بایگانی برچسب برای: عامل های هوشمند

عامل های هوشمند در هوش مصنوعی

قبلا عامل های خردمند (عقلایی) را به عنوان مرکز ثقل رهیافت هوش مصنوعی مشخص کردیم. در این بخش ، این فرضیه را دقیق تر بررسی میکنیم. خواهیم دید که مفهوم عقلانیت (خردگرایی) میتواند به دامنه وسیعی از عاملهایی که در هر محیطی عمل میکنند، اعمال شود. با توجه به اینکه بعضی از عامل ها بهتر از عامل های دیگر رفتار میکنند، به ایده ی “عامل خردمند” یا “عامل عقلایی” میرسیم. “عامل خردمند” عاملی است که حتی الامکان خوب عمل میکند. عملکرد عامل به ماهیت محیط بستگی دارد. بعضی از محیط ها دشوارتر از محیط های دیگر هستند.

عامل ها و محیط ها

عامل هر چیزی است که قادر است محیط خود را از طریق حسگرها (سنسور ها) درک کند و از طریق محرک ها عمل کند. عامل انسانی دارای چشم، گوش و اعضای دیگری برای حس کردن، و دست، پا و دهان و اعضای دیگر به عنوان محرک هایی برای عمل کردن است. عامل روباتیک ممکن است شامل دوربین ها و مادون قرمر و فاصله سنج برای سنسورها و موتورهای متعددی به عنوان محرک ها باشد. عامل نرم افزاری “بسته های شبکه” ، محتویات فایل و ورودی های صفحه کلید را به عنوان ورودی حسی دریافت میکند و از طریق نوشتن در صفحه نمایش، نوشتن در فایل ها و ارسال بسته های شبکه، عمل میکند. از واژه ادراک (percept) برای ورودی های ادراکی عامل در هر لحظه استفاده میکنیم. دنباله ی ادراک یا توالی ادراک عامل، سابقه ی کامل هر چیزی است که عامل تاکنون درک کرده است. به طورکلی، انتخاب فعالیتی (کنشی) توسط عامل در هر لحظه، میتواندبه کل دنباله ی ادراک تا آن زمان بستگی داشته باشد. اگر بتوانیم فعالیت انتخابی عامل را برای هر دنباله ی ادراکی مشخص کنیم، همه چیز را در مورد عامل مطرح کرده ایم. از نظر ریاضی، میگوییم رفتار عامل توسط تابع عامل توصیف میشود که هر دنباله ی ادراک را به یک فعالیت نقش میکند.

تابع عامل را میتوانیم به صورت جدول نشان دهیم تا هر عاملی را تشریح کند. برای اغلب عامل ها، این جدول بسیار بزرگ خواهد بود، ولی میتوانیم حدی را برای طول دنباله ی ادراک در نظر بگیریم. برای ساخت جدول عامل، تمام دنباله های ادراک را در نظر گرفته فعالیت هایی را که عامل در پاسخ به آنها انجام میدهد، ذخیره میکنیم، البته این جدول یک شی ء خارجی است که عامل را مشخص میکند. تابع عامل مربوط به عامل مصنوعی، به طور داخلی توسط برنامه ی عامل پیاده سازی می شود. این دو ایده را از هم تفکیک میکنیم. تابع عامل یک توصیف ریاضی انتزاعی است، و برنامه عامل، پیاده سازی دقیقی است که در معماری عامل اجرا می شود.

تأکید میکنیم که فرضیه ی عامل، ابزاری برای تحلیل سیسیتم هاست، نه یک ویژگی خاص برای تقسیم دنیا به عامل و غیر عامل ها. ماشین حساب را میتوان عاملی در نظر گرفت که با توجه به “دنباله ادراک” ، “=2+2” نماد “4” را نمایش میدهد. اما این تحلیل منجر به درک ماشین حساب نمیشود. از جهاتی تمام حوزه های مهندسی را می توان طراحی کننده ی محصولات مصنوعی دانست که با دنیا تعامل دارند؛ AI (از نظر مؤلفین) در انتهای این طیف واقع است، که در آنجا، محصولات مصنوعی، منابع محاسباتی ارزشمندی دارند و محیط کار ، نیازمند تصمیم گیری مهم است.

