بایگانی برچسب برای: Hcl

کار با Thread ها در زبان سی شارپ – آشنایی با Thread های Foreground و Background در دات نت

زمانی که یک Thread جدید در برنامه های دات نت ایجاد می شوند، این Thread ها می توانند به دو صورت Foreground و Background اجرا شوند:

  1. Thread های Foreground: زمانی که کی Thread در حالت Foreground اجرا می شود باعث می شود که Thread اصلی برنامه تا زمان کامل شدن اجرای Thread ایجاد شده در حالت اجرا بماند. یعنی از Shut-down شدن Primary Thread توسط CLR جلوگیری می شود.
  2. Thread های Background: این Thread ها که با نام Daemon Thread شناخته می شوند به CLR می گوید که اجرای این Thread آنقدر اهمیت ندارد که Thread اصلی برنامه بخواهد منتظر بماند تا عملیات آن به اتمام برسد و می تواند در هر زمان که Thread اصلی برنامه به اتمام رسید، به صورت خودکار Thread های Background را نیز از بین ببرد.

توجه کنید که کلیه Thread هایی که در برنامه ها ایجاد می کنیم به صورت پیش فرض در حالت Foreground قرار دارند. برای آشنایی بیشتر با این موضوع نمونه کد زیر را در نظر بگیرید:

static void Main(string[] args)
{
    var thread = new Thread(PrintNumbers);
    thread.Start();
}

public static void PrintNumbers()
{
    for (int counter = 1; counter < 10; counter++)
    {
        Console.WriteLine(counter);
        Thread.Sleep(200);
    }
}

همانطور که گفتیم Thread ایجاد شده به صورت پیش فرض از نوع Foreground است و به همین دلیل تا زمانی که روند اجرای Thread ایجاد شده به اتمام نرسد از برنامه خارج نمی شویم و کلیه اعداد در خروجی چاپ می شوند. اما در کد زیر Thread ایجاد شده به صورت Background است و خواهیم دید که پس از اجرای برنامه به دلیل اینکه Thread اصلی زودتر از Thread ایجاد شده به اتمام می رسد، CLR به صورت خودکار Thread ایجاد شده را از بین می برد و اعداد به صورت کامل در خروجی نمایش داده نمی شوند:

static void Main(string[] args)
{
    var thread = new Thread(PrintNumbers);
    thread.IsBackground = true;
    thread.Start();
}

public static void PrintNumbers()
{
    for (int counter = 1; counter < 10; counter++)
    {
        Console.WriteLine(counter);
        Thread.Sleep(200);
    }
}

در برنامه های واقعی باید با دقت نوع Thread ها را انتخاب کرد، برای مثال فرض کنید که در برنامه شما در یک Thread جداگانه عملیاتی بر روی داده های بانک اطلاعاتی انجام می شود و نتیجه این عملیات در انتها باید در جایی ذخیره شود، می توانید برای اینکار یک Thread از نوع Foreground ایجاد کرده تا پس از خروج از برنامه، Thread اصلی منتظر اتمام انجام عملیات شده و سپس عملیات خروج کامل انجام شود. در مبحث بعدی در مورد موضوع همزمانی یا Concurrency صحبت می کنیم که از مشکلات اساسی در زمینه برنامه نویسی asynchronous می باشد و در مورد راهکار های حل این مشکل نیز صحبت خواهیم کرد.

منبع


قسمت اول آموزش-برنامه نویسی Asynchronous – آشنایی با Process ها، Thread ها و AppDomain ها

قسمت دوم آموزش- آشنایی با ماهیت Asynchronous در Delegate ها

قسمت سوم آموزش-آشنایی با فضای نام System.Threading و کلاس Thread

قسمت چهارم آموزش- آشنایی با Thread های Foreground و Background در دات نت

قسمت پنجم آموزش- آشنایی با مشکل Concurrency در برنامه های Multi-Threaded و راهکار های رفع این مشکل

قسمت ششم آموزش- آشنایی با کلاس Timer در زبان سی شارپ

قسمت هفتم آموزش-آشنایی با CLR ThreadPool در دات نت

قسمت هشتم آموزش- مقدمه ای بر Task Parallel Library و کلاس Parallel در دات نت

قسمت نهم آموزش- برنامه نویسی Parallel:آشنایی با کلاس Task در سی شارپ

قسمت دهم آموزش-برنامه نویسی Parallel در سی شارپ :: متوقف کردن Task ها در سی شارپ – کلاس CancellationToken

قسمت یازدهم آموزش- برنامه نویسی Parallel در سی شارپ :: کوئری های Parallel در LINQ

قسمت دوازدهم آموزش- آشنایی با کلمات کلیدی async و await در زبان سی شارپ

قسمت سیزدهم آموزش- استفاده از متد WhenAll برای اجرای چندین Task به صورت همزمان در سی شارپ

برنامه نویسی Asynchronous – آشنایی با Process ها، Thread ها و AppDomain ها

در طول یکسری مطالب آموزشی قصد داریم تا مبحث برنامه نویسی Asynchronous و Thread ها در زبان سی شارپ آشنا شویم. فرض کنید برنامه ای نوشتید که قرار است اطلاعات 500 هزار نفر را پردازش و یک گزارش تولید کند. در صورتی که به صورت عادی اقدام به پیاده سازی این قابلیت کنیم، در طول پردازش این اطلاعات برنامه ما دیگر قابل استفاده نخواهد بود و مجبوریم صبر کنیم تا عملیات پردازش اطلاعات تمام شود یا بهتر است یک مثال دیگر بزنیم.

فرض کنید زمانی که در حال تماشای یک فیلم هستید دیگر امکان انجام کارهای دیگر، مثلاً تایپ در برنامه Word یا برنامه نویسی نباشد. اما هیچ گاه این مشکلات برای شما بوجود نمی آید، زیرا سیستم عامل ها به بهترین شکل عملیات هم زمانی را پیاده سازی کرده و به شما این اجازه را می دهند تا در آن واحد نسبت به انجام چندین عملیات اقدام کنید. در زبان سی شارپ نیز این امکان برنامه نویسان داده شده است تا نسبت به پیاده سازی عملیات ها به صورت همزمان اقدام کنند. برای اینکار باید از Thread ها استفاده کنیم که در طول چند مطلب قصد داریم با شیوه های مختلف استفاده از Thread ها آشنا شویم. اما قبل از شروع کد نویسی بهتر است که با یکسری مفاهیم اولیه آشنا شده و سپس به سراغ قابلیت ها برنامه نویسی Asynchronous در زبان سی شارپ برویم.

Process چیست؟

زمانی که کاربر برنامه ای را اجرا می کند مقداری از حافظه و همچنین منابع به این برنامه تخصیص داده می شوند. اما همانطور که گفتیم یکی از قابلیت های سیستم های عامل این است که می توان چندین برنامه را به صورت همزمان اجرا کرد. یکی از وظایف سیستم عامل تفکیک حافظه و منابع برای هر یک از برنامه های در حال اجرا است که این جدا سازی بوسیله Process ها انجام می شود.

در حقیقت هر Process مرزبندی بین برنامه های اجرا است برای جدا سازی منابع و حافظه های تخصیص داده شده. دقت کنید که لزوماً تعداد Process برابر با تعداد برنامه های در حال اجرا نیست، یک برنامه می تواند یک یا چند Process را در زمان اجرا درگیر کند. در سیستم عامل ویندوز می توان از بخش Task Manager لیست برنامه های در حال اجرا و Process ها را مشاهده کرد. در تصویر زیر لیست برنامه هایی که بر روی سیستم من در حال اجرا است را مشاهده می کنید:

 

parallel programming

 

در صورتی که بر روی دکمه More details کلیک کنید می توانید از تب Processes لیست Process های در حال اجرا را مشاهده کنید:

parallel programming

هر یک Process های در حال اجرا حافظه، منابع تخصیص داده شده و روند اجرای مربوط به خود را دارند. در تصویر بالا نیز مشخص است، برای مثال در زمان گرفتن عکس بالا، Prcess مربوط به برنامه paint.net مقدار 20.4% از CPU و همچنین 107.6MB از حافظه را اشغال کرده است. در اینجا بیشتر به بحث CPU Usage باید دقت کنیم که نشان دهنده میزان استفاده یک Process از CPU است. CPU Usage در حقیقت یک ترتیب اجرا است که اصطلاحاً به آن Thread می گویند. هر Process می تواند شامل یک یا چندین Thread باشد که هر Thread وظیفه انجام یک عملیات خاص را بر عهده دارد. اما زمان اجرای هر Process یک Thread اولیه اجرا می شود که به آن اصطلاحاً Main Thread گفته می شود.

Process های Multi-Thread

همانطور که گفتیم هر Process می تواند شامل یک یا چندین Thread باشد. این Thread ها تنها توسط Process ایجاد نمی شوند و افرادی که اقدام به ایجاد نرم افزار می کنند (همان برنامه نویس های معروف) نیز می توانند برای انجام عملیات های مورد نظر اقدام به ایجاد Thread کنند.

برای مثال محیط Visual Studio را در نظر بگیرید، این محیط در طول زمان نوشتن کدها عملیات های دیگری را نیز برای شما انجام می دهد، مانند پردازش سایر فایل های پروژه، رنگی کردن کدها، نمایش Intellisense و …، اما شما احساس می کنید که تمامی این کار به صورت همزمان انجام می شوند، به این دلیل که برای هر یک از این عملیات ها یک Thread جداگانه ایجاد می شود که تمامی این Thread ها در Prcess مربوط به Visual Studio در حال اجرا هستند و به همین دلیل شما نباید منتظر بمانید تا عملیات های در حال اجرا به اتمام برسند و می توانید کار خود را ادامه دهید.

Thread های در حال اجرا در یک Process نیاز به یکسری اطلاعات در مورد Process دارند تا بتوانند به کار خود ادامه دهند. به این اطلاعات اصطلاحاً Prcess Global Data یا داده های عمومی یک پراسس می گویند. اگر بخواهیم نمایی کلی از یک Process را نشان دهیم می توان شکل زیر را مثال زد:

parallel programming

تصویر بالا، یک Process را نشان می دهد که شامل دو Thread است، هر یک از این Thread ها یک وظیفه خاص را انجام می دهند، اما به سکری اطلاعات دسترسی دارند که به آن ها PGD یا Process Global Data می گویند.

تا اینجا با دو مفهوم Process و Thread آشنا شدیم، اما همانطور که گفتیم در زبان سی شارپ می توانیم Thread هایی ایجاد کنیم که هر Thread یک کار خاص را انجام می دهد. برای کار با Thread ها و برای شروع، با کلاسی به نام Thread که در فضای نام System.Threading قرار دارد کار می کنیم. به صورت زیر می توانیم یک thread جدید با استفاده از کلاس Thread ایجاد کرده و آنرا اجرا کنیم:

static void Main(string[] args)
{
    var thread1 = new Thread(Thread1Job);
    var thread2 = new Thread(Thread2Job);
    var thread3 = new Thread(Thread3Job);
    thread1.Start();
    thread2.Start();
    thread3.Start();
}

public static void Thread1Job()
{
    for (int counter = 0; counter < 50; counter++)
    {
   Console.WriteLine("From thread1: " + counter);
    }
}

public static void Thread2Job()
{
    for (int counter = 0; counter < 50; counter++)
    {
        Console.WriteLine("From thread2: " + counter);
    }
}

public static void Thread3Job()
{
    for (int counter = 0; counter < 50; counter++)
    {
        Console.WriteLine("From thread3: " + counter);
    }
}

همانطور که مشاهده می کنید در کد بالا 3 شئ از نوع Thread ایجاد کردیم و برای پارامتر Constructor متد مورد نظر را ارسال کردیم. Constructor کلاس Thread پارامترش از نوع Delegate است و به همین دلیل می توان یک متد را جهت اجرا در Thread به عنوان پارامتر به آن ارسال کرد. بعد از تعریف thread ها به ترتیب آن را بوسیله متد Start اجرا می کنیم. در تصویر زیر خروجی کد بالا را مشاهده می کنید که کد های Thread ها به صورت همزمان اجرا شدند:

parallel programming

اگر در کد بالا متد ها را بدون استفاده از Thread ها فراخوانی می کردیم Thread2Job پس از اجرای Thread1Job اجرا شده و الی آخر. در این مطلب مقدمه ای بر مبحث Thread ها در زبان سی شارپ داشتیم. در مطالب بعدی با اصول اولیه و مکانیزم های مختلف استفاده از Thread ها و همچنین ریسک هایی که در زمان استفاده از Thread ها وجود دارد آشنا خواهیم شد.

منبع


قسمت اول آموزش-برنامه نویسی Asynchronous – آشنایی با Process ها، Thread ها و AppDomain ها

قسمت دوم آموزش- آشنایی با ماهیت Asynchronous در Delegate ها

قسمت سوم آموزش-آشنایی با فضای نام System.Threading و کلاس Thread

قسمت چهارم آموزش- آشنایی با Thread های Foreground و Background در دات نت

قسمت پنجم آموزش- آشنایی با مشکل Concurrency در برنامه های Multi-Threaded و راهکار های رفع این مشکل

قسمت ششم آموزش- آشنایی با کلاس Timer در زبان سی شارپ

قسمت هفتم آموزش-آشنایی با CLR ThreadPool در دات نت

قسمت هشتم آموزش- مقدمه ای بر Task Parallel Library و کلاس Parallel در دات نت

قسمت نهم آموزش- برنامه نویسی Parallel:آشنایی با کلاس Task در سی شارپ

قسمت دهم آموزش-برنامه نویسی Parallel در سی شارپ :: متوقف کردن Task ها در سی شارپ – کلاس CancellationToken

قسمت یازدهم آموزش- برنامه نویسی Parallel در سی شارپ :: کوئری های Parallel در LINQ

قسمت دوازدهم آموزش- آشنایی با کلمات کلیدی async و await در زبان سی شارپ

قسمت سیزدهم آموزش- استفاده از متد WhenAll برای اجرای چندین Task به صورت همزمان در سی شارپ

 

 

مقدمه

حذف نویز تصاویر _ گروهی از محققان سیستمی را توسعه داده اند که با استفاده از هوش مصنوعی و بدون نیاز به عکس های واضح از منبع، نویز تصاویر را از بین می برد.

