دسترسی سریعدسترسی سریع
  • ۰۳۱-۹۱۰۰۱۸۸۱
  • درخواست دمو
بهسان اندیش
  • صفحه اصلی
  • محصولات
    • نرم افزار پلاک خوان
      • نرم افزار ثبت تردد جاده ای
      • نرم افزار مدیریت پارکینگ
      • نرم افزار تعمیرگاه ، کارواش و تعویض روغن
    • نرم افزار باسکول
    • راهکارهای سازمانی
      • نرم افزار انبار و حسابداری
    • محصولات جانبی
      • دوربین پلاک خوان
      • ماژول رله کنترل راهبند
  • نمونه کار ها
    • سامانه جامع پلاکخوان خودرو
    • سامانه جامع مدیریت باسکول
    • سامانه قرائت فرم های چند گزینه ای
  • وبلاگ
  • ارتباط با ما
    • تماس با ما
    • درباره ما
    • دعوت به همکاری
  • جستجو
  • منو

نوشته‌ها

حذف نویز تصاویر با شبکه های عصبی و فیلتر میانی قسمت ۱

آموزش عمومی پردازش تصویر و بینایی ماشین

ارائه الگوریتمی جدید برای حذف نویز از تصاویر دیجیتالی با استفاده از شبکه های عصبی و فیلتر میانی:

مقدمه

در عصر مدرن انتقال اطلاعات بصری در فرمت تصاویر دیجیتال به یکی از رایج ترین متدهای اشتراک اطلاعات تبدیل شده است. با این حال تصویر دریافت شده توسط گیرنده ی ارتباط، اغلب آغشته به نویز است. تصویر دریافت شده قبل از هرگونه استفاده ای در یک کاربرد، نیاز به پردازش جهت خذف یا کاهش اثر تخریب کنندگی نویز دارد. علاوه بر این به دلیل نادرست عمل کردن اجزاء سخت افزاری همچنین پیکسل های حسگر دوربین و یا حافظه و یا تبدیل تصویر از یک قالب به قالب دیگر، کپی کردن، اسکن کردن، چاپ و فشرده سازی نیز احتمال افزوده شدن انواع مختلفی از نویز به تصویر وجود دارد. حضور نویز هم از لحاظ ظاهری برای بیننده آزار دهنده است و هم انجام پردازش های بعدی همچون بخش بندی، لبه یابی، تفسیر و تشخیص را با مشکل مواجه می کند. لذا افزایش کیفیت تصویر و حذف نویز موجود در آن یک پیش پردازش اساسی و مهم قبل از هر گونه عملیات دیگر است. کاهش یا حذف نویز به عملیاتی گفته می شود که طی آن پردازش و دست کاری هایی بر روی تصویر ورودی انجام می شود تا تصویر با کیفیت بالاتر جهت استفاده های بعدی به دست آید.

تعیین یک آستامه برای سیستم عصبی برای اینکه سیستم حذف کننده نویز همه پیکسل ها را مورد بررسی قرار ندهد و فقط پیکسل هایی که از این آستانه عبور کنند مورد بررسی و بازیابی قرار گیرند. به همین منظور ابتدا به روش های حذف نویز موجود پرداخته می شود و در انتها این الگوریتم با آستانه مشخص اضافه می شود تا سرعت حذف نویز از تصاویر بیشتر شود.

پردازش تصویر

پردازش تصویر شاخه ای از علم رایانه است که هدف آن پردازش تصاویر برداشته شده توسط دوربین دیجیتال و یا تصاویر اسکن شده توسط اسکنر است. پردازش تصویر از دو جنبه به بهبود اطلاعات بصری برای تفسیر بصری توسط انسان و دیگری ارائه یک تصویر با جزئیات مناسب و کارآمد برای تعبیر توسط ماشین مورد توجه است. (McAndrew, 2004)

سیستمهای پردازش تصویر را می توان در سه سطح پردازشی دسته بندی کرد:

–         سطح پایین: عملیات اولیه(مانند حذف نویز، افزایش میزان کنتراست) که در آن ها هم ورودی و هم خروجی سیستم تصویر هستند.