رفتار خوب : مفهوم خردمندی یا عقلانیت

عامل خردمند، عاملی است که رفتار خوب انجام میدهد- از نظر ادراکی، به معنای این است که هر عنصر جدول مربوط به تابع عامل، به درستی پر میشود. روشن است که انجام “رفتار درست”، بهتر از انجام “رفتار نادرست” است، اما معنای “رفتار درست” چیست؟ پاسخ به این پرسش قدیمی را، به روش قدیمی ارائه می دهیم: به در نظر گرفتن نتایج رفتار عامل. وقتی یک عامل در محیطی قرار گرفت، بر اساس آنچه که از محیط دریافت می کند، دنباله ای از فعالیت ها را انجام میدهد. این دنباله از فعالیت ها، موجب میشود که محیط از حالتی به حالت دیگر برود، یعنی محیط از دنباله ای از حالت ها عبور میکند. اگر این دنباله از حالتها مطلوب باشد، آنگاه این عامل به درستی عمل کرده است. برای تعیین مطلوب بودن دنباله ای از فعالیت ها، از مفهوم معیار کارایی استفاده میکنیم، که هر دنباله از حالت های محیط را ارزیابی میکند.

توجه کنید که حرف از حالتهای محیط زدیم نه حالتهای عامل. اگر موفقیت را بر اساس نظر عامل در مورد رضایت خود از کارایی اش تعریف کنیم، عامل می تواند خودش را فریب دهد و کارایی خود را بالا بداند و از آنجا نتیجه بگیریم که با خردمندی کامل عمل کرده است. مخصوصا عامل های انسانی، در مواردی که قرار است راجع به موضوعی تصمیم گیری کنند که در آن تصمیم گیری ، سودی به آنها نمیرسد، سابقه ی بدی دارند (سعی می کنند همه چیز را به نفع خود تمام کنند).

روشن است برای تمام کارها و عامل ها، یک معیار کارایی ثابت وجود ندارد؛ معمولا طراح، یک معیار را برای شرایط خاصی ، مناسب می بیند. این کار، چندان آسان نیست.

• خردمندی یا عقلانیت (rationality)

خردمند بودن در هر زمان به چهار چیز بستگی دارد:

1. معیار کارایی که ملاک های موفقیت را تعریف می کند.

2. دانش قبلی عامل نسبت به محیط.

3. فعالیتهایی که عامل میتواند انجام دهد.

4. دنباله ی ادراک عامل در این زمان.

به این ترتیب میتوانیم عامل خردمند را بصورت زیر تعریف کنیم:

برای هر دنباله از ادراک ممکن، عامل خردمند (عقلایی) باید فعالیتی را انتخاب کند که انتظار میرود معیار کارایی اش را به حداکثر برساند. این کار با توجه به شواهدی که از طریق این دنباله ادراک به دست می آید و دانش درونی عامل، صورت می گیرد.

• همه چیزدانی، یادگیری و خود مختاری

باید بین “همه چیزدانی” و خردمندی تمایز قائل شویم. عامل “همه چیزدان”، خروجی واقعی فعالیت های خودش را می داند و می تواند بر اساس آن عمل کند. اما “همه چیزدان” بودن عامل، غیرممکن است. این مثال را در نظر بگیرید: من روزی در حال قدم زدن با احمد هستم و دوست قدیمی خود را در آن طرف خیابان می بینم. هیچ ترافیکی وجود ندارد و “خردمندی” حکم میکند که در عرض خیابان حرکت کنم. در همین حال، در فاصله 33000 فوتی، یک هواپیمای مسافری با هواپیمای باری برخورد میکند و قبل از اینکه به آن طرف خیابان بروم، نقش بر زمین میشوم. آیا عبور از عرض خیابان، عقلایی (خردمندی) نبود؟ بعید است کسی بگوید که عبور از عرض خیابان حماقت بوده است.

این مثال نشان میدهد که خردمندی با “کمال مطلوب” متفاوت است. خردمندی، کارایی مورد انتظار را به حداکثر میرساند، در حالیکه کمال مطلوب، کارایی واقعی را به حداکثر می رساند. دست برداشتن از خواسته ی “کمال مطلوب”، فقط به معنای منصف بودن نسبت به عامل ها نیست. موضوع این است که، اگر انتظار داشته باشیم عامل، بهترین فعالیت را انجام دهد، نمیتوان عاملی طراحی کرد که با این مشخصات جور درآید، مگر اینکه کارایی جام جهان نما یا ماشین های زمان را بهبود بخشیم.

