧﯽ ﮔﺎﺑﻮر

 

فایل PDF – در 17 صفحه- نویسندگان : مهران تقی پور گرجی کلایی، سید محمد رضوی و ناصر مهرشاد

ﺑﻬﺒﻮد کیفیت تصویر اﺛﺮاﻧﮕﺸﺖ ﺑﺎ اﺳﺘﻔﺎده از فیلتر بانک ﮐﻤﺎﻧﯽ گابور

پسورد فایل : behsanandish.com


13. تشخیص چهره با استفاده از PCA و فیلتر گابور

 

فایل PDF – در 8 صفحه- نویسندگان : حمیدرضا قجر، محسن سریانی و عباس کوچاری

تشخیص چهره با استفاده از PCA و فیلتر گابور

پسورد فایل : behsanandish.com


14. تعیین توزیع دانه بندی سنگ دانه های بتن و آسفالت با استفاده از استخراج ویژگی های گابور و شبکه های عصبی

چکیده: توزیع ابعادی سنگدانه های تشکیل دهنده بتن و آسفالت، از مهمترین پارامترها در کنترل طرحهای اختلاط بتن و آسفالت است که میتواند بر کیفیت نهایی، مقاومت و دوام بتن و آسفالت تاثیر گذار باشد. بهمنظور ارزیابی درصد اختلاط سنگدانه ها، روش پردازش تصویری دیجیتال یک روش غیر مستقیم، سریع و قابل اعتماد است. در این تحقیق بر پایه یکی از روشهای استخراج ویژگیهای دیداری تصویر (فیلترهای گابور) و استفاده از شبکه های عصبی، الگوریتمی جهت تعیین توزیع دانه بندی تصاویر سنگدانه های تشکیل دهنده بتن و آسفالت ارائه شده است. تعداد 100 تصویر از سنگدانه های تشکیل دهنده بتن و آسفالت برای آموزش شبکه عصبی به کار برده شد. سپس نتایج حاصله با نتایج تخمین خودکار دانه بندی سنگدانه ها در نرم افزار Split-Desktop و همچنین تجزیه سرندی مقایسه شد.نتایج به دست آمده بیانگر یک بهبود کلی در ارزیابی توزیع اندازه سنگدانه های تشکیل دهنده بتن و آسفالت و کاهش خطای 67% با استفاده از روش پیشنهادی نسبت به تخمین خودکار نرم افزار Split-Desktop است. همچنین در ارزیابی اندازه های F10 تا F100، روش پیشنهادی بهبود 62% را نشان داد.

واژه های کلیدی: توزیع دانه بندی، سنگدانه های بتن و آسفالت، استخراج ویژگی تصویر، فیلترهای گابور، شبکه های عصبی.

 

فایل PDF – در 14 صفحه- نویسندگان : هادی یعقوبی، حمید منصوری، محمد علی ابراهیمی فرسنگی و حسین نظام آبادی پور

تعیین توزیع دانه بندی سنگ دانه های بتن و آسفالت با استفاده از استخراج ویژگی های گابور و شبکه های عصبی

پسورد فایل : behsanandish.com


15. خوشه بندی سبک نگارش دست نوشته برون خط فارسی

 