شرح خبر

این گروه متشکل از محققان انویدیا، MIT و دانشگاه آلتو در توسعه این سیستم از یادگیری عمیق بهره برده اند که بر خلاف روش های قبلی نیازی به مشاهده نمونه های کامل از تصویر مورد نظر داشته و تنها با استفاده از داده های ناقص یا دو تصویر غیر واضح به افزایش کیفیت تصاویر می پردازد. علاوه بر این نتیجه نهایی افزایش کیفیت، حذف متون یا اصلاح تصویر نسبت به روش های قبلی به مراتب بهتر است.

یادگیری عمیق گونه ای از یادگیری ماشینی است که در آن سیستم با کمک هوش مصنوعی نحوه بازیابی تصاویر دارای نویز از طریق کنار هم قرار دادن تصاویر، متون یا ویدیوها را فرا می گیرد. یکی دیگر از قابلیت های جالب توجه سیستم جدید افزایش کیفیت تصاویر در عرض چند میلی ثانیه است.
مبنای کار هوش مصنوعی در این سیستم بر شبکه عصبی استوار است که با استفاده از تصاویر دارای نویز آموزش دیده است. در این روش هوش مصنوعی علی رغم عدم نیاز به تصاویر واضح از منبع باید دوبار تصویر را مشاهده کند.

آزمایشات این گروه نشان داده که از تصاویر تخریب شده از طریق نویزهایی نظیر «گاوسی افزایشی»، «پواسون» یا ترکیب آنها می توان برای تولید تصاویر بهینه ای استفاده کرد که کیفیت آن‌ها با تصاویر بازیابی‌ شده از عکس های بدون مشکل تقریبا برابر است.
کاربردهای علمی این سیستم مبتنی بر یادگیری عمیق شامل زمینه های پزشکی است که در آن می توان کیفیت اسکن های MRI و تصاویر دیگر را به شکل چشمگیری افزایش داد.

چند ماه قبل نیز تیم تحقیقاتی انستیتوی «ماکس پلانک» به رهبری دکتر مهدی سجادی، الگوریتمی را توسعه داده بودند که با بهره گیری از هوش مصنوعی وضوح تصاویر بی کیفیت را تا حد زیادی بهبود می بخشید.

راه اندازی کانال شرکت بهسان اندیش در تلگرام و سایر پیام رسان ها

کانال شرکت بهسان اندیش در تلگرام و سایر پیام رسان ها– در دنیای مجازی که شبکه های اجتماعی همچون کشوری مستقل عمل می کنند دسته ای از کاربران متناسب با فعالیت خود نیاز به امکاناتی خاص تر دارند. سازمان های دولتی و خصوصی، برند ها، شخصیت های سیاسی، هنری، فرهنگی و… برای ایجاد ارتباط و پیشبرد فعالیت خود نیاز به اعتماد مخاطب دارند.

در شبکه های اجتماعی ، گاه هویت واقعی یک کاربر مشخص نیست و ممکن است دیگران به اسم سازمان ها و اشخاص صفحاتی را ایجاد کنند و نام آن برند یا شخص را خدشه دار نمایند و با توجه به آنکه ایجاد اعتماد در مخاطب، امری مشکل است ، تلگرام با رسمیت بخشیدن به صفحات و تایید آنها این رویکرد را متفاوت کرده است.

شرکت بهسان اندیش به منظور ارائه خدمات و فعالیت های خود در شبکه های اجتماعی اقدام به راه اندازی کانال شرکت بهسان اندیش در تلگرام و پیام رسان های داخلی نموده که علاقمندان می توانند از طریق لینک زیر در این پیام رسان ها ما را دنبال کنید:

? پیام رسان تلگرام (مرکز اصلی اطلاع رسانی شرکت) :

https://t.me/Behsan_Transit

 

? در سروش (با اینترنت نیم بها) :
sapp.ir/behsanandish

 

 

 

مقالات

1.بررسی روشهای متعادل سازی هیستوگرام در بهبود تصویر

چکیده: افزایش کنتراست به عنوان یکی از مسائل مهم در پردازش تصویر است.متعادل سازی هیستوگرام (HE) یکی از روش های معمول برای بهبود کنتراست در تصاویر دیجیتال است و یک روش افزایش کنتراست ساده و موثر است با این حال، این روش معمولا باعث کنتراست بیش از حد می شود که باعث ظاهر غیر طبیعی در تصویر پردازش شده می شود. هم چنین HE میانگین روشنایی تصویر را به خوبی حفظ نمی کند بنابراین روش های دیگری برای متعادل سازی تصویر با حفظ روشنایی تصویر ارائه شده است. این مقاله به بررسی فرم های جدید هیستوگرام برای افزایش کنتراست تصویر می پردازد. تفاوت عمده میان روش ها معیارهای مورد استفاده، تقسیم هیستوگرام ورودی است. متعادل سازی دو هیستوگرام با حفظ روشنایی(BBHE) میانگین مقادیر شدت به عنوان نقطه جداسازی استفاده می کند. متعادل سازی دو هیستوگرام با حداقل خطای متوسط روشنایی(MMBEBHE) است. متعادل سازی هیستوگرام متوسط – مجرای بازگشتی(RMSHE) بهبود یافته BBHE است. روش یکنواخت سازی پویلی هیستوگرام با حفظ روشنایی(BPDHE) بسط یافته MPHBP و DHE است.
واژه های کلیدی: بهبود کنتراست، متعادل سازی هیستوگرام، خطای متوسط روشنایی، تقسیم بندی هیستوگرام، حفظ روشنایی
فایل PDF – در 22 صفحه- نویسنده : نوشین الله بخشی

بررسی روشهای متعادل سازی هیستوگرام در بهبود تصویر

رمز فایل : behsanandish.com


2. بهبود کیفیت تصاویر آندوسکوپی از طریق تعدیل هیستوگرام فازی و توزیع ناهمسانگرد کنتراست

چکیده: در این مقاله روشی جدید برای بهبود کیفیت تصاویر آندوسکوپی به وسیله ی تعدیل هیستوگرام فازی و توزیع ناهمسانگرد کنتراست ارائه می شود. تصاویر آندوسکوپی موجود در کشورمان از لحاظ نور و کیفیت وضعیت مناسبی ندارند و همین موضوع تبدیل به چالشی جهت تشخیص انواع بیماری های دستگاه گوارش شده است. برای غلبه بر این مشکلات و کمک به پزشکان برای تشخیص بهتر، در این مقاله یک روش وفقی با استفاده از تعدیل هیستوگرام فازی و توزیع کنتراست ارائه می شود. همچنین در روش پیشنهادی مفهوم جدیدی از توزیع کنتراست بر اساس آنالیز محلی تصاویر آندوسکوپی معرفی می شود. سپس به وسیله انتخاب وفقی پارامتر هدایت که نقشی مهم در توزیع ایفا می کند، توزیع کنتراست به منظور بهبود کیفیت تصاویر آندوسکوپی به تصویر اعمال می شود و در نهایت بعد از انتقال به سه فضای رنگ YIQ ،XYZ و HSI به کمک روش تعدیل هیستوگرام فازی، تغییرات نامحسوس رنگ نمایان تر می شود. نتایج تجربی نشان می دهد که روش ارئه شده عملکرد قابل توجهی در افزایش قابلیت دیداری تصاویر آندوسکوپی از خود نشان می دهد.

 

واژه های کلیدی: تصاویر آندوسکوپی، توزیع ناهمسانگرد کنتراست، تعدیل هیستوگرام فازی

فایل PDF – در 6 صفحه- نویسندگان : حسین قیصری، میرحسین دزفولیان

بررسی روشهای متعادل سازی هیستوگرام در بهبود تصویر

رمز فایل : behsanandish.com


3. تشخیص زود هنگام پوسیدگی دندان با استفاده از آنالیز هیستوگرام و طیف توان

چکیده: این مقاله به تشخیص پوسیدگی در مراحل اولیه با استفاده از آنالیز هیستوگرام و طیف توان می پردازد. داده های مورد نیاز شامل تصاویر اشعه ایکس دندان های نرمال و پوسیده از هر شخص می باشد که توسط ابزار پردازش سیگنال MATLAB آنالیز می شود. برای هر تصویر، هیستوگرام و طیف توان محاسبه می شود. سپس یک بررسی دقیق انجام می گیرد. نتایج نشان می دهد که هیستوگرام شدت پیکسل برای دندان های نرمال و پوسیده در محدوده های مختلف متمرکز شده است و تفاوت های آشکاری در بخش های طیفی بدست آمده بین دندان های نرمال و پوسیده وجود دارد. طیف توان دندان پوسیده در مقایسه با طیف دندان نرمال دارای بخش های فرکانس بالااست. هم چنین به کارگیری GUI(واسط کاربر گرافیکی) این کار را آسان تر و وابسته به تعامل کاربر می کند. این روش برای دندان پزشکان در تشخیص پوسیدگی در مراحل اولیه بسیار سودمند می باشد.

واژه های کلیدی: پوسیدگی دندان، هیستوگرام، طیف توان، GUI، شدت پیکسل

فایل PDF – در 6 صفحه- نویسندگان : محمد کریمی مریدانی، شبنم قهاری و فاطمه غلامی

تشخیص زود هنگام پوسیدگی دندان با استفاده از آنالیز هیستوگرام و طیف توان

رمز فایل : behsanandish.com


4. بازیابی تصاویر چهره با استفاده از ترکیب هیستوگرام گرادیان و الگوی باینری محلی

چکیده: بازیابی چهره، یک موضوع تحقیقاتی مهم در پردازش تصویر است که هدف آن استخراج تصاویر چهره ای است که مشابه با یک تصویر جستار باشند. در این مقاله روشی برای بازیابی تصاویر چهره با استفاده از ترکیب هیستوگرام گرادیان و الگوی باینری محلی(LBP) پیشنهاد شده است. ترکیب این دو روش مقاومت در مقابل تغییرات موجود در تصاویر چهره را افزایش می دهد و در نتیجه عملکرد سیستم را در بازیابی تصاویر بهبود می بخشد. برای افزایش توانایی سیستم، یک طرح فیدبک ارتباطی مبتنی بر ماشین بردار پشتیبان(SVM) معرفی می کنیم. آزمایش ها بر روی پایگاه داده ی AR و در دو حالت بدون تصاویر با مانع و با تصاویر با مانع اناجم شده است. نتایج آزمایش ها نشان می دهد که روش پیشنادی ما به خوبی می تواند تصاویر چهره را بازیابی کند. در ادامه، روش پیشنهادی خود را با برخی از روش های موفق در توصیف چهره مقایسه کرده ایم. معیار دقت متوسط میانگین(MAP) برای روش پیشنهادی در حالت های اول و دوم آزمایش به ترتیب برابر است با 94/40%  و 68/12%. در حالی که بهترین نرخ برای روش های مقایسه شده برابر است با 90/37% و 61/99%. این نتایج نشان می دهد روش پیشنهادی ما نسبت به این روش ها بهتر عمل می کند و یک روش خوب برای بازیابی تصاویر چهره است.

واژه های کلیدی: الگوی باینری محلی، بازیابی چهره، فیدبک ارتباطی، ماشین بردار پشتیبان، هیستوگرام گرادیان.

فایل PDF – در 11 صفحه- نویسندگان : محمد قاصری و حسین ابراهیم نژاد

ﺑﺎزﯾﺎﺑﯽ ﺗﺼﺎوﯾﺮ ﭼﻬﺮه ﺑﺎ اﺳﺘﻔﺎده از ﺗﺮﮐﯿﺐ ﻫﯿﺴﺘﻮﮔﺮام ﮔﺮادﯾﺎن و اﻟﮕﻮی ﺑﺎﯾﻨﺮی ﻣﺤﻠﯽ

رمز فایل : behsanandish.com


5. بهبود وفقی کنتراست با استفاده از متعادل سازی بهینه هیستوگرام دو بعدی

چکیده: در این مقاله، برای بهبود وفقی کنتراست به ارائه و حل یک مسئله ی بهینه سازی در هیستوگرام دوبعدی پرداخته شده است. برای جلوگیری از بروز اثرات نامطلوب ناشی از دست کاری هیستوگرام تصویر، در بیان ریاضی مسأله در این مقاله همانند روش های مشابه دیگر، از یک سو هیستوگرام بهینه ی خروجی از روی هیستوگرامی دوبعدی که بیشترین شباهت را به هیستوگرام دوبعدی تصویر ورودی و نیز توزیع یکنواخت داشته باشد به دست می آید و از سویی دیگر بر خلاف دیگر روش ها، با وزن دهی وفقی، اطلاعات محلی مناسبی را نیز دراین جستجو در نظر می گیرد. نگاشت مناسب با حل این مسأله ی بهینه سازی به دست آمده و آزمایش های گوناگونی که بر روی تصاویر گوناگون انجام شده است، درستی مدل بهینه سازی را نشان می دهد. به کارگیری الگوریتم پیشنهادی بر روی تصاویر متعدد، در مقایسه با روش مرجع به صورت میانگین به بهبود 75 درصدی و 3 درصدی معیارهای AMBEN  و  DEN  منجر شده است.

