بایگانی برچسب برای: Hcl

دو مثال از کاربردهای سیستم ایمنی مصنوعی

الگوريتم هاي سيستم ايمني مصنوعي در گروه الگوريتم هاي بهينه سازي اتفاقي قرار دارند كه در آنها از قوانين موجود در سيستم ايمني بيولوژيکي به منظور بهينه سازي استفاده مي شود. اين الگوريتم ها در مسائل بهينه سازي که بيش از یک بهينه مورد نظر است نسبت به الگوريتم هاي ژنتيک کارايي بيشتري از خود نشان مي دهند. به دليل اينکه هيچ اطلاع قبلي از پاسخ بهينه سراسري وجود ندارد، الگوريتم هاي سيستم ايمني مصنوعي در تعيين مناسب نرخ ابر جهش دچار مشکل هستند که از اشکالات عمده اين الگوريتم ها مي توان به همگرايي کٌند به بهينه سراسري و عدم پايداري در اجراهاي مختلف اشاره نمود.

در اولین مثال ارائه شده، هدف از ارائه مدل، محلي کردن ارتباط بين آنتي بادي ها و استفاده از دانش خبره به منظور تعيين کاراي پارامترهاي اساسي اين الگوريتم بر اساس ارزيابي محلي مي باشد که علاوه بر سرعت بخشيدن به محاسبات مي تواند باعث بهبود کيفيت نتايج بدست آمده گردد. در اين مدل با کمک توابع تعلق فازی و در نظر گرفتن خاصيت محلي براي آنتي بادي ها با استفاده از اتوماتاي سلولي، نرخ ابر جهش به صورت کارا تعیین می شود. براي اعتبار سنجي راهکار پيشنهادي شبيه-سازي هايي توسط جوادزاده و میبدی صورت گرفته که نتايج آن ها نشان مي دهد راه کار پيشنهادي پاسخ هاي به مراتب بهتري نسبت به الگوريتم استاندارد سيستم ايمني مصنوعي نتيجه مي دهد.

مثال (۱) : مدل تركيبي مبتني بر سيستم ايمني مصنوعي و اتوماتاي سلولي فازی (FCA-AIS)

الگوريتم هاي سيستم ايمني مصنوعي در گروه الگوريتم هاي بهينه سازي اتفاقي قرار دارند كه در آنها از قوانين موجود در سيستم ايمني بيولوژيکي بمنظور بهينه سازي استفاده مي شود. رفتار الگوريتم سيستم ايمني مصنوعي وابستگي شديدي به پارامترهايي نظیر نحوه تعريف و احتمال عملگرهاي ابَرجهش، اندازه جامعه ايجاد شده براي هر آنتي بادي، اندازه جمعيت ها و تعداد دوره هاي توليد شده دارد.

تعريف نامناسب اين پارامترها باعث به دام افتادن الگوريتم در نقاط بهينه محلي مي شود به منظور رفع اين مشکل با استفاده از مفاهيم اتوماتاي سلولي فازي، توابع تعلق و همسايگي هاي مطرح در آن، عملگرهاي سيستم ايمني مصنوعي در مثال ارائه شده بومي سازي شده اند. همچنين بکارگيري مفاهيم اتوماتاي سلولي فازي تلاشي در جهت پياده سازي محاسبات موازي در الگوريتم هاي سيستم ايمني مصنوعي بوجود آورده است به دليل اينکه هيچ اطلاع قبلي از پاسخ بهينه سراسري وجود ندارد، الگوريتم هاي سيستم ايمني مصنوعي در تعيين مناسب نرخ ابرجهش دچار مشکل هستند.

سال ۲۰۰۳ تیمیس در مقاله ” A Comment on opt-AiNET: An Immune Network Algorithm for Optimisation” براي حل اين مشكل روشي ارائه نموده که با محاسبه ميزان وابستگي تناسبي، که با نرمال کردن مقادير وابستگي هر آنتي بادي در هر مرحله زماني بدست مي آيد تا اندازه اي اين مشکل حل شده است. همچنين جوادزاده در سال ۲۰۰۸ میلادی در مقاله “Hybrid Models based on Artificial Immune systems and Cellular Automata and Their Applications to Optimization Problems” مدل ترکيبيCA-AIS را به منظور تعيين پارامترهاي اساسي براساس ارزيابي وابستگي محلي توسط مفاهیم اتوماتای سلولی ارائه نموده است. اما هدف از ارائه مدل در مثال ارائه شده ، حل اين مشكل با استفاده از روش ارزيابي وابستگي محلي و همچنين دانش خبره مي باشد.

اتوماتای سلولی

اتوماتاي سلولي به عنوان مدلي براي بررسي رفتار سيستم‌هاي پيچيده پيشنهاد شده است. اتوماتاي سلولي در حقيقت سيستم‌هاي ديناميکي گسسته‌اي هستند که رفتارشان کاملاً بر اساس ارتباط محلي استوار است. در اتوماتاي سلولي، فضا به صورت يک شبکه تعريف مي‌گردد که به هر خانه آن يک سلول گفته مي‌شود. زمان بصورت گسسته پيش مي‌رود و قوانين آن به صورت سرتاسري است که از طريق آن در هر مرحله هر سلول، وضعيت جديد خود را با در نظر گرفتن همسايه‌هاي مجاور خود بدست مي‌آورد.

قوانين اتوماتاي سلولي، نحوه تأثير پذيرفتن سلول از سلول هاي همسايه خود را مشخص مي‌کند. يک سلول، همسايه سلول ديگر گفته مي شود هرگاه بتواند آن را در يک مرحله و براساس قانون حاکم تحت تأثير قرار دهد.

اتوماتاي سلولي فازی

مشکل عمده در مدلسازی سيستم هاي پيچيده توسط اتوماتاي سلولي، اين است که نمي‏توان رابطه دقيقي بين عمل و عکس‏ العمل رفتارهاي طبيعي تعريف کرد. تعريف دقيق رفتار سيستم مستلزم دانش دقيق از حالت هاي سيستم و تغيير حالت سيستم تحت ورودي هاي مختلف است. براي مقابله با اين مشکل راهبرد منطق فازي را مورد استفاده قرار مي ‏دهند، كه با استفاده از آن مي‏توان کميت هاي غير دقيق و مبهمي که در تصميم‏گيري درباره قوانين انتقال و تغيير حالت هاي سيستم موثرند را تعريف نمود.

با توجه به توانايي منطق فازي در پردازش داده هاي غير قطعي، ساختاري از CA معرفي شده است که در آن به جاي استفاده از مقادير قطعي در سلول ها و توابع انتقال شان از مقادير غير قطعي و فازي استفاده مي شود. تعاريف متفاوتي از اتوماتاي سلولي فازي ارائه شده است که هر يک باعث ايجاد ويژگيها و رفتار خاصي در اتوماتاي سلولي فازي مي شود.

مدل ترکيبي مبتنی بر سيستم ايمني مصنوعي و اتوماتاي سلولي فازي(FCA-AIS)

در روش پيشنهادي از اتوماتاي سلولي فازي به منظور تعيين مقادير مناسب نرخ ابر جهش براي آنتي بادي ها استفاده مي شود. قوانين فازي در هر سلول اتوماتاي سلولي فازي عهده دار تعيين مقدار مناسب نرخ ابر جهش براي آنتي بادي ها متناظر با آن سلول مي باشد. در واقع اتوماتاي سلولي فازي تعيين مي کند که براي کدام آنتي بادي ها نرخ ابرجهش بايستي پايين و براي کدام آنتي بادي ها نرخ ابرجهش بايستي بالا در نظر گرفته شود. براي اين منظور در موقعيت هايي كه ميزان وابستگي آنتي بادي ها نسبت به وابستگي بهترين آنتي بادي در همسايگي از ارزش بالايي برخوردار نيست بايد از مقادير بالا براي نرخ ابرجهش استفاده نمود و در مقابل در موقعيت هايي كه ميزان وابستگي آنتي بادي ها نسبت به وابستگي بهترين آنتي بادي در همسايگي از ارزش بالايي برخوردار است بايد از مقادير پايين براي نرخ ابر جهش آن آنتي بادي استفاده نمود.

هدف از ارائه اين مدل استفاده از مفاهيم اتوماتاي سلولي فازی است تا نرخ ابر جهش بطور مناسب و کارا انتخاب شود. همچنين با استفاده از مفاهيم توزيعي و توازي اتوماتاي سلولي، مي توان محاسبات را در اين مدل پيشنهادي به صورت موازي انجام داد. براي تعيين نرخ ابر جهش از يک اتوماتاي سلولي دو بعدي استفاده مي شود. هر آنتي بادي ها در سيستم ايمني مصنوعي به يکي از سلولهاي اتوماتاي سلولي فازي نگاشت مي شود (تصویر زیر).در اين مدل از همسايگي ون-نيومن با شعاع همسايگي يک استفاده شده است.

 

همسایگی ون نیومن

 

در تصویری که در زیر آورده شده نمايي از يک سلول را در مدل ترکيبي پيشنهادي به تصوير کشيده شده است. به دليل اينکه هيچ اطلاع قبلي از پاسخ بهينه سراسري وجود ندارد، الگوريتم هاي سيستم ايمني مصنوعي در تعيين مناسب نرخ ابر جهش دچار مشکل هستند. ايده اصلي اين راه کار اينست که از ارزيابي وابستگي محلي بصورت فازي استفاده شود. به منظور استفاده از دانش خبره، تئوري مجموعه هاي فازي و منطق فازي ابزار قدرتمندي براي ارائه و پردازش دانش بشري به شکل قوانين اگر-آنگاه فازي مي باشند.

نمایی از یک سلول در مدل ترکیبی FCA-AIS

براي تعيين نرخ ابر جهش با استفاده از FCA نياز به مشخص نمودن کيفيت وابستگي آنتي بادي ها، وجود دارد. براي اين منظور، از ميزان تعلق وابستگي آنتي بادي به مجموعه هاي فازي Near و Far استفاده مي شود که در نمودار ۱ نشان داده شده است. مرکز اين مجموعه ها بر ميزان وابستگي بهترين آنتي بادي در همسايگي آن آنتي بادي  منطبق شده است و ميزان ابر جهش بر اساس رابطه های (۱) و (۲) تعيين مي شود.

رابطه (۱) : If Affinity is Near then Mutatin is Low
رابطه (۲) : If Affinity is Far then Mutatin is High

 

توابع عضویت Near و Far

نمودار ۱ – توابع عضويت Near و Far

در توابع عضويت مجموعه هاي فازي Near و Far (نمودار ۱) ، Ab* بهترين آنتي بادي در همسايگي آنتي بادي مورد پردازش مي باشد، همچنين مقدار α برابر با قدرمطلق تفاضل بهترين و بدترين آنتي بادي  در همسايگي آنتي بادي  مورد نظر است. اين امر باعث مي شود دامنه توابع عضويت مجموعه هاي فازيNear و Far در روند تکاملي راه کار پيشنهادي به صورت پويا خود را با شرايط محيط وفق دهند. توابع عضويت Low و High در نمودار ۲ آمده است و نقاط a، b، c و d به ترتيب برابر مقادیر ۰، ۱ ، ۲ و ۳ انتخاب شده اند.

 

نمودار ۲ – توابع عضويت Low و Highنمودار ۲ – توابع عضويت Low و High

 

نتایج آزمایش ها

در اين بخش نتايج شبيه سازي سيستم ايمني مصنوعي مبتني بر اتوماتاي سلولي فازی (FCA-AIS)براي چهار تابع محك استاندارد (روابط ۳ تا ۶) که دارای بهینه سراسری در صفر است به ازاء كيفيت جواب بدست آمده در مقابل مدل ترکیبی سيستم ايمني مصنوعي ، اتوماتای سلولی و الگوريتم سيستم ايمني مصنوعي استاندارد مورد مطالعه قرار گرفته است.

براي ارزيابي راهکار پيشنهادي توابع مورد آزمايش به صورت سي بعدي و آنتي-بادي ها بصورت اعداد حقيقي کدگذاري شده اند و راهکار پيشنهادي با ۱۰۰ تکرار براي بدست آوردن پاسخ بهينه مورد آزمون قرار گرفته شده است. با توجه به ماهيت آزمون‌هاي آماري، پس از ۳۰ بار اجراي مكرر به ازاي هر تابع، از شاخص‌هاي بهترين پاسخ و ميانگين پاسخ‌ها براي مقايسه كارايي الگوريتم و از شاخص واريانس (كه يكي از شاخص‌هاي پراكندگي است) براي مقايسه پايداري استفاده شده است. نتايج شبيه‌سازي‌هاي انجام شده با استفاده از راه کار پيشنهادي، مدل ترکیبی سيستم ايمني مصنوعي و اتوماتای سلولی و الگوريتم سيستم ايمني مصنوعي به ترتيب در جدول های ۱ ، ۲ و ۳ آورده شده است.

 

روابط

 

همان گونه که در جدول های ۱ ، ۲ و ۳ در ستون بهترین نتیجه که حاصل بهترین نتیجه در ۱۰۰ اجرای مختلف و ستون میانگین که حاصل میانگین ۱۰۰ اجرای مختلف می باشد، بیانگر این است که، راهکار پیشنهادی در مقایسه با مدل ترکیبی سيستم ايمني مصنوعي، اتوماتای سلولی و الگوریتم استاندارد سیستم ایمنی مصنوعی در نقاط بهینه دارای دقت بسیار بالاتری می باشد. همچنین با توجه به ستون واریانس، که حاصل واریانس نتایج ۱۰۰ مرتبه اجرای مختلف می باشد بیانگر پايداري این مدل در اجراهاي مختلف و گریز از بهینه های محلی می باشد، که می تواند بهبودی بر کارایی سیستم ایمنی مصنوعی تلقی گردد. بر این اساس می توان کارايي راه کار پيشنهادي نسبت به مدل ترکیبی سيستم ايمني مصنوعي ، اتوماتای سلولی و الگوريتم استاندارد سيستم ايمني مصنوعي را تاييد کرد.

تعداد سلول ها، پارامتري مهم است كه بر كارايي مدل FCA-AIS تاثير مستقيم دارد .نمودار ۳ تاثير تعداد سلول ها را بر سرعت همگرايي مدل پيشنهادي در بهینه یابی تابع نشان داده است. هر نقطه نشان داده شده در اين نمودارها ارزش بهترين جواب بدست آمده در هر تكرار الگوريتم را نشان مي دهد. نتايج شبيه سازي ها نشان داد با افزايش تعداد سلول ها، روند همگرايي به بهينه سراسري شتاب بخشيده مي شود. اما تا حدي افزايش تعداد سلول ها مي تواند بر سرعت همگرايي بيافزايد و با افزايش تعداد سلول ها از تعداد ۳۶ سلول، تاثير چشمگيري در سرعت رسيدن به بهينه سراسري مشاهده نمي شود و با توجه به حجم محاسبات کمتر، مدل با ۳۶ سلول  پیشنهاد می شود.

به منظور مطالعه تاثير شعاع همسايگي بر كارايي مدل پيشنهادي چندين شبيه سازي با شعاع همسایگی ۱ تا ۴ انجام شده كه نتايج آن در بهینه یابی تابع در نمودار ۴ ارائه شده است. نتايج شبيه سازي ها نشان مي-دهد كه مدل پيشنهادي FCA-AIS با شعاع همسايگي ۱ جواب هايي با كيفيتي قابل قبول توليد مي كند که در مقايسه با ديگر شعاع هاي همسايگي به دليل حجم محاسبات کمتر، داراي امتياز است.

 

جدول 1       جدول 2

 

جدول 3

 

نمودار 3            نمودار 4

 

نتيجه‌گيري

در اين مثال ارائه شده ، مدل ترکيبي FCA-AIS به منظور محلي کردن ارتباط بين آنتي بادي ها و استفاده از دانش خبره در الگوريتم هاي سيستم ايمني مصنوعي به منظور تعيين کاراي پارامترهاي اساسي اين الگوريتم ارائه شده است. در اين الگوريتم آنتي بادي ها بروي يک شبکه سلولي در کنار يکديگر قرار مي گيرند. در هر زمان تمام سلول ها به صورت همزمان فعال مي شوند و بر اساس مقادير آنتي بادي خود و بهترين همسايه با استفاده از مجموعه ها و قوانين فازي نرخ ابرجهش را تعيين مي نمايند.

نتايج بدست آمده نشان مي دهد مدل پيشنهادي علاوه بر سرعت بخشيدن به محاسبات داراي دقت بيشتري نسبت به الگوريتم استاندارد سيستم ايمني مصنوعي مي باشد. اجراي مكرر شبيه‌سازي‌ها نيز نشان داد كه اين الگوريتم از پايداري بيشتري برخوردار مي‌باشد. همچنين به منظور مطالعه تاثير پارامترها بر روند همگرايي، پارامترهايي همچون تعداد سلول هاي شبکه و شعاع همسايگي مورد بررسي قرار گرفت که نتايج حاکي از آن است که با افزايش تعداد سلول ها، مدل ترکيبي پيشنهادي با سرعت بالاتري به بهينه سراسري نزديک مي شد اين در حالي است که در يک شبکه سلولي افزايش شعاع همسايگي تاثير چشمگيري بر سرعت همگرايي نداشته و اتوماتاي سلولي با شعاع همسايگي يک به دليل حجم محاسبات کمتر از مقبوليت بيشتري برخوردار است.

سیستم‌های ایمنی مصنوعی جزء الگوریتم‌های الهام گرفته شده از بیولوژی هستند. این نوع الگوریتم‌ها، الگوریتم هایی کامپیوتری هستند که اصول و ویژگی‌های آنها نتیجه بررسی در خواص وفقی و مقاومت نمونه‌ها بیولوژیکی است. سیستم ایمنی مصنوعی نوعی الگو برای یادگیری ماشین است. یادگیری ماشین، توانایی کامپیوتر برای انجام یک کار با یادگیری داده‌ها یا از روی تجربه است. در این پروژه ابتدا سیستم ایمنی انسان تشریح شده زیرا در سیستم های ایمنی مصنوعی از مدل ایمنی طبیعی پیروی می شود. سپس سیستم ایمنی مصنوعی معرفی و تعریف می گردد. در ادامه به تاریخچه و نحوه عملکرد الگوریتم خواهیم پرداخت و انواع کاربردهای الگوریتم سیستم ایمنی مصنوعی معرفی شده و دو مثال از بین کاربردها تشریح خواهند شد.

سیستم ایمنی بدن انسان

محیط اطراف بدن انسان حاوی انواع عوامل نظیر ویروس ها ، باکتری ها و قارچ ها است. اگر این عوامل وارد بدن انسان یا میزبان شوند و موقعیت تکثیر پیدا نمایند می توانند میزبان را از پا در آورند. البته بیشتر این عوامل به دلیل وجود واکنش‌هایی از طرف بدن میزبان چنین موقعیتی را پیدا نمی کنند و پس از مدت کوتاهی از بین می‌روند.واکنش‌هایی که باعث مبارزه با عوامل ذکر شده می شوند توسط سیستمی یکپارچه به نام دستگاه ایمنی صورت می‌گیرند. در بدن انسان دستگاه ایمنی شامل مولکول‌ها ، سلول ها و بافت هایی است که در برابر عوامل بیماری زا و عفونت حاصله از آنها مقاومت ایجاد نموده و مانع رشد آنها می شود.دستگاه ایمنی بدن انسان دارای پیچیدگی های زیادی است که وجود این پیچیدگی ها منجر به وجود علم ایمنی شناسی شده است. این علم به مطالعه دستگاه ایمنی بدن انسان و پاسخ های آن در برابر عوامل بیماری زا می پردازد.

خطوط دفاعی بدن انسان

اولین خط دفاعی بدن انسان یک حصار فیزیکی مانند پوست است. پس از آن سیستم ایمنی ذاتی است که از هنگام به دنیا آمدن به صورت طبیعی در بدن وجود دارد.خط سوم دفاعی سیستم ایمنی تطبیقی می باشد که قابلیت یادگیری و بهبود مکانیزم دفاعی را دارا می باشد. ایمنی تطبیقی نسبت به ایمنی ذاتی آهسته تر بوجود می آید ولی ایمنی موثرتری را فراهم می نماید.

 

سیستم تطبیقی بدن انسان

سیستم تطبیقی بدن انسان

 

سیستم ایمنی تطبیقی از دو نوع سلول به نام های سلول B و سلول T تشکیل شده است. سطح این سلول ها از پروتئین های آنتی بادی پوشیده شده است. بر روی تمام سلول های دیگر بدن پروتئین های آنتی ژن وجود دارد.آنتی بادی ها با آنتی ژن ها واکنش شیمیایی می دهند و می توانند به هم متصل شوند.