–         سطح متوسط: استخراج ویژگی ها (مانند لبه ها، کانتورها، نواحی) از یک تصویر که معمولا این پردازش ها در حیطه بینایی ماشین موجود است.

–         سطح بالا: تحلیل و تفسیر محتوایی یک صحنه که اغلب از الگوریتم های یادگیری ماشین در این سطح استفاده می شود.

هر سیستم پردازش تصویر معمولا بر حسب نوع کاربرد و هدف نهایی پردازش شامل بخش های مختلفی است. در گام اول یک تصویر توسط یکی از ابزار های تصویر برداری همچون دوربین دیجیتال یا اسکنر بدست می آید. کیفیت تصویر خروجی بلوک تصویر برداری به شدت بر روی کل سیستم تاثیر گذار است. در گام بعد، پیش پردازشی بر روی تصویر ورودی انجام می شود. هدف این پیش پردازش بهبود ظاهری تصویر، بالا بردن کنتراست، حذف نویز، تصحیح درخشندگی، تمیز کردن تصویر یا از بین بردن تاری ناشی از قرار گرفتن سوژه خارج از فاصله کانونی است. در گام بعدی تصویر بر مبنای معیار های مختلفی از جمله ویژگی های بافتی، مولفه های هم بندی، اشکال هندسی و موارد دیگر بخش بندی می شود. و در نهایت در گام نهایی هر یک از بخش ها بر مبنای همین ویژگی ها مورد تجزیه و تحلیل قرار می گیرد و به هر ناحیه یک برچسب نسبت داده می شود. در تمام این مراحل از یک پایگاه دانش بسته به نوع سیستم استفاده می شود. پایگاه دانش علاوه بر محیا کردن دانش لازم برای هر واحد به تعامل بین بخش ها نیز نظارت دارد.(van bemmel and musen, 1997)

پردازش تصویر دارای طیف وسیعی از کاربرد ها است. از آن جمله می توان به موارد زیر اشاره کرد:

–         کاربرد های پزشکی

–         تفسیر خود کار تصاویر پزشکی سونوگرافی، رادیولوژی و مامو گرافی

–         تحلیل تصاویر سلولی از گونه های کروموزوم

–         کشاورزی

–         پردازش تصاویر ماهواره های جهت تعیین محل مناسب برای کشت محصول

–         کنترل کیفیت خود کار محصولات کشاورزی و دسته بندی آن ها در دسته های مختلف

–         صنعت

–         خودکار سازی خط تولید در کارخانه ها

–         تحلیل وضعیت ترافیکی جاده ها

–         دسته بندی محصولات کارخانه ای

–         قضایی

–         تحلیل و بررسی اثر انگشت

–         تعیین هویت شخص از روی نشانه های بیومتریک

–         تعیین هویت تصاویر(جعلی یا واقعی بودن آن ها)

انواع تصاویر دیجیتال

تصویر در واقع یک تابع دو بعدب مانند (F(x,y است که در آن آرگومان های ورودی x,y مختصات مکانی در هر نقطه به صورت شماره سطر و شماره ستون است. و مقدار تابع شدت روشنایی آن نقطه از تصویر است. از آن جا که مقادیر (F(x,y و x,y مقادیر گسسته اند، تصویر را یک تصویر دیجیتال می نامند. یک تصویر دیجیتال از تعدادی از عناصر با مقدار و موقعیت مشخص تشکیل شده است که به هر یک از این عناصر پیکسل گفته می شود. برای نمایش یک تصویر با ابعاد M*N از یک ماتریس دو بعدی با M  سطر و N ستون استفاده می شود. مقدار هر یک از این عناصر این آرایه شدت روشنایی آن پیکسل را نشان می دهد. بسته به نوع داده ای این آرایه دو بعدی، انواع مختلف از تصاویر بوجود می آیند که در ادامه هر یک از انواع تصاویر به طور خلاصه بررسی می شوند.

تصاویر دودویی

در تصاویر دودویی هر کدام از پیکسل ها می توانند یکی از دو مقدار روشن ۱ و خاموش ۰ را داشته باشند. لذا برای نگهداری هر پیکسل تنها به یک بیت دودویی نیاز است. یکی از اصلی ترین مزایای این گونه تصاویر حجم کم آن ها است و معمولا برای نگهداری نوشته های چاپی و یا دست نویس، اثر انگشت و نقشه های مهندسی از آن استفاده می شود.(Gonzalez and woods, 2005)

تصاویر شدت روشنایی

تصاویر شدت با نام تصاویر خاکستری نیز شناخته می شوند. در این تصاویر مقدار هر یک ار عناصر آرایه دوبعدی تصویر یک عدد ۸ بیتی است که می تواند نقداری بین ۰ (معادل رنگ مشکی) و ۲۵۵ (معادل رنگ سفید) را در خود ذخیره کند. دامنه تغییرات عناصر در این گونه تصاویر، اعداد صحیح بین ۰ تا ۲۵۵ است.

تصاویر رنگی

در تصاویر رنگی هر پیکسل دارای یک رنگ مشخص است که خود ترکیبی از سه مولفه رنگی اصلی قرمز، سبز و آبی است و لذا برای ذخیره کردن یک تصویر رنگی با ابعاد M*N نیاز به سه ماتریس با ابعاد M*N است که هر کدام شدت روشنایی هر کدام از مولفه ها را در خود ذخیره می کنند. به عنوان مثال اگر رنگ یک پیکسل قرمز خالص باشد لایه های رنگی آن به صورت [۰و۰و۲۵۵] می باشند. برای نمایش سفید خالص هر سه مولفه رنگی برابر ۲۵۵ و برای مشکی خالص هر سه مولفه برابر صفر است. تصاویر RGB دارای سه لایه رنگی ۸ بیتی هستند و لذا بانام تصاویر ۲۴ بیتی نیز شناخته می شوند. این تصاویر سه برابر تصاویر سطح خاکستری هم اندازه خود فضا اشغال می کنند. (Gonzalez and woods, 2005)

تصاویر شاخص

یکی از مهم ترین معایب تصاویر ۲۴ بیتی عدم سازگاری با سخت افزار های قدیمی بود که قادر به نمایش هم زمان ۱۶ میلیون رنگ نبودند. علاوه بر این به حجم بالای ذخیره سازی نیاز داشتند. راه اصلی که همزمان دو مشکل را حل می کند استفاده از یک بازنمایی شاخص دار است که در آن از یک آرایه دوبعدی هم اندازه با تصویر استفاده می شود. لذا برای نمایش هر تصویر شاخص دار از یک آرایه دو بعدی ۸ بیتی تصویر و یک نقشه رنگی ۲۵۶ مدخلی استفاده می شود.

الگوریتم مبتنی بر تصمیم گیری

در (srinirasan and Ebenezer 2007) روشی با نام الگوریتم مبتنی بر تصمصم گیری ارائه شده است. در صورتی که مقدار هر پیکسل بین مینیمم و ماکزیمم مقدار درون پنجره فیلتر قرار گیرد، پیکسل سالم معرفی شده و بدون تغییر باقی می ماند. اگر پیکسل نویزی باشد و مقدار میانه پنجره فیلتر در بازه مینیمم و ماکزیمم پنجره باشد مقدار میانه جایگزین پیکسل خواهد شد و در غیر این صورت مقدار پیکسل با پیکسل همسایه اش جایگزین می شود. الگوریتم DBA در چگالی نویز بالا نیز کارامد است.

متدهای مبتنی بر محاسبات نرم

در سال های اخیر، تکنیک های پیشرفته محاسبات نرم برای عملیات فیلتر گذاری تصاویر با در نظر گرفتن آن به عنوان یک مسئله غیر خطی بکار گرفته شده اند. هم شبکه های عصبی و هم شبکه های با منطق فازی ابزارهای قدرتمندی برای حل طیف وسیعی از مسائل پردازش تصویر هستند. در منبع یک شبمه عصبی نقشه خود سازماندهی برای آشکار سازی پیکسل های نویزی به همراه یک فیلتر تطبیقی برای فیلتر کردن پیکسل نویزی استفاده شده است. شبکه از انحرافات میانه یعنی تفاضل پیکسل های همسایه با میانه پبجره فیلتر به عنوان ورودی استفاده کرده و پیکسل مرکزی را به دو دسته نویزی و سالم طبقه بندی می کند. این فیلتر قابلیت خوبی در حفظ جزئیات تصویر دارد. مهمترین عیب این فیلتر ابعاد بالای ورودی شبکه و انتخاب تصاویر آموزشی است.