واژه های کلیدی: بهبود کنتراست، هیستوگرام دوبعدی، هموارسازی هیستوگرام

فایل PDF – در 10 صفحه- نویسندگان : سحر ایروانی و مهدی ازوجی

ﺑﻬﺒﻮد وﻓﻘﯽ ﮐﻨﺘﺮاﺳﺖ ﺑﺎ اﺳﺘﻔﺎده از ﻣﺘﻌﺎدل ﺳﺎزی ﺑﻬﯿﻨﻪ ی ﻫﯿﺴﺘﻮﮔﺮام دوﺑﻌﺪی

رمز فایل : behsanandish.com


6. A Study for Applications of Histogram in Image Enhancement

مطالعه برای کاربرد هیستوگرام در بهبود تصویر

Abstract- Image Enhancement aims at improving the visual quality of input image for a particular area. The criterion used by enhancement algorithms to enhance the image is; using histogram details of that image. This paper defines the various applications of histograms through which they help in the enhancement process. The paper also represents three basic histogram processing techniques- histogram sliding, histogram stretching, and histogram equalization, and how these techniques help in enhancement process, which factors effect these techniques. We examine subjectively the effect of these processing techniques. Comparative analysis of these techniques is also carried out.

Keywords: Histogram Equalization, Histogram Sliding, Histogram Stretching, Image Enhancement, Visual Quality.

فایل PDF – در 5 صفحه- نویسندگان : Harpreet Kaur, Neelofar Sohi

A Study for Applications of Histogram in Image Enhancement

رمز فایل : behsanandish.com


7. An Adaptive Histogram Equalization Algorithm on the Image Gray Level Mapping

الگوریتم انعکاس هیستوگرام سازگار بر روی نقشه سطح خاکستری تصویر

Abstract
The conventional histogram equalization algorithm is easy causing information loss. The paper presented an adaptive histogram-based algorithm in which the information entropy remains the same. The algorithm introduces parameter ȕ in the gray level mapping formula, and takes the information entropy as the target function to adaptively adjust the spacing of two adjacent gray levels in the new histogram. So it avoids excessive gray pixel merger and excessive bright local areas of the image. Experiments show that the improved algorithm may effectively improve visual effects under the premise of the same information entropy. It is useful in CT image processing.

Keywords: Histogram Equalization; Image Enhancement; Gray Level Mapping; Information Entropy

فایل PDF – در 8 صفحه- نویسندگان : Youlian Zhu, Cheng Huang

An Adaptive Histogram Equalization Algorithm on the Image

رمز فایل : behsanandish.com


8. Contrast Enhancement Algorithm Based on Gap Adjustment for Histogram Equalization

الگوریتم تقویت کنتراست براساس تنظیم گاف برای برابری هیستوگرام

Abstract: Image enhancement methods have been widely used to improve the visual effects of images. Owing to its simplicity and effectiveness histogram equalization (HE) is one of the methods used for enhancing image contrast. However, HE may result in over-enhancement and feature loss problems that lead to unnatural look and loss of details in the processed images. Researchers have proposed various HE-based methods to solve the over-enhancement problem; however, they have largely ignored the feature loss problem. Therefore, a contrast enhancement algorithm based on gap adjustment for histogram equalization (CegaHE) is proposed. It refers to a visual contrast enhancement algorithm based on histogram equalization (VCEA), which generates visually pleasing enhancedimages,andimprovestheenhancementeffectsofVCEA.CegaHEadjuststhegapsbetween two gray values based on the adjustment equation, which takes the properties of human visual perception into consideration, to solve the over-enhancement problem. Besides, it also alleviates the feature loss problem and further enhances the textures in the dark regions of the images to improve the quality of the processed images for human visual perception. Experimental results demonstrate that CegaHE is a reliable method for contrast enhancement and that it significantly outperforms VCEA and other methods.

Keywords: cumulative distribution function (CDF); contrast enhancement; histogram equalization (HE); human visual perception; gap adjustment

فایل PDF – در 18 صفحه- نویسندگان : Chung-Cheng Chiu , and Chih-Chung Ting

Contrast Enhancement Algorithm Based on Gap

رمز فایل : behsanandish.com


9. Enhancement of Images Using Histogram Processing Techniques

بهبود تصاویر با استفاده از تکنیک های پردازش هیستوگرام

Abstract- Image enhancement is a mean as the improvement of an image appearance by increasing dominance of some features or by decreasing ambiguity between different regions of the image. Image enhancement processes consist of a collection of techniques that seek to improve the visual appearance of an image or to convert the image to a form better suited for analysis by a human or machine. Many images such as medical images, remote sensing images, electron microscopy images and even real life photographic pictures, suffer from poor contrast. Therefore it is necessary to enhance the contrast.The purpose of image enhancement methods is to increase image visibility and details. Enhanced image provide clear image to eyes or assist feature extraction processing in computer vision system. Numerous enhancement methods have been proposed but the enhancement efficiency, computational requirements, noise amplification, user intervention, and application suitability are the common factors to be considered when choosing from these different methods for specific image processing application.

Keywords: Enhancement, Histogram processing techniques, PSNR,MSE.

فایل PDF – در 5 صفحه- نویسندگان :Komal Vij , Yaduvir Singh

Enhancement of Images Using Histogram Processing

رمز فایل : behsanandish.com


10. USE OF HISTOGRAM EQUALIZATION IN IMAGE PROCESSING FOR IMAGE ENHANCEMENT

استفاده از تعادل هیستوگرام در پردازش تصویر برای افزایش تصویر

Abstract— Digital Image Processing is a rapidly evolving field with the growing applications in science & engineering. Image Processing holds the possibility of developing an ultimate machine that could perform visual functions of all living beings. The image processing is a visual task, the foremost step is to obtain an image i.e. image acquisition then enhancement and finally to process. In this paper there are details for image enhancement for the purpose of image processing. Image enhancement is basically improving the digital image quality. Image histogram is helpful in image enhancement. The histogram in the context of image processing is the operation by which the occurrences of each intensity value in the image is shown and Histogram equalization is the technique by which the dynamic range of the histogram of an image is increased.

Keywords- Image processing, image enhancement, image histogram, Histogram equalization

فایل PDF – در 5 صفحه- نویسندگان :Sapana S. Bagade , Vijaya K. Shandilya

USE OF HISTOGRAM EQUALIZATION IN IMAGE PROCESSING FOR IMAGE ENHANCEMENT

رمز فایل : behsanandish.com


جزوات آموزشی

1. Computer Vision – Histogram Processing

1. بینایی کامپیوتر- پردازش هیستوگرام

فایل PDF – در 40 صفحه- نویسنده : Dr. S. Das 

Computer Vision -histogram processing

رمز فایل : behsanandish.com


2. Digital Image Processing (CS/ECE 545)  Lecture 2: Histograms and Point Operations (Part 1)

پردازش تصویر دیجیتال(CS/ECE 545)  درس 2: هیستوگرام و عملیات نقطه

فایل PDF – در 56 صفحه- نویسنده : Prof Emmanuel Agu

Digital Image Processing-histograms and point operations

رمز فایل : behsanandish.com


3. Part 3: Image Processing – Digital Images and Intensity Histograms

بخش 3: پردازش تصویر – تصاویر دیجیتال و هیستوگرام های شدت

فایل PDF – در 57 صفحه- نویسنده : Georgy Gimel’farb

Digital Images and Intensity Histograms

رمز فایل : behsanandish.com


4.  Digital Imaging and Multimedia Histograms of Digital Images

تصویربرداری دیجیتالی و هیستوگرام های چند رسانه ای از تصاویر دیجیتال

فایل PDF – در 12 صفحه- نویسنده : Ahmed Elgammal

Digital Imaging and Multimedia

رمز فایل : behsanandish.com

مرحله 2: پیدا کردن قدرت و جهت گرادیان لبه.

گام بعدی استفاده از Mask های Sobel برای پیدا کردن قدرت و جهت گرادیان لبه برای هر پیکسل است. ابتدا ماسک های Sobel به محدوده پیکسل 3×3 پیکسل فعلی در هر دو جهت x و y اعمال می شود. سپس مجموع مقدار هر ماسک ضربدر پیکسل مربوطه به ترتیب به عنوان مقادیر Gx و Gy محاسبه می شود. ریشه دوم مربع Gx به اضافه Gy مربع برابر قدرت لبه است. Tangent معکوس Gx / Gy جهت لبه را تولید می کند. سپس جهت لبه تقریب شده است به یکی از چهار مقادیر ممکن که ایجاد می کند جهت های ممکن را که  یک لبه می تواند در یک تصویر از یک شبکه پیکسل مربع باشد. این جهت لبه در edgeDir [row] [col] ذخیره می شود و قدرت گرادیان در  array gradient[row] [col] ذخیره می شود.

 

CannyEdgeWeel

هر زاویه لبه در 11.25 درجه از یکی از  زاویه های ممکن به آن مقدار تغییر می کند.

 

#include "stdafx.h"
#include "tripod.h"
#include "tripodDlg.h"

#include "LVServerDefs.h"
#include "math.h"
#include <fstream>
#include <string>
#include <iostream>
#include <stdlib.h>
#include <stdio.h>


#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

using namespace std;

/////////////////////////////////////////////////////////////////////////////
// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:
	CAboutDlg();

// Dialog Data
	//{{AFX_DATA(CAboutDlg)
	enum { IDD = IDD_ABOUTBOX };
	//}}AFX_DATA

	// ClassWizard generated virtual function overrides
	//{{AFX_VIRTUAL(CAboutDlg)
	protected:
	virtual void DoDataExchange(CDataExchange* pDX);    // DDX/DDV support
	//}}AFX_VIRTUAL

// Implementation
protected:
	//{{AFX_MSG(CAboutDlg)
	//}}AFX_MSG
	DECLARE_MESSAGE_MAP()
};

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
{
	//{{AFX_DATA_INIT(CAboutDlg)
	//}}AFX_DATA_INIT
}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
	CDialog::DoDataExchange(pDX);
	//{{AFX_DATA_MAP(CAboutDlg)
	//}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
	//{{AFX_MSG_MAP(CAboutDlg)
		// No message handlers
	//}}AFX_MSG_MAP
END_MESSAGE_MAP()

/////////////////////////////////////////////////////////////////////////////
// CTripodDlg dialog

CTripodDlg::CTripodDlg(CWnd* pParent /*=NULL*/)
	: CDialog(CTripodDlg::IDD, pParent)
{
	//{{AFX_DATA_INIT(CTripodDlg)
		// NOTE: the ClassWizard will add member initialization here
	//}}AFX_DATA_INIT
	// Note that LoadIcon does not require a subsequent DestroyIcon in Win32
	m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);

	//////////////// Set destination BMP to NULL first 
	m_destinationBitmapInfoHeader = NULL;

}

////////////////////// Additional generic functions

static unsigned PixelBytes(int w, int bpp)
{
    return (w * bpp + 7) / 8;
}

static unsigned DibRowSize(int w, int bpp)
{
    return (w * bpp + 31) / 32 * 4;
}

static unsigned DibRowSize(LPBITMAPINFOHEADER pbi)
{
    return DibRowSize(pbi->biWidth, pbi->biBitCount);
}

static unsigned DibRowPadding(int w, int bpp)
{
    return DibRowSize(w, bpp) - PixelBytes(w, bpp);
}

static unsigned DibRowPadding(LPBITMAPINFOHEADER pbi)
{
    return DibRowPadding(pbi->biWidth, pbi->biBitCount);
}

static unsigned DibImageSize(int w, int h, int bpp)
{
    return h * DibRowSize(w, bpp);
}

static size_t DibSize(int w, int h, int bpp)
{
    return sizeof (BITMAPINFOHEADER) + DibImageSize(w, h, bpp);
}

/////////////////////// end of generic functions


void CTripodDlg::DoDataExchange(CDataExchange* pDX)
{
	CDialog::DoDataExchange(pDX);
	//{{AFX_DATA_MAP(CTripodDlg)
	DDX_Control(pDX, IDC_PROCESSEDVIEW, m_cVideoProcessedView);
	DDX_Control(pDX, IDC_UNPROCESSEDVIEW, m_cVideoUnprocessedView);
	//}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CTripodDlg, CDialog)
	//{{AFX_MSG_MAP(CTripodDlg)
	ON_WM_SYSCOMMAND()
	ON_WM_PAINT()
	ON_WM_QUERYDRAGICON()
	ON_BN_CLICKED(IDEXIT, OnExit)
	//}}AFX_MSG_MAP
END_MESSAGE_MAP()

/////////////////////////////////////////////////////////////////////////////
// CTripodDlg message handlers

BOOL CTripodDlg::OnInitDialog()
{
	CDialog::OnInitDialog();

	// Add "About..." menu item to system menu.