سیستم ایمنی تطبیقی به دو دسته عمده تقسیم می شود : ایمنی همورال و ایمنی با واسطه سلولی.
هریک از این انواع ایمنی تطبیقی ، بوسیله سلول ها و مولکول های متفاوتی اداره می شوند و به ترتیب برای دفاع در برابر میکروب های خارج سلولی و داخل سلولی طراحی شده اند.ایمنی همورال ، با استفاده از پروتئین هایی که آنتی بادی هستند و بوسیله سلول های B ساخته می شوند ، نقش خود را ایفاء می کنند.آنتی بادی ها به درون سیستم گردش خون و ترشحات مخاطی ترشح می شوند و میکروب ها و سموم میکروبی را که به خون و حفرات اندام های مخاطی مانند
مجاری تنفسی و روده ای راه یافته اند را حذف و خنثی می نمایند. یکی از مهمترین وظایف آنتی بادی ها ، مهار دسترسی و متمرکز شدن میکروب هایی است که از سطوح مخاطی و و خون به سلول های میزبان و بافت های همبند حمله ور می شوند.بدین ترتیب آنتی بادی ها از استقرار و ادامه عفونت جلوگیری می نمایند. آنتی بادی ها به به میکروب هایی که درون سلول آلوده وجود دارند و تکثیر می شوند دستیابی ندارند. این مشکل میکروب های درون سلولی توسط ایمنی با واسطه سلولی برطرف می شود. این ایمنی با واسطه سلول های T بوجود می آید.برخی از سلول های T ، سلول های بیگانه خوار را برای از بین بردن میکروب هایی که بوسیله سلول ها بلعیده شده اند را فعال می کند. سلول های بیگانه خوار در اصل گلبول های سفید خون هستند که سلول های تصویر بیگانه موجود در بدن را می بلعند. سایر سلول های T هر نوع سلول میزبان دارای میکروب درون سیتوپلاسم را از بین می برند. بنابراین سلول های B و T به ترتیب برای شناسایی اختصاصی آنتی زن های میکروب های خارج سلولی و درون سلولی طراحی شده اند. تفاوت دیگر این دو سلول در این است که سلول های T فقط آنتی ژن های پروتئینی میکروب ها را شناسایی می کنند اما سلول های B قادر هستند انواع متفاوتی از مولکول های میکروبی را شناسایی نمایند.

سلول B

سلول B

 

آشنایی با مفاهیم اولیه سیستم ایمنی بدن انسان

مهمترین ارگان های سیستم دفاعی بدن انسان عبارتند از : مغز استخوان، تیموس، طحال، رگ های لنفی، گره های لنفی، لوزه و آدونوئید. در تصویر زیر جایگاه هرکدام از ارگان های سیستم دفاعی بدن انسان را مشاهده می نمائید.

 

ارگان های سیستم دفاعی بدن انسان

ارگان های سیستم دفاعی بدن انسان

 

تیموس و مغز استخوان بافت های لنفاوی زاینده نامیده می شوند زیرا در تولید سلول های دستگاه ایمنی (گلبول های سفید) و بلوغ آنها نقش اساسی دارند. این دو ارگان اعضای لنفاوی اصلی نیز نامیده می شوند. تیموس غده ای در اطراف جناغ سینه و گردن انسان است که در بلوغ سلول های T نقش اساسی دارد. این غده تا دوران بلوغ رشد کرده و پس از آن به مرور کوچک تر می شود تا در دوران کهنسالی به غده ای از چربی تبدیل می شود.نقش مهم این غده در آموزش سلول های T برای تشخیص خودی از غیر خودی و ایجاد تحمل ایمنی می باشد. طحال نیز در تولید گلبول های سفید خون نقش دارد و گلبول های قرمز پیر را از بین می برد.

رگ های لنفاوی کانال ارتباطی میان دیگر ارگان ها هستند.گلبول های سفید علاوه بر این که می توانند توسط رگ های خونی در تمام بدن حرکت کنند ، می توانند در سیستمی از رگ های لنفی که به موازات رگ های خونی وجود دارند و به گره های لنفی منتهی می شوند ، نیز حرکت کنند. گره های لنفاوی یکی از مهمترین مولفه های سیستم ایمنی هستند. این گره ها در سرتاسر شریان های لنفی و به تعداد زیاد وجود دارند.گلبول های سفید بالغ به اندام های لنفاوی محیطی رفته و در آنجا به آنتی ژن های خارجی واکنش نشان می دهند و از آنجا وارد خون و رگ های لنفی می شوند. سیستم مخاطی ، طحال و رگ ها و گره های لنفاوی جزء بافت های لنفاوی ثانویه محسوب می شوند.

سلول های B

سلول های B از سلول های ریشه ای مغر استخوان نشات گرفته و در مجاورت سلول های نمدی مغز استخوان مراحل اولیه تکامل را سپری می کنند. سپس از سلول های نمدی جدا شده و مرحله دوم تکامل خود را در مغز استخوان به پایان می رسانند. اگر سلول تشکیل شده ، سلولی سالم باشد و علیه سلول های خودی بدن واکنش نشان ندهد ، از مغز استخوان خارج شده و برای شناسایی و مقابله با آنتی ژن ها وارد بدن می شود.سلول های B پس از تحریک شدن تکثیر یافته و به سلول های حافظه تبدیل می شوند. تحریک سلول های B می تواند در اثر سیگنال های رسیده از جانب سلول های T توسط مولکول های سایتوکین یا مستقیما توسط آنتی ژن ها صورت بپذیرد.

سلول های T

سلول های T دارای نوع های مختلف با عملکردهای متفاوت می باشند.گروهی از سلول های T از طریق واکنش متقابل با سلول های بیگانه خوار تک هسته ای ، به آنها در جهت تخریب عوامل بیماری زای داخل سلولی کمک می کنند.این دسته از سلول های T ، سلول های T کمکی یا TH نامیده می شوند.این گروه از سلول های T می توانند با سلول های B نیز واکنش متقابل داشته و به آنها در جهت تقسیم ، تمایز و تولید آنتی بادی کمک کنند.دسته ای دیگر از سلول هایT وظیفه تخریب آن دسته از سلول های میزبان را که با ویروس یا عوامل بیماری زای داخل سلولی آلوده شده اند را برعهده دارند. این نوع از سلول های T را سلول T کُشنده یا TK می نامند.گروه سوم از سلول های T وظیفه تنظیم پاسخ ایمنی بدن و تعدیل آن پس از برطرف شدن عامل بیماری زا را برعهده دارند.این گروه از سلول های T را سلول T بازدارنده یا TS می نامند.سلول های T در مغز استخوان تولید شده و برای بلوغ و تکامل به تیموس مهاجرت می کنند.سلول های T روی سطح خود دارای مولکول های به عنوان گیرنده هستند که TCR نامیده می شوند.این گیرنده ها با مولکول های دیگری به نام هم گیرنده های TCR، در شناسایی آنتی ژن ها نقش اساسی را ایفا می کنند.

به اجتماع گیرنده ها و هم گیرنده های هر سلول T ، مجموعه TCR گفته می شود. سلول های T در مجموعه TCR متفاوت هستند. به عنوان مثال هم گیرنده های سلول های T کمکی از نوع CD4+ و هم گیرنده های سلول های T کُشنده از نوع CD8+ می باشند. نوع سلول T ، در تیموس و در خلال فرآیندهای انتخاب مشخص می شود. بنابراین یک سلول T هنگامی بالغ است که هم گیرنده آن مشخص شده باشد.گیرنده های TCR ، پیش از بلوغ روی سلول های T قراردارند ولی هم گیرنده آن طی فرآیند بلوغ مشخص می شود.

 

عملکرد سلول T

عملکرد سلول T

آنتی بادی

عنوان شد که پس از تحریک سلول های B توسط آنتی ژن ها و یا سلول های T ، این سلول ها به سلول های حافظه تبدیل می شوند. در این مرحله سلول های حافظه مقادیر زیادی از مولکول های گیرنده از نوع محلول که قابل ترشح است را می سازند.این ماده به عنوان آنتی بادی شناخته می شود زیرا آنتی بادی ها مشابه مولکول اصلی گیرنده هستند و به آنتی ژن هایی که در آغاز سلول B را فعال کرده است متصل می شوند.

آنتی ژن

کلمه آنتی ژن به معنی تولید کننده آنتی بادی است. هر مولکولی که به صورت اختصاصی توسط اجزای سیستم ایمنی مانند سلول های B و T و یا هردو شناسایی شود آنتی ژن محسوب می شود.

انواع مرگ سلول

مرگ برنامه ریزی شده سلول به هر شکلی از مردن یک سلول گفته می شود که بر اساس یک برنامه درون سلولی انجام می شود.مرگ طبیعی سلول راهی کلیدی برای خودپایداری سیستم ایمنی بشمار می رود و عاملی مهم برای تغییرات فیزیولوژیک عمومی سلول مانند تغییرات ریختی و تجزیه سلول به اجزای تشکیل دهنده اش برای ثابت نگاه داشتن حضور خود آنتی ژن ها است. فرآیند مرگ طبیعی سلول ها در طی یک روز برای افراد بالغ حدودا بین پنجاه تا هفتاد میلیارد بار اتفاق می افتد.
شکل دیگری از مرگ برنامه ریزی شده سلول ها ، نکروزیس می باشد که به مرگ غیرطبیعی سلول گفته می شود.نکروزیس باعث ایجاد واکنش های التهابی در اطراف سلول مرده می شود.

پاکسازی سلول های مرده

پاکسازی سلول های مرده توسط سلول های بیگانه خوار انجام می شود.این سلول ها نوعی از سلول های ایمنی هستند که سلول های میکروبی و سلول های مرده را طی فرآیند فاگوسیتوز با بلعیدن و هضم کردن از بین می برند. عوامل زیادی برای جلوگیری از فرآیند فاگوسیتوز بر سلول های سالم و خودی بدن وجود دارد. ساختارهای طبیعی بدن در بافت ها ، سطحی هموار دارند که در برابر سلول های بیگانه خوار مقاوم هستند. اما اگر سطح ذره ای نا هموار باشد احتمال انجام فاگوسیتوز بر روی آن افزایش می یابد. بیشتر مواد طبیعی بدن دارای پوشش حفاظتی پروتئینی هستند که سلول های بیگانه خوار را از خود دور می کنند.بافت های مرده و ذرات خارجی عموما فاقد پوشش حفاظتی هستند که آنها را در معرض سلول های بیگانه خوار قرار می دهد. از طرفی سیستم ایمنی بدن انسان هنگام ورود مواد عفونی نظیر باکتری ها به بدن ، آنتی بادی تولید می کند. آنتی بادی های تولید شده به غشاء باکتری ها چسبیده و و آنها را نسبت به سلول های بیگانه خوار حساس می کنند.
سیستم ایمنی مصنوعی (AIS) قسمت 1
سیستم ایمنی مصنوعی (AIS) قسمت 2
سیستم ایمنی مصنوعی (AIS) قسمت 3
سیستم ایمنی مصنوعی (AIS) قسمت 4
سیستم ایمنی مصنوعی (AIS) قسمت 5
سیستم ایمنی مصنوعی (AIS) قسمت 6

الگوریتم ژنتیک

  • نحوه نمایش مسئله:

می‌دانیم اگر دو وزیر در یک ستون قرار گیرند قطعاً به جواب نخواهیم رسید. بنابراین قرار دادن دو وزیر در یک ستون باعث غیرامیدبخش شدن جواب مسئله می‌شود.

برای نمایش مسئله در کروموزوم‌ها از این ویژگی استفاده کرده و به صورت زیر عمل می‌کنیم:

یک آرایه تک بعدی ایجاد می‌کنیم که به تعداد ستون‌های صفحه شطرنج عنصر دارد. هر عنصر از این آرایه نشان می‌دهد که وزیر در کدام سطر از آن ستون قرار دارد. به عنوان مثال اگر مسئله ۸ وزیر را در نظر بگیریم، آرایه تک بعدی باید دارای ۸ عنصر باشد. فرض کنید آرایه دارای مقادیر زیر باشد:

۸ , ۷ , ۶ , ۵ , ۴ , ۳ , ۲ , ۱

مقدار ۸ در اولین عنصر آرایه گویای این مطلب است که در ستون اول صفحه شطرنج وزیری در سطر هشتم قرار داده‌ایم.

  • تولید جمعیت اولیه:

الگوریتم‌های ژنتیک ابتدا جمعیت اولیه‌ای تولید کرده و سپس سعی در بهبود بخشیدن این جمعیت دارند. برای مسئله n وزیر تولید جمعیت به صورت تصادفی خواهد بود. بدین صورت که وزیرها به‌طور تصادفی روی صفحه شطرنج قرار می‌دهیم.

برای محاسبه میزان بهینگی جواب تعداد جفت وزیرهایی را که به هم گارد می‌دهند، محاسبه می‌کنیم. برای مسئله ۸ وزیر در بدترین حالت هر وزیر با همه وزیرهای دیگر گارد می‌دهد (فرض کنید همه وزیرها در یک سطر قرار گیرند). در این حالت حداکثر تعداد جفت وزیرهایی که به همگدیکر کارد می‌دهند ۲۸ جفت است:

۷ + ۶ + ۵ + ۴ +۳ + ۲ + ۱

در حالت کلی برای مسئله n وزیر حداکثر تعداد جفت وزیرهایی که به همدیگر گارد می‌دهند به صورت زیر محاسبه می‌شود:

۱+ ۲ +.. +(n-۱) = (n * (n-۱)) /۲
  • برای محاسبه میزان بهینگی هر کروموزوم از فرمول زیر استفاده می‌کنیم:
Fitness[i] =1 – (Guard(chromosome[i])) / MaxGuards
  • حداکثر تعداد گاردها:
MaxGuards
  • تعداد جفت وزیرهایی که در کروموزوم ام همدیگر را گارد می‌دهند:
 Guard(chromosome[i])

 

منبع

 


پیاده سازی الگوریتم ۸ وزیر با استفاده از الگوریتم ژنتیک

راهکاری که برای حل یک مسئله با الگوریتم ژنتیک استفاده می شود تکامل می یابد. الگوریتم ژنتیک مثل هر الگوریتم بهینه سازی دیگر با تعریف متغیرهای بهینه سازی آغاز می شود و مانند الگوریتم های بهنیه سازی دیگر نیز خاتمه می یابد یعنی با تست همگرایی.

یک الگوریتم GA دارای پارامترهای زیر است:

  • : Fitnessتابعی برای ارزیابی یک فرضیه  که مقداری عددی به هر فرضیه نسبت میدهد
  • : Fitness_threshold مقدار آستانه که شرط پایان را معین میکند
  • : population تعداد فرضیه هائی که باید در جمعیت در نظر گرفته شوند
  • : crossover rate  در صدی از جمعیت که در هر مرحله توسط الگوریتم crossover  جایگزین میشوند
  • :mutation rate  نرخ mutation

الگوریتم GA  به صورت زیر کار می کند:

  • : Initializeجمعیت را با تعداد population فرضیه بطور تصادفی مقدار دهی اولیه کنید.
  • : Evaluateبرای هر فرضیه h در population مقدار تابع Fitness(h) را محاسبه نمائید.
  • تا زمانیکه[maxh Fitness(h)] < Fitness_threshold یک جمعیت جدید ایجاد  کنید.
  • فرضیه ای که دارای بیشترین مقدار Fitness است را برگردانید.

روش های مختلف crossover:

Single-point crossover

  • یک نقطه تصادفی در طول رشته انتخاب میشود.
  • والدین در این نقطه به دوقسمت میشوند.
  • هر فرزند با انتخاب تکه اول از یکی از والدین و تکه دوم از والد دیگر بوجود میاید.

روشهای دیگر Crossover

در crossover یکنواخت بیتها بصورت یکنواخت از والدین انتخاب می شوند.

اپراتورهای ژنتیکی Mutation :

  • اپراتور mutation برای بوجود آوردن فرزند فقط از یک والد استفاده میکند. اینکار با انجام تغییرات کوچکی در رشته اولیه  بوقوع میپیوندد.
  • با استفاده از یک توزیع یکنواخت یک بیت بصورت تصادفی اتنخاب و مقدار آن تغییر پیدا میکند.
  • معمولا mutation بعد از انجام crossover اعمال میشود.

تابع fitness  معیاری برای رتبه بندی فرضیه هاست که کمک میکند تا فرضیه های برتر برای نسل بعدی جمعیت انتخاب شوند. نحوه انتخاب این تابع بسته به کاربر مورد نظر دارد

در روش معرفی شده در الگوریتم ساده GA احتمال انتخاب یک فرضیه برای استفاده در جمعیت بعدی بستگی به نسبت fitness  آن به fitness  بقیه اعضا دارد. این روش Roulette Wheel selectionنامیده میشود.

روش جستجوی GA با روشهای دیگر مثل شبکه های عصبی تفاوت دارد:

در شبکه عصبی روش Gradient descent بصورت  هموار از فرضیه ای به فرضیه  مشابه دیگری حرکت میکند در حالیکه GA  ممکن است بصورت ناگهانی فرضیه والد را با فرزندی جایگزین نماید که تفاوت اساسی با والد آن داشته باشد.از اینرو احتمال گیر افتادن GA در مینیمم محلی کاهش می یابد. با این وجود GA با مشکل دیگری روبروست که crowding  نامیده میشود crowding پدیده ای  است که در آن  عضوی که سازگاری بسیاربیشتری از بقیه افراد جمعیت دارد بطور مرتب تولید نسل کرده و با تولید اعضای مشابه درصد عمده ای از جمعیت را اشغال میکند. راه حل رفع مشکل Crowdingاستفاده از ranking  برای انتخاب نمونه ها است، با اختصاص رتبه به فرضیه ای که بسیار بهتر از بقیه عمل میکند.

مسئله ۸ وزیر:

بدین ترتیب دیدیم که مسیر میان اجزای الگوریتم ژنتیک به ترتیب زیر است:

  1. تعریف توابع و متغیرها
  2. تولید جمعیت اولیه
  3. دیکد کردن کروموزوم ها
  4. پیدا کردن هزینه برای هر کروموزوم
  5. انتخاب جفت ها
  6. جفت گیری
  7. میوتیشن
  8. بررسی همگرایی
  9. خاتمه یا بازگشت به مرحله دیکد کردن کروموزوم ها

ژن عددی از ۰ تا n-1 است در ۸ وزیر n برابر با ۸ است بنابراین ژن عددی از ۰ تا ۷ می شود و کروموزوم آرایه ای از ژن هاست. که می تواند پاسخ مسئله باشد.

جمعیت هر نسل می تواند  تعداد کروموزوم ها را تعیین کند.

جمعیت اولیه از انتخاب رندومی از کروموزوم ها ایجاد می شود. تعداد نسل هایی که برای همگرایی مورد نیاز است به جمعیت تصادفی اولیه بستگی دارد.

برای پیدا کردن هزینه مربوط به هر کروموزوم یک تابع هزینه تعریف می شود. نتیجه تابع هزینه یک cost value است که در نهایت میانگین cost valueهای هر نسل به نتیجه مطلوب نزدیک می شود.

کروموزوم هایی که فیتنس بالاتری (هزینه پایین تر) دارند برای تولید نسل بعدی استفاده می شوند.

در فرایند cross over فرزندان توسط والدین تولید می شوند که ترکیب آنها شامل ترکیب ژن های آنهاست. اگر نسل جدید حاوی کروموزومی باشد که نزدیک یا برابر با نتایج مطلوب باشد آنگاه مسئله حل شده است. در غیر اینصورت فرایند قبلی در نسل جدید هم پیاده سازی می شود مانند فرایندی که برای والدین آنها اتفاق افتاد. تا زمانی که به راه حل مناسب برسیم این روال ادامه دارد.

در شطرنج وزیر می تواند هر طور که مایل بود حرکت کند افقی عمودی یا در قطر. صفحه شطرنج ۸ در ۸ است یعنی ۸ سطر و ۸ ستون دارد . در مسئله ۸ وریز استاندارد به دنبال این هستیم که چگونه ۸ وزیر در خانه های جدول به گونه ای قرار بگیرند که هیچ یک دیگری را تهدید نکنند. در اینجا با الگوریتم ژنتیک این کار را انجام می دهیم.

برای تولید فرزندان از والیدن نیاز به crossover داریم که تصمیم می گیرد از دو والدین کدام ژن باید انتخاب شود.

 

مسئله چند وزیر قسمت 1
مسئله چند وزیر قسمت 2
مسئله چند وزیر قسمت 3
مسئله چند وزیر قسمت 4

1.A GABOR FILTER TEXTURE ANALYSIS APPROACH FOR HISTOPATHOLOGICAL BRAIN TUMOUR SUBTYPE DISCRIMINATION

Abstract Meningioma brain tumour discrimination is challenging as many histological patterns are mixed between the different subtypes. In clinical practice, dominant patterns are investigated for signs of specific meningioma pathology; however the simple observation could result in inter- and intra-observer variation due to the complexity of the histopathological patterns. Also employing a computerised feature extraction approach applied at a single resolution scale might not suffice in accurately delineating the mixture of histopathological patterns. In this work we propose a novel multiresolution feature extraction approach for characterising the textural properties of the different pathological patterns (i.e. mainly cell nuclei shape, orientation and spatial arrangement within the cytoplasm). The patterns’ textural properties are characterised at various scales and orientations for an improved separability between the different extracted features. The Gabor filter energy output of each magnitude response was combined with four other fixed-resolution texture signatures (2 model-based and 2 statistical-based) with and without cell nuclei segmentation. The highest classification accuracy of 95% was reported when combining the Gabor filters’ energy and the meningioma subimage fractal signature as a feature vector without performing any prior cell nuceli segmentation. This indicates that characterising the cell-nuclei self-similarity properties via Gabor filters can assists in achieving an improved meningioma subtype classification, which can assist in overcoming variations in reported diagnosis.
Keywords – texture analysis, Gabor filter, fractal dimension, meningioma histopathology, brain tumours

فایل PDF – در 14 صفحه- نویسنده : Omar Sultan Al-Kadi

A GABOR FILTER TEXTURE ANALYSIS APPROACH FOR HISTOPATHOLOGICAL BRAIN TUMOUR SUBTYPE DISCRIMINATION

پسورد فایل : behsanandish.com


2.A Review Paper on Gabor Filter Algorithm & Its Applications

Abstract— In applications of image analysis and computer vision, Gabor filters have maintained their popularity in feature extraction. The reason behind this is that the resemblance between Gabor filter and receptive field of simple cells in visual cortex. Being successful in applications like face detection, iris recognition, fingerprint matching; where, Gabor feature based processes are amongst the best performers. The Gabor features can be derived by applying signal processing techniques both in time and frequency domain. The models like human preattentive texture perception have been proposed which involves steps like convolution, inhibition and texture boundary detection. Texture features are based on the local power spectrum obtained by a bank of Gabor filters. The concept of sparseness to generate novel contextual multiresolution texture descriptors are described. In this paper we present the detailed study about the Gabor filter and its application.
Index Terms— Gabor filter, Gabor energy, image quality assessment, Gabor features, multiresolution techniques, segmentation, textured images..