چکیده– ﻫﺪﻑ ﺍﻳﻦ ﭘﺎﻳﺎﻥ ﻧﺎﻣﻪ، ﻳﺎﻓﺘﻦ ﻭ ﺍﺳﺘﺨﺮﺍﺝ ﻭﻳﮋﮔﻲ ﻫﺎﻳﻲ ﺍﺳﺖ ﮐﻪ ﺑﺮ ﻣﺒﻨﺎﻱ ﺁﻥ ﺑﺘﻮﺍﻥ ﺩﺳﺖ ﺧﻂ ﻓﺎﺭﺳﻲ ﺭﺍ ﺧﻮﺷﻪ ﺑﻨﺪﻱ ﮐﺮﺩ .ﺩﺭ ﺍﻳﻦ ﮐﺎﺭ، ﺩﺭ ﺍﺑﺘﺪﺍ ﺑﺮ ﺭﻭﻱ ﻭﻳﮋﮔﻲ ﻫﺎﻱ ﻣﺒﺘﻨﻲ ﺑﺮ ﺑﺎﻓﺖ، ﺗﻤﺮﮐﺰ ﺷﺪﻩ ﺍﺳﺖ .ﺍﻳﻦ ﻭﻳﮋﮔﻲ ﻫﺎ ﺷﺎﻣﻞ ﺩﻭ ﺩﺳﺘﻪ ﻭﻳﮋﮔﻲ ﺁﻣﺎﺭﻱ ﻣﺎﺗﺮﻳﺲ ﺑﺎﻫﻢ ﺁﻳﻲ ﻭ ﻭﻳﮋﮔﻲ ﻣﺒﺘﻨﻲ ﺑﺮ ﺗﺒﺪﻳﻞ ﮔﺎﺑﻮﺭ ﺍﺳﺖ .ﺑﺮﺍﻱ ﺍﺳﺘﺨﺮﺍﺝ ﺍﻳﻦ ﻭﻳﮋﮔﻲﻫﺎ، ﻳﮏ ﺑﺎﻓﺖ ﻣﻨﺎﺳﺐ ﺩﺭ ﺍﺑﻌﺎﺩ ۱۰۲۴×۱۰۲۴ ﻣﺴﺘﻘﻞ ﺍﺯ ﻣﺤﺘﻮﺍﻱ ﺳﻨﺪ، ﺍﺯ ﺗﺼﻮﻳﺮ ﺩﺳﺘﻨﻮﺷﺘﻪ ﺍﻳﺠﺎﺩ ﻣﻲ ﺷﻮﺩ .ﺍﺯ ﻭﻳﮋﮔﻲ ﻫﺎﻱ ﺩﻳﮕﺮﻱ ﮐﻪ ﺩﺭ ﺍﻳﻦ ﮐﺎﺭ ﺍﺯ ﺁﻥ ﻫﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺷﺪﻩ ﺍﺳﺖ، ﺗﻌﺪﺍﺩﻱ ﻭﻳﮋﮔﻲ ﺳﺎﺧﺘﺎﺭﻱ ﻣﺒﺘﻨﻲ ﺑﺮ ﻣﻨﺤﻨﻲ ﭘﻴﺮﺍﻣﻮﻧﻲ ﺍﺳﺖ .ﺍﻳﻦ ﻭﻳﮋﮔﻲ ﻫﺎ ﺭﺍ ﺍﺯ ﻫﺮ ﻳﮏ ﺍﺯ ﺗﺼﺎﻭﻳﺮ ﻣﻮﺟﻮﺩ ﺩﺭ ﻳﮏ ﻣﺠﻤﻮﻋﻪ ﺩﺍﺩﻩ ﺍﺯ 97 ﺩﺳﺘﻨﻮﺷﺘﻪ ﻓﺎﺭﺳﻲ ﮐﻪ ﺩﺍﺭﺍﻱ ﻣﺘﻮﻥ ﻣﺘﻔﺎﻭﺗﻲ ﺑﻮﺩﻧﺪ، ﺍﺳﺘﺨﺮﺍﺝ ﮐﺮﺩﻳﻢ ﻭ ﺍﺯ ﺍﻟﮕﻮﺭﻳﺘﻢ k ﻣﻴﺎﻧﮕﻴﻦ ﻭ ﺷﺒﮑﻪ ﻋﺼﺒﻲ ﻧﮕﺎﺷﺖ ﻭﻳﮋﮔﻲ ﺧﻮﺩ ﺳﺎﻣﺎﻥ، ﺑﺮﺍﻱ ﺧﻮﺷﻪ ﺑﻨﺪﻱ ﺍﻳﻦ ﻭﻳﮋﮔﻲ ﻫﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺷﺪﻩ ﺍﺳﺖ.