	// IDM_ABOUTBOX must be in the system command range.
	ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);
	ASSERT(IDM_ABOUTBOX < 0xF000);

	CMenu* pSysMenu = GetSystemMenu(FALSE);
	if (pSysMenu != NULL)
	{
		CString strAboutMenu;
		strAboutMenu.LoadString(IDS_ABOUTBOX);
		if (!strAboutMenu.IsEmpty())
		{
			pSysMenu->AppendMenu(MF_SEPARATOR);
			pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);
		}
	}

	// Set the icon for this dialog.  The framework does this automatically
	//  when the application's main window is not a dialog
	SetIcon(m_hIcon, TRUE);			// Set big icon
	SetIcon(m_hIcon, FALSE);		// Set small icon
	
	// TODO: Add extra initialization here

	// For Unprocessed view videoportal (top one)
	char sRegUnprocessedView[] = "HKEY_LOCAL_MACHINE\\Software\\UnprocessedView";
	m_cVideoUnprocessedView.PrepareControl("UnprocessedView", sRegUnprocessedView, 0 );	
	m_cVideoUnprocessedView.EnableUIElements(UIELEMENT_STATUSBAR,0,TRUE);
	m_cVideoUnprocessedView.ConnectCamera2();
	m_cVideoUnprocessedView.SetEnablePreview(TRUE);

	// For binary view videoportal (bottom one)
	char sRegProcessedView[] = "HKEY_LOCAL_MACHINE\\Software\\ProcessedView";
	m_cVideoProcessedView.PrepareControl("ProcessedView", sRegProcessedView, 0 );	
	m_cVideoProcessedView.EnableUIElements(UIELEMENT_STATUSBAR,0,TRUE);
	m_cVideoProcessedView.ConnectCamera2();
	m_cVideoProcessedView.SetEnablePreview(TRUE);

	// Initialize the size of binary videoportal
	m_cVideoProcessedView.SetPreviewMaxHeight(240);
	m_cVideoProcessedView.SetPreviewMaxWidth(320);

	// Uncomment if you wish to fix the live videoportal's size
	// m_cVideoUnprocessedView.SetPreviewMaxHeight(240);
	// m_cVideoUnprocessedView.SetPreviewMaxWidth(320);

	// Find the screen coodinates of the binary videoportal
	m_cVideoProcessedView.GetWindowRect(m_rectForProcessedView);
	ScreenToClient(m_rectForProcessedView);
	allocateDib(CSize(320, 240));

	// Start grabbing frame data for Procssed videoportal (bottom one)
	m_cVideoProcessedView.StartVideoHook(0);

	return TRUE;  // return TRUE  unless you set the focus to a control
}

void CTripodDlg::OnSysCommand(UINT nID, LPARAM lParam)
{
	if ((nID & 0xFFF0) == IDM_ABOUTBOX)
	{
		CAboutDlg dlgAbout;
		dlgAbout.DoModal();
	}
	else
	{
		CDialog::OnSysCommand(nID, lParam);
	}
}

// If you add a minimize button to your dialog, you will need the code below
//  to draw the icon.  For MFC applications using the document/view model,
//  this is automatically done for you by the framework.

void CTripodDlg::OnPaint() 
{
	if (IsIconic())
	{
		CPaintDC dc(this); // device context for painting

		SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);

		// Center icon in client rectangle
		int cxIcon = GetSystemMetrics(SM_CXICON);
		int cyIcon = GetSystemMetrics(SM_CYICON);
		CRect rect;
		GetClientRect(&rect);
		int x = (rect.Width() - cxIcon + 1) / 2;
		int y = (rect.Height() - cyIcon + 1) / 2;

		// Draw the icon
		dc.DrawIcon(x, y, m_hIcon);
	}
	else
	{
		CDialog::OnPaint();
	}
}

// The system calls this to obtain the cursor to display while the user drags
//  the minimized window.
HCURSOR CTripodDlg::OnQueryDragIcon()
{
	return (HCURSOR) m_hIcon;
}

void CTripodDlg::OnExit() 
{
	// TODO: Add your control notification handler code here

	// Kill live view videoportal (top one)
	m_cVideoUnprocessedView.StopVideoHook(0);
    m_cVideoUnprocessedView.DisconnectCamera();	
	
	// Kill binary view videoportal (bottom one)
	m_cVideoProcessedView.StopVideoHook(0);
    m_cVideoProcessedView.DisconnectCamera();	

	// Kill program
	DestroyWindow();	

	

}

BEGIN_EVENTSINK_MAP(CTripodDlg, CDialog)
    //{{AFX_EVENTSINK_MAP(CTripodDlg)
	ON_EVENT(CTripodDlg, IDC_PROCESSEDVIEW, 1 /* PortalNotification */, OnPortalNotificationProcessedview, VTS_I4 VTS_I4 VTS_I4 VTS_I4)
	//}}AFX_EVENTSINK_MAP
END_EVENTSINK_MAP()

void CTripodDlg::OnPortalNotificationProcessedview(long lMsg, long lParam1, long lParam2, long lParam3) 
{
	// TODO: Add your control notification handler code here
	
	// This function is called at the camera's frame rate
    
#define NOTIFICATIONMSG_VIDEOHOOK	10

	// Declare some useful variables
	// QCSDKMFC.pdf (Quickcam MFC documentation) p. 103 explains the variables lParam1, lParam2, lParam3 too 
	
	LPBITMAPINFOHEADER lpBitmapInfoHeader; // Frame's info header contains info like width and height
	LPBYTE lpBitmapPixelData; // This pointer-to-long will point to the start of the frame's pixel data
    unsigned long lTimeStamp; // Time when frame was grabbed

	switch(lMsg) {
		case NOTIFICATIONMSG_VIDEOHOOK:
			{
				lpBitmapInfoHeader = (LPBITMAPINFOHEADER) lParam1; 
				lpBitmapPixelData = (LPBYTE) lParam2;
				lTimeStamp = (unsigned long) lParam3;

				grayScaleTheFrameData(lpBitmapInfoHeader, lpBitmapPixelData);
				doMyImageProcessing(lpBitmapInfoHeader); // Place where you'd add your image processing code
				displayMyResults(lpBitmapInfoHeader);

			}
			break;

		default:
			break;
	}	
}

void CTripodDlg::allocateDib(CSize sz)
{
	// Purpose: allocate information for a device independent bitmap (DIB)
	// Called from OnInitVideo

	if(m_destinationBitmapInfoHeader) {
		free(m_destinationBitmapInfoHeader);
		m_destinationBitmapInfoHeader = NULL;
	}

	if(sz.cx | sz.cy) {
		m_destinationBitmapInfoHeader = (LPBITMAPINFOHEADER)malloc(DibSize(sz.cx, sz.cy, 24));
		ASSERT(m_destinationBitmapInfoHeader);
		m_destinationBitmapInfoHeader->biSize = sizeof(BITMAPINFOHEADER);
		m_destinationBitmapInfoHeader->biWidth = sz.cx;
		m_destinationBitmapInfoHeader->biHeight = sz.cy;
		m_destinationBitmapInfoHeader->biPlanes = 1;
		m_destinationBitmapInfoHeader->biBitCount = 24;
		m_destinationBitmapInfoHeader->biCompression = 0;
		m_destinationBitmapInfoHeader->biSizeImage = DibImageSize(sz.cx, sz.cy, 24);
		m_destinationBitmapInfoHeader->biXPelsPerMeter = 0;
		m_destinationBitmapInfoHeader->biYPelsPerMeter = 0;
		m_destinationBitmapInfoHeader->biClrImportant = 0;
		m_destinationBitmapInfoHeader->biClrUsed = 0;
	}
}

void CTripodDlg::displayMyResults(LPBITMAPINFOHEADER lpThisBitmapInfoHeader)
{
	// displayMyResults: Displays results of doMyImageProcessing() in the videoport
	// Notes: StretchDIBits stretches a device-independent bitmap to the appropriate size

	CDC				*pDC;	// Device context to display bitmap data
	
	pDC = GetDC();	
	int nOldMode = SetStretchBltMode(pDC->GetSafeHdc(),COLORONCOLOR);

	StretchDIBits( 
		pDC->GetSafeHdc(),
		m_rectForProcessedView.left,				// videoportal left-most coordinate
		m_rectForProcessedView.top,					// videoportal top-most coordinate
		m_rectForProcessedView.Width(),				// videoportal width
		m_rectForProcessedView.Height(),			// videoportal height
		0,											// Row position to display bitmap in videoportal
		0,											// Col position to display bitmap in videoportal
		lpThisBitmapInfoHeader->biWidth,			// m_destinationBmp's number of columns
		lpThisBitmapInfoHeader->biHeight,			// m_destinationBmp's number of rows
		m_destinationBmp,							// The bitmap to display; use the one resulting from doMyImageProcessing
		(BITMAPINFO*)m_destinationBitmapInfoHeader, // The bitmap's header info e.g. width, height, number of bits etc
		DIB_RGB_COLORS,								// Use default 24-bit color table
		SRCCOPY										// Just display
	);
 
	SetStretchBltMode(pDC->GetSafeHdc(),nOldMode);

	ReleaseDC(pDC);

	// Note: 04/24/02 - Added the following:
	// Christopher Wagner cwagner@fas.harvard.edu noticed that memory wasn't being freed

	// Recall OnPortalNotificationProcessedview, which gets called everytime
	// a frame of data arrives, performs 3 steps:
	// (1) grayScaleTheFrameData - which mallocs m_destinationBmp
	// (2) doMyImageProcesing
	// (3) displayMyResults - which we're in now
	// Since we're finished with the memory we malloc'ed for m_destinationBmp
	// we should free it: 
	
	free(m_destinationBmp);

	// End of adds
}

void CTripodDlg::grayScaleTheFrameData(LPBITMAPINFOHEADER lpThisBitmapInfoHeader, LPBYTE lpThisBitmapPixelData)
{

	// grayScaleTheFrameData: Called by CTripodDlg::OnPortalNotificationBinaryview
	// Task: Read current frame pixel data and computes a grayscale version

	unsigned int	W, H;			  // Width and Height of current frame [pixels]
	BYTE            *sourceBmp;		  // Pointer to current frame of data
	unsigned int    row, col;
	unsigned long   i;
	BYTE			grayValue;

	BYTE			redValue;
	BYTE			greenValue;
	BYTE			blueValue;

    W = lpThisBitmapInfoHeader->biWidth;  // biWidth: number of columns
    H = lpThisBitmapInfoHeader->biHeight; // biHeight: number of rows

	// Store pixel data in row-column vector format
	// Recall that each pixel requires 3 bytes (red, blue and green bytes)
	// m_destinationBmp is a protected member and declared in binarizeDlg.h

	m_destinationBmp = (BYTE*)malloc(H*3*W*sizeof(BYTE));

	// Point to the current frame's pixel data
	sourceBmp = lpThisBitmapPixelData;

	for (row = 0; row < H; row++) {
		for (col = 0; col < W; col++) {

			// Recall each pixel is composed of 3 bytes
			i = (unsigned long)(row*3*W + 3*col);
        
			// The source pixel has a blue, green andred value:
			blueValue  = *(sourceBmp + i);
			greenValue = *(sourceBmp + i + 1);
			redValue   = *(sourceBmp + i + 2);

			// A standard equation for computing a grayscale value based on RGB values
			grayValue = (BYTE)(0.299*redValue + 0.587*greenValue + 0.114*blueValue);

			// The destination BMP will be a grayscale version of the source BMP
			*(m_destinationBmp + i)     = grayValue;
			*(m_destinationBmp + i + 1) = grayValue;
			*(m_destinationBmp + i + 2) = grayValue;
			
		}
	}
}


void CTripodDlg::doMyImageProcessing(LPBITMAPINFOHEADER lpThisBitmapInfoHeader)
{
	// doMyImageProcessing:  This is where you'd write your own image processing code
	// Task: Read a pixel's grayscale value and process accordingly

	unsigned int	W, H;			// Width and Height of current frame [pixels]
	unsigned int    row, col;		// Pixel's row and col positions
	unsigned long   i;				// Dummy variable for row-column vector
	int	    upperThreshold = 60;	// Gradient strength nessicary to start edge
	int		lowerThreshold = 30;	// Minimum gradient strength to continue edge
	unsigned long iOffset;			// Variable to offset row-column vector during sobel mask
	int rowOffset;					// Row offset from the current pixel
	int colOffset;					// Col offset from the current pixel
	int rowTotal = 0;				// Row position of offset pixel
	int colTotal = 0;				// Col position of offset pixel
	int Gx;							// Sum of Sobel mask products values in the x direction
	int Gy;							// Sum of Sobel mask products values in the y direction
	float thisAngle;				// Gradient direction based on Gx and Gy
	int newAngle;					// Approximation of the gradient direction
	bool edgeEnd;					// Stores whether or not the edge is at the edge of the possible image
	int GxMask[3][3];				// Sobel mask in the x direction
	int GyMask[3][3];				// Sobel mask in the y direction
	int newPixel;					// Sum pixel values for gaussian
	int gaussianMask[5][5];			// Gaussian mask

	W = lpThisBitmapInfoHeader->biWidth;  // biWidth: number of columns
    H = lpThisBitmapInfoHeader->biHeight; // biHeight: number of rows
	
	for (row = 0; row < H; row++) {
		for (col = 0; col < W; col++) {
			edgeDir[row][col] = 0;
		}
	}

	/* Declare Sobel masks */
	GxMask[0][0] = -1; GxMask[0][1] = 0; GxMask[0][2] = 1;
	GxMask[1][0] = -2; GxMask[1][1] = 0; GxMask[1][2] = 2;
	GxMask[2][0] = -1; GxMask[2][1] = 0; GxMask[2][2] = 1;
	
	GyMask[0][0] =  1; GyMask[0][1] =  2; GyMask[0][2] =  1;
	GyMask[1][0] =  0; GyMask[1][1] =  0; GyMask[1][2] =  0;
	GyMask[2][0] = -1; GyMask[2][1] = -2; GyMask[2][2] = -1;

	/* Declare Gaussian mask */
	gaussianMask[0][0] = 2;		gaussianMask[0][1] = 4;		gaussianMask[0][2] = 5;		gaussianMask[0][3] = 4;		gaussianMask[0][4] = 2;	
	gaussianMask[1][0] = 4;		gaussianMask[1][1] = 9;		gaussianMask[1][2] = 12;	gaussianMask[1][3] = 9;		gaussianMask[1][4] = 4;	
	gaussianMask[2][0] = 5;		gaussianMask[2][1] = 12;	gaussianMask[2][2] = 15;	gaussianMask[2][3] = 12;	gaussianMask[2][4] = 2;	
	gaussianMask[3][0] = 4;		gaussianMask[3][1] = 9;		gaussianMask[3][2] = 12;	gaussianMask[3][3] = 9;		gaussianMask[3][4] = 4;	
	gaussianMask[4][0] = 2;		gaussianMask[4][1] = 4;		gaussianMask[4][2] = 5;		gaussianMask[4][3] = 4;		gaussianMask[4][4] = 2;	
	

	/* Gaussian Blur */
	for (row = 2; row < H-2; row++) {
		for (col = 2; col < W-2; col++) {
			newPixel = 0;
			for (rowOffset=-2; rowOffset<=2; rowOffset++) {
				for (colOffset=-2; colOffset<=2; colOffset++) {
					rowTotal = row + rowOffset;
					colTotal = col + colOffset;
					iOffset = (unsigned long)(rowTotal*3*W + colTotal*3);
					newPixel += (*(m_destinationBmp + iOffset)) * gaussianMask[2 + rowOffset][2 + colOffset];
				}
			}
			i = (unsigned long)(row*3*W + col*3);
			*(m_destinationBmp + i) = newPixel / 159;
		}
	}