فایل PDF – در 5 صفحه- نویسنده : Neelu Arora , Mrs. G. Sarvani

A Review Paper on Gabor Filter Algorithm & Its Applications

پسورد فایل : behsanandish.com


3.Comparison of texture features based on Gabor filters

 

Abstract -The performance of a number of texture feature operators is evaluated. The features are all based on the local spectrum which is obtained by a bank of Gabor filters. The comparison is made using a quantitative method which is based on Fisher’s criterion. It is shown that, in general, the discrimination effectiveness of the features increases with the amount of post-Gabor processing.

فایل PDF – در 6 صفحه- نویسنده : P. Kruizinga, N. Petkov and S.E. Grigorescu

Comparison of texture features based on Gabor filters

پسورد فایل : behsanandish.com


4.Evolutionary Gabor Filter Optimization with Application to Vehicle Detection

 

Abstract—Despite the considerable amount of research work on the application of Gabor filters in pattern classification, their design and selection have been mostly done on a trial and error basis. Existing techniques are either only suitable for a small number of filters or less problem-oriented. A systematic and general evolutionary Gabor filter optimization (EGFO) approach that yields a more optimal, problem-specific, set of filters is proposed in this study. The EGFO approach unifies filter design with filter selection by integrating Genetic Algorithms (GAs) with an incremental clustering approach. Specifically, filter design is performed using GAs, a global optimization approach that encodes the parameters of the Gabor filters in a chromosome and uses genetic operators to optimize them. Filter selection is performed by grouping together filters having similar characteristics (i.e., similar parameters) using incremental clustering in the parameter space. Each group of filters is represented by a single filter whose parameters correspond to the average parameters of the filters in the group. This step eliminates redundant filters, leading to a compact, optimized set of filters. The average filters are evaluated using an application-oriented fitness criterion based on Support Vector Machines (SVMs). To demonstrate the effectiveness of the proposed framework, we have considered the challenging problem of vehicle detection from gray-scale images. Our experimental results illustrate that the set of Gabor filters, specifically optimized for the problem of vehicle detection, yield better performance than using traditional filter banks.

 

فایل PDF – در 8 صفحه- نویسنده : Zehang Sun, George Bebis and Ronald Miller

Evolutionary Gabor Filter Optimization with Application to Vehicle Detection

پسورد فایل : behsanandish.com


5.Expression-Invariant Face Recognition via 3D Face Reconstruction Using Gabor Filter Bank from a 2D Single Image

Abstract— In this paper, a novel method for expression- insensitive face recognition is proposed from only a 2D single image in a gallery including any facial expressions. A 3D Generic Elastic Model (3D GEM) is used to reconstruct a 3D model of each human face in the present database using only a single 2D frontal image with/without facial expressions. Then, the rigid parts of the face are extracted from both the texture and reconstructed depth based on 2D facial land-marks. Afterwards, the Gabor filter bank was applied to the extracted rigid-part of the face to extract the feature vectors from both texture and reconstructed depth images. Finally, by combining 2D and 3D feature vectors, the final feature vectors are generated and classified by the Support Vector Machine (SVM). Favorable outcomes were acquired to handle expression changes on the available image database based on the proposed method compared to several state-of-the-arts in expression-insensitive face recognition.

Keywords—Face recognition; 3D shape recovery; Gesture and Behavior Analysis.

 

فایل PDF – در 6 صفحه- نویسنده : Ali Moeini, Hossein Moeini, Karim Faez

Expression-Invariant Face Recognition via 3D Face Reconstruction Using Gabor Filter Bank from a 2D Single Image

پسورد فایل : behsanandish.com


6.IMAGE RETRIEVAL BASED ON HIERARCHICAL GABOR FILTERS

Content Based Image Retrieval (CBIR) is now a widely investigated issue that aims at allowing users of multimedia information systems to automatically retrieve images coherent with a sample image. A way to achieve this goal is the computation of image features such as the color, texture, shape, and position of objects within images, and the use of those features as query terms. We propose to use Gabor filtration properties in order to find such appropriate features. The article presents multichannel Gabor filtering and a hierarchical image representation. Then a salient (characteristic) point detection algorithm is presented so that texture parameters are computed only in a neighborhood of salient points. We use Gabor texture features as image content descriptors and efficiently emply them to retrieve images.
Keywords: Gabor filters, image retrieval, texture feature extraction, hierarchical representation

فایل PDF – در 10 صفحه- نویسنده : TOMASZ ANDRYSIAK, MICHAŁ CHORA´ S

IMAGE RETRIEVAL BASED ON HIERARCHICAL GABOR FILTERS

پسورد فایل : behsanandish.com


7.Iris Recognition Based On Adaptive Gabor Filter

Abstract. Aiming at the problem of multi-category iris recognition, there proposes a method of iris recognition algorithm based on adaptive Gabor filter. Use DE-PSO to adaptive optimize the Gabor filter parameters. DE-PSO is composed of particle swarm optimization and differential evolution algorithm. Use 16 groups of 2D-Gabor filters with different frequencies and directions to process iris images. According to the direction and frequency of maximum response amplitude, transform iris features into 512-bit binary feature encoding. Calculate the Hamming distance of feature code and compare with the classification threshold, determine iris the type of iris. Experiment on a variety of iris databases with multiple Gabor filter algorithms, the results showed that this algorithm has higher recognition rate, the ROC curve is closer to the coordinate axis and the robustness is better, compare with other Gabor filter algorithm.

Keywords: Iris recognition Gabor filter Particle swarm optimization Differential evolutionFeature encodingHamming distance

 

فایل PDF – در 8 صفحه- نویسنده : Shuai Liu, Yuanning Liu, Xiaodong Zhu, Guang Huo, Jingwei Cui, and Yihao Chen

 

Iris Recognition Based On Adaptive Gabor Filter

پسورد فایل : behsanandish.com


8.USE OF GABOR FILTERS FOR TEXTURE CLASSIFICATION OF AIRBORNE IMAGES AND LIDAR DATA

KEY WORDS: Texture analysis, LIDAR, Algorithm, Urban and Vegetation Detection, Automated Classification
ABSTRACT: In this paper, a texture approach is presented for building and vegetation extraction from LIDAR and aerial images. The texture is very important attribute in many image analysis or computer vision applications. The procedures developed for texture problem can be subdivided into four categories: structural approach, statistical approach, model based approach and filter based approach. In this paper, different definitions of texture are described, but complete emphasis is given on filter based methods. Examples of filtering methods are Fourier transform, Gabor and wavelet transforms. Here, Gabor filter is studied and its implementation for texture analysis is explored. This approach is inspired by a multi-channel filtering theory for processing visual information in the human visual system. This theory holds that visual system decomposes the image into a number of filtered images of a specified frequency, amplitude and orientation.  The main objective of the article is to use Gabor filters for automatic urban object and tree detection. The first step is a definition of Gabor filter parameters: frequency, standard deviation and orientation. By varying these parameters, a filter bank is obtained that covers the frequency domain almost completely. These filters are used to aerial images and LIDAR data. The filtered images that possess  a significant information about analyzed objects are selected, and the rest are discarded.  Then, an energy measure is defined on the filtered images in order to compute different texture features. The Gabor features are used to image segmentation using thresholding.  The tests were performed using set of images containing very different landscapes: urban area and vegetation of varying configurations, sizes and shapes of objects. The performed studies revealed that textural algorithms have the ability to detect buildings and trees. This article is the attempt to use texture methods also to LIDAR data, resampling into regular grid cells. The obtained preliminary results are interesting.

 

فایل PDF – در 12 صفحه- نویسنده : Urszula Marmol


USE OF GABOR FILTERS FOR TEXTURE CLASSIFICATION OF AIRBORNE IMAGES AND LIDAR DATA

پسورد فایل : behsanandish.com

 

یادگیری ماشین – SVM یا ماشین بردار پشتیبان به زبان ساده

یکی از الگوریتم ها و روشهای بسیار رایج در حوزه دسته بندی داده ها، الگوریتم SVM یا ماشین بردار پشتیبان است که در این مقاله سعی شده است به زبان ساده و به دور از پیچیدگیهای فنی توضیح داده شود.

آشنایی با مفهوم دسته بندی

فرض کنید مجموعه داده ای داریم که ۵۰٪ افراد آن مرد و ۵۰٪ افراد آن زن هستند. این مجموعه داده می تواند مشتریان یک فروشگاه آنلاین باشد. با داشتن یک زیرمجموعه از این داده ها که جنسیت افراد در آن مشخص شده است، می خواهیم قوانینی ایجاد کنیم که به کمک آنها جنسیت بقیه افراد مجموعه را بتوانیم با دقت بالایی تعیین کنیم. تشخیص جنسیت بازدیدکنندگان فروشگاه، باعث می شود بتوانیم تبلیغات جداگانه ای را برای زنان و مردان نمایش دهیم و سودآوری فروشگاه را بالا ببریم . این فرآیند را در علم تحلیل داده، دسته بندی می نامیم .

برای توضیح کامل مسأله، فرض کنید دو پارامتری که قرار است جنسیت را از روی آنها تعیین کنیم، قد و طول موی افراد است . نمودار پراکنش قد و طول افراد در زیر نمایش داده شده است که در آن جنسیت افراد با دو نماد مربع (مرد) و دایره (زن) به طور جداگانه نمایش داده شده است .

SVM-1

 

با نگاه به نمودار فوق، حقایق زیر به سادگی قابل مشاهده است :

  1. مردان در این مجموعه، میانگین قد بلندتری دارند.
  2. زنان از میانگین طول موی بیشتری برخوردار هستند.

اگر یک داده جدید با قد ۱۸۰cm و طول موی ۴cm به ما داده شود، بهترین حدس ما برای ماشینی این شخص، دسته مردان خواهد بود .

بردارهای پشتیبان و ماشین بردار پشتیبان

بردارهای پشتیبان به زبان ساده، مجموعه ای از نقاط در فضای n بعدی داده ها هستند که مرز دسته ها را مشخص می کنند و مرزبندی و دسته بندی داده ها براساس آنها انجام می شود و با جابجایی یکی از آنها، خروجی دسته بندی ممکن است تغییر کند . به عنوان مثال در شکل فوق ، بردار (۴۵,۱۵۰) عضوی از بردار پشتیبان و متعلق به یک زن است . در فضای دوبعدی ،‌بردارهای پشتیبان، یک خط، در فضای سه بعدی یک صفحه و در فضای n بعدی یک ابر صفحه را شکل خواهند داد.

SVM یا ماشین بردار پشتیبان ، یک دسته بند یا مرزی است که با معیار قرار دادن بردارهای پشتیبان ، بهترین دسته بندی و تفکیک بین داده ها را برای ما مشخص می کند.

در SVM فقط داده های قرار گرفته در بردارهای پشتیبان مبنای یادگیری ماشین و ساخت مدل قرار می گیرند و این الگوریتم به سایر نقاط داده حساس نیست و هدف آن هم یافتن بهترین مرز در بین داده هاست به گونه ای که بیشترین فاصله ممکن را از تمام دسته ها (بردارهای پشتیبان آنها) داشته باشد .

چگونه یک ماشین بر مبنای بردارهای پشتیبان ایجاد کنیم ؟

به ازای داده های موجود در مثال فوق، تعداد زیادی مرزبندی می توانیم داشته باشیم که سه تا از این مرزبندی ها در زیر نمایش داده شده است.

 

SVM-2

 

سوال اینجاست که بهترین مرزبندی در این مسأله کدام خط است ؟

یک راه ساده برای انجام اینکار و ساخت یک دسته بند بهینه ، محاسبه فاصله ی مرزهای به دست آمده با بردارهای پشتیبان هر دسته (مرزی ترین نقاط هر دسته یا کلاس) و در نهایت انتخاب مرزیست که از دسته های موجود، مجموعاً بیشترین فاصله را داشته باشد که در شکل فوق خط میانی ، تقریب خوبی از این مرز است که از هر دو دسته فاصله ی زیادی دارد. این عمل تعیین مرز و انتخاب خط بهینه (در حالت کلی ، ابر صفحه مرزی) به راحتی با انجام محاسبات ریاضی نه چندان پیچیده قابل پیاده سازی است .

توزیع غیر خطی داده ها و کاربرد ماشین بردار پشتیبان

اگر داده ها به صورت خطی قابل تفکیک باشند، الگوریتم فوق می تواند بهترین ماشین را برای تفکیک داده ها و تعیین دسته یک رکورد داده، ایجاد کند اما اگر داده ها به صورت خطی توزیع شده باشند (مانند شکل زیر )، SVM را چگونه تعیین کنیم ؟

 

SVM-3

 

در این حالت، ما نیاز داریم داده ها را به کمک یک تابع ریاضی (Kernel functions) به یک فضای دیگر ببریم (نگاشت کنیم ) که در آن فضا، داده ها تفکیک پذیر باشند و بتوان SVM آنها را به راحتی تعیین کرد. تعیین درست این تابع نگاشت در عملکرد ماشین بردار پشتیبان موثر است که در ادامه به صورت مختصر به آن اشاره شده است.

با فرض یافتن تابع تبدیل برای مثال فوق،‌ فضای داده ما به این حالت تبدیل خواهد شد :

 

SVM-4

 

در این فضای تبدیل شده، یافتن یک SVM به راحتی امکان پذیر است .

نگاهی دقیق تر به فرآیند ساخت SVM

همانطور که اشاره شد،‌ماشین بردار پشتیبان یا SVM داده ها را با توجه به دسته های از پیش تعیین شده آنها به یک فضای جدید می برد به گونه ای که داده ها به صورت خطی (یا ابر صفحه ) قابل تفکیک و دسته بندی باشند و سپس با یافتن خطوط پشتیبان (صفحات پشتیبان در فضای چند بعدی) ، سعی در یافتن معادله خطی دارد که بیشترین فاصله را بین دو دسته ایجاد می کند.

در شکل زیر داده ها در دو دوسته آبی و قرمز نمایش داده شده اند و خطوط نقطه چین ، بردار های پشتیبان متناظر با هر دسته را نمایش می دهند که با دایره های دوخط مشخص شده اند و خط سیاه ممتد نیز همان SVM است . بردار های پشتیبان هم هر کدام یک فرمول مشخصه دارند که خط مرزی هر دسته را توصیف می کند.

SVM-5

SVM‌ در پایتون

برای استفاده از ماشین بردار پشتیبان در پایتون، توصیه بنده استفاده از کتابخانه یادگیری ماشین پایتون به نام scikitlearn است که تمام کرنل ها و توابع نگاشت را به صورت آماده شده دارد. سه تا تابعSVC , NuSVC , LinearSVC وظیفه اصلی دسته بندی را برعهده دارند . (SVC = Support Vector Classifier) . نمونه ای از دسته بندی با این توابع را در زیر می توانید مشاهده کنید :

 

SVM-6

ماشین بردار پشتیبانی در عمل

برای استفاده از SVM در مورد داده های واقعی ، چندین نکته را باید رعایت کنید تا نتایج قابل قبولی را بگیرید

  1. ابتدا داده ها را پالایش کنید (نقاط پرت ،‌ داده های ناموجود و …..)
  2. داده را عددی و نرمال کنید . این مباحث را در مقالات پیش پردازش داده ها دنبال کنید. به طور خلاصه ، داده هایی مانند جنسیت، رشته تحصیلی و … را به عدد تبدیل کنید و سعی کنید مقادیر همه صفات بین یک تا منهای یک [۱,-۱] نرمال شوند تا بزرگ یا کوچک بودن مقادیر یک ویژگی داده ها،‌ ماشین را تحت تاثیر قرار ندهد .
  3. کرنل های مختلف را امتحان و به ازای هر کدام، با توجه به مجموعه داده آموزشی که در اختیار دارید و دسته بندی داده های آنها مشخص است، دقت SVM را اندازه گیری کنید و در صورت نیاز پارامتر های توابع تبدیل را تغییر دهید تا جواب های بهتری بگیرید. این کار را برای کرنل های مختلف هم امتحان کنید . می توانید از کرنل RBF شروع کنید .

نقاط ضعف ماشین بردار پشتیان

  • این نوع الگوریتم ها، محدودیت های ذاتی دارند مثلا هنوز مشخص نشده است که به ازای یک تابع نگاشت ، پارامترها را چگونه باید تعیین کرد.
  • ماشینهای مبتنی بر بردار پشتیبان به محاسبات پیچیده و زمان بر نیاز دارند و به دلیل پیچیدگی محاسباتی، حافظه زیادی نیز مصرف می کنند.
  • داده های گسسته و غیر عددی هم با این روش سازگار نیستند و باید تبدیل شوند.

با این وجود، SVM‌ ها دارای یک شالوده نظری منسجم بوده و جواب های تولید شده توسط آنها ، سراسری و یکتا می باشد. امروزه ماشینهای بردار پشتیبان، به متداول ترین تکنیک های پیش بینی در داده کاوی تبدیل شده اند.

سخن پایانی

ماشینهای بردار پشتیبان، الگوریتم های بسیار قدرتمندی در دسته بندی و تفکیک داده ها هستند بخصوص زمانی که با سایر روشهای یادگیری ماشین مانند روش جنگل تصادفی تلفیق شوند. این روش برای جاهایی که با دقت بسیار بالا نیاز به ماشینی داده ها داریم، به شرط اینکه توابع نگاشت را به درستی انتخاب کنیم، بسیار خوب عمل می کند .

ساختار اصلی این نوشتار از روی یک مقاله سایت آنالیتیکزویدیا برداشته شده است و برای دو بخش پایانی مقاله هم از کتاب «داده کاوی پیشرفته : مفاهیم و الگوریتم ها» دکتر شهرابی استفاده شده است .

منبع


آشنایی با ماشین بردار پشتیبان (SVM) – مرور کلی

SVM یک مدل یادگیری نظارت شده است.

پس قبل از این که به سراغ آن برویم باید یک مجموعه داده(Dataset) که از قبل برچسب‌گذاری شده(Labeled) را داشته باشیم.

مثالفرض کنیم من صاحب یک کسب‌وکار هستم و هر روز تعداد زیادی ایمیل از مشتری‌ها دریافت می‌کنم. بعضی از این ایمیل‌ها شکایت‌ها و نارضایتی‌هایی هستند که من هرچه سریع‌تر باید به آن‌ها پاسخ بدهم و به آن‌ها رسیدگی کنم. در غیر این صورت کسب‌وکار من با ضرر روبرو خواهد شد.

من به دنبال راهی هستم که این ایمیل‌ها را هرچه سریع‌تر تشخیص بدهم(پیدا کنم) و پاسخ آن‌ها را زودتر از بقیه ارسال کنم.

رویکرد اولمن می‌توانم برچسب‌هایی با عنوان‌های: اورژانسی، شکایت و راهنمایی در جیمیل(GMail) خود ایجاد کنم.

اشکال این روش این است که من باید مدتی فکر کنم و همه کلمه‌های کلیدی(Keyword) بالغوه که مشتری‌های عصبانی ممکن است در ایمیل‌های خود استفاده کنند را پیدا کنم. طبیعی است که بعضی از آن‌ها را هم از قلم انداخته شوند. با گذشت زمان هم لیست این کلمه‌ها به احتمال زیاد شلوغ و مدیریت کردن آن‌ها به کار مشکلی تبدیل می‌شود.

رویکرد دوممن می‌توانم از یک الگوریتم یادگیری ماشین نظارت شده استفاده کنم.

قدم اولبه تعدادی ایمیل نیاز دارم.(هرچه بیشتر بهتر)

قدم دومعنوان ایمیل‌های قدم اول رو می‌خوانم و آن‌ها را در یکی از دو گروه «شکایت است» و یا «شکایت نیست» طبقه‌بندی می‌کنم. اینجوری می‌توانم ایمیل‌ها را برچسب ‌گذاری کنم.

قدم سومروی این مجموعه داده، مدلی را آموزش می‌دهم.

قدم چهارمکیفیت یا صحت پیش‌بینی های مدل آموزش داده‌شده را ارزیابی می‌کنم.(با استفاده از روش Cross Validation)

قدم پنجماز این مدل برای پیش‌بینی این که ایمیل‌های جدیدی که رسیده‌اند، شکایت هستند یا نه، استفاده می‌کنم.