در (zvonarev and khryashchev 2005) از ترکیب فیلتر میانه و شبکه عصبی برای بهبود عملکرد حذف نویز استفاده شده است. سیستم پیشنهاد شده، برای جدا سازی پیکسل نویزی از پیکسل سالم از الگوریتم دو مرحله ای استفاده می کند. در تشخیص اولیه، اگر مقدار هر پیکسل درون بازه [min,max] باشد پیکسل سالم و در غیر این صورت نویز تشخیص داده می شود. پیکسل های کاندید برای نویزی بودن به شبکه عصبی فرستاده می شود تا طبقه بندی انجام شود. از ویژگی های محلی آماری برای ورودی شبکه استفاده شده است. مفهوم منطق فازی در سال ۱۹۶۵  توسط آقای زاده به عنوان یک ابزار ریاضی برای مدل سازی عضویت نسبی در مجموعه های معرفی شد. بر خلاف تکنیک های کلاسیک مجموعه ای که تنها عضویت قطعی در آن ها وجود دارد، در منطق فازی امکان تعریف عضویت نسبی وجود دارد.

در منبع (yuksel and besdok 2004)  از یک سیستم فازی عصبی تطبیقی برای آشکار سازی پیکسل نویزی استفاده شده است که شامل دو زیر آشکار گر مبتنی بر شبکه فازی عصبی با منطق فازی نوع سوگنو است که هر کدام از سه ورودی استفاده می کنند. این سه ورودی پیکسل های عمودی و افقی در یک پنجره ۳*۳ هستند. هر زیر آشکارگر برای هر ورودی سه تابع و سه تابع زنگوله ای برای هر ورودی، ۲۷ قاعده برای تصمیم گیری است.که وزن ها بر اساس شدت آتش هر قاعده تعیین می شود. در نهایت میانگین خروجی دو زیر آشکارگر محاسبه می شود و از یک آستانه نهایی برای تشخیص پیکسل نویزی استفاده می شود.

در فیلتر های حذف نویز، طبقه بندی هر پیکسل با برچسب نویزی یا سالم معمولا از طریق مشاهدات همسایگی پیکسل انجام می شود. یک راه ساده برای طبقه بندی اندازه گیری میزان اختلاف پیکسل مرکزی و خروجی فیلتر میانه است. در صورتی که میزان اختلاف از یک حد آستانه بیشتر باشد، پیکسل به عنوان پیکسل نویزی و در غیر این صورت پیکسل به عنوان سالم بر چسب می خورد. این راه حل در نگاه اول ساده به نظر می رسد، اما تعیین مقدار مناسب آستانه بحث بر انگیز است و تعیین چنین آستانه هایی معمولا امری مشکل است. در یک رویکرد فازی، با استفاده از شروط فازی و توابع عضویت، میزان نویزی بودن هر پیکسل تعیین می شود و می توان از این طبقه بندی هم در بخش طبقه بندی اولیه در سیستم حذف نویز و هم در تخمین مقدار نهایی برای پیکسل نویزی استفاده کرد.

در قسمت های قبل مفاهیم پایه و انواع تصاویر و همچنین مدل های مختلف نویز بررسی شد و تاثیر هر کدام از انواع نویز بر روی تصاویر سطح خاکستری نشان داده شد. هر کدام از انواع نویز تاثیر متفاوتی بر روی کیفیت تصویر اصلی می گذارند و بر همین اساس از رویکرد های متفائتی برای کاهش اثر هر کدام از انواع نویز استفاده می شود. متد های فوق و پایه ای در حذف نویز ضربه در این قسمت مرور شد. در ادامه متدی برای کاهش اثر نویز ضربه بر روی تصاویر دیجیتال بررسی می شود.