	/* Determine edge directions and gradient strengths */
	for (row = 1; row < H-1; row++) {
		for (col = 1; col < W-1; col++) {
			i = (unsigned long)(row*3*W + 3*col);
			Gx = 0;
			Gy = 0;
			/* Calculate the sum of the Sobel mask times the nine surrounding pixels in the x and y direction */
			for (rowOffset=-1; rowOffset<=1; rowOffset++) {
				for (colOffset=-1; colOffset<=1; colOffset++) {
					rowTotal = row + rowOffset;
					colTotal = col + colOffset;
					iOffset = (unsigned long)(rowTotal*3*W + colTotal*3);
					Gx = Gx + (*(m_destinationBmp + iOffset) * GxMask[rowOffset + 1][colOffset + 1]);
					Gy = Gy + (*(m_destinationBmp + iOffset) * GyMask[rowOffset + 1][colOffset + 1]);
				}
			}

			gradient[row][col] = sqrt(pow(Gx,2.0) + pow(Gy,2.0));	// Calculate gradient strength			
			thisAngle = (atan2(Gx,Gy)/3.14159) * 180.0;		// Calculate actual direction of edge
			
			/* Convert actual edge direction to approximate value */
			if ( ( (thisAngle < 22.5) && (thisAngle > -22.5) ) || (thisAngle > 157.5) || (thisAngle < -157.5) )
				newAngle = 0;
			if ( ( (thisAngle > 22.5) && (thisAngle < 67.5) ) || ( (thisAngle < -112.5) && (thisAngle > -157.5) ) )
				newAngle = 45;
			if ( ( (thisAngle > 67.5) && (thisAngle < 112.5) ) || ( (thisAngle < -67.5) && (thisAngle > -112.5) ) )
				newAngle = 90;
			if ( ( (thisAngle > 112.5) && (thisAngle < 157.5) ) || ( (thisAngle < -22.5) && (thisAngle > -67.5) ) )
				newAngle = 135;
				
			edgeDir[row][col] = newAngle;		// Store the approximate edge direction of each pixel in one array
		}
	}

	/* Trace along all the edges in the image */
	for (row = 1; row < H - 1; row++) {
		for (col = 1; col < W - 1; col++) {
			edgeEnd = false;
			if (gradient[row][col] > upperThreshold) {		// Check to see if current pixel has a high enough gradient strength to be part of an edge
				/* Switch based on current pixel's edge direction */
				switch (edgeDir[row][col]){		
					case 0:
						findEdge(0, 1, row, col, 0, lowerThreshold);
						break;
					case 45:
						findEdge(1, 1, row, col, 45, lowerThreshold);
						break;
					case 90:
						findEdge(1, 0, row, col, 90, lowerThreshold);
						break;
					case 135:
						findEdge(1, -1, row, col, 135, lowerThreshold);
						break;
					default :
						i = (unsigned long)(row*3*W + 3*col);
						*(m_destinationBmp + i) = 
						*(m_destinationBmp + i + 1) = 
						*(m_destinationBmp + i + 2) = 0;
						break;
					}
				}
			else {
				i = (unsigned long)(row*3*W + 3*col);
					*(m_destinationBmp + i) = 
					*(m_destinationBmp + i + 1) = 
					*(m_destinationBmp + i + 2) = 0;
			}	
		}
	}
	
	/* Suppress any pixels not changed by the edge tracing */
	for (row = 0; row < H; row++) {
		for (col = 0; col < W; col++) {	
			// Recall each pixel is composed of 3 bytes
			i = (unsigned long)(row*3*W + 3*col);
			// If a pixel's grayValue is not black or white make it black
			if( ((*(m_destinationBmp + i) != 255) && (*(m_destinationBmp + i) != 0)) || ((*(m_destinationBmp + i + 1) != 255) && (*(m_destinationBmp + i + 1) != 0)) || ((*(m_destinationBmp + i + 2) != 255) && (*(m_destinationBmp + i + 2) != 0)) ) 
				*(m_destinationBmp + i) = 
				*(m_destinationBmp + i + 1) = 
				*(m_destinationBmp + i + 2) = 0; // Make pixel black
		}
	}

	/* Non-maximum Suppression */
	for (row = 1; row < H - 1; row++) {
		for (col = 1; col < W - 1; col++) {
			i = (unsigned long)(row*3*W + 3*col);
			if (*(m_destinationBmp + i) == 255) {		// Check to see if current pixel is an edge
				/* Switch based on current pixel's edge direction */
				switch (edgeDir[row][col]) {		
					case 0:
						suppressNonMax( 1, 0, row, col, 0, lowerThreshold);
						break;
					case 45:
						suppressNonMax( 1, -1, row, col, 45, lowerThreshold);
						break;
					case 90:
						suppressNonMax( 0, 1, row, col, 90, lowerThreshold);
						break;
					case 135:
						suppressNonMax( 1, 1, row, col, 135, lowerThreshold);
						break;
					default :
						break;
				}
			}	
		}
	}
	
}

void CTripodDlg::findEdge(int rowShift, int colShift, int row, int col, int dir, int lowerThreshold)
{
	int W = 320;
	int H = 240;
	int newRow;
	int newCol;
	unsigned long i;
	bool edgeEnd = false;

	/* Find the row and column values for the next possible pixel on the edge */
	if (colShift < 0) {
		if (col > 0)
			newCol = col + colShift;
		else
			edgeEnd = true;
	} else if (col < W - 1) {
		newCol = col + colShift;
	} else
		edgeEnd = true;		// If the next pixel would be off image, don't do the while loop
	if (rowShift < 0) {
		if (row > 0)
			newRow = row + rowShift;
		else
			edgeEnd = true;
	} else if (row < H - 1) {
		newRow = row + rowShift;
	} else
		edgeEnd = true;	
		
	/* Determine edge directions and gradient strengths */
	while ( (edgeDir[newRow][newCol]==dir) && !edgeEnd && (gradient[newRow][newCol] > lowerThreshold) ) {
		/* Set the new pixel as white to show it is an edge */
		i = (unsigned long)(newRow*3*W + 3*newCol);
		*(m_destinationBmp + i) =
		*(m_destinationBmp + i + 1) =
		*(m_destinationBmp + i + 2) = 255;
		if (colShift < 0) {
			if (newCol > 0)
				newCol = newCol + colShift;
			else
				edgeEnd = true;	
		} else if (newCol < W - 1) {
			newCol = newCol + colShift;
		} else
			edgeEnd = true;	
		if (rowShift < 0) {
			if (newRow > 0)
				newRow = newRow + rowShift;
			else
				edgeEnd = true;
		} else if (newRow < H - 1) {
			newRow = newRow + rowShift;
		} else
			edgeEnd = true;	
	}	
}

void CTripodDlg::suppressNonMax(int rowShift, int colShift, int row, int col, int dir, int lowerThreshold)
{
	int W = 320;
	int H = 240;
	int newRow = 0;
	int newCol = 0;
	unsigned long i;
	bool edgeEnd = false;
	float nonMax[320][3];			// Temporarily stores gradients and positions of pixels in parallel edges
	int pixelCount = 0;					// Stores the number of pixels in parallel edges
	int count;						// A for loop counter
	int max[3];						// Maximum point in a wide edge
	
	if (colShift < 0) {
		if (col > 0)
			newCol = col + colShift;
		else
			edgeEnd = true;
	} else if (col < W - 1) {
		newCol = col + colShift;
	} else
		edgeEnd = true;		// If the next pixel would be off image, don't do the while loop
	if (rowShift < 0) {
		if (row > 0)
			newRow = row + rowShift;
		else
			edgeEnd = true;
	} else if (row < H - 1) {
		newRow = row + rowShift;
	} else
		edgeEnd = true;	
	i = (unsigned long)(newRow*3*W + 3*newCol);
	/* Find non-maximum parallel edges tracing up */
	while ((edgeDir[newRow][newCol] == dir) && !edgeEnd && (*(m_destinationBmp + i) == 255)) {
		if (colShift < 0) {
			if (newCol > 0)
				newCol = newCol + colShift;
			else
				edgeEnd = true;	
		} else if (newCol < W - 1) {
			newCol = newCol + colShift;
		} else
			edgeEnd = true;	
		if (rowShift < 0) {
			if (newRow > 0)
				newRow = newRow + rowShift;
			else
				edgeEnd = true;
		} else if (newRow < H - 1) {
			newRow = newRow + rowShift;
		} else
			edgeEnd = true;	
		nonMax[pixelCount][0] = newRow;
		nonMax[pixelCount][1] = newCol;
		nonMax[pixelCount][2] = gradient[newRow][newCol];
		pixelCount++;
		i = (unsigned long)(newRow*3*W + 3*newCol);
	}

	/* Find non-maximum parallel edges tracing down */
	edgeEnd = false;
	colShift *= -1;
	rowShift *= -1;
	if (colShift < 0) {
		if (col > 0)
			newCol = col + colShift;
		else
			edgeEnd = true;
	} else if (col < W - 1) {
		newCol = col + colShift;
	} else
		edgeEnd = true;	
	if (rowShift < 0) {
		if (row > 0)
			newRow = row + rowShift;
		else
			edgeEnd = true;
	} else if (row < H - 1) {
		newRow = row + rowShift;
	} else
		edgeEnd = true;	
	i = (unsigned long)(newRow*3*W + 3*newCol);
	while ((edgeDir[newRow][newCol] == dir) && !edgeEnd && (*(m_destinationBmp + i) == 255)) {
		if (colShift < 0) {
			if (newCol > 0)
				newCol = newCol + colShift;
			else
				edgeEnd = true;	
		} else if (newCol < W - 1) {
			newCol = newCol + colShift;
		} else
			edgeEnd = true;	
		if (rowShift < 0) {
			if (newRow > 0)
				newRow = newRow + rowShift;
			else
				edgeEnd = true;
		} else if (newRow < H - 1) {
			newRow = newRow + rowShift;
		} else
			edgeEnd = true;	
		nonMax[pixelCount][0] = newRow;
		nonMax[pixelCount][1] = newCol;
		nonMax[pixelCount][2] = gradient[newRow][newCol];
		pixelCount++;
		i = (unsigned long)(newRow*3*W + 3*newCol);
	}

	/* Suppress non-maximum edges */
	max[0] = 0;
	max[1] = 0;
	max[2] = 0;
	for (count = 0; count < pixelCount; count++) {
		if (nonMax[count][2] > max[2]) {
			max[0] = nonMax[count][0];
			max[1] = nonMax[count][1];
			max[2] = nonMax[count][2];
		}
	}
	for (count = 0; count < pixelCount; count++) {
		i = (unsigned long)(nonMax[count][0]*3*W + 3*nonMax[count][1]);
		*(m_destinationBmp + i) = 
		*(m_destinationBmp + i + 1) = 
		*(m_destinationBmp + i + 2) = 0;
	}
}

الگوریتم Canny در سی پلاس پلاس قسمت 1
الگوریتم Canny در سی پلاس پلاس قسمت 2
الگوریتم Canny در سی پلاس پلاس قسمت 3
الگوریتم Canny در سی پلاس پلاس قسمت 4

عامل های هوشمند در هوش مصنوعی

قبلا عامل های خردمند (عقلایی) را به عنوان مرکز ثقل رهیافت هوش مصنوعی مشخص کردیم. در این بخش ، این فرضیه را دقیق تر بررسی میکنیم. خواهیم دید که مفهوم عقلانیت (خردگرایی) میتواند به دامنه وسیعی از عاملهایی که در هر محیطی عمل میکنند، اعمال شود. با توجه به اینکه بعضی از عامل ها بهتر از عامل های دیگر رفتار میکنند، به ایده ی “عامل خردمند” یا “عامل عقلایی” میرسیم. “عامل خردمند” عاملی است که حتی الامکان خوب عمل میکند. عملکرد عامل به ماهیت محیط بستگی دارد. بعضی از محیط ها دشوارتر از محیط های دیگر هستند.

عامل ها و محیط ها

عامل هر چیزی است که قادر است محیط خود را از طریق حسگرها (سنسور ها) درک کند و از طریق محرک ها عمل کند. عامل انسانی دارای چشم، گوش و اعضای دیگری برای حس کردن، و دست، پا و دهان و اعضای دیگر به عنوان محرک هایی برای عمل کردن است. عامل روباتیک ممکن است شامل دوربین ها و مادون قرمر و فاصله سنج برای سنسورها و موتورهای متعددی به عنوان محرک ها باشد. عامل نرم افزاری “بسته های شبکه” ، محتویات فایل و ورودی های صفحه کلید را به عنوان ورودی حسی دریافت میکند و از طریق نوشتن در صفحه نمایش، نوشتن در فایل ها و ارسال بسته های شبکه، عمل میکند. از واژه ادراک (percept) برای ورودی های ادراکی عامل در هر لحظه استفاده میکنیم. دنباله ی ادراک یا توالی ادراک عامل، سابقه ی کامل هر چیزی است که عامل تاکنون درک کرده است. به طورکلی، انتخاب فعالیتی (کنشی) توسط عامل در هر لحظه، میتواندبه کل دنباله ی ادراک تا آن زمان بستگی داشته باشد. اگر بتوانیم فعالیت انتخابی عامل را برای هر دنباله ی ادراکی مشخص کنیم، همه چیز را در مورد عامل مطرح کرده ایم. از نظر ریاضی، میگوییم رفتار عامل توسط تابع عامل توصیف میشود که هر دنباله ی ادراک را به یک فعالیت نقش میکند.

تابع عامل را میتوانیم به صورت جدول نشان دهیم تا هر عاملی را تشریح کند. برای اغلب عامل ها، این جدول بسیار بزرگ خواهد بود، ولی میتوانیم حدی را برای طول دنباله ی ادراک در نظر بگیریم. برای ساخت جدول عامل، تمام دنباله های ادراک را در نظر گرفته فعالیت هایی را که عامل در پاسخ به آنها انجام میدهد، ذخیره میکنیم، البته این جدول یک شی ء خارجی است که عامل را مشخص میکند. تابع عامل مربوط به عامل مصنوعی، به طور داخلی توسط برنامه ی عامل پیاده سازی می شود. این دو ایده را از هم تفکیک میکنیم. تابع عامل یک توصیف ریاضی انتزاعی است، و برنامه عامل، پیاده سازی دقیقی است که در معماری عامل اجرا می شود.