در این رویکرد اگر مدل را با تعداد ایمیل‌های زیادی آموزش داده باشیم، مدل عملکرد خوبی را نشون می‌دهد. SVM فقط یکی از روش‌هایی هست که ما می‌توانیم برای یادگرفتن از داده‌های موجود و پیش‌بینی کردن، استفاده کنیم.

همچنین باید به این نکته هم توجه داشته باشیم که قدم دوم اهمیت زیادی دارد و دلیلش این است که اگر در شروع کار، ایمیل‌های برچسب‌گذاری نشده را به SVM بدهیم، کار خاصی را نمیتواند انجام دهد.

SVM یک مدل خطی را یاد می‌گیرد

در مثال قبل دیدیم که در قدم سوم یک الگوریتم یادگیری نظارت شده مثل SVM به کمک داده‌هایی که از قبل برچسب‌گذاری شده‌اند آموزشداده شد. اما برای چه چیزی آموزش داده شد؟ برای این که چیزی را یاد بگیرد.

چه چیزی را یاد بگیرد؟

در مورد SVM، یک مدل خطیرا یاد میگیرد.

مدل خطی چیست؟ اگر بخواهیم به زبان ساده بیان کنیم یک خط است.(و در حالت پیچیده‌تر یک ابر صفحه).

اگر داده‌های شما خیلی ساده و دو بعدی باشند، در این صورت SVM خطی را یاد می‌گیرد که آن خط می‌تواند داده‌ها را به دو بخش تقسیم کند.

 

svm

SVM قادر است که خطی را پیدا کند که داده‌ها را جدا می‌کند.

 

خب پس اگر SVM فقط یک خط است، پس چرا ما داریم راجع به مدل خطی صحبت می‌کنیم؟

برای این که ما همینطوری نمی‌توانیم به یک خط چیزی را آموزش بدهیم.

در عوض:

  1. در نظر می‌گیریم که داده‌هایی که می‌خواهیم طبقه‌بندی کنیم، می‌توانند به وسیله یک خط از هم تفکیک شوند.
  2. می‌دانیم که یک خط می‌تواند به کمک معادله y=wx+by=wx+b نمایش داده شود.(این همان مدل ما است)
  3. می‌دانیم با تغییر دادن مقدار w و b بی‌نهایت خط وجود خواهد داشت.
  4. برای تعیین این که کدام مقدار w و b بهترینخط جداکننده داده‌ها را به ما می‌دهد، از یک الگوریتم استفاده می‌کنیم.

SVM یکی از این الگوریتم‌ها هست که می‌تواند این کار را انجام دهد.

الگوریتم یا مدل؟

در شروع این پست من نوشتم که SVM یک مدل یادگیری نظارت شده است، و الآن می‌نویسم که آن یک الگوریتم است. چه شده؟ از واژه الگوریتم معمولا آزادانه استفاده می‌شود. برای نمونه، ممکن است که شما جایی بخوانید یا بشنوید که  SVM یک الگوریتم یادگیری نظارت شده است. اگر این نکته را در نظر بگیریم که الگوریتم مجموعه‌ای از فعالیت‌ها است که انجام می‌شوند تا به نتیجه مشخصی دست یابیم، می‌بینیم که استفاده از این واژه در اینجا صحیح نیست(منظور از واژه الگوریتم اینجا الگوریتمی است که برای آموزش از آن استفاده می‌کنیم). بهینه‌سازی متوالی کمینه(Sequential minimal optimization) پر استفاده ترین الگوریتم برای آموزش SVM است. با این حال می‌توان از الگوریتم‌های دیگری مثل کاهش مختصات(Coordinate descent) هم استفاده کرد. در کل بیشتر به جزییاتی مثل این علاقمند نیستند، در نتیجه ما هم برای ساده‌تر شدن فقط از واژه الگوریتم SVM استفاده می‌کنیم(بدون ذکر جزییات الگوریتم آموزشی که استفاده می‌کنیم).

SVM یا SVMها؟

بعضی وقت‌ها می‌بینیم که مردم راجع به SVM و بعضی وقت‌ها هم راجع به SVMها صحبت می‌کنند.

طبق معمول ویکی‌پدیا در روشن و شفاف کردن چیزها به ما کمک می‌کند:

در یادگیری ماشینی، ماشین‌های بردار پشتیبان (SVMsمدل‌های یادگیری نظارت شده به همراه الگوریتم‌های آموزش مربوطههستندکه در تحلیل داده‌های استفاده شده در  رگرسیون و طبقه‌بندی از آن‌ها استفاده می‌شود.(ویکی‌پدیا)

پس حالا ما این را می‌دانیم که چندین مدل‌ متعلق به خانواده SVM وجود دارند.

SVMها – ماشین‌های بردار پشتیبان

بر اساس ویکی‌پدیا SVMها همچنین می‌توانند برای دو چیز استفاده شوند، طبقه‌بندی و رگرسیون.

  • SVM برای طبقه‌بندی استفاده می‌شود.
  • SVR یا(Support Vector Regression) برای رگرسیون.

پس گفتن ماشین‌های بردار پشتیبان هم دیگه الآن منطقی به نظر میاد. با این وجود این پایان داستان نیست!

طبقه‌بندی

در سال ۱۹۵۷ یک مدل خطی ساده به نام پرسپترون توسط فردی به نام فرانک روزنبلت برای طبقه‌بندی اختراع شد(که در واقع اساس شبکه‌های عصبی ساده‌ای به نام پرسپترون چند لایه است).

چند سال بعد، واپنیک و چروننکیس مدل دیگری به نام «طبقه‌بندی کننده حداکث حاشیه» پیشنهاد دادند و همان‌جا بود که SVM متولد شد.

در سال ۱۹۹۲ واپنیک و همکارانش ایده‌ای داشتند که یک چیزی به نام کلک کرنل(Kernel Trick) را به روش قبلی اضافه کنند تا به آن‌ها اجازه دهد که حتی داده‌هایی که به صورت خطی تفکیک‌پذیر نیستند را هم طبقه‌بندی کنند.

سرانجام در سال ۱۹۹۵، کورتز و واپنیک، طبقه‌بندی کننده حاشیه نرم را معرفی کردند که به SVM اجازه می‌دهد تا بعضی از اشتباهات در طبقه‌بندی را هم بپذیرد.

پس وقتی که ما از طبقه‌بندی صحبت می‌کنیم، چهار ماشین بردار پشتیبان مختلف وجود دارد.

  1. طبقه‌بندی کننده حاشیه حداکثر.
  2. نسخه‌ای که از کلک کرنل استفاده می‌کند.
  3. نسخه‌ای که از حاشیه نرم استفاده می‌کند.
  4. نسخه‌ای که ترکیب همه موارد قبلی است.

و البته آخرین روش معمولا بیشترین کاربرد را دارد. دلیل اصلی این که قهمیدن SVMها در نگاه اول کمی گیج کننده به نظر می‌رسد هم همین موضو ع است که ‌آن‌ها از چندین قطعه تسکیل شده اند که در طول زمان به ‌‌آن‌ها چیزهایی اضافه شده است.

به همین دلیل است که وقتی از یک زبان برنامه‌‌نویسی استفاده می‌کنید می‌پرسید از کدام کرنل باید استفاده کنیم(بخاطر کرنل‌های مختلفی که وجود دارند) و یا کدام مقدار ابرپارامتر C را باید استفاده کنید(برای کنترل تاثیر حاشیه نرم).

رگرسیون

در سال ۱۹۹۶، واپنیک و همکارانش، نسخه‌ای از SVM را پیشنهاد دادند که به جای طبقه‌بندی، عمل رگرسیون را انجام می‌دهد. این مورد به Support Vector Regression یا SVR معروف است. همانند SVM در این مدل نیز از کلک کرنل و ابرپارامتر C  استفاده می‌شود.

در آینده مقاله ساده‌ای در مورد توضیح چگونگی استفاده از  SVR در زبان R خواهم نوشت و آدرس آن را همین‌جا قرار خواهم داد.

اگر علاقمند هستید که راجع به SVR بیشتر بدانیند، می‌توانید به این آموزش خوب که نوشته Smola and Schölkopft است، مراجعه کنید.

خلاصه تاریخچه

  • طبقه‌بندی کننده حاشیه حداکثر (۱۹۶۳ یا ۱۹۷۹)
  • کلک کرنل (۱۹۹۲)
  • طبقه‌بندی کننده حاشیه نرم (۱۹۹۵)
  • رگرسیون بردار پشتیبان (۱۹۹۶)

در صورتی که مایلید بیشتر راجع به تاریخچه بدانید، می‌توانید به مقاله مرور همراه با جزییات از تاریخچه مراجعه کنید.

انواع دیگری از ماشین‌های بردار پشتیبان

به دلیل این که SVMها در طبقه‌بندی خیلی موفق بودند، مردم شروع به فکر کردن راجع به این موضوع کردند که چطور می‌توانند از همین منطق در انواع دیگر مسائل استفاده کنند یا این‌ که چطور مشتقات آن را ایجاد کنند. در نتیجه چندین روش مختلف و جالب در خانواده SVM به وجود آمد.

  • ماشین بردار پشتیبان ساخت‌یافتهکه توانایی پیش‌بینی اشیای ساخت‌یافته را دارد.
  • ماشین بردار پشتیبان حداقل مربعکه در طبقه‌بندی و رگرسیون استفاده می‌شود.
  • خوشه‌بندی بردار پشتیبانکه در تحلیل خوشه استفاده می‌شود.
  • ماشین بردار پشتیبان هدایتیکه در یادگیری نیمه نظارت‌شده استفاده می‌شود.
  • SVM رتبه‌بندیبرای مرتب کردن نتایج.
  • ماشین بردار پشتیبان تک کلاسهکه برای تشخیص ناهنجاری استفاده می‌شود.

نتیجه‌گیری

دیدیم که سختی در درک کردن این که SVMها دقیقا چه چیزی هستند، امری طبیعی است. علتش هم این است که چندین SVM برای چندین منظور وجود دارند. مثل همیشه تاریخ به ما اجازه می‌دهد که دید بهتری راجع به چگونگی به وجود آمدن SVMهایی که امروزه وجود دارند، داشته باشیم.

امیدوارم این مقاله دید وسیع‌تری از چشم‌انداز  SVM به شما داده باشد و کمک کرده باشد که بهتر این ماشین‌ها را بشناسید و درک کنید.

اگه مایلید که بیشتر راجع به نحوه کار SVM در طبقه‌بندی بدانید، می‌توانید به آموزش‌های ریاضی مربوط به آن مراجعه کنید.

الگوریتم کلونی مورچگان در رتبه دوم پر اهمیت‌ترین الگوریتم‌ها، در دسته الگوریتم‌های تکاملی قرار می‌گیرد. رفتار بیولوژیکی مورچه برای پیدا کردن غذا نقطه شروع شبیه سازی مصنوعی ما است.

الگوریتم‌های تکاملی یک جهش در زمینه هوش مصنوعی به حساب می‌آید. الگوریتم ژنتیک، اولین الگوریتم تکاملی ارائه شده بود. ژنتیک در کنار قدیمی‌ترین بودن همچنان به عنوان پیشتاز تکامل نیز به حساب می‌آید.

الگوریتم کلونی مورچگان یا (ACO) در رتبه دوم از نظر مصرف قرار دارد. بهتر است ساختار آن را با تشریح مدل بیولوژیکی آغاز کنیم.

مورچه‌ها به مانند پرندگان، زنبور عسل و .. برای پیدا کردن غذا به صورت گروهی حرکت می‌کنند. اصطلاحا به این نوع رفتار هوش جمعی گفته می‌شود. هوش جمعی به این منظور است که تمام تصمیمات مسیریابی و جمع آوری آذوقه از یک مورچه به مورچه دیگر انتقال پیدا می‌کند. تعداد مورچه‌ها در یک کلونی می‌تواند به 30 میلیون برسد!! و هدف تک تک اعضای آن به بقای کلونی باز ‌می‌گردد. غیر از پیدا کردن غذا، تقسیم کار، ساماندهی گورستان و مراقبت از فرزندان نیز در بین کلونی مورچگان مبحثی رایج است.

رفتار جستجو گرانه مورچه‌ها

جالب است بدانید که مورچه‌ها موجوداتی کور، بی‌حافظه و بسیار کم هوش هستند. ولی با این حال همیشه بهینه‌ترین و کوتاه‌ترین مسیر از لانه تا محل غذا را پیدا می‌کنند. ارتباط این مورچه‌ها با یکدیگر از طریق ماده شیمیایی فرومون است. زمانی که مورچه از یک مسیر حرکت می‌کند بر روی زمین فرومون ترشح می‌کند و این باعث می‌شود که مورچه‌های بعدی به دنبال او حرکت کنند. فرومون ها دارای غلظت هستند که طی واحد زمان تبخیر می‌شوند، پس هر چه غلظت فرومون بیشتر باشد مورچه می‌فهمد که این مسیر جدیدتر است. به نحوی می‌توان این غلظت را به عنوان یک فیدبک در نظر گرفت که هر چه غلیظ‌تر باشد امتیاز بالاتری دارد.

حال با توضیحات بالا یک سوال مهم پیش می‌آید: فرض کنید یک مورچه که به عنوان اولین مورچه است، در مسیری حرکت کرده و بقیه مورچه‌ها نیز به دنبال او راه افتاده‌اند. اگر در مسیر حرکت آن غذا پیدا نشود، آن زمان تصمیم چیست؟ طبق این فرضیه هیچ وقت مسیرهای جدید اکتشاف نمی‌شوند و حرکت به یک حلقه بدون پایان تبدیل می‌شود.!

شاید جالب باشد بدانید که بعضی از مورچه‌ها در واقع جوانان اکتشاف‌گری هستند که توجهی به میزان فرومون نمی‌کنند و اهمیتی برای‌شان ندارد که دیگران از چه مسیری رفتند. البته شاید این اتفاق ناشی از هوش کم‌شان باشد.

 

الگوريتم های بهینه سازی کلونی مورچگان

تفاوت مورچه‌های واقعی و مورچه‌های مصنوعی

  • حالت درونی: حافظه‌ای از فعاليت های قبلی مورچه‌ها  (در صورتی که در مورچه‌های واقعی این نوع حافظه وجود ندارد).
  • فرومون مصنوعی: تابعي از کيفيت پاسخ پيدا شده.
  • موانع مصنوعی: تغییر دادن جزئیات مسئله برای بررسی الگوریتم و رسیدن به جواب‌های متنوع.
  • حیات در محیط گسسته: مورچه‌های واقعی نمی‌توانند جدا از  کلونی به حیات خود ادامه دهند.

مدل تصادفی:

احتمال اینکه مورچه بعدی مسیر A را انتخاب کند:

 

 

 

nA(t) و nB(t) تعداد مورچه هایی که در زمان t در مسیر A و B قرار دارند.

c: درجه جذب برای یک مسیر ناشناخته هر چه c بزرگتر باشد به معنی مقدار فرومون بیشتر برای عدم انتخاب مسیر تصادفی است.

a: بایاس به سمت فرومون به جا مانده در روند تصمیم گیری.

ساختار کلی الگوریتم کلونی مورچگان را باهم بررسی کردیم. در طی چند سال گذشته بهینه‌سازی‌های زیادی بر روی این الگوریتم انجام شد، که از انواع آن‌ها می‌توان به الگوریتم‌های زیر اشاره کرد:

SACO: Simple Ant Colony Optimization

ACOA: Ant Colony Optimization Algorithms

AS: Ant System

Elitist AS: Elitist Ant System

ACS: Ant Colony System

Max-Min AS

و …

منبع


الگوریتم کلونی مورچه ها در هوش مصنوعی

 در این مقاله بر آن شدیم تا شرح مختصری بر الگوریتم معروف کلونی مورچه ها که یکی از الگوریتم های پرکاربرد پردازش تکاملی در هوش مصنوعی است داشته باشیم و از میان کاربردهای بی شماری که این الگوریتم در علوم مختلف دارد به چند کاربرد نیز اشاره کنیم.

بهینه سازی کلونی مورچه ها یا Ant Colony Optimization و به اختصار (ACO)، که در سال ۱۹۹۲ توسط مارکو دوریگو (Marco Dorigo) و در رساله دکتری وی مطرح شد، یکی از بارزترین نمونه ها برای روش های هوش جمعی است. این الگوریتم از روی رفتار جمعی مورچه ها الهام گرفته شده است. مورچه ها با همکاری یکدیگر، کوتاه ترین مسیر را میان لانه و منابع غذایی پیدا می کنند تا بتوانند در کمترین زمان مواد غذایی را به لانه منتقل کنند. هیچ کدام از مورچه ها، به تنهایی قادر به انجام چنین کاری نیستند، اما با همکاری و پیروی از چند اصل ساده، بهترین راه را پیدا می کنند. الگوریتم مورچه ها، یک مثال بارز از هوش جمعی هستند که در آن عامل هایی که قابلیت چندان بالایی ندارند، در کنار هم و با همکاری یکدیگر می توانند نتایج بسیار خوبی به دست بیاورند.

در قسمت اول مورچه ها روی یک مسیر مستقیمی که از آشیانه به غذا وصل می شود حرکت می کنند در این مسیر از خود ماده ای به نام فرمن ترشح می کنند. وقتی که یک مانع در سر راهشان ایجاد می شود مسیر حرکت قطع شده و به دنبال یک راه حل اکتشافی برای حل مشکل خود می گردند. مورچه هایی که بالای مانع هستند نمی توانند مسیر حرکت را پیدا کنند زیرا مسیر فرمن را گم کرده اند به همین دلیل این احتمال وجود دارد که به سمت راست حرکت کنند یا به چپ. اما مورچه هایی که بر حسب تصادف مسیر کوتاهتر را انتخاب کرده اند زودتر می توانند این اتصال بین فرمن ها را فراهم کنند. به همین دلیل مسیر کوتاه تر می تواند سریع تر از فرمن پر شود و مورچه های بیشتری را به سمت خود بکشد. این فیدبک مثبت می تواند بسیاری از مورچه ها را به سمت خود بکشد. در الگوریتم ACO ابتدا باید یک گراف بین مسیرهای حرکت غذا در نظر گرفت. در ابتدا یک مقدار فرمن اولیه به هر یک از اضلاع گراف نسبت داده می شود و یک مورچه را به صورت تصادفی در مکان جستجو قرار می دهند.

برای هر مورچه کارهای زیر باید انجام شود:

۱- قانون حرکت احتمالی: براساس این قانون مورچه را در فضای جستجو حرکت داده به این ترتیب راه حل مسئله ایجاد می شود
۲- ارزیابی بهترین: باید بهترین راه حلی که توسط این مورچه ایجاد شده را ارزیابی کرد
۳- به روز کردن فرمن: فرمن هر ضلع را با استفاده از تقویت یک راه حل خوب به روز می کنیم
۴-  دوباره به مرحله دوم برگشته و این کار را ادامه می دهیم تا به میزان فرمن دلخواه برسیم
يک رفتار پايه اي ساده در مورچه ها وجود دارد : آنها هنگام انتخاب بين دو مسير بصورت احتمالاتي (Statistical) مسيري را انتخاب مي کنند که فرمن بيشتري داشته باشد يا بعبارت ديگر مورچه هاي بيشتري  قبلا از آن عبور کرده باشند. حال می بینیم که همين تمهيد ساده چگونه منجر به پيدا کردن کوتاهترين مسير خواهد شد :
همانطور که در شکل مي بينيم مورچه ها روي مسير در حرکت اند (در دو جهت مخالف)
اگر در مسير مورچه ها مانعي قرار دهیم مورچه ها دو راه براي انتخاب کردن دارند.
اولين مورچه از A مي آيد و به C مي رسد، در مسير هيچ فرمني نمي بيند بنابراين براي مسير چپ و راست احتمال يکسان مي دهد و بطورتصادفي و احتمالاتي مسير CED  را انتخاب مي کند.
مورچه ها در حال برگشت و به مرور زمان يک اثر بيشتر فرمن را روي CED حس مي کنند و آنرا بطور احتمالي و تصادفي ( نه حتما و قطعا)  انتخاب مي کنند. در نهايت مسير CED  بعنوان مسير کوتاهتر برگزيده مي شود. در حقيقت چون طول مسير CED  کوتاهتر است زمان رفت و برگشت از آن هم کمتر مي شود و در نتيجه مورچه هاي بيشتري نسبت به مسير ديگر آنرا طي خواهند کرد چون فرمن بيشتري در آن وجود دارد.
نکته ديگر مسئله تبخير شدن فرمن بر جاي گذاشته شده است. برفرض اگر مانع در مسيرAB  برداشته شود و فرمن تبخير نشود مورچه ها همان مسير قبلي را طي خواهند کرد. ولي در حقيقت اين طور نيست. تبخير شدن فرمن و احتمال به مورچه ها امکان پيدا کردن مسير کوتاهتر جديد را مي دهند. تبخیر فرمون از ۳ جهت مفید است:

۱) باعث می‌شود مسیر جذابیت کمتری برای مورچه‌های بعدی داشته باشد. از آنجا که یک مورچه در بلند مدت راه های کوتاه‌تر را بیش تر می‌پیماید و تقویت می‌کند هر راهی بین خانه و غذا که کوتاه‌تر(بهتر) باشد بیشتر تقویت می‌شود و آنکه دورتر است کمتر،

۲) اگر فرمن اصلاً تبخیر نمی شد، مسیرهایی که چند بار طی می‌شدند، چنان بیش از حد جذاب می‌شدند که جستجوی تصادفی برای غذا را بسیار محدود می‌کردند،

۳) وقتی غذای انتهای یک مسیر جذاب تمام می‌شد رد باقی می‌ماند.