ﺑﺮﺍﻱ ﺍﺭﺯﻳﺎﺑﻲ ﺍﻳﻦ ﻭﻳﮋﮔﻲ ﻫﺎ، ﻳﮏ ﺭﻭﺵ ﺍﺭﺯﻳﺎﺑﻲ ﺑﺮ ﻣﺒﻨﺎﻱ ﺍﻟﮕﻮﺭﻳﺘﻢ ﺧﻮﺷﻪ ﺑﻨﺪﻱ k ﻣﻴﺎﻧﮕﻴﻦ، ﻃﺮﺍﺣﻲ ﮐﺮﺩﻩ ﺍﻳﻢ .ﺩﺭ ﺍﻳﻦ ﺍﻟﮕﻮﺭﻳﺘﻢ ﺍﺯ ﻣﻌﻴﺎﺭ ﻣﻘﺎﻳﺴﻪ ﺑﺎﻳﻨﺮﻱ ﮊﺍﮐﺎﺭﺩ ﺍﺳﺘﻔﺎﺩﻩ ﮐﺮﺩﻩ ﺍﻳﻢ، ﻫﻢ ﭼﻨﻴﻦ ﺑﺮﺍﻱ ﻣﺤﺎﺳﺒﻪ ﻣﺮﺍﮐﺰ ﺧﻮﺷﻪ ﺩﺭ ﻫﺮ ﺩﻭﺭﻩ ﺗﮑﺮﺍﺭ ﺍﺯ ﺍﻟﮕﻮﺭﻳﺘﻢ k ﻣﻴﺎﻧﮕﻴﻦ، ﺍﺯ ﺭﻭﺵ ﺍﻧﺘﺨﺎﺏ ﺩﺍﺩﻩ ﭼﺮﺥ ﺭﻭﻟﺖ، ﺑﻬﺮﻩ ﮔﺮﻓﺘﻪﺍﻳﻢ.

ﻧﺘﺎﻳﺞ ﺑﺪﺳﺖ ﺁﻣﺪﻩ، ﻧﺸﺎﻥ ﻣﻲ ﺩﻫﺪ ﺑﺎ ﺗﺮﮐﻴﺐ ﺩﻭ ﻧﻮﻉ ﺍﺯ ﻭﻳﮋﮔﻲ ﻫﺎﻱ ﻣﺒﺘﻨﻲ ﺑﺮ ﻣﻨﺤﻨﻲ ﭘﻴﺮﺍﻣﻮﻧﻲ، ﻧﺮﺥ ﺧﻮﺷﻪ بندی 75 ﺩﺭﺻﺪ ﺍﺳﺖ ﮐﻪ ﻧﺴﺒﺖ ﺑﻪ ﺳﺎﻳﺮ ﺭﻭﺵﻫﺎﻱ ﻣﻮﺭﺩ ﺍﺳﺘﻔﺎﺩﻩ ﺩﺭ ﺍﻳﻦ ﮐﺎﺭ، ﻧﺮﺥ ﺑﻬﺘﺮﻱ ﺭﺍ ﺩﺭ ﺑﺮﺩﺍﺷﺘﻪ ﺍﺳﺖ .

ﮐﻠﻴﺪ ﻭﺍﮊﻩ: ﺳﺒﮏ ﻧﮕﺎﺭﺵ، ﺧﻮﺷﻪ ﺑﻨﺪﻱ، ﺑﺎﻓﺖ، ﻓﻴﻠﺘﺮ ﮔﺎﺑﻮﺭ، ﻣﺎﺗﺮﻳﺲ ﺑﺎ ﻫﻢ ، ﺁﻳﻲ، ﻣﻨﺤﻨﻲ ﭘﻴﺮﺍﻣﻮﻧﻲ، ﮊﺍﮐﺎﺭﺩ ﭼﺮﺥ ﺭﻭﻟﺖ

فایل PDF – در 20 صفحه- نویسنده : فاطمه ولایتی

خوشه بندی سبک نگارش دست نوشته برون خط فارسی

پسورد فایل : behsanandish.com


16. شاخص گذاری بر روی تصاویر با استفاده از موجک های گابور و ممان های لژاندر

 

چکیده- در این مقاله، یک سیستم جدید شاخص گذاری و بازیابی تصاویر (CBIR) با استفاده از موجک های گابور و ممان های لژاندار پیشنهاد گردیده است. از انجائیکه موجک های گایور قادر به استخراج مطلوب اطلاعات خطوط و لبه های تصاویر در مقیاس ها و درجات تفکیک مختلف می باشند و از طرف دیگر، این تبدیل تنها تابعی است که می تواند حد تئوری دقت تفکیک توأم اطلاعات در هر حوزه مکان و فرکانس را حاصل نماید، در اینجا از آن به منظور تشخیص محتوای بصری تصاویر به کار گرفته شده است. هم چنین ممانهای لژاندار جهت بهبود نتایج حاصل از عمل بازیابی الگوریتم استفاده شده اند. کوچکی نسبی طول بردار ویژگی (58)، از مزایای این روش می باشد که عمل بازیابی را تسریع می بخشد. همچنین به دلیل آنکه اطلاعات رنگ تصاویر مورد استفاده قرار نمی گیرند، الگوریتم قادر به تشخیص تصاویر مشابه با رنگ های متفاوت نیز خواهد بود. نتایج حاصل از اجرای این سیستم، راندمان بالای آن را در تشخیص تصاویر مشابه مورد تأییید قرار می دهد.