 

۹ آذر ۱۳۹۸/0 نظرها/توسط م. دلیری
https://behsanandish.com/wp-content/uploads/download-2.jpg 250 340 م. دلیری https://behsanandish.com/wp-content/uploads/logo-farsi-englisi-300x195-1.png م. دلیری2019-11-30 10:00:142021-03-30 22:11:33حذف نویز تصاویر با شبکه های عصبی و فیلتر میانی قسمت 1

فیلتر گابور (Gabor filter) چیست؟ قسمت ۳

آموزش عمومی پردازش تصویر و بینایی ماشین

در این معادله  نشان دهنده فاکتور طول موج سینوسی است، نشان دهنده جهت گیری نرمال به نوارهای موازی یک تابع گابور است،  فاز متعادل کننده است،  انحراف سیگما/استاندارد از پاکت گاوسین است و  نسبت ابعاد فضایی است و بیضوی بودن حمایت از تابع گابور را مشخص می کند.

برنامه های فیلتر دوبعدی گابور در پردازش تصویر

در پردازش تصویر سند، ویژگی های گابور برای شناسایی اسکریپت یک کلمه در یک سند چند زبانه ایده آل هستند. فیلترهای گابور با فرکانس های مختلف و جهت گیری هایی در جهت های مختلف برای محلی سازی و استخراج مناطق متن-تنها از تصاویر سند پیچیده (هر دو خاکستری و رنگی) استفاده شده است، از آنجا که متن با اجزای فرکانس بالا غنی است، در حالی که تصاویر در طبیعت به طور نسبی صاف هستند. این همچنین برای تشخیص بیان صورت استفاده شده است. فیلترهای گابور همچنین به طور گسترده ای در برنامه های کاربردی تجزیه و تحلیل الگو استفاده شده اند. به عنوان مثال، آن برای مطالعه توزیع جهت گیری در داخل استخوان تنگرنگ اسفنجی متخلخل در ستون فقرات مورد استفاده قرار گرفته است. فضای گابور در برنامه های پردازش تصویر مانند تشخیص کاراکترهای نوری ، تشخیص عنبیه و شناسایی اثر انگشت بسیار مفید است. روابط بین فعال سازها برای یک مکان فضایی خاص بین اشیاء در یک تصویر بسیار متمایز است. علاوه بر این، فعال سازهای مهم را می توان از فضای گابور استخراج کرد تا یک نمایندگی شیء نادر ایجاد شود.

مثال پیاده سازی

(کد برای استخراج ویژگی گابور از تصاویر در MATLAB را می توان در http://www.mathworks.com/matlabcentral/fileexchange/44630 پیدا کنید.)

این یک مثال کاربردی در پایتون است :

import numpy as np

def gabor_fn(sigma, theta, Lambda, psi, gamma):
    sigma_x = sigma
    sigma_y = float(sigma) / gamma

    # Bounding box
    nstds = 3 # Number of standard deviation sigma
    xmax = max(abs(nstds * sigma_x * np.cos(theta)), abs(nstds * sigma_y * np.sin(theta)))
    xmax = np.ceil(max(1, xmax))
    ymax = max(abs(nstds * sigma_x * np.sin(theta)), abs(nstds * sigma_y * np.cos(theta)))
    ymax = np.ceil(max(1, ymax))
    xmin = -xmax
    ymin = -ymax
    (y, x) = np.meshgrid(np.arange(ymin, ymax + 1), np.arange(xmin, xmax + 1))

    # Rotation 
    x_theta = x * np.cos(theta) + y * np.sin(theta)
    y_theta = -x * np.sin(theta) + y * np.cos(theta)

    gb = np.exp(-.5 * (x_theta ** 2 / sigma_x ** 2 + y_theta ** 2 / sigma_y ** 2)) * np.cos(2 * np.pi / Lambda * x_theta + psi)
    return gb

برای پیاده سازی در تصاویر، به [۱] مراجعه کنید .