تعریفی که ما از خردمندی ارائه دادیم، نیاز به “همه چیزدانی” ندارد. زیرا انتخاب عقلایی (در یک زمان) فقط به “دنباله ادراک” در آن زمان بستگی دارد. باید مطمئن باشیم که ندانسته اجازه ندهیم که عامل به فعالیت های غیرهوشمند بپردازد. انجام فعالیت به منظور اصلاح ادراک های آینده، که گاهی جمع آوری اطلاعات نام دارد، بخش مهمی از خردمندی است. مثال دیگری از جمع آوری اطلاعات، از طریق اکتشاف صورت میگیرد. این تعریف، مستلزم آن است که عامل نه تنها باید اطلاعات را جمع آوری کند، بلکه باید از آنچه که درک میکند، یاد بگیرد.  پیکربندی اولیه ی عامل می تواند دانشی از محیط را ارائه کند، اما هر چه که عامل تجربه بیشتری کسب میکند، ممکن است پیکربندی آن تغییر کند. موارد زیادی وجود دارد که محیط از قبل شناخته شده است. در این موارد لازم نیست عامل درک کند یا بیاموزد، زیرا به درستی عمل خواهد کرد. البته چنین عاملهایی خیلی آسیب پذیر هستند.

اگر عامل به جای ادراکات خود، براساس دانش قبلی طراح خود رفتار کند، می گوییم عامل خودمختار نیست. عامل خردمند باید خودمختار باشد. باید یاد بگیرد که نقص دانش قبلی را چگونه جبران کند. به عنوان یک موضوع عملی، عامل در ابتدا به خودمختاری کامل نیاز ندارد: وقتی عامل تجربه ای ندارد یا تجربه کمی دارد، باید به طور تصادفی عمل کند، مگر اینکه طراح به آن کمک کند. لذا، همان طور که تکامل حیوانات ، واکنش های ذاتی را برای آنها ایجاد میکند تا بیشتر زنده بمانند و به یادگیری خود بیفزایند، منطقی است که بتوان یک عامل هوش مصنوعی را ایجاد کرد که علاوه بر دانش اولیه، قدرت یادگیری داشته باشد. پس از تجربیات کافی با محیط خود ، رفتار عامل خردمند میتواندمستقل از دانش اولیه اش باشد. لذا، توانایی یادگیری منجر به طراحی عاملی میشود که در محیط های مختلف، موفق است.

منبع


منابع

1.https://fa.wikipedia.org

2.http://retro-code.ir

3.http://www.sourcecodes.ir

 

 

سیستم های چندعاملی (Multi Agent Systems)

سیستم های چندعاملی (Multi Agent Systems) یا به اختصار MAS روش نوینی برای حل مسائل و پیاده‌سازی پروژه‌های نرم‌افزاری رایانه‌ای می باشد.

با اینکه زمان زیادی از پیدایش این گونه سیستم‌ها نمی‌گذرد ولی استفاده از روش‌های طراحی بر اساس عامل یکی از موفق‌ترین راه‌حل‌های موجود بوده و حاصل این شیوه طراحی یعنی سیستم‌ حل مسائل به صورت توزیع‌شده از بهترین سیستم‌ها به شمار می‌آید و به عنوان ابزار جدیدی برای حل انواع فرآیندهای انسانی شناخته می‌شود.

این نوع سیستم‌ها نسبت به سیستم‌های معمولی و تک‌عاملی، مزایای زیادی دارند؛ از جمله اینکه در اکثر شرایط کار می‌کنند. به این معنا که چون مغز متفکر واحد ندارند و تصمیم‌گیری در آنها به صورت توزیع‌شده است، چنانچه حتی بخشی از آنها نیز از کار بیفتد باز هم به کار خود ادامه می‌دهند.

همچنین این نوع سیستم‌ها برای محیط‌هایی با مقیاس وسیع(Large Scale) و محیط‌های ناشناخته نیز گزینه مناسبی نسبت به سیستم‌های تک‌عاملی به شمار می‌آیند.