واژگان کلیدی: شاخص گذاری و بازیابی تصاویر، فیلترهای گابور، ممانهای لژاندار، سیستم های مستقل از رنگ، پردازش تصویر.

 

فایل PDF – در 8 صفحه- نویسندگان : اسماعیل فرامرزی، ابوالقاسم صیادیان، علیرضا احمدیان

شاخص گذاری بر روی تصاویر با استفاده از موجک های گابور و ممان های لژاندر

پسورد فایل : behsanandish.com


17. طراحی بخش دریافت و پردازش تصویر برای یک پروتز بینایی

 

ﭼﮑﯿﺪه ﺗﻼش ﻫﺎ ﺑﺮاي ﺗﺤﻘﻖ ﭘﺮوﺗﺰﻫﺎي ﺑﯿﻨﺎﯾﯽ از دﻫﻪ ﮔﺬﺷﺘﻪ آﻏﺎز ﺷﺪه اﺳﺖ. ﭘﺮوﺗﺰﻫﺎي ﺑﯿﻨﺎﯾﯽ ﺟﺎﻧﺸﯿﻨﯽ ﺑﺮاي ﺳﯿﺴﺘﻢ ﺑﯿﻨﺎﯾﯽ ﻣﻌﯿﻮب ﻫﺴﺘﻨﺪ ﺗﺎ ﺑﺘﻮاﻧﻨﺪ ﺑﯿﻨﺎﯾﯽ را ﺑﻪ اﻓﺮاد ﻧﺎﺑﯿﻨﺎ ﺑﺎزﮔﺮداﻧﻨﺪ. ﺑﺎ وﺟﻮد اﯾﻦ ﺗﻼش ﻫﺎ، داﻧﺸﻤﻨﺪان ﻣﻮﻓﻖ ﺑﻪ ﺳﺎﺧﺖ ﭘﺮوﺗﺰ ﺑﯿﻨﺎﯾﯽ ﮐﻪ ﺑﺘﻮاﻧﺪ ﺟﺎﻧﺸﯿﻦ ﻣﻨﺎﺳﺒﯽ ﺑﺮاي ﺳﯿﺴﺘﻢ ﺑﯿﻨﺎﯾﯽ ﺷﻮد، ﻧﺸﺪه اﻧﺪ.
ﭘﺮدازش ﺗﺼﻮﯾﺮ در ﭘﺮوﺗﺰﻫﺎي ﺑﯿﻨﺎﯾﯽ ﺑﺮاي اﻓﺰاﯾﺶ درك ﺗﺼﻮﯾﺮي ﻓﺮد ﻧﺎﺑﯿﻨﺎ از ﻣﺤﯿﻂ اﻃﺮاف ﻫﻨﮕﺎم اﺳﺘﻔﺎده از ﭘﺮوﺗﺰ ﺑﯿﻨﺎﯾﯽ ﮐﺎرﺑﺮد دارد. در اﯾﻦ رﺳﺎﻟﻪ ﯾﮏ روش ﺟﺪﯾﺪ ﺑﺮ ﻣﺒﻨﺎي ﻓﯿﻠﺘﺮ ﮔﺎﺑﻮر و ﺗﺒﺪﯾﻞ ﮐﺴﯿﻨﻮﺳﯽ ﮔﺴﺴﺘﻪ ﺑﺮاي اﺳﺘﻔﺎده درﯾﮏ ﺳﯿﺴﺘﻢ ﭘﺮوﺗﺰ ﺑﯿﻨﺎﯾﯽ ﻣﻌﺮﻓﯽ ﺷﺪه اﺳﺖ. در اداﻣﻪ اﻟﮕﻮرﯾﺘﻢ ﻫﺎي ﺟﺪﯾﺪ و ﭘﺮدازش ﺗﺼﻮﯾﺮ ﭘﯿﺸﻨﻬﺎد ﺷﺪه در اﯾﻦ رﺳﺎﻟﻪ ارزﯾﺎﺑﯽ و ﻣﻘﺎﯾﺴﻪ ﺷﺪه اﻧﺪ و اﻟﮕﻮرﯾﺘﻢ ﭘﯿﺸﻨﻬﺎد ﺷﺪه ﺑﺎ 78 % ﻧﺮخ ﺑﺎزﺷﻨﺎﺳﯽ، ﮐﺎراﯾﯽ ﺑﻬﺘﺮي ﻧﺴﺒﺖ ﺑﻪ دﯾﮕﺮ روش ﻫﺎ داﺷﺘﻪ اﺳﺖ. ﺑﻪ ﻣﻨﻈﻮر ارزﯾﺎﺑﯽ اﻟﮕﻮرﯾﺘﻢ ﻫﺎي ﭘﯿﺸﻨﻬﺎدي و ﻫﻤﭽﻨﯿﻦ ﺑﺮاي ﺑﻪ ﮐﺎر ﮔﯿﺮي در ﻧﻤﻮﻧﻪ اوﻟﯿﻪ ﺳﯿﺴﺘﻢ ﭘﺮوﺗﺰ ﺑﯿﻨﺎﯾﯽ، اﯾﻦ ﭘﺮدازش ﻫﺎ ﺑﻪ ﺻﻮرت ﺳﺨﺖ اﻓﺰاري ﭘﯿﺎده ﺳﺎزي و آزﻣﺎﯾﺶ ﺷﺪه اﻧﺪ. ﺑﺮاي ﭘﯿﺎده ﺳﺎزي ﺳﺨﺖ اﻓﺰاري اﻟﮕﻮرﯾﺘﻢ ﻫﺎي ﭘﺮدازﺷﯽ از ﺑﺮد MINI2440 اﺳﺘﻔﺎده ﺷﺪه اﺳﺖ. ﺑﺮاي آزﻣﺎﯾﺶ ﻫﺎي ﻣﺮﺑﻮﻃﻪ، ﻣﺠﻤﻮﻋﻪ اي از اﻧﻮاع ﻣﺨﺘﻠﻒ ﺗﺼﺎوﯾﺮ ﺛﺎﺑﺖ و ﻫﻤﭽﻨﯿﻦ ﺗﺼﺎوﯾﺮ متحرک درﯾﺎﻓﺖ ﺷﺪه ﺗﻮﺳﻂ ﯾﮏ دورﺑﯿﻦ ﻣﻮرد اﺳﺘﻔﺎده ﻗﺮار ﮔﺮﻓﺘﻪ اﺳﺖ. تصاویر ﺑﺎ ﻧﺮخ 15 ﻓﺮﯾﻢ در ثانیه درﯾﺎﻓﺖ، ﭘﺮدازش و ﺑﺎ ﭘﺮوﺗﮑﻞ ﻣﻌﺮﻓﯽ ﺷﺪه و ﮐﺪﯾﻨﮓ ﻣﻨﭽﺴﺘﺮ ﺑﻪ ﭘﺮوﺗﺰ ﺑﯿﻨﺎﯾﯽ ارﺳﺎل ﻣﯽ ﺷﻮﻧﺪ.