حل مسئله ی فروشنده دوره گرد با الگوریتم کلونی مورچه ها

همانطور که مي دانيم مسئله يافتن کوتاهترين مسير، يک مسئله بهينه سازيست که گاه حل آن بسيار دشوار است و گاه نيز بسيار زمانبر. بعنوان مثال مسئله فروشنده دوره گردTSP)) ، در اين مسئله فروشنده دوره گرد بايد از يک شهر شروع کرده، به شهرهاي ديگر برود و سپس به شهر مبدا بازگردد بطوريکه از هر شهر فقط يکبار عبور کند و کوتاهترين مسير را نيز طي کرده باشد. برای حل مسئله فروشنده سیار که باید از n شهر دیدن کند و از هر کدام فقط یکبار عبورکند نیز می توان از الگوریتم ACO استفاده کرد. مثلا اگر زوج مرتب (N,E) را در نظر بگیریم که N تعداد شهرها و E اضلاع گراف باشند و di,j فاصله اقلیدسی بین شهرهای i و j باشد و  b تعداد مورچه ها در شهر i و در زمان t، هریک از مورچه ها باید مراحل زیر را انجام دهد:

بصورت احتمالی به یکی از شهرها برود که این احتمال تابع فاصله تا شهر و میزان فرمن موجود در مسیر است. برای اینکه سفر مورچه معتبر باشد حق دیدن شهر را ندارد. وقتی سفر مورچه تمام شد از خود ماده ای دفع می کند. در هر n بار تکرار الگوریتم که به آن حلقه می گویند هر مورچه یک سفر کامل را انجام می دهد. فرمن بجا مانده از مورچه ها بزودي تبخير مي شود ولي در کوتاه مدت بعنوان رد  مورچه بر سطح زمين باقي مي ماند. همانطور که گفته شد «تبخير شدن فرمن» و «احتمال-تصادف» به مورچه ها امکان پيدا کردن کوتاهترين مسير را مي دهند. اين دو ويژگي باعث ايجاد انعطاف در حل هرگونه مسئله بهينه سازي مي شوند. مثلا در گراف شهرهاي مسئله فروشنده دوره گرد، اگر يکي از يالها (يا گره ها) حذف شود الگوريتم اين توانايي را دارد تا به سرعت مسير بهينه را با توجه به شرايط جديد پيدا کند. به اين ترتيب که اگر يال (يا گره اي) حذف شود ديگر لازم نيست که الگوريتم از ابتدا مسئله را حل کند بلکه از جايي که مسئله حل  شده تا محل حذف يال (يا گره) هنوز بهترين مسير را داريم، از اين به بعد مورچه ها مي توانند پس از مدت کوتاهي مسير بهينه(کوتاهترين) را بيابند.

کاربردهای الگوریتم کلونی مورچه ها

از کاربردهايACO  مي توان به بهينه کردن هر مسئله اي که نياز به يافتن کوتاهترين مسير دارد ، اشاره نمود مانند :
۱٫ مسير يابي داخل شهري و بين شهري
۲٫  مسير يابي بين پست هاي شبکه هاي توزيع برق ولتاژ بالا
۳٫ مسير يابي شبکه هاي کامپيوتري

برخی از کاربردهای الگوریتم کلونی مورچه ها

مسيريابي شبکه‌هاي کامپيوتري با استفاده از ACO:

اطلاعات بر روي شبکه بصورت بسته هاي اطلاعاتي کوچکي (Packet) منتقل مي شوند. هر يک از اين بسته ها بر روي شبکه در طي مسير از مبدا تا مقصد بايد از گره هاي زيادي که مسيرياب (Router) نام دارند عبور مي کنند. در داخل هر مسيرياب جدولي قرار دارد تا بهترين و کوتاهترين مسير بعدي تا مقصد از طريق آن مشخص مي شود، بنابر اين بسته هاي اطلاعاتي حين گذر از مسيرياب ها با توجه به محتويات اين جداول عبور داده مي شوند. روش ACR : Ant Colony Routering پيشنهاد شده که بر اساس ايده کلونی مورچه به بهينه سازي جداول مي‌پردازد و در واقع به هر مسيري با توجه به بهينگي آن امتياز مي دهد. استفاده از ACR به اين منظور داراي برتري نسبت به ساير روش هاست که با طبيعت ديناميک شبکه سازگاري دارد، زيرا به عنوان مثال ممکن است مسيري پر ترافيک شود يا حتي مسير يابي (Router) از کار افتاده باشد و بدليل انعطاف پذيري که ACO در برابر اين تغييرات دارد همواره بهترين راه حل بعدي را در دسترس قرار مي دهد.

استفاده پژوهشگران از الگوي کلونی مورچه ها جهت اداره ترافيک

پژوهشگران سوييسي براي تهيه نرم افزاري جهت اداره ترافيک و شبکه هاي جاده اي از الگوي کلونی مورچه ها استفاده کرده اند. با کمک الگوریتم کلونی مورچه ها نرم افزاري تهیه شده که از آن براي اداره ترافيک جاده اي استفاده می شود. به اين ترتيب مي توان کوتاهترين مسير را بين چند شهر تشخيص داد.در اين نرم افراز فرايند ترددهاي يک کاميون براي تحويل بار به مشتريانش به مسير يک مورچه تشبيه مي شود و اين فرايند با توجه به تحولات غيرمنتظره ممکن است تغيير کند. با اين روش بهينه سازي بر پايه رفتار مورچه ها، یک شرکت حمل و نقل مي تواند مسير تحويل بارهايش را در مدت زمان پانزده دقيقه انجام دهد. دهها هزار خودرو مي توانند با اين نرم افزار مسير خود را بهينه سازي کنند .

حل مسائل زمانبندي پروژه ها با منابع محدود با استفاده از الگوريتم مورچگان

مساله زمانبندي پروژه ها با منابع محدود (RCPSP) درگير يافتن توالي مناسبي براي انجام فعاليتهاي يك پروژه است به نحوي كه محدوديت هاي تقدم و و تاخر شبكه پروژه و انواع مختلف محدوديتهاي منبعي موجود در پروژه به طور همزمان ارضاء شوند و معيار سنجش معيني از جمله زمان انجام پروژه، هزينه انجام، تعداد فعاليتهاي تاخيردار و غيره بهينه گردند. RCPSP  مساله اي NP-hard به شمار مي آيد و اهميت اين مساله در ابعاد تئوري و عملي باعث شده است كه تاكنون رويكردهاي ابتكاري و يا فراابتكاري جهت حل اين مساله ارائه شود. رويكردي بر اساس بهينه سازي توسط كلوني مورچگان براي حل مساله زمانبندي پروژه ها با منابع محدود ارائه شده است . از جمله تفاوتهاي اصلي رويكرد ارائه شده  با این شیوه قانون انتخاب احتمالات به صورت نوين، تغيير پارامترهاي الگوريتم به صورت پويا، جلوگيري از بروز رفتارهاي نامناسب الگوريتم در تكرارهاي بالا و تعيين رفتار كلي الگوريتم در تكرارهاي بالا می باشد.

كاربرد الگوريتم مورچه در بهينه سازي شبكه هاي توزيع آب

بكارگيري الگوريتم مورچه همانند ساير روشهاي بهينه سازي تكاملي، نيازمند تعدادي پارامتر كنترل كننده ميباشد. اين پارامترها كه اغلب به كمك آناليز حساسيت تعيين مي شوند، نقش تعيين كننده اي در عملكرد روش دارند. علاوه بر اين پارامترها بايد از ضريب جريمه نيز براي مسايل بهينه سازي مقيد استفاده كرد. در اين کاربرد از الگوريتم مورچه اي با كمترين تعداد پارامترهاي كنترل كننده، براي بهينه سازي شبكه هاي توزيع آب استفاده شده است.

الگوريتم مورچه اي براي طراحي مسير حركت باربران خودكار در سيستم تك حلقه

در این کاربرد هدف تعیین کوتاه ترین حلقه برای یک بابر خودکار در چیدمان کارخانه به نحوی است که با هر دپارتمان لااقل یک ضلع مشترک داشته باشد. برای این منظور در ابتدا با استفاده از خواص مسئله آن را به مسئله ای معادل نظریه گراف تبدیل کرده و سپس با به کارگیری الگوریتم کلونی مورچه ها مسئله حل شده است. در روش های مسیریابی سیستم تک حلقه این روش به خوبی عمل کرده است.

استفاده از الگوريتمaco  درطراحي شبكه هاي توزيع شعاعي

در اینجا از الگوريتم کلونی مورچه ها در طراحي بهينه شبكه هاي توزيع شعاعي كه در آنها مسير تغذيه مشخص است، استفاده مي شود. اين الگوريتم ضمن ارائه ميزان نفوذ هر يك از سطوح ولتاژ در شبكه مورد مطالعه، ظرفيت بهينه ترانسفورماتور ها و سطح مقطع بهينه فيدرها را در هر يك از سطوح ولتاژي ارائه مي نمايد. الگوريتم فوق بر روي يك شبكه نمونه اجرا شده و نتايج آن نشانه برتري روش ارائه شده نسبت به روش الگوريتم pso و الگوريتم سطح تغذيه است. نقطه قوت اين الگوريتم سرعت بالا، يعني بيشتر از ۲۴۰ برابر الگوريتم تعيين سطح تغذيه و بيش از ۱۸ برابر الگوريتم pso و همچنين كاهش۱۰ درصدي (بطور متوسط) قيمت نهايي در مقايسه با ديگر الگوريتم هاي موجود به سبب اضافه كردن ظرفيت ترانسفورماتور ها به عنوان متغير فضاي جستجو مي باشد.

ارايه يک مدل ابتکاري مبتني بر سيستم اجتماع مورچه ها براي حل مسئله زمان بندي حركت قطار

در اينجا با توسعه الگوريتم فوق ابتکاري سيستم اجتماع مورچه ها (acs) الگوريتمي براي زمان بندي حركت قطار معرفي شده است. ابتدا نوعي از مسئله زمان بندي حركت قطار در قالب يک برنامه ريزي رياضي مدلسازي و سپس الگوريتمي مبتني بر acs براي حل آن پيشنهاد شده است. با اين فرض که هر قطار در مسئله زمان بندي حرکت قطار معادل يك شهر در مسئله فروشنده دوره گرد (tsp) باشد، acs  بر روي گراف مسئله tsp، توالي حركت قطارها را مشخص مي کند. بر اساس اين توالي و رفع تلاقي در برخورد قطارها، زمان بندي حرکت مشخص خواهد شد.

بررسی پارامترهای الگوریتم AntNet

تنوع زیادی در پروتکلها و الگوریتم های مسیریابی برای ارتباطات شبکه ای وجود دارد. در مسیریابی سنتی جداول مسیریابی به واسطه تبادل اطلاعات مسیریابی بین مسیریابها به روز می شوند. الگوریتم هایی که با الهام از کلونی مورچه ها ارائه شده از عاملهای موبایل در مسیریابی شبکه ها استفاده می کنند. در این الگوریتم ها مسیریابی بصورت hop by hop و بر اساس خاصیت stigmergic در کلونی مورچه ها انجام می شود. stigmergicشکلی از ارتباط غیر مستقیم است که به وسیله تاثیر روی محیط انجام می شود. به این صورت که عامل ها (مورچه ها) در شبکه حرکت می کنند و جداول مسیر یابی را به روز می کنند.
منبع

الگوریتم کلونی مورچه ها قسمت 1
الگوریتم کلونی مورچه ها قسمت 2
الگوریتم کلونی مورچه ها قسمت 3

1-تعريف، ضرورت و كاربردها

زيست سنجی عبارت است از دانش و فن‌آوري اندازه‌گيري و تحليل آماري داده‌هاي زيستي. در فن‌آوري اطلاعات واژة زيست سنجی به مجموعه فن‌آوريهايي اطلاق مي‌گردد كه در آنها از اندازه‌گيري و تحليل ويژگيهايي از بدن انسان همچون اثر انگشت، اثر كف دست، شبكيه و عنبية چشم، الگوهاي صوتي، الگوهاي مربوط به رخسار ، دمانگاري صورت، شكل دست يا گوش، داده‌هاي به دست آمده از گام، الگوهاي وريدي، دي.ان.اي و يا ويژگيهايي همچون دستخط(امضا) و ديناميك ضربه زدن به صفحه‌كليد براي تأييد هويت اشخاص استفاده مي‌شود. اين فن‌آوريها در تلاشند تا اندازه گيري و مقايسة ويژگيهاي بر‌شمرده شده را به منظور بازشناسي افراد به صورت خود‌كار درآورند.

فن‌آوريهاي زيستي در ابتدا براي كاربردهاي تخصصي نيازمند امنيت بالا پيشنهاد شدند اما اينك به عنوان عناصر كليدي در توسعة تجارت الكترونيك و سيستمهاي برخط و به همان صورت براي سيستمهاي امنيتي نا‌برخط و سيستمهاي امنيتي منفرد مطرح مي‌باشند.

اين فن‌آوريها اجزاء مهمي را براي تنظيم و نظارت بر نحوة دسترسي و حضور در سيستم فراهم مي‌آورند. محدوده‌هاي عمدة كاربرد اين فن‌آوريها عبارتند از : تجارت الكترونيك، نظارت امنيتي، دسترسي به پايگاه داده‌ها، كنترل مرزها و مهاجرت، تحقيقات قضايي و پزشكي از راه دور.

توسعة فن‌آوريهاي زيست سنجی فراتر از كاربردهاي سنتي نيازمند امنيت بالا، يك اجبار نشأت گرفته از انگيزه‌هاي مالي است. امنيت معاملات براي آيندة توسعة تجارت الكترونيك يك مسألة حياتي است و نگرانيهاي فراواني دربارة راه حلهاي فعلي وجود دارد. مشكل شماره‌هاي شناسايي شخصي و شناسه‌هاي هويتي – مانند كارتها- اين است كه آنها صحت هويت شخصي را كه از آنها استفاده مي‌كند تأييد نمي‌كنند. آمارها ميزان زيان ناشي از تقلب را به طور ساليانه براي كارتهاي اعتباري بالغ بر چهارصد و پنجاه ميليون دلار و براي خودپردازها حدود سه‌ميليارد دلار برآورد مي‌كنند. برتري سيستمهاي مبتني بر زيست سنجی آن است كه به شدت به ويژگيهاي فردي اشخاص وابسته‌اند و به راحتي نمي‌توانند مورد سوء استفاده قرار گيرند.

2-بررسي عملكرد سيستمهاي موجود

فعاليتهاي انجام شده تا به حال منجر به ظهور ماشينهاي گران قيمت زيست- سنجي شده است كه علاوه بر قيمت زياد معمولاً از لحاظ سرعت و عملكرد مناسب نيستند يا حداقل براي دستيابي به عملكرد مناسب بايد محيط استفادة آنها شرايط خاصي را داشته باشد و يا كاربران آنها آموزشهاي گسترده‌اي را گذرانده باشند.

در حالي كه بعضي از فن‌آوريهاي زيست سنجی در قالب توليدات تجاري به بازار عرضه شده‌اند بسياري از اين دسته فن‌آوريها در مرحلة تحقيق و آزمايش قرار دارند. فن‌آوريهاي مزبور نيازمند كارهاي مطالعاتي بيشتر براي افزايش پايداري و بهبود عملكردشان براي استفاده در كاربردهاي ويژه هستند.

پايداري در برابر تقلب ،دقت عملكرد، سرعت و تجهيزات مورد نياز، همخواني با سخت‌افزار و نرم‌افزار موجود، هزينه ،سادگي استفاده و پذيرش از سوي كاربر از جمله عوامل تعيين‌كننده در موفقيت هر يك از فن‌آوريهاي به كار گرفته شده مي‌باشند.

جدول زیر مقايسه‌اي از معمول‌ترين سيستمهاي زيست سنجی موجود را ارائه مي‌دهد.

ميزان پذيرش كاربر

سادگي استفاده

دقت عملكرد

نوع سيستم
پايين متوسط بالا اثر انگشت
متوسط بالا متوسط هندسه دست
بالا بالا متوسط صوت
پايين پايين بالا شبكيه چشم
متوسط متوسط متوسط عنبيه چشم
بالا متوسط متوسط امضا
بالا بالا پايين چهره

مقايسة سيستمهاي زيست سنجی معمول

 

3-    اجزاي سيستمهاي زيست سنجی

عمليات سيستمهاي زيست سنجی در بر دارندة دو مرحلة مجزا مي‌باشد: ثبت كاربرو بازشناسي كاربر. در مرحلة اول اطلاعات مربوط به كاربر به سيستم وارد مي‌شوند و در مرحلة دوم اطلاعات ورودي حاضر با اطلاعات ذخيره شده مقايسه مي‌گردند.

 
 مراحل لازم عملياتي در يك سيستم امنيتي مبتني بر زيست سنجی

 

مرحلة تأييد هويت عبارت است از تطبيق ويژگيهاي مورد ادعاي يك شخص بر ويژگيهاي موجود او در پايگاه داده‌ها كه يك فرايند يك به يك است.

سيستمهاي امنيتي مبتني بر زيست سنجی بنا به انتخاب به وجود آورنده، به جاي مرحلة تأييد هويت مي‌توانند مرحلة ديگري را كه بازشناسي ناميده مي‌شود جايگزين كنند. در اين روش نياز نيست كه درخواست كننده ادعاي هويت شخص خاصي را بنمايد بلكه سيستم ويژگيهاي او را با تمامي ركوردهاي موجود مقايسه مي‌كند و در صورت تطابق با يكي از آنها او را به عنوان شخص داراي ويژگيهاي موجود در ركورد يافت شده بازشناسي مي‌كند كه اين فرايند يك پردازش يك به چند را شكل مي‌دهد.

سيستمهاي تشخيص هويت زيستي معمول غالباً شامل اجزاي زير مي‌باشند:

الف)گيرندة اطلاعاتزيرسيستمي است كه گرفتن نمونه‌هاي زيست‌سنجی (صوتي، تصويري و…) را بر عهده دارد. ويژگيهاي خاص استخراج شده از نمونه‌ها قالبهايي را براي مقايسة بعدي تشكيل مي‌دهند. اين فرايند بايد سريع و ساده بوده در عين حال قالبهايي با كيفيت خوب را توليد كند.

ب) ذخيره كنندهقالبهاي به دست آمده بايد براي مقايسة بعدي ذخيره شوند. اين زير سيستم مي‌تواند جزئي از وسيلة گيرندة اطلاعات سيستم باشد و يا در يك سرور مركزي قابل دستيابي توسط يك شبكه جاي گيرد. جايگزين ديگر، يك شناسة قابل حمل نظير يك كارت هوشمند است. هر كدام از انتخابهاي فوق مزايا و مشكلات خاص خود را دارد.

ج) مقايسه گراگر سيستم زيست سنجی در مقام بازشناسي افراد به كار گرفته شود بايد هويت شخص با قالب ذخيره شدة مورد ادعاي او مقايسه شود. در بعضي سيستمها ممكن است امكان بروزآوري خودكار قالب مورد مراجعه پس از هر تطبيق درست وجود داشته باشد. اين امر به سيستم توانايي سازگاري با تغييرات تدريجي كوچك در ويژگيهاي كاربر را مي‌دهد.

د) اتصالاتغالباً براي ايجاد ارتباط بين گيرندة اطلاعات، ذخيره كننده و مقايسه‌گر نياز به اتصالات لازم وجود دارد. غالباً سيستمهاي زيست سنجی نيازمند شبكه و رابطهاي برنامه‌نويسي مورد نياز براي ايجاد اتصال بين اجزاء مي‌باشند. امنيت و كارايي، عناصر كليدي براي اين جزء مي‌باشند.

4-ارزيابي كارايي سيستمهاي امنيتي مبتني بر زيست سنجی

موضوع مهمي كه در پذيرش سيستمهاي زيست سنجی از اهميت شايان توجهي برخوردار است تعيين كارايي هر يك از اجزاء و كل سيستم زيست سنجی به روشي قابل اعتماد و هدفمند است.

براي تعيين كارايي سيستمهاي امنيتي مبتني بر زيست سنجی معيارهاي ويژه‌اي به كار گرفته مي‌شوند. در اين كاربردها تعدادي كاربر (سرويس‌گيرنده) به سيستم وارد مي‌شوند و متقلب به عنوان شخصي تعريف مي‌شود كه مدعي هويت شخص ديگري است. متقلب ممكن است به عنوان كاربر در سيستم وجود داشته باشد و عمل وي ممكن است عمدي يا غيرعمدي باشد. عمل تأييد هويت بايد كاربران را بپذيرد و متقلبان را رد كند.

نرخ پذيرش نادرست (اف. اي. آر) به عنوان نسبت تعداد متقلباني كه به اشتباه توسط سيستم پذيرفته شده‌اند به تعداد كل متقلبان آزمايش شده تعريف گرديده، به صورت درصد بيان مي‌شود. اين نرخ، احتمال پذيرش متقلبان را توسط سيستم بيان مي‌كند و بايد در سيستمهاي نيازمند امنيت بالا كمينه شود.