سیستم‌های مبتنی بر عامل، پردازش موازی را آسان کرده و به راحتی موازی می‌شوند. منظور از پردازش موازی این است که به جای انجام یک پروژه با محاسبات زیاد و پردازش‌های سنگین توسط یک پردازشگر، همان پروژه را به پردازش‌‌های کوچکتر با حجم محاسبات کمتر شکسته و آن را توسط چندین عامل انجام دهیم. مثلاً میزی را تصور کنید که برای بلند کردنش به 100 نیوتن نیرو احتیاج داریم،

حال هم می‌توانیم آن را توسط یک نفر که توانایی اعمال 100 نیوتن نیرو را دارد، بلند کنیم و هم این کار را به کمک چهار نفر که هر کدام 25 نیوتن نیرو به اشتراک می‌گذارند، انجام دهیم. در نتیجه، هزینه‌ها در چنین سیستمی پایین می‌آید و نیازی به صرف هزینه کلان جهت ایجاد امکان پردازش سنگین برای یک عامل نیست.

در این صورت، چندین عامل با قدرت پردازشی کمتر همان کار را حتی سریع‌تر انجام می‌دهند. البته این نوع سیستم‌ها به نوبه خود معایبی نیز دارند که استفاده از آنها را محدود می‌کند. مهمترین عیب این سیستم‌ها، کندی اندک در کار طراحی آنها و موازی‌سازی است که به نتیجه رساندن پروژه را به تعویق می‌اندازد.

تعریف سیستم چندعاملی

قبل از تعریف سیستم مبتنی بر چندعامل، لازم است ابتدا خود عامل را معرفی کنیم. عامل یا agent یک سیستم کامپیوتری‌ است که قادر به انجام اعمال مستقل و خودکار از طرف کاربر یا صاحب خود است. نکته اصلی در مورد عامل‌ها، خودمختاری آنهاست، به این معنا که عامل‌ها قادرند به طور مستقل عمل کنند و کنترلی روی حالات داخلی خود داشته باشند.

بدین ترتیب تعریف دیگری که برای عامل می‌توان داشت این است که یک عامل یک برنامه کامپیوتری‌ است که در بعضی محیط‌ها قادر به انجام کارهای خودمختار یا به اصطلاح autonomous است.

در دسته‌بندی ساده‌ای از عامل‌ها می‌توان به دو نوع عامل اشاره کرد، یکی عامل‌های ساده و کم‌اهمیت‌تر (Trivial Agents) که مثال ساده آن، ترموستات‌ها هستند و دوم عامل‌های هوشمند (Intelligent Agents ) که در واقع همان برنامه کامپیوتری‌ است که در بعضی محیط‌ها قادر به انجام اعمال خودمختار و انعطاف‌پذیر است.
در اینجا منظور از انعطاف‌پذیر، انجام اعمال واکنش‌دار (دارای عکس‌العمل) و پیش‌بینی یک واکنش و انجام زودتر عمل مناسب است.

به عنوان اولین تعریف برای یک سیستم چندعاملی می‌توان گفت: سیستم چندعاملی به سیستمی گفته می‌شود که از تعدادی عامل (agent) تشکیل‌شده‌ است. این عامل‌ها هر کدام به نوبه خود فعل و انفعالات داخلی داشته و در محیط خارج نیز با یکدیگر ارتباط دارند.

در بیشتر موارد، عامل، با داشتن اطلاعات خاص و محرک‌های مختلف، از طرف کاربر عمل می‌کند و در واقع یک عامل، می‌تواند نماینده‌ای از طرف انسان باشد که در محیط‌های مجازی مانند او به تصمیم‌گیری و انجام کارهای مختلف می‌پردازد.

برای داشتن ارتباطات داخلی موفق بین عامل‌ها، آنها نیاز دارند که با یکدیگر همکاری کنند، هماهنگ باشند و مذاکره دوطرفه داشته باشند. درست به همان اندازه که انسان‌ها در ارتباطات روزانه خود با هم ارتباط دارند و به مذاکره و داد و ستد می‌پردازند.

دو مسئله کلیدی در طراحی سیستم های چندعاملی

دو مسئله کلیدی که در طراحی سیستم‌ های چندعاملی مطرح است: اول طراحی عامل و دوم طراحی محیطی برای عملکرد و ارتباط میان عامل‌ها. در طراحی عامل، چگونگی ساخت عاملی که قادر به انجام کارهای مستقل و اعمال خودمختار باشد مدنظر است.

به گونه‌ای که بتواند کارهایی که بر عمده‌اش گذاشته‌ایم را با موفقیت انجام دهد. در طراحی اجتماع یا محیط عامل‌ها، نکته اساسی این است که چگونه عامل‌هایی طراحی کنیم که قادر به برقراری ارتباط با یکدیگر باشند.