تأکید میکنیم که فرضیه ی عامل، ابزاری برای تحلیل سیسیتم هاست، نه یک ویژگی خاص برای تقسیم دنیا به عامل و غیر عامل ها. ماشین حساب را میتوان عاملی در نظر گرفت که با توجه به “دنباله ادراک” ، “=2+2” نماد “4” را نمایش میدهد. اما این تحلیل منجر به درک ماشین حساب نمیشود. از جهاتی تمام حوزه های مهندسی را می توان طراحی کننده ی محصولات مصنوعی دانست که با دنیا تعامل دارند؛ AI (از نظر مؤلفین) در انتهای این طیف واقع است، که در آنجا، محصولات مصنوعی، منابع محاسباتی ارزشمندی دارند و محیط کار ، نیازمند تصمیم گیری مهم است.

رفتار خوب : مفهوم خردمندی یا عقلانیت

عامل خردمند، عاملی است که رفتار خوب انجام میدهد- از نظر ادراکی، به معنای این است که هر عنصر جدول مربوط به تابع عامل، به درستی پر میشود. روشن است که انجام “رفتار درست”، بهتر از انجام “رفتار نادرست” است، اما معنای “رفتار درست” چیست؟ پاسخ به این پرسش قدیمی را، به روش قدیمی ارائه می دهیم: به در نظر گرفتن نتایج رفتار عامل. وقتی یک عامل در محیطی قرار گرفت، بر اساس آنچه که از محیط دریافت می کند، دنباله ای از فعالیت ها را انجام میدهد. این دنباله از فعالیت ها، موجب میشود که محیط از حالتی به حالت دیگر برود، یعنی محیط از دنباله ای از حالت ها عبور میکند. اگر این دنباله از حالتها مطلوب باشد، آنگاه این عامل به درستی عمل کرده است. برای تعیین مطلوب بودن دنباله ای از فعالیت ها، از مفهوم معیار کارایی استفاده میکنیم، که هر دنباله از حالت های محیط را ارزیابی میکند.

توجه کنید که حرف از حالتهای محیط زدیم نه حالتهای عامل. اگر موفقیت را بر اساس نظر عامل در مورد رضایت خود از کارایی اش تعریف کنیم، عامل می تواند خودش را فریب دهد و کارایی خود را بالا بداند و از آنجا نتیجه بگیریم که با خردمندی کامل عمل کرده است. مخصوصا عامل های انسانی، در مواردی که قرار است راجع به موضوعی تصمیم گیری کنند که در آن تصمیم گیری ، سودی به آنها نمیرسد، سابقه ی بدی دارند (سعی می کنند همه چیز را به نفع خود تمام کنند).

روشن است برای تمام کارها و عامل ها، یک معیار کارایی ثابت وجود ندارد؛ معمولا طراح، یک معیار را برای شرایط خاصی ، مناسب می بیند. این کار، چندان آسان نیست.

• خردمندی یا عقلانیت (rationality)

خردمند بودن در هر زمان به چهار چیز بستگی دارد:

1. معیار کارایی که ملاک های موفقیت را تعریف می کند.

2. دانش قبلی عامل نسبت به محیط.

3. فعالیتهایی که عامل میتواند انجام دهد.

4. دنباله ی ادراک عامل در این زمان.

به این ترتیب میتوانیم عامل خردمند را بصورت زیر تعریف کنیم:

برای هر دنباله از ادراک ممکن، عامل خردمند (عقلایی) باید فعالیتی را انتخاب کند که انتظار میرود معیار کارایی اش را به حداکثر برساند. این کار با توجه به شواهدی که از طریق این دنباله ادراک به دست می آید و دانش درونی عامل، صورت می گیرد.

• همه چیزدانی، یادگیری و خود مختاری

باید بین “همه چیزدانی” و خردمندی تمایز قائل شویم. عامل “همه چیزدان”، خروجی واقعی فعالیت های خودش را می داند و می تواند بر اساس آن عمل کند. اما “همه چیزدان” بودن عامل، غیرممکن است. این مثال را در نظر بگیرید: من روزی در حال قدم زدن با احمد هستم و دوست قدیمی خود را در آن طرف خیابان می بینم. هیچ ترافیکی وجود ندارد و “خردمندی” حکم میکند که در عرض خیابان حرکت کنم. در همین حال، در فاصله 33000 فوتی، یک هواپیمای مسافری با هواپیمای باری برخورد میکند و قبل از اینکه به آن طرف خیابان بروم، نقش بر زمین میشوم. آیا عبور از عرض خیابان، عقلایی (خردمندی) نبود؟ بعید است کسی بگوید که عبور از عرض خیابان حماقت بوده است.

این مثال نشان میدهد که خردمندی با “کمال مطلوب” متفاوت است. خردمندی، کارایی مورد انتظار را به حداکثر میرساند، در حالیکه کمال مطلوب، کارایی واقعی را به حداکثر می رساند. دست برداشتن از خواسته ی “کمال مطلوب”، فقط به معنای منصف بودن نسبت به عامل ها نیست. موضوع این است که، اگر انتظار داشته باشیم عامل، بهترین فعالیت را انجام دهد، نمیتوان عاملی طراحی کرد که با این مشخصات جور درآید، مگر اینکه کارایی جام جهان نما یا ماشین های زمان را بهبود بخشیم.

تعریفی که ما از خردمندی ارائه دادیم، نیاز به “همه چیزدانی” ندارد. زیرا انتخاب عقلایی (در یک زمان) فقط به “دنباله ادراک” در آن زمان بستگی دارد. باید مطمئن باشیم که ندانسته اجازه ندهیم که عامل به فعالیت های غیرهوشمند بپردازد. انجام فعالیت به منظور اصلاح ادراک های آینده، که گاهی جمع آوری اطلاعات نام دارد، بخش مهمی از خردمندی است. مثال دیگری از جمع آوری اطلاعات، از طریق اکتشاف صورت میگیرد. این تعریف، مستلزم آن است که عامل نه تنها باید اطلاعات را جمع آوری کند، بلکه باید از آنچه که درک میکند، یاد بگیرد.  پیکربندی اولیه ی عامل می تواند دانشی از محیط را ارائه کند، اما هر چه که عامل تجربه بیشتری کسب میکند، ممکن است پیکربندی آن تغییر کند. موارد زیادی وجود دارد که محیط از قبل شناخته شده است. در این موارد لازم نیست عامل درک کند یا بیاموزد، زیرا به درستی عمل خواهد کرد. البته چنین عاملهایی خیلی آسیب پذیر هستند.

اگر عامل به جای ادراکات خود، براساس دانش قبلی طراح خود رفتار کند، می گوییم عامل خودمختار نیست. عامل خردمند باید خودمختار باشد. باید یاد بگیرد که نقص دانش قبلی را چگونه جبران کند. به عنوان یک موضوع عملی، عامل در ابتدا به خودمختاری کامل نیاز ندارد: وقتی عامل تجربه ای ندارد یا تجربه کمی دارد، باید به طور تصادفی عمل کند، مگر اینکه طراح به آن کمک کند. لذا، همان طور که تکامل حیوانات ، واکنش های ذاتی را برای آنها ایجاد میکند تا بیشتر زنده بمانند و به یادگیری خود بیفزایند، منطقی است که بتوان یک عامل هوش مصنوعی را ایجاد کرد که علاوه بر دانش اولیه، قدرت یادگیری داشته باشد. پس از تجربیات کافی با محیط خود ، رفتار عامل خردمند میتواندمستقل از دانش اولیه اش باشد. لذا، توانایی یادگیری منجر به طراحی عاملی میشود که در محیط های مختلف، موفق است.

منبع


منابع

1.https://fa.wikipedia.org

2.http://retro-code.ir

3.http://www.sourcecodes.ir

 

 

عامل های هدف گرا

با مطالعه عامل هایی که خود را با محیط اطراف وقف میدهند، متوجه شدیم که آگاهی از تغییرات محیط یک امر حیاتی میباشد. اما آیا تنها آگاهی از تغییرات محیط برای آنکه بدانیم چه واکنشی را باید انجام داد کافی است؟ برای مثال فرض کنید که راننده هوشمند در جاده بر سر یک سه راهی رسیده است. مسئله ای که واضح است این است که راننده برای رسیدن به مقصد باید یکی از سه مسیر مستقیم، راست و یا چپ را انتخاب نماید. به زبان دیگر، علاوه بر آگاهی از تغییرات و وضعیت جاری محیط اطراف، باید اطلاعاتی در مورد هدف نهایی در اختیار عامل قرار گیرد.

عامل میتواند اطلاعات وضعیت جاری را با واکنش های انتخابی ممکن ترکیب کرده و از این دو به یک راه حل برای رسیدن به هدف خود برسد. گاهی اوقات این مسئله ساده میباشد و با انتخاب یک واکنش سریعا به هدف خواهیم رسید. گاهی نیز رسیدن به هدف پیچیده بوده و نمیتوان تنها با انتخاب یک واکنش به هدف رسید. در چنین مسائلی با توالی از واکنش ها که به هدف ختم میشوند روبرو خواهیم بود.

برای مثال فرض کنید که راننده هوشمند قصد دارد تا مسیری را از میان خیابان های تو در تو یک شهر بزرگ برای رسیدن به مقصد  انتخاب نماید. (Google Map یک مثال کاربردی آن میباشد) آیا این کار به سادگی انتخاب یک واکنش خواهد بود؟! نکته ی مهمی که باید به آن توجه داشت این است که در عامل های هدف گرا مکانیزم تصمیم گیری شباهتی به مکانیزم استراتژی واکنشی ساده ندارد. در این عامل ها باید همواره به این دو سوال جواب داد.

اگر من این واکنش را انجام دهم چه اتفاقی (اتفاقات ناشی از یک واکنش) خواهد افتاد؟
آیا انجام این واکنش (ها) مرا به هدف میرساند؟
در عامل های واکنشی ساده هیچ گاه چنین سوالاتی به صورت ضمنی مطرح نمیشوند زیرا به علت وضوح مسئله و شرایط پیش آماده، واکنش کاملا واضح و قطعی خواهد بود. همانطور که پیشتر نیز گفتیم به آنها وضعیت شرایط-واکنش میگویند. در واقع در این عامل ها برای شرایط خاص، واکنش های خاصی توسط طراح برنامه نویسی شده است. (مثال ترمز). بر اساس کتاب راسل عامل های هدف گرا در عین انعطاف پذیری بالا در شرایط گوناگون، از بازدهی پایینی برخوردارند. این موضوع را میتوانید شخصا در مطالبی که در مورد روش های جستجو بحث خواهیم کرد بررسی و قضاوت نمایید.

عامل های مبتنی بر سودمندی

گاهی اوقات تنها رسیدن به هدف نیست که در افزایش بازدهی عامل هوشمند موثر است. برای مثال فرض کنید میخواهیم از تهران به چالوس سفر کنیم. برای این سفر انتخاب های متعددی میتواند توسط راننده هوشمند انجام شود. اگر قرار باشد راننده هوشمند در محاسبات خود تنها به رسین به هدف توجه کند ممکن است در طول سفر خود از زاهدان عبور نماییم! دلیل این اتفاق کاملا واضح است. در این مسئله برای عامل هیچ اهمیتی ندارد که کدام مسیر را انتخاب نماید!

تنها موردی که برای عامل اهمپیت دارد رسیدن به هدف است! بدین ترتیب در این مثال سفر 5 ساعته ما به 50 ساعت افزایش پیدا خواهد کرد و عملا هوشمندی عامل مورد نظر شکست خورده و فاقد ارزش میباشد. (در مطالبی که مرتبط با الگورتیم های جستجوی هدف میباشند این مشکل را به وضوح مشاهده خواهید کرد.) پس میتوان نتیجه گیری نمود که  در مسئله فوق عواملی جز هدف وجود دارند که در استراتژی انتخاب واکنش ها تتاثیر چشم گیری میگذارند.

اگر بخواهیم خیلی ساده عامل های مبتنی بر سودمندی را تعریف نماییم میتوانیم بگوییم اگر دو عامل داشته باشیم که برای حل یک مسئله یکسان دو مجموعه واکنش را به عنوان خروجی بازگردانند (دو راه حل متفاوت) بطوری یکی از این دو مجموعه بر دیگری برتری داشته و ترجیح داده شود (هزینه ی کمتری داشته باشد) میگوییم سودمندی یک عامل از دیگری بیشتر است. در کتاب راسل مفهوم سودمندی را فانکشنی دانسته که میتواند وضعیت عامل را به یک عدد حقیقی نسبت داده که این عدد نشان دهنده میزان کسب موفقیت توسط عامل میباشد. استفاده از چنین عاملی در دوحالت باعث گرفتن تصمیم عاقلانه در زمان رخ دادن مشکل بین اهداف میشود.

زمانی که اهداف متضاد داریم که هم زمان نمیتوان به تمام آنها دست یافت. برای مثال بحث سرعت رسیدن به مقصد و امنیت جانی مسافران
زمانی که عامل برای رسیدن به اهدافی تلاش میکند که هیچ کدام از قطعیت کامل برخوردار نیستند. که در اینجا عامل بحث اهمیت اهداف را دخالت خواهد داد.