نرخ عدم پذيرش نادرست (اف. آر. آر) به عنوان نسبت تعداد كاربران سيستم كه به اشتباه توسط سيستم پذيرفته نشده‌اند به تعداد كل كاربران مورد آزمايش قرار گرفته تعريف  گرديده، به صورت درصد بيان مي‌شود. اين نرخ، احتمال عدم پذيرش كاربران مجاز را توسط سيستم بيان مي‌كند و بايد به صورت ايده‌آل مخصوصاً در سيستمهايي كه در آنها كاربر در صورت عدم پذيرش از دسترسي به سيستم محروم مي‌شود كمينه گردد.

روند تشخيص هويت مبتني بر زيست سنجی دربردارندة محاسبة فاصلة قالب ذخيره شده و نمونة حاضر است. تصميم براي پذيرش يا رد نمونة حاضر بر اساس يكآستانة از پيش تعريف شده اتخاذ مي‌گردد. بنابراين واضح است كه كارايي سيستم به شدت وابسته به انتخاب اين آستانه است و اين امر موجب ايجاد يك بده‌بستان بين نرخ پذيرش نادرست و نرخ عدم پذيرش نادرست مي‌گردد. نرخ خطاي برابر(اي.اي.آر) به صورت آستانة برابري اين دو نرخ تعريف مي‌شود و غالباً به عنوان يك ويژگي نشان دهندة كارايي سيستم مطرح مي‌گردد. شكل زیر نشان دهندة رابطة سه پارامتر تعريف شده براي يك سيستم نمونه است.

 
 FAR، FRR و ERR براي يك سيستم نمونه

پارامتر مهم ديگر كارايي، زمان تشخيص هويت است كه به صورت زمان متوسط صرف شده براي فرايند تشخيص هويت تعريف مي‌شود. اين زمان شامل زمان لازم براي گرفتن نمونة حاضر نيز مي‌باشد.

در حالي كه بعضي از عرضه‌كنندگان سيستمهاي امنيتي مبتني بر زيست سنجی براي محصولاتشان پارامترهاي كارايي فوق را در شرايط آزمايشگاهي بيان مي‌كنند پارامترهاي كارايي قابل طرح در جهان واقعي براي سنجش كارايي واقعي اين گونه سيستمها به ندرت وجود دارند. علت اين امر اين واقعيت است كه به حساب آوردن همة پيچيدگيهاي ممكن جهان واقعي تأثير گذار بر سيستمهاي زيست سنجی تقريباً غير ممكن است. به عنوان نمونه زمان واقعي تشخيص هويت به شدت وابسته به ميزان آموزش كاربر، محيط عملياتي و شرايط رواني كاربر همچون ميزان فشار روحي اوست. مشخصات ارائه شده توسط عرضه‌كننده را بايد به ديد راهنماهاي نه چندان متناسب با دنياي واقعي نگريست.

 

منبع

تشخیص هویت زیست سنجی و بیومتریک قسمت 1
تشخیص هویت زیست سنجی و بیومتریک قسمت 2
تشخیص هویت زیست سنجی و بیومتریک قسمت 3
تشخیص هویت زیست سنجی و بیومتریک قسمت 4
تشخیص هویت زیست سنجی و بیومتریک قسمت 5

شناسایی از روی عنبیه چشم

عنبیه قسمت رنگی چشم است که ترکیبی است از نوعی ماهیچه به شکل دایره با یکسری خطوط شعاعی، لایه‌ای یا توری مانند که در پیش از تولد انسان شکل گرفته است و تا زمان مرگ تقریباً هیچ تغییری نمی‌کند. این ماهیچه شامل یکسری کارکترها مانند: خطوط، حلقه‌ها، حفره‌ها، شیارها، تارها، لکه‌ها و… است که قابل تفکیک می‌باشند. می‌توان گفت که عنبیه چشم همه افراد با یکدیگر متفاوت است.

تصویر عنبیه معمولاً توسط یک دوربین تک رنگ مادون قرمز (۷۰۰–۹۰۰nm) که مجهز به سنسور CCD است گرفته می‌شود. معمولاً فاصله دوربین تا چشم باید چیزی در حدود ۱۸ اینچ باشد. (تابش نور به عنبیه سپس اندازه‌گیری بازگشت آن) فرایند پردازش بدین شکل است که ابتدا مکان و اندازه مردمک در تصویر مشخص شده و سپس با به دست آوردن مکان و اندازه عنبیه، کلیه تصویر عنبیه که در میان این دو دایره قرار دارد به شکل مستطیلی با ابعاد معین تبدیل می‌شود، این تکنیک باعث می‌شود تا با کوچک یا بزرگ شدن مردمک تصویر مستطیل شکل تقریباً ثابت بماند تا در انجام فرایندهای بعدی مشکلی نباشد. تصویر موجود در مستطیلی با ابعاد معین دارای مشخصه‌های قابل تبدیل به کدهای باینری است، در این تبدیل‌ها روشهای مختلفی وجود دارد که هر یک مزایا و معایب خودرا دارند.

پس از بدست آوردن الگوی باینری، با استفاده از بدست آوردن فاصله همینگ بین الگوی موجود با الگوی بدست آمده می‌توان نتیجه تطبیق را بدست آورد.

در روشهای دیگری مانند نمونه یابی در مکانهای مشخص با برداشت چند نمونه از قسمتی از تصویر عنبیه که مشخصات قابل توجهی دارد، در زمان تشخیص با استفاده از نمونه‌های ذخیره شده و مکان یابی نمونه‌ها، عنبیه افراد قابل تشخیص است. این سیستم دارای قابلیت خوبی در تشخیص افراد است بدین دلیل که عنبیه هم منحصربه‌فرد است و هم در برابر گذشت زمان مقاوم، ولی متأسفانه حجم الگوها در این روش بسیار بالا است، این تکنولوژی بسیار گران است، کاربر پسند نیست و به دلیل اینکه در حین نمونه برداری لازم است که چشم کاملاً بی حرکت باشد لذا الگو برداری ممکن است دقیق نباشد.

یکی از مشکلات موجود در سیستم‌های تشخیص هویت به کمک الگوهای عنبیه، مسدود شدن عنبیه‌ی چشم بوسیله‌ی مژه‌هاست. در مقاله اصلاح اثر مخرب مژه‌ها بر تصاویر عنبیه به کمک فیلتر میانه با قاب افقی که توسط آقای محمدمهدی ابراهیمی و دیگر همکاران نگارش یافته، راه حل این مشکل ارائه شده است.

شناسایی از روی شبکیه چشم

شبکیه چشم در منتهی‌الیه کره چشم قرار دارد که شامل یکسری رگهای خونی است که این مویرگها داری اشکال مختلفی هستند، این خصیصه در افراد منحصربه‌فرد است. با قرارگیری چشم کاربر در یک مکان مشخص، یک دسته نور ماوراء قرمز یا نور سبز با طول موج کوتاه به شبکیه چشم تابیده می‌شود و بازتاب آن توسط یک دوربین CCD اندازه‌گیری می‌شود. این روش تقریباً مشابه شناسایی از طریق عنبیه می‌باشد.

شناسایی از روی نمودار حرارتی چهره

نمودار حرارتی چهره نیز یکی دیگر از پارامترهایی است که در تمامی افراد حتی دوقلوها نیز متفاوت است. نمودار ترموگرام در برابر گذشت زمان [تا مدت محدودی]، آرایش و اصلاح کردن مقاوم است، حتی جراحی پلاستیک نیز باعث بروز آسیب به نمودار ترموگرام نمی‌شود. جهت تصویر برداری از چهره از یک دوربین مادون قرمزبا طول موج ۳ الی ۵ میکرون یا ۸ الی ۱۲ میکرون بدین صورت که تا عمق ۴ سانتی‌متر زیر پوست را حس کند استفاده می‌شود.

شناسایی از روی نحوه راه رفتن

معمولاً این روش در جاهایی که ارتباط مستقیم با افراد میسر نیست کاربرد دارد خصوصاً در فرودگاه‌ها و معابر امنیتی. (این سیستم شناسایی تقریباً یک سیستم شناسایی مخفی است) در این روش یک تصویر از شخص در هنگام راه رفتن بدست می‌آید که معرف نمودار جابجایی و زمان برای وی است. در هنگام راه رفتن افراد حرکت پاها و سر افراد با یکدیگر متفاوت است (البته حرکت دستان نیز در برخی موارد کاربرد دارد) که الگوی بدست آمده از این قسمتها می‌باشد.

شناسایی از روی هندسه دست

دراین سیستم دست در یک مکان مشخص مطابق شکل قرار می‌گیرد. سپس با استفاده از یک دوربین دیجیتال CCD با کیفیت مطلوب ۳۲۰۰۰ پیکسل تصویر دست از دو نمای فوقانی و کناری گرفته می‌شود؛ که یک تصویر ۳بعدی از دست تولید می‌کند. از تصویر بدست آمده حدوداً ۱۷ قسمت دست اندازه‌گیری می‌شود، من‌جمله: انگشتان (طول، پهنا، ضخامت، انحنا) و پارامترهای هندسی دیگر که در شکل آمده است. معمولاً حجم داه بدست آمده ۹بایت است.

ترکیبات بیومتریک

با ترکیبات بیومتریک می‌توان کارایی، امنیت و دقت سیستم را تا حد قابل ملاحظه‌ای افزایش داد، که در ذیل به تعدادی از روشهای ممکن اشاره خواهیم کرد:

ترکیب سنسور

در این مدل ما برای یک متد از بیومتریک، از چندین سنسور استفاده می‌کنیم. بعنوان مثال در اثر انگشت از سنسورهای نوری، خازنی، آلتراسوند یا سنسورهای دیگر استفاده کنیم. این کار باعث افزایش دقت در امر نمونه برداری خواهد شد.

ترکیب واحد نمونه برداری

در این روش ما از چند واحد نمونه برداری می‌کنیم. بعنوان مثال در روش اثر انگشت از دو انگشت اشاره و انگشت وسط ویا انگشتان دیگر نیز عمل نمونه برداری را انجام می‌دهیم ویا از انگشت دستچپ و راست نمونه برداری می‌کنیم.

ترکیب نمونه برداری

در این روش چندین بار از مشخصه مورد نظر نمونه برداری می‌کنیم و ممکن است دو یا چند الگو از یک کاربر داشته باشیم. بعنوان مثال از انگشت کاربر دوبار نمونه برداری می‌کنیم و در حافظه ذخیره می‌کنیم.

ترکیب روش‌های بیومتریک

در این روش مااز ترکیب دو یا چند روش بیومتریک استفاده می‌کنیم. بعنوان مثال: اثر انگشت + هندسه چهره + هندسه دست

منبع


از دیر باز انسان برای بقا، نیاز به تشخیص دوست از دشمن داشته است و تشخیص هویت برای وی امری حیاتی بوده و هست، لذا امروزه سعی در مکانیزه سازی سیستم های شناسایی یا تشخیص هویت شده است. نیازی که پیشرفت در آن باعث کاهش تخلفات، افزایش امنیت، تسریع در امور روزمره و … شده است. در گذشته جهت شناسایی جرم و جنایتکار، از روال شناسایی اثر انگشت و چهره‌نگاری استفاده می‌شده، اما اکنون سیستم های مکانیزه‌ای ایجاد شده استبه مجموعه ای از فناوری ها، جهت تشخیص و تایید هویت یک فرد به صورت خودکار بيومتريک می گویند. به طور مثال برای صدور اجازه ورود به یک مجموعه، نیاز به شناسایی و تایید هویت می باشد. روش های شناسایی به صورت های زیر انجام می گیرد:
1- اسناد و مدارک شناسایی – کارت های هوشمند، کارت های مغناطیسی، کلید، پاسپورت، شناسنامه و …
2- اطلاعات – رمز یا کلمه عبور، پین کد و …
3- ویژگی های فیزیولوژیکی و رفتاری – اثر انگشت؛ صدا؛ چشم و … (به این روش شناسایی سوم تشخیص هویت Biometric گفته می شود)
کلیه سامانه های بيومتريک دارای قابلیت تشخیص و تایید هویت به صورت یکجا هستند. مرحله تشخيص هويت با جستجوی ویژگی های فرد در بانک اطلاعاتي موجود در سامانه صورت می گیرد و درصورت وجود اطلاعات ذخیره شده شخص در بانک اطلاعاتي سامانه،  هویت او شناسایی و مشخص می شود. در مرحله تائيد هويت تمامی مقایسات شخص و بانک اطلاعاتی به صورت تک به تک انجام می شود، سامانه کد ورودي را با کد موجود مقايسه مي کند و مشخص مي کند که آيا مورد تشخيص داده شده درست است يا نه. در بيشتر سامانه هاي بيومتريک مرحله ثبت نام در سامانه از مرحله تشخيص هويت جدا شده است، زيرا در مرحله ثبت نام بايد اين که آيا فرد قبلا در سامانه ثبت نام کرده است يا نه مدنظر قرار گيرد تا از ثبت نام يک نفر در سامانه با چند هويت مختلف جلوگيري شود و ضریب اطمينان سامانه بالا رود، در حالي که در مرحله تشخيص هويت مساله مهم فقط يافتن اطلاعات فرد از بين کدهاي ذخيره شده در بانک اطلاعات است. خصوصیات يک ویژگی بيومتريک خوب جهت ذخیره سازی در بانک اطلاعاتی و استفاده در سامانه عبارتند از :
١‐ منحصر به فرد بودن: هر فرد ويژگي را به طور منحصر به فرد و متمايز با ديگران داشته باشد.
٢ ‐ استخراج پذيري: بتوان آن ويژگي را در مورد هر فرد به راحتي، با سرعت بالا و بدون نياز به پردازش هاي زياد  به دست آورد.
٣‐ قابليت تفکيک پذيري بالا: يعني اين که اختلاف اين ويژگي در مورد دو فرد متفاوت خيلي زياد باشد تا به راحتي قابل تقکيک باشند.
٤‐ پايداري: ويژگي استخراج شده در طول زمان و در اثر تغييراتي در يک شخص در طول عمرش به وجود مي آيند بدون تغيير باقي بماند.

گروه های بیومتریک

بررسی های زیست سنجی به دو گروه تقسیم می شود:
۱– Behavioral (خصوصیات رفتاری)
۲– Physiometric (خصوصیات فیزیکی)
تکنیک های رفتاری که طرز انجام کاری توسط کاربر مانند امضا کردن یا بیان کردن یک عبارت را می سنجند. سنجش اعضا که یک خصوصیت فیزیکی را مانند اثرانگشت یا شکل یک دست می سنجندرفتار با زمان و حال شخص تغییر می کند. تکنیک های سنجش رفتار هنگامی به بهترین نحو عمل می کنند که مرتبا استفاده شوند، و به این ترتیب سطوح تغییرات هر فرد مورد توجه قرار گیرد. مدل های سنجش های رفتاری باید این تغییرات را لحاظ کنند. از طرف دیگر، سنجش های مشخصات فیزیکی به ابزار سنجش بزرگ تر و نرم افزار پیچیده تری احتیاج دارند. به عنوان مثال، آن ها مجبورند موقعیت دست را با الگو تطبیق دهند. باید میان سیستم هایی که برای تشخیص فرد طراحی شده اند و آن هایی که باید فقط هویت یک فرد را تایید کنند تفاوت قائل شویم. عمل دوم بسیار آسان تر است و پارامترهای تایید هویت می توانند بر پایه همان شخص تنظیم گردند. این روش حالت طبیعی برای سیستم های کارت هوشمند است که الگوی مرجع (template) در کارت یا یک سیستم مرکزی نگه داری می شود.

  یک تست زیست سنجی شامل سه مرحله است:

۱ ثبت مشخصات
۲– استفاده
۳– بروز رسانی
کاربران با سنجش های اولیه در سیستم ثبت نام می شود. این عمل معمولا سه مرتبه یا بیشتر برای ثبت اطلاعات دقیق تر انجام می گیرد. مدت زمان انجام این عمل در این مرحله بیشتر از زمانی است که سیستم برای تشخیص کاربر مورد استفاده قرار می گیردوقتی که سنجش انجام گرفت هنگام استفاده ،نمونه با الگوی مرجع مقایسه می شود. در اینجا تعیین سطوح مناسب تفاوت مجاز (tolerance) مخصوصا برای سنجشهای رفتاری مهم استبیشتر سیستم های زیست سنجی مخصوصا آنهایی که از مشخصات رفتاری استفاده میکنند، باید برای بروز رسانی الگوی مرجع تدارک دیده شده باشند. در حالت تشخیص صدا و امضا، معمولا یک فانکشن تطبیقی استفاده می شود که با هر بار سنجش توسط سیستم، بروز رسانی الگوی مرجع انجام میگیرد.
برای مشخصاتی که تغییر کندتر است، سیستم میتواند درصد تطبیق یا تعداد دفعاتی که یک شخص پذیرفته نمی شود را اعلام کند و در مواقعی که لازم است، عمل ثبت مجددا انجام گیرد. ثبت تراکنش اغلب یک ویژگی مفید است و میتواند براحتی در یک سیستم بر پایه کارت هوشمند ایجاد گردد.

اجزای یک سیستم زیست سنجی

یک سیستم زیست سنجی شامل موارد زیر است:

1-ابزار اندازه گیری

که واسط کاربر را تشکیل میدهد. راحتی استفاده یک فاکتور مهم دیگر برای زیست سنجی است: ابزار باید مطابق با غریزه باشد و فضای کمی برای خطا ایجاد کند و باید قابل استفاده برای دامنه وسیعی از مردم و بخصوص افراد ناتوان باشد.

2-نرم افزار عامل

که شامل الگوریتم های ریاضی است که پارامترهای سنجش شده را با الگوی مرجع مقایسه میکنند. جدیدترین الگوریتمها وابستگی کمی به مدلسازی آماری دارند و بیشتر بر پایه برنامه ریزی دینامیک، شبکه های عصبی و منطق فازی هستند که انعطاف پذیری را افزایش میدهد. لذا احتمال اینکه مثلا شخصی بخاطر لکه یا کثیفی جزیی پذیرفته نشود، کم است البته چنانچه بقیه الگو تطبیق دقیقی داشته باشند.

3-سخت افزار و سیستمهای بیرونی

قابلیت استفاده، قابلیت اطمینان و هزینه سیستم اغلب حداقل به همان اندازه که به ابزار سنجش بستگی دارد، به سخت افزار بستگی دارد. بعضی سیستم ها ( مانند تست اثرانگشت) فی نفسه برای استفاده در سیستمهای توزیع شده مناسب هستند، در حالیکه بقیه (مانند تشخیص صدا) برای سیستمهای متمرکز مناسب هستندهزینه ابزار زیست سنجی بسرعت در حال کاهش است. اکنون، برای ATMها و ابزار کنترل دسترسی مخصوصی مناسب هستند. هنوز یک افت هزینه دیگری لازم است تا اینکه زیست سنجی ها در خرید و فروش های خودکار و محیط های کنترل دسترسی مورد استفاده قرار بگیرد.

تشخیص هویت زیست سنجی و بیومتریک قسمت 1
تشخیص هویت زیست سنجی و بیومتریک قسمت 2
تشخیص هویت زیست سنجی و بیومتریک قسمت 3
تشخیص هویت زیست سنجی و بیومتریک قسمت 4
تشخیص هویت زیست سنجی و بیومتریک قسمت 5

ارتباط ربات ها با بیکاری

قرن هاست که متخصصین پیش بینی کرده‌اند، ماشین‌ها، کارگران را کنار خواهند گذاشت و باعث افزایش بیکاری می‌شوند.

به‌عنوان مثالی جدید، در سال 2011، شرکت تایوانی Foxconn که در عرصه فنّاوری فعالیت می کند اعلام کرد قصد دارد در طی طرحی سه ساله، ربات‌ها بیشتری را جایگزین انسان‌ها کند. در حال حاضر این شرکت از ده هزار ربات استفاده می کند اما در انتهای این طرح سه ساله، تعداد این ربات‌ها به یک میلیون افزایش خواهد یافت.

حقوق دانان معتقدند رواج استفاده از ربات‌ها در محل های کار، نیاز به بازبینی قوانین مربوط به تعدیل نیرو را افزایش خواهد داد. Kevin J. Delaney در این رابطه می گوید:” ربات‌ها در حال گرفتن شغل انسان‌ها هستند. بیل گیتس معتقد است دولت ها باید از شرکت هایی که از ربات استفاده می کنند، مالیات ویژه ای بگیرد تا با این کار، حداقل سرعت گسترش اتوماسیون کاهش یابد و همچنین بودجه لازم برای ایجاد شغل های دیگر تامین شود.”

از مالیات استفاده از ربات می‌توان برای پرداخت حداقل حقوق تصویب شده در قانون به کارگرانی که کار خود را از دست داده‌اند نیز استفاده کرد.

کاربردهای فعلی ربات

در حال حاضر، دو نوع اصلی از ربات‌ها وجود دارند که بر اساس مورد کاربردشان طبقه بندی شده‌اند: ربات‌های خودگردان با کاربرد عمومی و ربات‌های با کاربرد مخصوص.