ﮐﻠﻤﺎت ﮐﻠﯿﺪي: ﭘﺮوﺗﺰ ﺑﯿﻨﺎﯾﯽ، ﭘﺮدازش ﺗﺼﻮﯾﺮ، ﻓﯿﻠﺘﺮ ﮔﺎﺑﻮر، ﺗﺒﺪﯾﻞ ﮐﺴﯿﻨﻮﺳﯽ ﮔﺴﺴﺘﻪ، MINI2440

 

فایل PDF – در 20 صفحه- نویسنده : علی شاکر

طراحی بخش دریافت و پردازش تصویر برای یک پروتز بینایی

پسورد فایل : behsanandish.com

مجموعه مقالات فیلتر گابور (Gabor Filter) قسمت 1
مجموعه مقالات فیلتر گابور (Gabor Filter) قسمت 2

1.A GABOR FILTER TEXTURE ANALYSIS APPROACH FOR HISTOPATHOLOGICAL BRAIN TUMOUR SUBTYPE DISCRIMINATION

Abstract Meningioma brain tumour discrimination is challenging as many histological patterns are mixed between the different subtypes. In clinical practice, dominant patterns are investigated for signs of specific meningioma pathology; however the simple observation could result in inter- and intra-observer variation due to the complexity of the histopathological patterns. Also employing a computerised feature extraction approach applied at a single resolution scale might not suffice in accurately delineating the mixture of histopathological patterns. In this work we propose a novel multiresolution feature extraction approach for characterising the textural properties of the different pathological patterns (i.e. mainly cell nuclei shape, orientation and spatial arrangement within the cytoplasm). The patterns’ textural properties are characterised at various scales and orientations for an improved separability between the different extracted features. The Gabor filter energy output of each magnitude response was combined with four other fixed-resolution texture signatures (2 model-based and 2 statistical-based) with and without cell nuclei segmentation. The highest classification accuracy of 95% was reported when combining the Gabor filters’ energy and the meningioma subimage fractal signature as a feature vector without performing any prior cell nuceli segmentation. This indicates that characterising the cell-nuclei self-similarity properties via Gabor filters can assists in achieving an improved meningioma subtype classification, which can assist in overcoming variations in reported diagnosis.
Keywords – texture analysis, Gabor filter, fractal dimension, meningioma histopathology, brain tumours

فایل PDF – در 14 صفحه- نویسنده : Omar Sultan Al-Kadi

A GABOR FILTER TEXTURE ANALYSIS APPROACH FOR HISTOPATHOLOGICAL BRAIN TUMOUR SUBTYPE DISCRIMINATION

پسورد فایل : behsanandish.com


2.A Review Paper on Gabor Filter Algorithm & Its Applications

Abstract— In applications of image analysis and computer vision, Gabor filters have maintained their popularity in feature extraction. The reason behind this is that the resemblance between Gabor filter and receptive field of simple cells in visual cortex. Being successful in applications like face detection, iris recognition, fingerprint matching; where, Gabor feature based processes are amongst the best performers. The Gabor features can be derived by applying signal processing techniques both in time and frequency domain. The models like human preattentive texture perception have been proposed which involves steps like convolution, inhibition and texture boundary detection. Texture features are based on the local power spectrum obtained by a bank of Gabor filters. The concept of sparseness to generate novel contextual multiresolution texture descriptors are described. In this paper we present the detailed study about the Gabor filter and its application.
Index Terms— Gabor filter, Gabor energy, image quality assessment, Gabor features, multiresolution techniques, segmentation, textured images..

فایل PDF – در 5 صفحه- نویسنده : Neelu Arora , Mrs. G. Sarvani

A Review Paper on Gabor Filter Algorithm & Its Applications

پسورد فایل : behsanandish.com


3.Comparison of texture features based on Gabor filters

 

Abstract -The performance of a number of texture feature operators is evaluated. The features are all based on the local spectrum which is obtained by a bank of Gabor filters. The comparison is made using a quantitative method which is based on Fisher’s criterion. It is shown that, in general, the discrimination effectiveness of the features increases with the amount of post-Gabor processing.

فایل PDF – در 6 صفحه- نویسنده : P. Kruizinga, N. Petkov and S.E. Grigorescu

Comparison of texture features based on Gabor filters

پسورد فایل : behsanandish.com


4.Evolutionary Gabor Filter Optimization with Application to Vehicle Detection

 

Abstract—Despite the considerable amount of research work on the application of Gabor filters in pattern classification, their design and selection have been mostly done on a trial and error basis. Existing techniques are either only suitable for a small number of filters or less problem-oriented. A systematic and general evolutionary Gabor filter optimization (EGFO) approach that yields a more optimal, problem-specific, set of filters is proposed in this study. The EGFO approach unifies filter design with filter selection by integrating Genetic Algorithms (GAs) with an incremental clustering approach. Specifically, filter design is performed using GAs, a global optimization approach that encodes the parameters of the Gabor filters in a chromosome and uses genetic operators to optimize them. Filter selection is performed by grouping together filters having similar characteristics (i.e., similar parameters) using incremental clustering in the parameter space. Each group of filters is represented by a single filter whose parameters correspond to the average parameters of the filters in the group. This step eliminates redundant filters, leading to a compact, optimized set of filters. The average filters are evaluated using an application-oriented fitness criterion based on Support Vector Machines (SVMs). To demonstrate the effectiveness of the proposed framework, we have considered the challenging problem of vehicle detection from gray-scale images. Our experimental results illustrate that the set of Gabor filters, specifically optimized for the problem of vehicle detection, yield better performance than using traditional filter banks.