منبع : http://retro-code.ir


ساختار عامل های هوشمند

کار AI طراحی برنامه ی عامل است که “تابع عامل” را پیاده سازی می کند. تابع عامل، ادراکات را به فعالیت ها نگاشت می کند. فرض میکنیم این برنامه بر روی یک دستگاه محاسباتی با حسگرها و محرک های فیزیکی، یعنی معماری اجرا می شود: برنامه + معماری = عامل

بدیهی است برنامه ای که انتخاب می کنیم باید با معماری تناسب داشته باشد. اگر برنامه بخواهد فعالیتی مثل راه رفتن را انجام دهد، معماری باید دارای پا باشد. معماری ممکن است یک pc معمولی، اتومبیل روباتیک با چند کامپیوتر، دوربین و سایر حسگر ها باشد. بطور کلی معماری، از طریق حسگرهای موجود درک می کند، برنامه را اجرا می کند، و انتخاب های فعالیت برنامه را به محرک ها ارسال می کند.

♦ برنامه های عامل  (agent programs)

برنامه های عامل درک فعلی را به عنوان ورودی از حسگرها (سنسورها) می پذیرند، و فعالیت را از طریق محرک ها انجام می دهند. توجه داشته باشید که ، برنامه عامل درک فعلی را به عنوان ورودی می گیرد، ولی تابع عامل کل سابقه درک را دریافت میکند. برنامه ی عامل، فقط درک فعلی را به عنوان ورودی می پذیرد، زیرا هیچ چیز دیگری از محیط در دسترس نیست. اگر فعالیت های عامل ، به کل “دنباله ی ادراک” بستگی داشته باشد، عامل باید کل ادراک ها را به یاد بیاورد.

برنامه  عامل، از طریق شبه کد ساده ای توصیف میشود. بعنوان مثال، شکل زیر یک برنامه عامل ساده را نشان میدهد که “دنباله ادراک” را ردیابی کرده از آن به عنوان شاخصی در جدول فعالیت ها استفاده می کند تا تصمیم بگیرد چه کاری باید انجام دهد. این جدول، تابع عاملی را صریحا نشان میدهد که در برنامه ی عامل گنجانده شده است. برای ساخت عامل خردمند، باید جدولی بسازیم که برای هر دنباله ی ادراک ممکن ، دارای فعالیت های مناسبی باشد.

function TABLE-DRIVEN-AGENT (percept) returns an action
  presistent: percepts, a sequence, initially empty table, a table of actions, indexed by percept sequences, initially fully specified
    
  append percept to end of percepts
  action  < - -  LOOKUP(percepts,table)
  return action
 

برای هر درک جدید فراخوانی می شود و هر بار فعالیتی را بر می گرداند. با استفاده از برنامه TABLE-DRIVEN-AGENT ساختمان داده های خود، دنباله ادراک را ردیابی می کند.
برنامه TABLE-DRIVEN-AGENT  تابع عامل مطلوب را پیاده سازی میکند. چالش مهم AI، چگونگی نوشتن برنامه ای است که با استفاده از یک کد کوچک (به جای جدول بزرگ)، رفتار عقلایی را انجام دهد. مثال های زیادی داریم که نشان می دهد، این کار امکان پذیر است. به عنوان مثال، جدول های بزرگ ریشه دوم که قبل از دهه 1970 توسط مهندسین و دانش آموزان مورد استفاده قرار گرفت، جای خود را به یک برنامه  5 خطی داده است که از روش نیوتن استفاده میکند و در ماشین حساب های الکترونیکی قابل استفاده است. AI همان کاری را انجام می دهد که نیوتن برای ریشه دوم انجام میدهد.

در ادامه، چهار نوع برنامه عامل را بررسی می کنیم که قواعد مربوط به تمام سیستم های هوشمند را دربر می گیرد. هر نوع برنامه ی عامل, اجزای خاصی را به روش های خاصی با هم ترکیب میکند تا فعالیت را  انجام دهد.

♦ عامل های واکنشی ساده (simple reflex agents)

ساده ترین نوع عامل ها، عامل واکنشی ساده است. این عامل ها فعالیت ها را بر اساس درک فعلی و بدون در نظر گرفتن سابقه ی ادراک، انتخاب میکنند. فرض کنید راننده ی تاکسی خودکار هستید. اگر اتومبیل جلویی ترمز کند و چراغ ترمز آن روشن شود، باید آن را تشخیص دهید و ترمز کنید. به عبارت دیگر ، برخی پردازش ها بر روی دریافت اطلاعات تصویر ورودی صورت می گیرد تا شرایطی که ما آن را “ترمزکردن اتومبیل جلویی” می نامیم رخ دهد، سپس این رویداد موجب فعال شدن برخی اتصالات موجود در برنامه عامل خواهد شد و عمل “اقدام به ترمز” را فعال می سازد. این اتصال را قانون شرط فعالیت یا قانون شرط کنش می نامیم: اگر اتومبیل جلویی ترمز کرد آنگاه اقدام به ترمز کن.

انسان نیز  چنین اتصالاتی دارد، که بعضی از آنها پاسخ های آموخته شده هستند (مثل رانندگی) و بعضی دیگر غریزی هستند (مثل بستن چشم هنگام نزدیک شدن شی ء ای به آن). روش کلی و قابل انعطاف این است که یک مفسر همه منظوره برای قوانین شرط فعالیت ساخته شود و سپس مجموعه ای از قوانین برای محیط های کار خاص ایجاد گردد. در شکل زیر، برنامه ی عامل نشان داده شده است که خیلی ساده است. تابع INTERPRET-INPUT با استفاده از ادراک، یک توصیف انتزاعی از حالت فعلی ایجاد میکند، و تابع RULE-MATCH اولین قانون موجود در مجموعه ای از قوانین را بر می گرداند که با توصیف حالت خاص مطابقت دارد:

function  SIMPLE-REFLEX-AGENT (percept) returns an action
  presistent: ruless, a set of condition-action rules
    
  state  <  - - INTEERPRET-INPUT (percept)
  rule  < - -  RULE-MATCH (state,rules)
  action  <  - -  rule.ACTION
  return action
 

عامل واکنشی ساده براساس قانونی عمل می کند که شرط آن با حالت فعلی که توسط ادراک تعریف شده است، تطبیق می کند.
“عامل های واکنشی ساده”، خواص ساده ولی هوش اندکی دارند. عامل تعریف شده در شکل بالا در صورتی کار میکند که تصمیم درستی براساس ادراک فعلی اتخاذ گردد. یعنی در صورتیکه محیط کاملا قابل مشاهده باشد. حتی عدم قابلیت مشاهده ی کوچک نیز ممکن است مشکلاتی را ایجاد کند.

اجتناب از حلقه های بی نهایت، در صورتی ممکن است که عامل بتواند فعالیت خود را تصادفی کند. در بعضی موارد، “عامل واکنشی ساده ی تصادفی” ممکن است مثل “عامل واکنشی ساده ی قطعی” عمل کند. رفتار تصادفی درست، در بعضی از محیط های چند عاملی میتواند عقلایی باشد. در محیط های تک عاملی، فعالیت تصادفی معمولا عقلایی نیست. این روش، در بعضی از وضعیت ها به عامل واکنشی ساده کمک می کند. اما در اغلب موارد، با استفاده از عامل های قطعی تخصصی، بهتر می توان عمل کرد.

♦ عامل های واکنشی مبتنی بر مدل (model-based reflex  agents)

موثرترین راه برای اداره کردن محیط “پاره ای قابل مشاهده” این است که عامل، بخشی از دنیایی را که فعلا نمیتواند ببیند، نگهداری کند. یعنی عامل باید حالت داخلی را ذخیره کند که به سابقه ی ادراک بستگی دارد و در نتیجه، بعضی از جنبه های مشاهده نشده ی حالت فعلی را منعکس می سازد. برای مسئله ترمز کردن، حالت داخلی چندان گران نیست، زیرا فریم قبلی دوربین، به عامل اجازه می دهد که تشخیص دهد چه زمانی دو لامپ قرمز موجود در لبه های اتومبیل همزمان خاموش یا روشن می شوند. برای کارهای دیگر رانندگی، مثل تغییر مسیر، عامل باید بداند که اتومبیل های دیگر در کجا قرار دارند (اگر نمیتواند همزمان آنها را ببیند).

تغییر این اطلاعات داخلی با مرور زمان، مستلزم دو نوع دانش است که باید در برنامه عامل کدنویسی شود. اولا باید بدانیم که دنیا چگونه مستقل از عامل تکامل می یابد. ثانیا، باید بدانیم که فعالیت های عامل، چه تاثیری در دنیا دارد. این دانش درباره ی “چگونگی عملکرد جهان” چه به صورت مدارهای منطقی ساده پیاده سازی شود یا به صورت تئوری های علمی، مدلی از دنیا نام دارد. عاملی که از چنین مدلی استفاده میکند، عامل مبتنی بر مدل نام دارد. برنامه عامل در شکل زیر نشان داده شده است. بخش جالب، تابع UPDATE-STATE است که مسئول ایجاد توصیف جدیدی از حالت داخلی است. جزئیات چگونگی نمایش مدل ها و حالت ها، به نوع محیط و فناوری استفاده شده در طراحی عامل بستگی دارد.

function  MODEL-BASED-REFLEX-AGENT (percept) returns an action
  presistent: state, the agent's current conception of the world state
              model, a description of how the next state depends on current state and action
              rules, a set of condition-action rules 
              action, the most recent action, initially none
  
  state  < -- UPDATE-STATE (state, action, peercept, model)
  rule  < -- RULE-MATCH (state,rules)
  action  < -- rule.ACTION
  return action
 

عامل واکنشی مبتنی بر مدل، حالت فعلی دنیا را با یک مدل داخلی ردیابی، و همانند عامل واکنشی ساده، فعالیتی را انتخاب میکند.

عامل های هوشمند قسمت 1
عامل های هوشمند قسمت 2
عامل های هوشمند قسمت 3
عامل های هوشمند قسمت 4
عامل های هوشمند قسمت 5

داده ها در اعماق زندگی روزانه ما ریشه دوانده اند، از خرید روزانه تا انتخاب مدرسه و پزشک و مسافرت های ما امروزه داده محور شده اند. این امر نیاز به الگوریتم ها وروشهای هوشمند پردازش داده و یادگیری ماشین را صد چندان کرده است .در این آموزش، بیشتر بر مفاهیم اصلی و الگوریتم ها تاکید شده است و مفاهیم ریاضی و آماری را باید از سایر منابع فرابگیرید .

انواع الگوریتم های یادگیری ماشین

سه نوع اصلی الگوریتم های یادگیری ماشین از قرار زیرند :

  • یادگیری نظارت شده (هدایت شده – Supervised Learning) : در این نوع از الگوریتم ها که بار اصلی یادگیری ماشین را بر دوش می کشند (از لحاظ تعداد الگوریتم های این نوع)، با دو نوع از متغیرها سروکار داریم . نوع اول که متغیرهای مستقل نامیده میشوند، یک یا چند متغیر هستند که قرار است بر اساس مقادیر آنها، یک متغیر دیگر را پیش بینی کنیم. مثلا سن مشتری و تحصیلات و میزان درآمد و وضعیت تاهل برای پیش بینی خرید یک کالا توسط یک مشتری ، متغیرهای مستقل هستند. نوع دوم هم متغیرهای وابسته یا هدف یا خروجی هستند و قرار است مقادیر آنها را به کمک این الگوریتم ها پیش بینی کنیم . برای این منظور باید تابعی ایجاد کنیم که ورودیها (متغیرهای مستقل) را گرفته و خروجی موردنظر (متغیر وابسته یا هدف) را تولید کند. فرآیند یافتن این تابع که در حقیقت کشف رابطه ای بین متغیرهای مستقل و متغیرهای وابسته است را فرآیند آموزش (Training Process) می گوئیم که روی داده های موجود (داده هایی که هم متغیرهای مستقل و هم متغیرهای وابسته آنها معلوم هستند مثلا خریدهای گذشته مشتریان یک فروشگاه) اعمال میشود و تا رسیدن به دقت لازم ادامه می یابد.  نمونه هایی از این الگوریتم ها عبارتند از رگرسیون، درختهای تصمیم ، جنگل های تصادفی، N نزدیک ترین همسایه، و رگرسیون لجستیک می باشند.
  • یادگیری بدون ناظر (unsupervised learning) : در این نوع از الگوریتم ها ، متغیر هدف نداریم و خروجی الگوریتم، نامشخص است. بهترین مثالی که برای این نوع از الگوریتم ها می توان زد، گروه بندی خودکار (خوشه بندی) یک جمعیت است مثلاً با داشتن اطلاعات شخصی و خریدهای مشتریان، به صورت خودکار آنها را به گروه های همسان و هم ارز تقسیم کنیم . الگوریتم Apriori و K-Means از این دسته هستند.

 

type of machine learning

  • یادگیری تقویت شونده (Reinforcement Learning) : نوع سوم از الگوریتم ها که شاید بتوان آنها را در زمره الگوریتم های بدون ناظر هم دسته بندی کرد، دسته ای هستند که از آنها با نام یادگیری تقویت شونده یاد میشود. در این نوع از الگوریتم ها، یک ماشین (در حقیقت برنامه کنترل کننده آن)، برای گرفتن یک تصمیم خاص ، آموزش داده می شود و ماشین بر اساس موقعیت فعلی (مجموعه متغیرهای موجود) و اکشن های مجاز (مثلا حرکت به جلو ، حرکت به عقب و …) ، یک تصمیم را می گیرد که در دفعات اول، این تصمیم می تواند کاملاً تصادفی باشد و به ازای هر اکشن یا رفتاری که بروز می دهد، سیستم یک فیدبک یا بازخورد یا امتیاز به او میدهد و از روی این فیدبک، ماشین متوجه میشود که تصمیم درست را اتخاذ کرده است یا نه که در دفعات بعد در آن موقعیت ، همان اکشن را تکرار کند یا اکشن و رفتار دیگری را امتحان کند.  با توجه به وابسته بودن حالت و رفتار فعلی به حالات و رفتارهای قبلی، فرآیند تصمیم گیری مارکوف ، یکی از مثالهای این گروه از الگوریتم ها می تواند باشد . الگوریتم های شبکه های عصبی هم می توانند ازین دسته به حساب آیند. منظور از کلمه تقویت شونده در نام گذاری این الگوریتم ها هم اشاره به مرحله فیدبک و بازخورد است که باعث تقویت و بهبود عملکرد برنامه و الگوریتم می شود .