ربات‌ها را می‌توان از منظر تخصصی بودن کاربرد آن‌ها طبقه بندی کرد. یک ربات می‌تواند به‌گونه‌ای طراحی شود تا بتواند یک وظیفه مشخص را به طرز فوق‌العاده‌ای انجام دهد و یا تعدادی وظیفه را با کیفیت کمتری نسبت به حالت قبل انجام دهد. البته، همه ربات‌ها به‌صورت ذاتی می‌توانند به طور مجدد برنامه ریزی شوند تا رفتار متفاوتی از خود نشان دهند؛ اما  در بسیاری از موارد، توانایی آن‌ها در انجام دادن مسئولیت‌های مختلف به دلیل شکل فیزیکی آن‌ها محدود می شود. برای مثال، یک ربات کارخانه ای می‌تواند کار هایی مانند برش، جوش کاری، چسب کاری انجام دهد و یا از آن به‌عنوان سواری در داخل کارخانه استفاده کرد  در حالی که رباتی که مخصوص برداشتن چیزی از کنار خود و قرار دادنش در جای دیگر است تنها می‌تواند برد های الکترونیکی چاپ شده را در جای مشخصی قرار دهد.

ربات‌های خودگردان با کاربرد عمومی

ربات‌های خودگردان یا خودمختار با کاربرد عمومی می‌توانند کار های مختلفی را به‌صورت مستقل انجام دهند. این ربات‌ها اغلب می‌توانند در محیط های آشنا به طور مستقل از دیگران، جابجا شوند، نیاز های شارژ مجدد خود را بر طرف کنند، از در های الکترونیکی و آسانسور ها استفاده کنند و کار های ساده دیگری مشابه این ها را انجام دهند. مانند کامپیوتر ها، ربات‌های عمومی نیز می‌توانند به شبکه ها، نرم افزار و لوازم جانبی که مفید بودن آن‌ها را افزایش می دهد متصل شوند. آن‌ها می‌توانند افراد یا اشیا مختلف را بشناسند، صحبت کنند، با کارگران همدم شوند، کیفیت محیط کارگاه را کنترل کنند، به هشدار های خطر واکنش نشان دهند، اشیا مختلف را جابجا کنند و کار های مفید دیگری مانند این ها را انجام دهند.

ربات‌های با کاربرد عمومی، ممکن است چند کار را به طور همزمان انجام دهند یا ممکن است در طول روز، مسئولیت‌های مختلفی را بر عهده بگیرند. برخی از این ربات‌ها، سعی می کنند از انسان‌ها تقلید کنند و ممکن است از نظر ظاهری نیز شبیه به انسان باشند. به این گونه ربات‌ها، ربات‌های انسان‌نما گفته می شود. ربات‌های انسان‌نما هنوز در مراحل اولیه هستند به‌عنوان مثال، تا این لحظه، هیچ ربات انسان‌نمایی نمی‌تواند در داخل اتاقی که تا به حال در آن نبوده، حرکت کند و جابجا شود. بنابراین، با وجود رفتار هوشمندانه آن‌ها در محیط هایی که با آن‌ها کاملا آشنا هستند ، ربات‌های انسان‌نما هنوز توانایی‌های بسیار محدودی دارند.

ربات مشهور به Knightscope یک ربات با کاربرد عمومی می باشد که در طول روز به‌عنوان راهنما و شب‌ها به‌ عنوان نیروی امنیتی عمل می کند

ربات مشهور به Knightscope یک ربات با کاربرد عمومی می باشد که در طول روز به‌عنوان راهنما و شب‌ها به‌ عنوان نیروی امنیتی عمل می کند

ربات‌های کارخانه ای

ربات ها در صنعت خودروسازی خودروسازی

در سه دهه گذشته، ربات‌ها کارخانه های خودروسازی را به تسخیر خود درآورده‌اند. یک کارخانه خودروسازی معمولی از صد ها ربات صنعتی تشکیل شده است که بر روی خطوط تولید تمام اتوماتیک کار می کنند. این ربات‌ها کار 10 نفر را انجام می‌دهند. در یک خط تولید اتوماتیک، شاسی ماشین بر روی نوار نقاله قرار می‌گیرد و توسط ربات‌های مختلف، جوشکاری، چسب کاری، رنگ پاشی و در نهایت مونتاژ می شود.

ربات جوشکار مفصل دار در یک کارخانه – یکی از اتواع ربات‌های صنعتی

ربات جوشکار مفصل دار در یک کارخانه – یکی از اتواع ربات‌های صنعتی

ربات ها در بسته بندی

همچنین از ربات‌های صنعتی برای انبار کردن و بسته بندی کالا های تولید شده استفاده می شود. برای نمونه یک ربات کارتن های نوشیدنی را از انتهای نوار نقاله بر می دارد و آن‌ها را به طور مرتب در جعبه هایی می چیند.

الکترونیک

برد های الکترونیک چاپی (PCB) تقریبا به صورت انحصاری توسط ربات ها تولید می شوند. این کار با بازوهای رباتیک  SCARA انجام می گیرد که اجزای کوچک الکترونیکی را از نوار هایی جدا می کنند و با دقت بسیار زیاد بر روی برد نصب می کنند. چنین ربات هایی می توانند در یک ساعت صد ها هزار جز را در جای خود قرار دهند و در نتیجه عملکرد بسیار بهتری از نظر سرعت، دقت و قابل اطمینان بودن نسبت به انسان دارند.

ارابه ها و وسایل نقلیه خود راهنما (AGVs)

این ربات‌ها از خانواده ربات‌های متحرک هستند و با دنبال کردن علامت ها یا سیم های بر روی زمین و یا از طریق دید مصنوعی و لیزر، جابجا می‌شوند. این ربات‌ها برای حمل کالا ها در تاسیسات بزرگ مانند انبار ها و بنادر و یا بیمارستآن‌ها استفاده می‌شوند.

وسایل نقلیه یا ارابه های خود راهنمای اولیه

این دسته از ربات‌ها، تنها توانایی انجام کارهایی را داشتند که می‌شد آن‌ها را به طور دقیق تعریف کرد یا روش انجام آن‌ها در دفعات مختلف، کاملا یکسان بود. این گونه ربات‌ها به بازخورد و هوش کمی احتیاج داشتند و تنها از سنسورهای بسیار ساده ای استفاده می‌کردند. محدودیت این نوع AGV ها این بود که نمی‌شد به راحتی مسیر آن‌ها را تغییر داد و خود آن‌ها هم نمی‌توانستند در صورت مواجه با مانع، مسیر خود را تغییر دهند. بنابراین، در صورتی که یک AGV در مسیر خراب می‌شد، کل عملیات باید به ناچار متوقف می‌شد.

ارابه های خود راهنمای معمولی

این ربات‌ها به منظور مثلث سازی علامت ها و یا بارکد های موجود بر روی سقف یا کف محیط ساخته‌شده‌اند. در بیشتر کارخانه ها، سیستم‌های مثلث سازی، به نگهداری نسبتا زیادی نیاز دارند. برای مثال، علامت ها و بارکد ها باید هر روز تمیز شوند. همچنین اگر چیزی مانع دید ربات‌ها نسبت به علامت ها شود، یا  بارکد ها مخدوش شوند AGV ها ممکن است گم شوند. اغلب از این AGV ها در محیط هایی که کارگر انسانی وجود ندارد، استفاده می شود.

ارابه های خود راهنمای هوشمند

ربات‌هایی مانند  SmartLoader، SpeciMinder، ADAM، Tug، Eskorta و MT 400 برای محیط های کاری که انسان نیز در آن وجود دارد طراحی شده‌اند. آن‌ها با شناسایی ویژگی های محیطی جابجا می‌شوند. اسکنر های سه بعدی یا سایر روش‌های تشخیص محیط به‌صورت دو بعدی یا سه بعدی، به حذف خطاهای تجمعی، در محاسبات مربوط به ناوبری کور، در موقعیت فعلی AGV ها کمک می کنند. برخی از AGV ها می‌توانند با استفاده از لیزر و یا با استفاده از مکان یابی و نقشه برداری همزمان(SLAM)، نقشه هایی از محیط اطرافشان تهیه کنند و از این نقشه ها در کنار سایر الگوریتم های برنامه ریزی مسیر و جلوگیری از برخورد با موانع برای طراحی مسیر بهینه استفاده کنند. این دسته از AGV ها قادرند در محیط های پیچیده فعالیت کنند و کار های غیرتکراری و غیر متوالی مختلفی مانند جابجایی فتوماسک ها در آزمایشگاه های نیمه رسانا، نمونه های مختلف در بیمارستآن‌ها و کالا های مختلف در انبار ها را انجام دهند. برای محیط های پویا تر، مثلا انبار هایی که پر از پالت های مختلف کالا هستند، AGV های به استراتژی های بهتری، مثلا استفاده از سنسورهای سه بعدی مانند دوربین های مدت پرواز(ToF) یا دوربین های استریوویژن، نیاز دارند تا بتوانند مسیر خود را در محیط پیدا کنند.

کار های کثیف، خطرناک، خسته کننده و یا غیرقابل دسترسی

کار های بسیار زیادی وجود دارند که انسان‌ها ترجیح می‌دهند تا آن‌ها را به ربات‌ها واگذار کنند. این کار ها ممکن است مانند تمیز کردن خانه کسل کننده باشند یا مانند بررسی قسمت های داخلی یک آتشفشان، خطرناک باشند. کار های دیگری هم وجود دارند که برای انسان از نظر فیزیکی قابل دسترسی نیستند که برای مثال می‌توان به اکتشاف یک سیاره دیگر، تمیز کردن داخل یک لوله بلند و یا انجام جراحی لاپاراسکوپی اشاره کرد.

یک ربات جراحی لاپاراسکوپی

یک ربات جراحی لاپاراسکوپی

کاوشگر های فضایی

تقریباً همه کاوشگر های فضایی بدون سرنشینی که تاکنون به فضا پرتاب شده‌اند، ربات بوده اند. برخی از آن‌ها در دهه 60 میلادی و با قابلیت‌های بسیار محدود به فضا پرتاب شدند اما توانایی آن‌ها در پرواز و فرود آمدن(مثل Luna 9) آن‌ها را در دسته ربات‌ها قرار می دهد. کاوشگر های دیگر مانند Voyager ها و کاوشگر های Galileo نیز در این دسته قرار می‌گیرند.

تله­ ربات‌ها

ربات‌های کنترل از راه دور یا تله ­ربات‌ها، دستگاه‌هایی هستند که به‌جای این‌که از چند حرکت از پیش تعیین شده استفاده کنند، از فاصله دور توسط یک اپراتور انسانی کنترل می‌شوند اما رفتاری نیمه خودگردان دارند. از این ربات‌ها زمانی استفاده می شود که به دلیل خطرناک بودن، دور بودن و یا غیرقابل دسترس بودن، انسان نمی‌تواند در محل پروژه حاضر باشد. ربات می‌تواند در یک اتاق دیگر و یا در یک کشور دیگر باشد و یا ممکن است مقیاس عملکرد ربات با انسان بسیار متفاوت باشد.

مثلا یک ربات مخصوص برای جراحی لاپاراسکوپی، به جراح اجازه می دهد تا در مقیاس بسیار کوچک تر از جراحی باز، به اعضای بدن بیمار دسترسی پیدا کند که این امر باعث می شود تا دوران نقاهت بعد از عمل به شدت کاهش یابد. همچنین به منظور جلوگیری از به خطر افتادن کارگران در محیط های خطرناک و تنگ، مثلا به منظور تمیز کردن کانال های تهویه هوا، معمولا از این دسته از ربات‌ها برای این کار استفاده می شود. زمانی که قرار است یک بمب خنثی شود، اپراتور از یک ربات کوچک برای خنثی کردن آن استفاده می کند. چندین نویسنده از دستگاهی به نام Longpen برای امضا کردن کتاب هایشان از راه دور استفاده کرده‌اند.

استفاده از هواپیما های رباتی کنترل از راه دور مانند پهباد های شکارچی (UAV ) در امور نظامی نیز بسیار متداول است. این پهباد های بدون خلبان، می‌توانند سطح زمین را جستجو کنند و به اهداف مختلف شلیک کنند. صد­ها ربات مانند  Packbot مربوط به شرکت iRobot و یا TALON ساخت شرکت  Foster-Miller، توسط ارتش آمریکا برای خنثی کردن بمب های کنار جاده ای در عراق و افغانستان مورداستفاده قرار گرفته اند.

ماشین‌های خودکار برداشت محصول

از ربات‌ها به منظور برداشت میوه در باغ ها با هزینه ای کمتر نسبت به نیروی انسانی، استفاده می شود.

ربات‌های خانگی

ربات‌های خانگی، ربات‌های ساده ای هستند که برای انجام یک کار مشخص در خانه استفاده می‌شوند. از آن‌ها برای انجام کارهای ساده ولی خسته کننده برای انسان‌ها، مثلا جارو کشیدن، تمیز کردن کف اتاق و یا زدن چمن ها استفاده می شود. از جمله ربات‌های خانگی می‌توان به  Roomba اشاره کرد.

ربات‌های نظامی

ربات‌های نظامی شامل ربات  SWORDS ساخته شرکت Foster-Miller است که امروزه در نبرد های زمینی مورداستفاده قرار می‌گیرد. این ربات می‌تواند از اسلحه های مختلفی استفاده کند. همچنین در حال حاضر صحبت هایی نیز در مورد دادن درجه ای از خودگردانی به این ربات در شرایط جنگی مطرح‌شده است. پهباد های جنگی  (UCAV)، نوعی پهباد (UAV) هستند که قادر به حمل مهمات جنگی می باشند. این پهبادها توانایی انجام ماموریت های مختلفی از قبیل نبرد هوا به زمین، دارند. در حال حاضر، UCAV هایی در حال طراحی و ساخت هستند که می‌توانند به‌صورت خودگردان پرواز کرده و مسیر و هدفشان را انتخاب کنند و بیشتر تصمیم های ضروری را به‌صورت مستقل، اتخاذ کنند. به‌عنوان نمونه از این دسته از ربات‌ها می‌توان به BAE Taranis ساخت بریتانیا اشاره کرد که می‌تواند بدون نیاز به خلبان، بر روی قاره های مختلف پرواز کند و از ابزار های جدیدی برای جلوگیری از شناسایی شدن بهره می برد. پرواز های آزمایشی این پهباد نظامی از سال 2011 آغاز شده است.

انجمن پیشبرد هوش مصنوعی(AAAI) این موضوع را با جزئیات فراوان بررسی کرده است و رئیس این انجمن، تحقیق جدیدی را برای بررسی های بیشتر در این زمینه تصویب کرده است.

ربات SWORDS ساخته شرکت Foster-Miller

ربات SWORDS ساخته شرکت Foster-Miller

برخی از متخصصان پیشنهاد کرده‌اند تا هوش های مصنوعی بشر دوستانه ساخته شوند. یعنی پیشرفت هایی که در حال حاضر در زمینه هوش مصنوعی در حال رخ دادن است باید شامل تلاش هایی باشد که در آن هوش های مصنوعی به‌صورت ذاتی، بشر دوستانه و انسانی برخورد کنند. در این زمینه اقداماتی نیز انجام گرفته است و کشور هایی مانند ژاپن و کره جنوبی که از ربات‌ها به طور گسترده استفاده می کنند، شروع به تصویب قوانینی کرده‌اند که ربات‌ها را ملزم به داشتن سیستم‌های ایمنی و مجموعه قوانینی شبیه به سه قانون اصلی رباتیک که توسط آسیموف ارائه شده بود، می کند.در این زمینه، یک گزارش رسمی  توسط کمیته سیاست گذاری صنایع رباتیک دولت ژاپن در سال 2009 منتشر شد. مقامات و محققان چینی نیز گزارشی را منتشر کرده‌اند که در آن مجموعه قوانین اخلاقی جدید و مجموعه دستورالعمل هایی به نام “مطالعات قانونی ربات” پیشنهاد شده است. اخیرا، نگرانی‌هایی در رابطه با توانایی دروغگویی ربات‌ها در مواجهه با سوالات مختلف، به وجود آمده است.

ربات‌های معدنی

ربات‌های معدنی، به‌گونه‌ای طراحی شده‌اند تا بتوانند برخی از مشکلاتی را که صنعت معدن در حال حاضر با آن‌ها دست و پنجه نرم می کند، حل کنند. این مشکلات شامل کمبود مهارت، افزایش بهره وری با وجود کاهش عیار مواد معدنی و دست یابی به اهداف زیست محیطی است. به دلیل ماهیت خطرناک معدن کاری،به‌خصوص معدن کاری زیرزمینی، استفاده از ربات‌های خودگردان، نیمه خودگردان و کنترل از راه دور در چند سال اخیر به شدت گسترش یافته است.

برخی از تولید کنندگان وسایل نقلیه، قطار ها، کامیون ها و لودر های خودگردانی را ارائه می کنند که می‌تواند بدون دخالت انسان، مواد معدنی را بارگیری کرده، آن‌ها را از محل معدن به مقصد منتقل کند و در آنجا آن‌ها را تخلیه کند. یکی از بزرگترین شرکت های معدنی دنیا به نام Rio Tinto اخیرا ناوگان کامیون های خودگردان خود را به بزرگترین ناوگان معدنی خودگردان جهان تبدیل کرده است. این ناوگان شامل 150 کامیون خودگردان ساخت شرکت Komatsu است و در بخش غربی استرالیا فعالیت می کند. به طور مشابه، شرکت BHP نیز گسترش ناوگان دستگاه‌های حفاری خودگردان خود به بزرگترین ناوگان دستگاه‌های حفاری خودگردان تایید کرده است. در این ناوگان از 21 دستگاه حفاری خودگردان ساخت شرکت Atlas Capco استفاده شده است.

در حال حاضر دستگاه‌های حفاری، دستگاه‌های جبهه کار طولانی و دستگاه‌های سنگ شکن به‌صورت ربات‌های خودگردان موجود هستند. سیستم کنترل دکل حفاری، محصول شرکت Atlas Capco می‌تواند به‌صورت خودکار برنامه حفاری را بر روی یک دکل حفاری اجرا کند. در این سیستم، دستگاه با استفاده از GPS به محل مورد نظر منتقل می شود، دکل حفاری آماده می شود و عملیات حفاری تا عمق مورد نظر انجام می‌گیرد. به طور مشابه، سیستم Rocklogic که توسط شرکت Transmin ساخته‌شده، می‌تواند به‌صورت خودکار مسیر سنگ شکن را تا رسیدن مقصد مورد نظر انتخاب کند. چنین سیستم‌هایی ایمنی و بازدهی عملیات معدنکاری را به طرز چشمگیری افزایش می‌دهند.

ربات چیست؟ قسمت 1
ربات چیست؟ قسمت 2
ربات چیست؟ قسمت 3
ربات چیست؟ قسمت 4
ربات چیست؟ قسمت 5
ربات چیست؟ قسمت 6
ربات چیست؟ قسمت 7
ربات چیست؟ قسمت 8

ریشه شناسی ربات (اتیمولوژی)

واژه ربات برای اولین بار توسط کارل چاپک نویسنده اهل جمهوری چک و در نمایشنامه کارخانه ربات‌سازی روسوم در سال 1920 مورداستفاده قرار گرفت. این نمایشنامه در یک کارخانه شروع می شود که در آن از یک ماده شیمیایی به‌جای پروتوپلاسم(بخش زنده سلول) استفاده می شود تا بتوان انس آن‌هایی زنده ولی ساده را تولید کرد که به آن‌ها ربات گفته می شود. این نمایشنامه بر روی جزئیات تکنولوژیکی ساخت این موجودات زنده تمرکز نمی کند اما ظاهر این موجودات، دربردارنده ایده های اولیه ربات‌های انسان‌نما ( اندروید) می باشد. این ربات‌های کارگر که به طور انبوه تولید شده‌اند، به‌صورت بسیار پربازده ولی بدون احساس، ناتوان از فکر کردن به‌صورت ابتکاری و بی تفاوت نسبت به حفظ جان خود به تصویر کشیده شده‌اند.

یکی از مشکلات مطرح‌شده در این نمایشنامه این است که آیا ربات‌ها مورد بهره کِشی قرار می‌گیرند یا نه و در ادامه تبعات وابستگی شدید انسان به نیروی کار مصنوعی نمایش داده می شود( به‌خصوص بعد از این‌که تعدادی از ربات‌های ساخته‌شده با روشی خاص، به خودآگاهی می رسند و ربات‌های سرتاسر دنیا را به شورش علیه انسان‌ها تحریک می کنند).

کارل چاپک خودش این واژه را اختراع نکرد. او نامه ای کوتاه به بخش ریشه شناسی فرهنگ لغت انگلیسی آکسفورد نوشت و در آن برادرش جوزف چاپک را که یک نویسنده و نقاش بود به‌عنوان خالق اولیه کلمه ربات معرفی کرد.

چاپک در مقاله ای که در مجله Lidové noviny (متعلق به جمهوری چک) منتشر شد توضیح داد که در ابتدا قصد داشت این موجودات را laboři( کارگر به زبان لاتین) نام‌گذاری کند اما از این کلمه خوشش نمی آمد، بنابراین از برادرش مشورت گرفت. جوزف نیز به او کلمه ی  roboti را پیشنهاد کرد.

Robota در زبان چک، از نظر ادبی به معنای بیگاری و کار اجباری و همچنین به‌صورت تلویحی به معنای کار سخت و دشوار است و همچنین در بسیاری از زبان‌های اسلاوی( مانند بلغاری،روسی، صربی، لهستانی، مقدونیه ای،اوکراینی و مجارستانی)، این واژه به معنای عمومی کار و نیروی کار است.