این یک مثال کاربردی در MATLAB / Octave است :

function gb=gabor_fn(sigma,theta,lambda,psi,gamma)

sigma_x = sigma;
sigma_y = sigma/gamma;

% Bounding box
nstds = 3;
xmax = max(abs(nstds*sigma_x*cos(theta)),abs(nstds*sigma_y*sin(theta)));
xmax = ceil(max(1,xmax));
ymax = max(abs(nstds*sigma_x*sin(theta)),abs(nstds*sigma_y*cos(theta)));
ymax = ceil(max(1,ymax));
xmin = -xmax; ymin = -ymax;
[x,y] = meshgrid(xmin:xmax,ymin:ymax);

% Rotation 
x_theta=x*cos(theta)+y*sin(theta);
y_theta=-x*sin(theta)+y*cos(theta);

gb= exp(-.5*(x_theta.^2/sigma_x^2+y_theta.^2/sigma_y^2)).*cos(2*pi/lambda*x_theta+psi);

این مثال دیگر در Haskell است :

import Data.Complex (Complex((:+)))
gabor λ θ ψ σ γ x y = exp ( (-0.5) * ((x'^2 + γ^۲*y'^2) / (σ^۲)) :+ ۰) * exp ( 0 :+ (2*pi*x'/λ+ψ) )
    where x' =  x * cos θ + y * sin θ
          y' = -x * sin θ + y * cos θ

(توجه: a :+ b بایدخوانده شده باشد به عنوان  )

ترجمه شده از سایت wikipedia

فیلتر گابور (Gabor filter) چیست؟ قسمت ۱
فیلتر گابور (Gabor filter) چیست؟ قسمت ۲
فیلتر گابور (Gabor filter) چیست؟ قسمت ۳

۵ شهریور ۱۳۹۸/0 نظرها/توسط توسعه دهنده
https://behsanandish.com/wp-content/uploads/760px-Montage-Gabor-filter-5-angles-1.png 446 760 توسعه دهنده https://behsanandish.com/wp-content/uploads/logo-farsi-englisi-300x195-1.png توسعه دهنده2019-08-27 12:30:222019-08-26 00:59:19فیلتر گابور (Gabor filter) چیست؟ قسمت 3

فیلتر گابور (Gabor filter) چیست؟ قسمت ۲

آموزش عمومی پردازش تصویر و بینایی ماشین

فضای موجک

فیلترهای گابور مستقیماً با موجک های گابور مرتبط هستند، زیرا آن ها می توانند برای تعدادی از انبساط ها و چرخش ها طراحی شوند. با این حال، به طور کلی، انبساط برای موجک های گابور اعمال نمی شود، زیرا این به محاسبه موجک دومتعامدی نیاز دارد که ممکن است بسیار وقت گیر باشد.

بنابراین، معمولاً یک بانک فیلتر متشکل از فیلترهای گابور با مقیاس ها و چرخش های مختلف ایجاد می شود. فیلترها با سیگنال به هم پیچیده می شوند و نتیجه در یک به اصطلاح فضای گابور. این فرایند با فرآیندهای قشر دید اولیه ارتباط نزدیک دارد. جونز و پالمر نشان دادند که بخش واقعی تابع پیچیده گابور برای توابع وزن پذیری میدانی در سلول های ساده در یک قشر ستون گربه مناسب یافت شده است.

استخراج ویژگی ها از تصاویر

مجموعه ای از فیلترهای گابور با فرکانس ها و جهت گیری های مختلف ممکن است برای استخراج ویژگی های مفید از یک تصویر کمک کننده باشد. در دامنه گسسته، فیلترهای دوبعدی گابور ارائه می شوند توسط،

{\displaystyle G_{c}[i,j]=Be^{-{\frac {(i^{2}+j^{2})}{2\sigma ^{2}}}}\cos(2\pi f(i\cos \theta +j\sin \theta ))}

{\displaystyle G_{s}[i,j]=Ce^{-{\frac {(i^{2}+j^{2})}{2\sigma ^{2}}}}\sin(2\pi f(i\cos \theta +j\sin \theta ))}

جایی که B و C عوامل عادی سازی را تعیین می کنند. فیلترهای دو بعدی گابور دارای برنامه های غنی در پردازش تصویر هستند، به خصوص در استخراج ویژگی ها برای تحلیل بافت و تقسیم بندی. f فرکانس مورد جستجو در بافت را تعریف می کند. با تغییر \theta \theta ، ما می توانیم بافتی جهت دار که در یک جهت خاص باشد را جستجو کنیم. با تغییر \sigma \sigma ، ما حمایت از مبانی یا اندازه منطقه تصویر که مورد تجزیه و تحلیل قرار می گیردند را تغییر می دهیم.