منظور از این ارتباط همان همکاری، هماهنگی و مذاکره بین عامل‌هاست. این کار برای انجام موفقیت‌آمیز وظایفی که بر عهده آنها گذاشته‌ایم، ضروری است؛ چرا که همه عامل‌ها اهداف مشترک ندارند یا نمی‌توانند با علایق یکسان ساخته شوند.

مثالی از کاربرد عامل‌ها کنترل سفینه فضایی (Aircraft control) است. وقتی یک کاوشگر فضایی (سفینه فضایی) برای انجام کارهای تحقیقاتی به فضا یا به کرات دیگر عزیمت می‌کند، یک سفر طولانی‌مدت در پیش دارد.

از زمانی که این سفینه و گروه تحقیقاتی، پرواز خود را از سطح کره زمین آغاز می‌کند یک تیم زمینی با تعداد افراد زیاد لازم است تا به طور مدام مراحل پیشرفت و حرکت سفینه را دنبال و بررسی کنند و در مورد حوادث غیرمنتظره که ممکن است برای سفینه پیش‌آید تصمیم بگیرند.

این امر بسیار پرهزینه است و اگر نیاز به تصمیم‌گیری فوری و ضروری داشته ‌باشد کارایی چندانی ندارد. به همین دلیل سازمان‌های هوایی و فضایی مانند NASA به طور جدی مشغول تحقیق و بررسی روی امکان ساخت کاوشگری فضایی هستند که بیشتر خودکار باشد تا بتوانند تنها در مواقع ضروری تصمیمات فوری را به صورت بهینه بگیرند و به نظارت کنترلی و مراقبت 24ساعته از روی زمین نیاز نداشته باشند.

این امر یک افسانه یا داستان نیست و مهندسین NASA مشغول بررسی و ساخت چنین سفینه‌ای بر اساس سیستم های چندعاملی هستند. طبق اطلاعات موجود و خواص سیستم‌ های چندعاملی، برای دستیابی به این هدف عامل‌ها ابزار بسیار مناسبی شناخته شده‌اند.

ارتباط بین عامل ها در سیستم های چند عاملی

دو مثال از کاربرد سیستم‌ های چندعاملی

مثال دیگری از کاربرد عامل‌ها، جست‌وجوی اینترنت است که توسط عامل‌های اینترنتی انجام می‌شود. جست‌وجو در اینترنت برای یافتن جواب یک سئوال خاص، می‌تواند پروسه طولانی و خسته‌کننده‌ای باشد. بنابراین چرا این اجازه را به برنامه‌های کامپیوتری- عامل- ندهیم که عمل جست‌وجو را برای ما انجام دهند.

به عنوان مثال، می‌توان سئوال یا مسئله‌ای را به یک عامل داد که پاسخ آن نیازمند ترکیبی از اطلاعات اینترنتی‌ است و لازم است که منابع مختلفی در وب جست‌وجو شود. این عمل به راحتی می‌تواند توسط برنامه تحت وبی که ما می‌نویسیم و عاملی که بر روی اینترنت ایجاد می‌کنیم، انجام شود.

سئوالی که مطرح می‌شود این است که آیا عامل‌ها همان سیستم خبره هستند ولی با نامی متفاوت؟ ابتدا ببینیم سیستم خبره چیست؟ سیستم خبره، یک برنامه کامپیوتری است که عملیات مربوط به تصمیم‌گیری و استدلال و اظهار نظر در رابطه با یک موضوع را با ترکیبی از اطلاعات، تعقل و دانش و همچنین با در دست داشتن دانش و تجربه یک متخصص انجام می‌دهد و بر این اساس، وظیفه حل مشکلات یا ارائه مشاوره را بر عهده دارد.