 

فایل PDF – در 8 صفحه- نویسنده : Zehang Sun, George Bebis and Ronald Miller

Evolutionary Gabor Filter Optimization with Application to Vehicle Detection

پسورد فایل : behsanandish.com


5.Expression-Invariant Face Recognition via 3D Face Reconstruction Using Gabor Filter Bank from a 2D Single Image

Abstract— In this paper, a novel method for expression- insensitive face recognition is proposed from only a 2D single image in a gallery including any facial expressions. A 3D Generic Elastic Model (3D GEM) is used to reconstruct a 3D model of each human face in the present database using only a single 2D frontal image with/without facial expressions. Then, the rigid parts of the face are extracted from both the texture and reconstructed depth based on 2D facial land-marks. Afterwards, the Gabor filter bank was applied to the extracted rigid-part of the face to extract the feature vectors from both texture and reconstructed depth images. Finally, by combining 2D and 3D feature vectors, the final feature vectors are generated and classified by the Support Vector Machine (SVM). Favorable outcomes were acquired to handle expression changes on the available image database based on the proposed method compared to several state-of-the-arts in expression-insensitive face recognition.

Keywords—Face recognition; 3D shape recovery; Gesture and Behavior Analysis.

 

فایل PDF – در 6 صفحه- نویسنده : Ali Moeini, Hossein Moeini, Karim Faez

Expression-Invariant Face Recognition via 3D Face Reconstruction Using Gabor Filter Bank from a 2D Single Image

پسورد فایل : behsanandish.com


6.IMAGE RETRIEVAL BASED ON HIERARCHICAL GABOR FILTERS

Content Based Image Retrieval (CBIR) is now a widely investigated issue that aims at allowing users of multimedia information systems to automatically retrieve images coherent with a sample image. A way to achieve this goal is the computation of image features such as the color, texture, shape, and position of objects within images, and the use of those features as query terms. We propose to use Gabor filtration properties in order to find such appropriate features. The article presents multichannel Gabor filtering and a hierarchical image representation. Then a salient (characteristic) point detection algorithm is presented so that texture parameters are computed only in a neighborhood of salient points. We use Gabor texture features as image content descriptors and efficiently emply them to retrieve images.
Keywords: Gabor filters, image retrieval, texture feature extraction, hierarchical representation

فایل PDF – در 10 صفحه- نویسنده : TOMASZ ANDRYSIAK, MICHAŁ CHORA´ S

IMAGE RETRIEVAL BASED ON HIERARCHICAL GABOR FILTERS

پسورد فایل : behsanandish.com


7.Iris Recognition Based On Adaptive Gabor Filter

Abstract. Aiming at the problem of multi-category iris recognition, there proposes a method of iris recognition algorithm based on adaptive Gabor filter. Use DE-PSO to adaptive optimize the Gabor filter parameters. DE-PSO is composed of particle swarm optimization and differential evolution algorithm. Use 16 groups of 2D-Gabor filters with different frequencies and directions to process iris images. According to the direction and frequency of maximum response amplitude, transform iris features into 512-bit binary feature encoding. Calculate the Hamming distance of feature code and compare with the classification threshold, determine iris the type of iris. Experiment on a variety of iris databases with multiple Gabor filter algorithms, the results showed that this algorithm has higher recognition rate, the ROC curve is closer to the coordinate axis and the robustness is better, compare with other Gabor filter algorithm.

Keywords: Iris recognition Gabor filter Particle swarm optimization Differential evolutionFeature encodingHamming distance

 

فایل PDF – در 8 صفحه- نویسنده : Shuai Liu, Yuanning Liu, Xiaodong Zhu, Guang Huo, Jingwei Cui, and Yihao Chen

 