به طور سنتی، Robota مدت زمانی بود که یک کارگر باید به‌صورت اجباری در اختیار اربابش قرار می گرفت. این مدت به طور معمول 6 ماه از سال در نظر گرفته می‌شد. ریشه این کلمه در زبان اسلاوی کلیسایی باستان است که در آن rabota به معنی بندگی و خدمت اجباری است که البته خود این واژه نیز از ریشه  *orbh- متعلق به زبان پوروا هندواروپایی گرفته شده  است. واژه ربات با ریشه آلمانی Arbeit( به معنی کار) هم ریشه تلقی می شود.

واژه رباتیک به که برای توصیف علم بررسی ربات‌ها استفاده می شود، اولین بار توسط ایزاک آسیموف، نویسنده داستان‌های علمی-تخیلی استفاده شد. آسیموف، زمینه ای به نام “سه قانون اصلی رباتیک” را ساخت که در داستان‌های مختلف او مورداستفاده قرار گرفته است.

این قوانین در داستان‌های تخیلی دیگر که توسط نویسنده های مختلفی نوشته شده نیز مورداستفاده قرار گرفته اند ( سه قانون مطرح‌شده توسط آسیموف کاملا تخیلی هستند و هیچ فناوری که تاکنون ساخته‌شده باشد توانایی درک یا پیروی از آن‌ها را ندارد. درحقیقت، بسیاری از ربات‌ها برای کاربردهای نظامی ساخته می‌شوند که کاملا بر خلاف آنچه در قانون اول آسیموف گفته شده، است و در برخی موارد، قانون سوم او را نیز نقض می کند).

پروفسور Joanna Bryson از دانشگاه University of Bath در این باره می گوید: “مردم اغلب در مورد قانون های آسیموف فکر می کنند؛ اما این قوانین برای این طراحی شده بودند تا نشان دهند یک سیستم اخلاقی ساده هرگز موثر نخواهد بود؛ اگر داستان‌های کوتاه آسیموف را بخوانید خواهید دید که در تمامی آن‌ها، عدم پیروی ربات‌ها از قوانین آسیموف منجر به اتفاقات اصلی داستان می شود. پس می‌توان گفت این قوانین کاملا غیر کاربردی هستند”.

انواع ربات‌های مدرن

ربات‌های متحرک

ربات‌های متحرک می‌توانند در محیط اطرافشان حرکت کنند و به یک موقعیت مکانی مشخص محدود نیستند. به‌عنوان مثالی از یک ربات متحرک می‌توان به ارابه یا ربات های حمل و نقل خود راهنما (AGVs) اشاره کرد. AGV یک ربات متحرک به شمار می‌رود که علامت ها و یا سیم های بر روی کف زمین را دنبال می کند و یا با کمک دید خود و یا استفاده از لیرزها، از نقطه ای به نقطه دیگر جابجا می شود. AGV ها در ادامه مطلب به طور گسترده تری مورد بررسی قرار می‌گیرند.

نمونه ای از ربات های متحرک مشهور به ارابه یا ربات های حمل و نقل خود راهنما – AVGs

نمونه ای از ربات های متحرک مشهور به ارابه یا ربات های حمل و نقل خود راهنما – AVGs

ربات‌های متحرک در محیط های صنعتی، نظامی و امنیتی مورداستفاده قرار می‌گیرند. همچنین در بعضی موارد از این ربات‌ها به‌عنوان کالای مصرفی و به منظور سرگرمی یا انجام دادن کارهایی مشخص مانند جارو کردن خانه نیز استفاده می شود. ربات‌های متحرک موضوع اصلی بسیاری از تحقیقاتی هستند که در حال حاضر در زمینه رباتیک در حال انجام است و تقریباً هر دانشگاه بزرگی، یک یا دو آزمایشگاه را به تحقیق بر روی ربات‌های متحرک اختصاص داده است.

ربات‌های متحرک اغلب در محیط هایی که کنترل دقیقی بر روی آن‌ها صورت می‌گیرد، مثلا در خطوط مونتاژ، مورداستفاده قرار می‌گیرند زیرا این ربات‌ها در واکنش نشان دادن به دخالت های غیر منتظره مشکل خواهند داشت. به همین دلیل نیز انسان‌ها به ندرت با این گونه ربات‌ها روبرو می‌شوند. با این وجود، ربات‌های خانگی که برای تمیز کردن و نگهداری منزل به کار می روند در بسیاری از کشور های توسعه یافته متداول هستند. از ربات‌های متحرک در کاربردهای نظامی نیز استفاده می شود.

ربات‌های صنعتی

ربات‌های صنعتی اغلب از یک بازوی مفصل دار( بازوی مکانیکی چند قسمتی) و بخش انتهایی آن که به یک سطح ثابت متصل می شود، تشکیل شده‌اند. یکی از متداول ترین انواع بخش انتهایی، گیره ها هستند.

سازمان بین المللی استانداردسازی تعریف ربات صنعتی(بازوی مکانیکی) را در استاندارد  ISO 8373 به شرح زیر تعریف کرده است:

“یک بازوی مکانیکی با کنترل خودکار، قابل برنامه ریزی و چندکاره که می‌توان آن را در سه محور مختلف(یا بیشتر) برنامه ریزی کرد. این ربات می‌تواند به‌صورت ثابت در محل و یا متحرک، در کاربردهای اتوماسیون صنعتی مورداستفاده قرار بگیرد.”

این تعریف توسط فدراسیون بین المللی رباتیک، شبکه تحقیقات رباتیک اروپا (Euron) و بسیاری از کمیته های استاندارد کشور های مختلف مورد قبول واقع شده است.

ربات‌های خدماتی

بیشتر ربات‌های صنعتی و بازو های مکانیکی به‌صورت ثابت هستند و به منظور تولید و توزیع کالا ها مورداستفاده قرار می‌گیرند. اما واژه “ربات‌های خدماتی” به خوبی ربات‌های صنعتی تعریف نشده است. فدراسیون بین المللی رباتیک، تعریف اولیه ای را برای این گونه ربات‌های مشخص کرده است:” یک ربات خدماتی، رباتی است که برای ارائه خدماتی که رفاه انسان‌ها و تجهیزات مفید است، به‌صورت نیمه یا تمام خودگردان عمل می کند. این ربات در فعالیت های تولیدی شرکت نمی کند.”

نمونه ای از یک ربات خدماتی مشهور به TWENDY-ONE

نمونه ای از یک ربات خدماتی مشهور به TWENDY-ONE

ربات‌های آموزشی

می‌توان از ربات‌ها به‌عنوان وسایل کمک آموزشی برای معلمان استفاده کرد. از دهه 1980، ربات‌هایی به شکل لاک پشت در مدارس مورداستفاده قرار می گرفتند و دانش آموزان با استفاده از زبان برنامه‌نویسی لوگو، آن‌ها را برنامه ریزی می‌کردند.

امروزه کیت های رباتی مانند Lego Mindstorms NXT،  BIOLOID، OLLO و یا ربات‌های آموزشی شرکت BotBrain در بازار موجود هستند. این کیت ها به کودکان کمک می کنند تا در مورد ریاضی، فیزیک، برنامه‌نویسی و الکترونیک چیز های مختلفی یاد بگیرند. ربات‌ها حتی از طریق مسابقات رباتیک، وارد زندگی دانش آموزان مقاطع ابتدایی و دبیرستان نیز شده است و هر ساله مسابقات مختلفی  در سرتاسر جهان برگزار می شود.

کیت رباتیLego Mindstorms NXT از سری ربات های آموزشی

کیت رباتیLego Mindstorms NXT از سری ربات های آموزشی

البته دستگاه‌هایی نیز وجود دارند که به شکل ربات طراحی شده‌اند که به‌عنوان نمونه می‌توان به کامپیوتر معلم به نام  Leachim و یا  2-XL که یک اسباب بازی آموزشی به شکل ربات است اشاره کرد. هر دو این وسایل توسط  Michael J. Freeman ساخته‌شده‌اند.

ربات‌های ماژولار (تکه ای)

ربات‌های ماژولار، نسل جدیدی از ربات‌ها هستند که قرار است با تکه ای کردن ساختار ربات‌ها، موارد کاربرد آن‌ها را بیشتر کنند. بهبود عملکرد و بازده ربات‌های ماژولار نسبت به ربات‌های معمولی آسان تر است. این ربات‌ها از یک نوع ماژول (تکه) مشابه یا چند نوع ماژول مختلف و یا ماژول های شبیه به هم که اندازه آن‌ها با هم متفاوت است، ساخته می‌شوند. ساختار این ربات‌ها باعث می شود تا امکان تغییر شکل های زیادی داشته باشند. در واقع می‌توان ربات‌های ماژولار را با بیش از 8 درجه آزادی نیز طراحی کرد. با این وجود، برنامه‌نویسی و سینماتیک و دینامیک معکوس برای این دسته از ربات‌ها نسبت به ربات‌های معمولی پیچیده تر است.

ربات‌های ماژولار ممکن است از ماژول های L شکل، ماژول های مکعبی، ماژول های H شکل و ماژول های U شکل تشکیل شوند. فناوری ANAT که اولین فناوری مخصوص برای ساخت ربات‌های ماژولار است و توسط شرکت Robotics Design طراحی شده، امکان ساخت ربات‌های ماژولار با ماژول های H و U شکل را فراهم می کند به طوری که این ماژول ها در زنجیره هایی به یکدیگر متصل هستند. از چنین سیستمی برای ساخت ربات‌های ماژولار با شکل های همگن و یا غیرهمگن استفاده می شود.

نمونه ای از ربات ماژولار

نمونه ای از ربات ماژولار

ربات‌های ساخته‌شده با فناوری ANAT را می‌توان با n درجه آزادی در نظر گرفت زیرا در این سیستم هر ماژول، یک سیستم رباتیک متحرک کامل است که به راحتی در برابر حرکت ماژول های قبل و بعد از خود در زنجیره، حرکت می کند و جابجا می شود. در نتیجه هر یک ماژول، امکان داشتن یک درجه​ آزادی را فراهم می کند. بنابراین، هرچقدر ماژول هایی بیشتری به یکدیگر متصل باشند، مجموعه آن‌ها درجه آزادی بیشتری خواهد داشت. ماژول های L شکل را نیز می‌توان به‌صورت زنجیره ای در آورد، البته با افزایش اندازه زنجیره، اندازه ماژول ها باید به ناچار کمتر شود زیرا در غیر این صورت، با اضافه شدن باری که به دو انتهای زنجیره وارد می شود، کرنش وارد بر ماژول هایی که در وسط زنجیره هستند افزایش می یابد.

ربات‌های ANAT با ماژول های H شکل از این مشکل رنج نمی‌برند زیرا طراحی آن‌ها به‌گونه‌ای است که به ربات اجازه می دهد تا فشار و ضربه‌ی وارده را به طور یکنواخت در سرتاسر ماژول ها پخش کند و در نتیجه با افزایش طول ربات، ظرفیت باربری آن کاهش نمی یابد. ربات‌های ماژولار را می‌توان به‌صورت دستی و یا خودکار مجددا تغییر شکل داد تا به رباتی دیگر تبدیل شود. در این فرآیند حتی ممکن است کاربرد ربات نیز عوض شود. به دلیل این‌که ربات‌های ماژولار با ساختار مشابه، از ماژول هایی تشکیل شده‌اند که برای ربات‌های مختلف استفاده می‌شوند، می‌توان یک ربات ماژولار به شکل مار را با رباتی مشابه ترکیب کرد تا یک ربات چند بازویی به دست آورد، یا حتی می‌توان آن را به ربات‌های کوچک تری تقسیم کرد که هر کدامشان باز هم می‌توانند به ربات‌های کوچکتری تقسیم شوند. این قابلیت به یک ربات ماژولار اجازه می دهد در یک وظیفه مشخص،  به‌صورت کاملا تخصصی عمل کند یا توانایی انجام چند وظیفه مختلف را به طور همزمان داشته باشد.

فنّاوری ربات‌های ماژولار امروزه در حمل و نقل هیبریدی، اتوماسیون صنعتی، نظافت و تعمیر کانال های تهویه هوا مورداستفاده قرار می‌گیرد. بسیاری از مراکز تحقیقاتی و دانشگاه ها نیز بر روی این فنّاوری تحقیق کرده‌اند و حتی توانسته اند نمونه های اولیه موفقی را نیز بسازند.

ربات‌های مشارکتی

ربات‌های مشارکتی یا همکار که به آن‌ها کوبات نیز گفته می شود، ربات‌هایی هستند که می‌توانند در حین انجام مسئولیت‌های صنعتی ساده، به‌صورت ایمن و موثر با کارگران تعامل داشته باشند. با این وجود بازوهای ربات و سایر شرایط محیطی در کارگاه ممکن است باعث ایجاد حوادثی شوند؛ در نتیجه لازم است تا قبل از از هرگونه استفاده واقعی، تحلیل خطرات احتمالی انجام شود.

ربات‌های مشارکتی که امروزه در صنعت مورداستفاده قرار می‌گیرند عمدتاً ساخت شرکت  Universal Robots در کشور دانمارک هستند.

شرکت Rethink Robotics که توسط  Rodney Brooks تاسیس شده، در سپتامبر سال 2012 رباتی به نام  Baxter را معرفی کرد. این ربات، یک ربات صنعتی است که به‌گونه‌ای طراحی شده تا بتواند با سایر کارگران در محیط کارگاه، به طور ایمن تعامل داشته باشد و بتوان آن را برای انجام کار های ساده برنامه ریزی کرد.

ربات‌های Baxter در صورتی که انسانی در مسیر بازو های رباتیک آن‌ها قرار داشته باشد متوقف می‌شوند و همچنین کلید های مخصوص خاموش کردن ربات نیز به‌صورت برجسته بر روی بدنه آن‌ها نصب شده است. این ربات‌ها که با هدف فروش به کسب و کار های کوچک ساخته‌شده‌اند، به‌عنوان معادل رباتیک یک کامپیوتر شخصی تلقی می‌شوند. تا ماه مِی 2014، 190 شرکت در ایالات‌متحده ربات‌های Baxter را خریداری کرده‌اند و این ربات‌ها در بریتانیا نیز به‌صورت تجاری مورداستفاده قرار می‌گیرند.

ربات‌ها در جامعه

تقریباً نصف ربات‌های جهان در قاره آسیا، 32 درصد در اروپا، 16 درصد در آمریکای شمالی، 1 درصد در استرالیا و 1 درصد نیز در آفریقا هستند. 40 درصد تمام ربات‌های جهان در کشور ژاپن هستند که این کشور را به بزرگترین کشور از نظر تعداد ربات‌ها تبدیل می کند.

استقلال ربات‌ها و سوالات اخلاقی مطرح‌شده

با پیشرفته تر شدن ربات‌ها، این سوال که چه قوانین اخلاقی  می‌تواند رفتار آن‌ها کنترل کند توسط متخصصان و دانشگاهیان متعددی بررسی شده است. سوال دیگری که در این زمینه مطرح است این است که آیا ربات‌ها می‌توانند داشتن هر نوع حق اجتماعی، فرهنگی، اخلاقی یا حقوقی را ادعا کنند یا خیر. یک تیم از دانشمندان اعلام کرده که ممکن است تا سال 2019، مغز رباتیک ساخته شود. عده ای دیگر پیش بینی می کنند هوش رباتیک تا سال 2050 به طرز چشمگیری گسترش خواهد یافت. پیشرفت های اخیر، رفتار ربات‌ها را بسیار پیچیده تر از قبل کرده است. تاثیر اجتماعی ربات‌های هوشمند موضوع مستندی به نام  Plug & Pray محصول سال 2010 میلادی است. Vernor Vinge

(متخصص و رمان نویس آمریکایی) اعلام کرده ممکن است زمانی برسد که کامپیوتر ها و ربات‌ها از انسان باهوش تر شوند. او این پدیده را تکینگی فناوری نامیده است. او همچنین معتقد است این پدیده می‌تواند برای انسان‌ها تا حدودی یا حتی به مقدار زیادی خطرناک باشد. عواقب احتمالی و راهکار مناسب برای این پدیده در مکتبی که به نام سینگولاریتاریانیسم (Singularitarianism)  شناخته می شود، مورد بحث و بررسی قرار می‌گیرد.

در سال 2009، متخصصان در کنفرانسی به میزبانی انجمن پیشبرد هوش مصنوعی (AAAI) شرکت کردند و در مورد این‌که آیا ممکن است ربات‌ها بتوانند هرگونه استقلالی به دست بیاورند و در صورت استقلال آن‌ها، این امر چقدر می‌تواند برای انسان‌ها تهدید یا خطر به شمار رود، بحث و گفتگو کردند. آن‌ها به این مطلب اشاره کردند که برخی از ربات‌ها توانسته اند به شکل های مختلفی از نیمه استقلال برسند. برای مثال بعضی از ربات‌ها می‌توانند خودشان منبع انرژی را پیدا کنند و یا به طور کاملا مستقل، از بین دشمنان، اهدافی را انتخاب کرده و با استفاده از سلاح هایشان به آن‌ها حمله کنند. آن‌ها همچنین به این مطلب اشاره کردند که برخی از ویروس های کامپیوتری می‌توانند در مقابل پاک سازی مقاومت کنند و به درجه “هوش سوسک ها” رسیده اند. البته دستیابی ربات خودآگاهی کامل، یعنی مشابه آنچه در بسیاری از کتاب ها و فیلم های علمی-تخیلی دیده می شود، محتمل نیست، اما خطرات و مشکلات احتمالی دیگری وجود دارد. منابع رسانه ای و گروه های علمی مختلفی به روند تغییرات مشابهی در بخش های مختلف رباتیک اشاره کرده‌اند که در کنار هم ممکن است منجر به افزایش کاربردهای ربات‌ها و خودگردانی و استقلال آن‌ها شود که طبیعتا نگرانی‌هایی را نیز در بر خواهد داشت. در سال 2015،  نشان داده شد که ربات‌های Nao alderen توانایی داشتن درجه ای از خودآگاهی را نیز دارند. محققین آزمایشگاه هوش مصنوعی و منطق موسسه پلی تکنیک   Rensselaer  در نیویورک، آزمایشی را انجام دادند که در آن ربات به خودآگاهی رسید؛ و وقتی این اتفاق افتاد ربات جواب قبلی خود به یک سوال مشخص را اصلاح کرد.

ربات‌های نظامی

بعضی از متخصصان و اعضای جامعه دانشگاهی، استفاده از ربات‌ها برای نبرد نظامی، به‌خصوص زمانی که دارای قابلیت‌های خودگردانی و استقلال نسبی باشند را زیرسوال برده اند. همچنین نگرانی‌هایی نیز در مورد فناوری که امکان کنترل ربات‌های مسلح را توسط ربات‌های دیگر فراهم می کند وجود دارد. نیروی دریایی ایالات‌متحده، با بودجه خود گزارشی را تهیه کرده که می گوید با پیچیده تر شدن و پیشرفت ربات‌های نظامی، باید به پیامد های تصمیم گیری آن‌ها به‌صورت مستقل، توجه بیشتری شود. یکی از محققان اعلام کرده که ربات‌های خودگردان می‌توانند رفتار انسانی تری داشته باشند زیرا می‌توانند به طور موثری تصمیم گیری کنند اما سایر متخصصان این مطلب را قبول ندارند.

در سال 2012، ربات چهارپای نظامی Cheetah که نسخه تکامل یافته BigDog می باشد با شکستن رکورد ربات دوپایی MIT که مربوط به سال 1989 بود به‌عنوان سریع ترین ربات دنیا شناخته شد.

در سال 2012، ربات چهارپای نظامی Cheetah که نسخه تکامل یافته BigDog می باشد با شکستن رکورد ربات دوپایی MIT که مربوط به سال 1989 بود به‌عنوان سریع ترین ربات دنیا شناخته شد.

رباتی که نگرانی های عمومی زیادی را در این زمینه ایجاد کرده است  EATR نام دارد. این ربات می‌تواند سوخت مورد نیاز خود را به طور پیوسته و با استفاده از مواد آلی تامین کند. موتور EATR به‌گونه‌ای طراحی شده تا با استفاده از بیومَس و پوشش گیاهی که به طور مشخص توسط سنسورهایش انتخاب می شود کار کند. ربات می‌تواند این مواد را در میدان جنگ و یا در محل های دیگر پیدا کند. البته مسئولین پروژه اعلام کرده‌اند که این ربات می‌تواند از چربی مرغ نیز به‌عنوان سوخت استفاده کند.

Manuel De Landa، نویسنده و فیلسوف آمریکایی معتقد است موشک های هوشمند و بمب های خودگردان که به درک مصنوعی مجهز هستند نیز می‌توانند به‌عنوان ربات تلقی شوند زیرا می‌توانند به در بعضی موارد به‌صورت مستقل تصمیم بگیرند. او معتقد است این کار، روندی مهم و بسیار خطرناک است که در آن انسان‌ها، مسئولیت اتخاذ تصمیم های مهم را به ماشین‌ها واگذار می کنند.

ربات چیست؟ قسمت 1
ربات چیست؟ قسمت 2
ربات چیست؟ قسمت 3
ربات چیست؟ قسمت 4
ربات چیست؟ قسمت 5
ربات چیست؟ قسمت 6
ربات چیست؟ قسمت 7
ربات چیست؟ قسمت 8