سیستم‌های خبره به طور معمول بدون بدنه و ساختاری بیرونی هستند که در یک زمینه خاصی متخصص و یا به اصطلاح خبره می‌شوند. برای مثال سیستم MYCIN نمونه‌ای از یک سیستم خبره است که مطالب زیادی درباره بیماری‌های خونی انسان‌ها می‌داند. در این سیستم، اطلاعات بسیار وسیعی در مورد بیماری‌ها و امراض خونی به فرم یک سری قاعده و دستورات ذخیره شده که می‌تواند با گرفتن مشخصات بیمار و شرایط موجود، نوع بیماری را تشخیص دهد. یک پزشک به راحتی می‌تواند با دادن واقعیت‌های موجود به سیستم، توصیه‌های تخصصی و در اکثر مواقع قابل‌اعتمادی را از این ماشین دریافت کند.
تفاوت اصلی سیستم‌های خبره با سیستم‌ های چندعاملی را می‌توان در دو مورد زیر بیان کرد:

1- عامل‌ها در محیطی قرار می‌گیرند که می‌توانند روی آن تاثیرگذار باشند و از آن تاثیر بپذیرند؛ در حالی که عملکرد سیستم‌های خبره مانند MYCIN کاملاً مستقل از محیط بوده و از دنیای اطراف آگاه نیست و اطلاعات به دست آمده از سیستم خبره مبتنی بر پایگاه دانش‌اش و سئوالاتی است که از کاربر می‌پرسد.

2- عامل به عنوان نماینده‌ای از طرف کاربر، عملی را انجام می‌دهد ولی سیستم خبره مانند MYCIN هیچ عملی در محیط یا روی بیمار انجام نمی‌دهد.

یک سیستم خبره به جای انجام عملیات ریاضی و استدلال، بر پایه دانش انسانی تعقل می‌کند. در این روش، دانش در لفاف یک زبان مخصوص، درون برنامه نگهداری می‌شود که به عنوان پایگاه دانش سیستم خبره شناخته می‌شود. پس به زبانی ساده، یک سیستم خبره را می‌توان به صورت زیر تعریف کرد:

سیستم خبره یک برنامه کامپیوتری است که با استفاده از پایگاه دانش و موتور استنتاج یا نتیجه‌گیری خود، دانش و تجربه لازم در مورد یک موضوع مشخص را در کنار دریافت اطلاعات در مورد مسئله یا موقعیت کنونی (که مربوط به دانش خودش است) به کار می‌گیرد و تصمیم‌گیری یا نتیجه‌گیری درستی را که از یک انسان خبره انتظار می‌رود، انجام می‌دهد.
در حالی که عامل یک سیستم کامپیوتری است که قادر به انجام اعمال مستقل و اتوماتیک از طرف کاربر یا صاحب خود است.
پس با مقایسه تعاریف و نحوه عمل و طراحی هر کدام متوجه می‌شویم که این دو سیستم متفاوت‌اند و نباید آنها را درهم آمیخت.

عامل‌های هوشمند و هوش مصنوعی (AI)

سئوالی که در مورد سیستم‌ های چندعاملی و هوش مصنوعی به ذهن می‌آید این است که آیا طراحی سیستم‌ های چندعاملی همان پروژه‌های مطرح در هوش مصنوعی است؟ آیا ساختن یک عامل تماماً همان موضوعات مورد بحث در هوش مصنوعی نیست؟

در جواب باید گفت، هدف هوش مصنوعی، ساختن سیستم‌های هوشمندی است که بتوانند به خوبی زبان طبیعی را بفهمند، احساس را درک کنند و قادر به استفاده از حواس پنج‌گانه انسانی بوده، دارای فکر خلاق باشند و غیره… که کار بسیار مشکلی است. پس آیا ساخت یک عامل توسط الگوریتم‌های هوش مصنوعی که بتواند همه این کارها را انجام دهد، نیازمند حل همه این الگوریتم‌ها نیست؟ مسلماً جواب مثبت است.

ولی ما در هنگام ساخت یک عامل، به طور ساده سیستمی می‌خواهیم که بتواند در یک محیط محدود عمل مناسب و درست را انتخاب کرده و انجام دهد. بنابراین برای ساخت یک عامل ما ملزم به حل همه مسائل موجود در هوش مصنوعی نیستیم.

همانطور که گفته شد با وجود عمر کم سیستم‌های مبتنی بر چندعامل، به دلیل قابلیت بالا در موازی‌سازی، روش طراحی براساس عامل و حل مسائل به صورت توزیع‌شده جزء موفق‌ترین روش‌های حل مسئله است و این سیستم‌ها ابزار بسیار بدیعی برای شبیه‌سازی کامپیوتری فراهم آورده‌اند که می‌تواند نور امیدی برای روشن شدن انواع مسائل مربوط به انسان و زندگی او باشد.
منبع