 

فیلتر گابور (Gabor filter) چیست؟ قسمت ۱
فیلتر گابور (Gabor filter) چیست؟ قسمت ۲
فیلتر گابور (Gabor filter) چیست؟ قسمت ۳

۴ شهریور ۱۳۹۸/0 نظرها/توسط توسعه دهنده
https://behsanandish.com/wp-content/uploads/760px-Montage-Gabor-filter-5-angles-1.png 446 760 توسعه دهنده https://behsanandish.com/wp-content/uploads/logo-farsi-englisi-300x195-1.png توسعه دهنده2019-08-26 23:00:472019-08-23 19:12:03فیلتر گابور (Gabor filter) چیست؟ قسمت 2

فیلتر گابور (Gabor filter) چیست؟ قسمت ۱

آموزش عمومی پردازش تصویر و بینایی ماشین

در پردازش تصویر ، یک فیلتر گابور (Gabor filter) که به نام دنیس گابور نامگذاری شده است، یک فیلتر خطی است که برای تحلیل بافت استفاده می شود، به این معنی که اساساً تحلیل می کند که آیا محتوای فرکانس خاص در تصویر در جهت خاص در یک منطقه محلی در اطراف نقطه یا منطقه تجزیه و تحلیل وجود دارد. بسیاری از دانشمندان دیدگاه معاصر ادعا می کنند که فرکانس و جهت گیری نمایش های فیلترهای گابور شبیه به سیستم بصری انسان می باشند، هرچند هیچ شواهد تجربی و هیچ منطقی عملی برای حمایت از این ایده وجود ندارد. آنها به ویژه برای نمایش و تبعیض بافت مناسب هستند. همچنین در حوزه فضایی، یک فیلتر گابور دوبعدی، یک تابع هسته گاووسی است که توسط یک موج مسطح سینوسی مدولاسیون شده است .

بعضی از نویسندگان ادعا می کنند که سلول های ساده در قشر بینایی مغز پستانداران می توانند توسط توابع گابور مدل شوند. بنابراین، بعضی از آنها تجزیه و تحلیل تصویر با فیلترهای گابور را مشابه با اداراک در سیستم دیداری انسان تصور می کنند.

مثالی از فیلتر گابور دو بعدی

مثالی از فیلتر گابور دو بعدی

تعریف

پاسخ ضربه آن توسط یک موج سینوسی (یک موج مسطح برای فیلترهای گابور دوبعدی) ضرب در یک تابع Gaussian تعریف می شود. به علت خاصیت پیچیدگی ضرب (تئوری پیچیدگی)، تبدیل فوریه یک پاسخ ضربه ای فیلتر گابور، کانولشنِ[پیچیدگی] تبدیلِ فوریه تابع هارمونیک (تابع سینوسی) و تبدیل فوریه تابع گاوسی است. فیلتر یک واقعیت و یک جزء تخیلی نشانگر مسیرهای متعامد دارد. دو جزء ممکن است به یک شماره پیچیده یا به استفاده ویژه شکل بگیرد.