Iris Recognition Based On Adaptive Gabor Filter

پسورد فایل : behsanandish.com


8.USE OF GABOR FILTERS FOR TEXTURE CLASSIFICATION OF AIRBORNE IMAGES AND LIDAR DATA

KEY WORDS: Texture analysis, LIDAR, Algorithm, Urban and Vegetation Detection, Automated Classification
ABSTRACT: In this paper, a texture approach is presented for building and vegetation extraction from LIDAR and aerial images. The texture is very important attribute in many image analysis or computer vision applications. The procedures developed for texture problem can be subdivided into four categories: structural approach, statistical approach, model based approach and filter based approach. In this paper, different definitions of texture are described, but complete emphasis is given on filter based methods. Examples of filtering methods are Fourier transform, Gabor and wavelet transforms. Here, Gabor filter is studied and its implementation for texture analysis is explored. This approach is inspired by a multi-channel filtering theory for processing visual information in the human visual system. This theory holds that visual system decomposes the image into a number of filtered images of a specified frequency, amplitude and orientation.  The main objective of the article is to use Gabor filters for automatic urban object and tree detection. The first step is a definition of Gabor filter parameters: frequency, standard deviation and orientation. By varying these parameters, a filter bank is obtained that covers the frequency domain almost completely. These filters are used to aerial images and LIDAR data. The filtered images that possess  a significant information about analyzed objects are selected, and the rest are discarded.  Then, an energy measure is defined on the filtered images in order to compute different texture features. The Gabor features are used to image segmentation using thresholding.  The tests were performed using set of images containing very different landscapes: urban area and vegetation of varying configurations, sizes and shapes of objects. The performed studies revealed that textural algorithms have the ability to detect buildings and trees. This article is the attempt to use texture methods also to LIDAR data, resampling into regular grid cells. The obtained preliminary results are interesting.

 

فایل PDF – در 12 صفحه- نویسنده : Urszula Marmol


USE OF GABOR FILTERS FOR TEXTURE CLASSIFICATION OF AIRBORNE IMAGES AND LIDAR DATA

پسورد فایل : behsanandish.com

 

در پردازش تصویر ، یک فیلتر گابور (Gabor filter) که به نام دنیس گابور نامگذاری شده است، یک فیلتر خطی است که برای تحلیل بافت استفاده می شود، به این معنی که اساساً تحلیل می کند که آیا محتوای فرکانس خاص در تصویر در جهت خاص در یک منطقه محلی در اطراف نقطه یا منطقه تجزیه و تحلیل وجود دارد. بسیاری از دانشمندان دیدگاه معاصر ادعا می کنند که فرکانس و جهت گیری نمایش های فیلترهای گابور شبیه به سیستم بصری انسان می باشند، هرچند هیچ شواهد تجربی و هیچ منطقی عملی برای حمایت از این ایده وجود ندارد. آنها به ویژه برای نمایش و تبعیض بافت مناسب هستند. همچنین در حوزه فضایی، یک فیلتر گابور دوبعدی، یک تابع هسته گاووسی است که توسط یک موج مسطح سینوسی مدولاسیون شده است .

بعضی از نویسندگان ادعا می کنند که سلول های ساده در قشر بینایی مغز پستانداران می توانند توسط توابع گابور مدل شوند. بنابراین، بعضی از آنها تجزیه و تحلیل تصویر با فیلترهای گابور را مشابه با اداراک در سیستم دیداری انسان تصور می کنند.

مثالی از فیلتر گابور دو بعدی

مثالی از فیلتر گابور دو بعدی

تعریف

پاسخ ضربه آن توسط یک موج سینوسی (یک موج مسطح برای فیلترهای گابور دوبعدی) ضرب در یک تابع Gaussian تعریف می شود. به علت خاصیت پیچیدگی ضرب (تئوری پیچیدگی)، تبدیل فوریه یک پاسخ ضربه ای فیلتر گابور، کانولشنِ[پیچیدگی] تبدیلِ فوریه تابع هارمونیک (تابع سینوسی) و تبدیل فوریه تابع گاوسی است. فیلتر یک واقعیت و یک جزء تخیلی نشانگر مسیرهای متعامد دارد. دو جزء ممکن است به یک شماره پیچیده یا به استفاده ویژه شکل بگیرد.

پیچیده

واقعی

تخیلی

g(x,y;\lambda,\theta,\psi,\sigma,\gamma) = \exp\left(-\frac{x'^2+\gamma^2y'^2}{2\sigma^2}\right)\sin\left(2\pi\frac{x'}{\lambda}+\psi\right)

جایی که

x' = x \cos\theta + y \sin\theta\,

و

 

فیلتر گابور (Gabor filter) چیست؟ قسمت 1
فیلتر گابور (Gabor filter) چیست؟ قسمت 2
فیلتر گابور (Gabor filter) چیست؟ قسمت 3