پیچیده

g(x,y;\lambda,\theta,\psi,\sigma,\gamma) = \exp\left(-\frac{x'^2+\gamma^2y'^2}{2\sigma^2}\right)\exp\left(i\left(2\pi\frac{x'}{\lambda}+\psi\right)\right)

واقعی

g(x,y;\lambda,\theta,\psi,\sigma,\gamma) = \exp\left(-\frac{x'^2+\gamma^2y'^2}{2\sigma^2}\right)\cos\left(2\pi\frac{x'}{\lambda}+\psi\right)

تخیلی

g(x,y;\lambda,\theta,\psi,\sigma,\gamma) = \exp\left(-\frac{x'^2+\gamma^2y'^2}{2\sigma^2}\right)\sin\left(2\pi\frac{x'}{\lambda}+\psi\right)

جایی که

x' = x \cos\theta + y \sin\theta\,

و

y' = -x \sin\theta + y \cos\theta\,

 

فیلتر گابور (Gabor filter) چیست؟ قسمت ۱
فیلتر گابور (Gabor filter) چیست؟ قسمت ۲
فیلتر گابور (Gabor filter) چیست؟ قسمت ۳

۴ شهریور ۱۳۹۸/0 نظرها/توسط م. دلیری
https://behsanandish.com/wp-content/uploads/760px-Montage-Gabor-filter-5-angles.png 446 760 م. دلیری https://behsanandish.com/wp-content/uploads/logo-farsi-englisi-300x195-1.png م. دلیری2019-08-26 11:00:482019-08-23 19:11:44فیلتر گابور (Gabor filter) چیست؟ قسمت 1



استخدام برنامه نویس آشنا به پردازش تصویر
بیمه + حقوق + پاداش

  • سامانه مدیریت پارکینگ خصوصی بهسان در شرکت توزیع برق شهر کرد۲ مرداد ۱۴۰۰ - ۰۵:۳۲
  • سامانه ثبت تردد جاده ای بهسان درشهرداری چرمهین۲۶ خرداد ۱۴۰۰ - ۱۱:۲۳
  • سامانه مدیریت پارکینگ خصوصی بهسان در شرکت توزیع برق شهر کرد۱۳ خرداد ۱۴۰۰ - ۰۶:۰۸
  • سامانه جامع مدیریت پارکینگ بهسان۲۶ آبان ۱۳۹۹ - ۱۲:۱۴

دسته‌ها

  • آموزش پردازش تصویر در نرم افزار متلب (Matlab)
  • آموزش عمومی پردازش تصویر و بینایی ماشین
  • آموزش های زبان برنامه نویسی سی شارپ
  • آموزش های عمومی هوش مصنوعی
  • اخبار
  • بینایی ماشین (Machine Vision) و بینایی کامپیوتر
  • پردازش تصویر با کتابخانه متن باز OpenCV
  • پروژه ها و سورس کدهای پردازش تصویر و بینایی ماشین
  • پروژه ها و سورس کدهای هوش مصنوعی
  • تشخيص پلاک خودرو
  • تشخیص نوری کاراکتر و تشخیص دست خط
  • تشخیص هویت زیست سنجی
  • دسته‌بندی نشده
  • دوربین (camera)
  • مقالات
  • مقالات ، سمینارها و کنفرانس های پردازش تصویر
  • مقالات، سمینارها و کنفرانس های هوش مصنوعی
  • هوش محاسباتی
  • وبلاگ

تلفن های تماس:

تلفن: ۹۱۰۰۱۸۸۱(۰۳۱)
بازرگانی و فروش:۰۹۳۶۷۳۷۸۴۶۹
پشتیبانی: ۰۹۱۱۷۶۱۰۲۷۵

ساعات کاری

از شنبه تا چهارشنبه : ۰۹:۰۰ تا ۱۷:۰۰

پنچ شنبه ها : از ۰۹:۰۰ تا ۱۳:۳۰

پیوند ها :

  • درخواست دمو
  • مطالب و آموزش ها
  • همکاری با بهسان اندیش
  • درباره ما

محصولات :

  • پلاک خوان
  • نرم افزار ثبت تردد جاده ای
  • نرم افزار مدیریت پارکینگ
  • نرم افزار مدیریت کارواش
  • نرم افزار تعمیرگاه خودرو
  • نرم افزار جامع مدیریت باسکول
  • ماژول رله کنترل راهبند
تمامی حقوق مالکیت معنوی این ‌سایت برای شرکت بهسان اندیش سپهر، محفوظ است.
  • Instagram
  • Facebook
  • Youtube
  • Linkedin
  • Mail
رفتن به بالا