نمونه ای از دسته بندی کلاسیک الگوریتم های یادگیری ماشین که بر اساس وجود یا عدم وجود عامل کنترل کننده (ناظر) و گسسته و پیوسته بودن متغیرها انجام شده است را می توانید در این شکل ببینید :

 

Machine learning algorithms

 

الگوریتم های اصلی و رایج یادگیری ماشین

در این سری از مقالات به آموزش الگوریتم های زیر با نمونه کدهای لازم و مثالهای تشریحی، خواهیم پرداخت :

  1. رگرسیون خطی
  2. رگرسیون لجستیک
  3. درخت تصمیم
  4. SVM
  5. Naive Bayes
  6. KNN
  7. K-Means
  8. جنگل تصادفی
  9. الگوریتم های کاهش ابعاد
  10. Gradient Boost & Ada Boost

 

طبقه بندی الگوریتم های مختلف یادگیری ماشین

الگوریتمهای مختلفی در حوزه یادگیری ماشین و هوش مصنوعی در سالهای اخیر ایجاد یا بهبود یافته اند که برای هر فردی که قصد کار حرفه ای در این حوزه را دارد، آشنایی و تسلط بر آنها و مفاهیم پایه هر کدام و نیز استفاده از آنها در کاربردهای عملی، جزء ضروریات است.

در سال ۲۰۰۷ یک مقاله با عنوان ده الگوریتم برتر حوزه داده کاوی در دنیا توسط دانشگاه ورمونت مطرح شد که نسخه فارسی شده و حتی آماده انتشار به صورت کتاب آنرا هم در ایران داریم . مقاله فارسی را می توانید از این لینک دانلود نمایید.

10 الگریتم برترین های داده کاوی

رمز : behsanandish.com

این ده الگوریتم عبارتند از :

در سال ۲۰۱۱، در سایت پرسش و پاسخ معروف Qura در پاسخ به سوالی که ده الگوریتم برتر داده کاوی را پرسیده بود، موارد زیر توسط کاربران برشمرده شده اند :

  1. Kernel Density Estimation and Non-parametric Bayes Classifier
  2. K-Means
  3. Kernel Principal Components Analysis
  4. Linear Regression
  5. Neighbors (Nearest, Farthest, Range, k, Classification)
  6. Non-Negative Matrix Factorization
  7. Dimensionality Reduction
  8. Fast Singular Value Decomposition
  9. Decision Tree
  10. Bootstapped SVM
  11. Decision Tree
  12. Gaussian Processes
  13. Logistic Regression
  14. Logit Boost
  15. Model Tree
  16. Naïve Bayes
  17. Nearest Neighbors
  18. PLS
  19. Random Forest
  20. Ridge Regression
  21. Support Vector Machine
  22. Classification: logistic regression, naïve bayes, SVM, decision tree
  23. Regression: multiple regression, SVM
  24. Attribute importance: MDL
  25. Anomaly detection: one-class SVM
  26. Clustering: k-means, orthogonal partitioning
  27. Association: A Priori
  28. Feature extraction: NNMF

و در سال ۲۰۱۵ این لیست به صورت زیر در آمده است :

  1. Linear regression
  2. Logistic regression
  3. k-means
  4. SVMs
  5. Random Forests
  6. Matrix Factorization/SVD
  7. Gradient Boosted Decision Trees/Machines
  8. Naive Bayes
  9. Artificial Neural Networks
  10. For the last one I’d let you pick one of the following:
  11. Bayesian Networks
  12. Elastic Nets
  13. Any other clustering algo besides k-means
  14. LDA
  15. Conditional Random Fields
  16. HDPs or other Bayesian non-parametric model

سایت DataFloq اخیراً یک طبقه بندی گرافیکی از الگوریتم های ضروری یادگیری ماشین ارائه کرده است که به صورت طبقه بندی شده ، این الگوریتم ها را فهرست کرده است :

 

12-algorithms-every-data-scientist-should-know

 

این طبقه بندی را به صورت نقشه ذهن یا Mind Map هم می توانیم مشاهده کنیم :

 

Machine Learning Algorithms

 

 

منبع

 

 

برنامه نویسی Parallel در سی شارپ :: متوقف کردن Task ها در سی شارپ – کلاس CancellationToken

زمانی که عملیاتی را به عنوان یک Task اجرا می کنیم، ممکن است بخواهیم آن Task را در حین اجرا متوقف کنیم، برای مثال، Task ای داریم که در حال پردازش 1000 فایل است و کاربر باید این امکان را داشته باشد که Task در حال اجرا را متوقف کند. عملیات متوقف کردن Task ها هم برای متدهای کلاس Parallel امکان پذیر است و هم کلاس Task. برای اینکار می بایست از کلاس CancellationToken استفاده کنیم. برای مثال Task زیر را در نظر بگیرید که حاصل میانگین جمع اعداد 1 تا 100 را محاسبه می کند:

Task < int > averageTask = new Task < int > (() =>
{
    Console.WriteLine("Calculating average...");
    Console.WriteLine("Press Ctrl+C to cancel...");
    var sum = 0;
    for (int counter = 1; counter < = 100; counter++)
    {
        sum += counter;
        Thread.Sleep(100);
    }
    Console.WriteLine("All done.");
    return sum/100;
});
averageTask.Start();
Console.WriteLine(averageTask.Result);

قبلاً با این کد آشنا شدیم، اما کاری که در این قسمت می خواهیم انجام دهیم اضافه کردن قابلیتی است که کاربر بتواند با فشردن کلید های Ctrl+C عملیات را متوقف کند. برای اینکار ابتدا شئ ای از نوع کلاس CancellationTokenSource که در فضای نام System.Threading قرار دارد، در کلاس Program به صورت زیر تعریف می کنیم:

Task < int > averageTask = new Task < int > (() = >
{
    Console.WriteLine("Calculating average...");
    Console.WriteLine("Press q to cancel...");
    var sum = 0;
    for (int counter = 1; counter < = 100; counter++)
    {
        sum += counter;
        Thread.Sleep(100);
    }
    Console.WriteLine("All done.");
    return sum/100;
}, source.Token);

شئ source که در کلاس Program ایجاد کردیم متدی دارد با نام Cancel که این متد را زمانی که قصد داریم Task متوقف شود باید فراخوانی کنیم. فراخوانی این متد باید زمانی انجام شود که کاربر کلید های Ctrl+C را فشار داده است. در محیط Console، زمانی که کاربر کلید های Ctrl+C را فشار می دهد، event ای با نام CancelPressKey در کلاس Console فراخوانی می شود، پس باید این از این event برای فراخوانی متد Cancel به صورت زیر استفاده کنیم:

Console.CancelKeyPress += (sender, eventArgs) = >
{
    source.Cancel();
    eventArgs.Cancel = true;
};

به خط دوم داخل event دقت کنید، زمانی که کلید های Ctrl+C فشرده می شوند، به صورت پیش فرض کل برنامه Console متوقف می شود، برای جلوگیری از این کار مقدار خصوصیت Cancel را در شئ eventArgs به مقدار true ست می کنیم، یعنی عملیات متوقف کردن محیط کنسول به صورت دستی توسط ما انجام شده و خود سیستم نیاز به انجام کاری در این باره ندارد.

بعد از Subscribe کردن event بالا، باید به برنامه بگوییم تا زمانی که task به اتمام نرسیده یا کاربر کلید های Ctrl+C را فشار نداده نباید از برنامه خارج شویم، به همین خاطر یک حلقه while به صورت زیر ایجاد می کنیم:

while (!averageTask.IsCompleted &amp;&amp; !source.IsCancellationRequested)
{                                                                                                
}

با خصوصیت IsCompleted در کلاس Task قبلاً آشنا شدیم، اما خصوصیت IsCancellationRequested در شئ source زمانی مقدارش true می شود که متد Cancel فراخوانی شود، پس تا زمانی که عملیات Task به اتمام نرسیده و زمانی که کاربر کلید های Ctrl+C را فشار نداده برنامه در حلقه while منتظر می ماند.

در ادامه باید Task ایجاد شده را به صورتی تغییر دهیم که داخل حلقه for بررسی شود که متد Cancel فراخوانی شده است یا خیر، اگر فراخوانی شده بود باید از Task خارج شویم، برای این کار نیز از خصوصیت IsCancellationRequested در شئ source استفاده می کنیم، Task ایجاد شده را به صورت زیر تغییر می دهیم:

Task < int > averageTask = new Task < int > (() = >
{
    Console.WriteLine("Calculating average...");
    Console.WriteLine("Press Ctrl+C to cancel...");
    var sum = 0;
    for (int counter = 1; counter < = 100; counter++)
    {
        if (source.IsCancellationRequested)
        {
            Console.WriteLine("Operation terminated!");
            return 0;
        }
        sum += counter;
        Thread.Sleep(100);
    }
    Console.WriteLine("All done.");
    return sum/100;
}, source.Token);

همانطور که مشاهده می کنید داخل حلقه for گفتیم که اگر IsCancellationRequested برابر true بود پیغامی را نمایش بده و مقدار 0 را برگردان. کد نهایی ما به صورت زیر می باشد:

class Program
{
    private static CancellationTokenSource source = new CancellationTokenSource();
    static void Main(string[] args)
    {
        Task < int > averageTask = new Task < int >(() = >
        {
            Console.WriteLine("Calculating average...");
            Console.WriteLine("Press Ctrl+C to cancel...");
            var sum = 0;
            for (int counter = 1; counter <= 100; counter++) { if (source.IsCancellationRequested) { Console.WriteLine("Operation terminated!"); return 0; } sum += counter; Thread.Sleep(100); } Console.WriteLine("All done."); return sum/100; }, source.Token); averageTask.Start(); Console.CancelKeyPress += (sender, eventArgs) = >
        {
            source.Cancel();
            eventArgs.Cancel = true;
        };
        while (!averageTask.IsCompleted && !source.IsCancellationRequested)
        {                                                                                                
        }
 
        Console.WriteLine(averageTask.Result);
    }
}

در صورتی که برنامه بالا را اجرا کرده و کلید های Ctrl+C را فشار دهیم خروجی زیر برای ما نمایش داده می شود:

Calculating average...
Press Ctrl+C to cancel...
Operation terminated!
0
Press any key to continue . . .

استفاده از CancellationToken در کلاس Parallel

علاوه بر کلاس Task می توان از قابلیت CancellationToken در متدهای کلاس Parallel نیز استفاده کرد، برای آشنایی بیشتر فرض کنید کدی به صورت زیر تعریف شده که لیست فایل های jpg داخل یک پوشه را پردازش می کند:

var jpegFiles = System.IO.Directory.GetFiles("D:\\Images", "*.jpg");
 
Parallel.ForEach(jpegFiles, file = >
{
    var fileInfo = new FileInfo(file);
    // process file
});

برای متوقف کردن عملیات پردازش فایل ها، ابتدا شئ ای از نوع CancellationTokenSource مانند مثال قبل ایجاد می کنیم:

private static CancellationTokenSource source = new CancellationTokenSource();

در قدم بعدی کلاسی از نوع ParallelOptions به صورت زیر تعریف کرده، خصوصیت CancellationToken را برابر خصوصیت Token در شئ source قرار داده و این کلاس را به عنوان پارامتر ورودی به متد ForEach به صورت زیر ارسال می کنیم:

ParallelOptions options = new ParallelOptions();
options.CancellationToken = source.Token;
 
try
{
    Parallel.ForEach(jpegFiles,options, file = >
    {
        options.CancellationToken.ThrowIfCancellationRequested();                                                
        var fileInfo = new FileInfo(file);
        // process file
    });
}
catch (OperationCanceledException ex)
{
    Console.WriteLine(ex);
}

دقت کنید در قسمت ForEach متدی با نام ThrowIfCancellationRequested فراخوانی شده است، در حقیقت این متد بعد از فراخوانی بررسی می کند که آیا متد Cancel برای شئ source فراخوانی شده است یا خیر، اگر فراخوانی شده بود خطایی از نوع OperationCanceledException ایجاد می شود که در خارج از بدنه ForEach کلاس Parallel، بوسیله ساختار try..catch این خطا مدیریت شده است. دقت کنید که روند مدیریت Cancel کردن در کلاس Parallel با کلاس Task متفاوت است و دلیل این موضوع نوع برخورد برنامه با این کلاس ها است. در قسمت بعدی با مبحث Parallel LINQ آشنا خواهیم شد.

منبع



قسمت اول آموزش-برنامه نویسی Asynchronous – آشنایی با Process ها، Thread ها و AppDomain ها

قسمت دوم آموزش- آشنایی با ماهیت Asynchronous در Delegate ها

قسمت سوم آموزش-آشنایی با فضای نام System.Threading و کلاس Thread

قسمت چهارم آموزش- آشنایی با Thread های Foreground و Background در دات نت

قسمت پنجم آموزش- آشنایی با مشکل Concurrency در برنامه های Multi-Threaded و راهکار های رفع این مشکل

قسمت ششم آموزش- آشنایی با کلاس Timer در زبان سی شارپ

قسمت هفتم آموزش-آشنایی با CLR ThreadPool در دات نت

قسمت هشتم آموزش- مقدمه ای بر Task Parallel Library و کلاس Parallel در دات نت

قسمت نهم آموزش- برنامه نویسی Parallel:آشنایی با کلاس Task در سی شارپ

قسمت دهم آموزش-برنامه نویسی Parallel در سی شارپ :: متوقف کردن Task ها در سی شارپ – کلاس CancellationToken

قسمت یازدهم آموزش- برنامه نویسی Parallel در سی شارپ :: کوئری های Parallel در LINQ

قسمت دوازدهم آموزش- آشنایی با کلمات کلیدی async و await در زبان سی شارپ

قسمت سیزدهم آموزش- استفاده از متد WhenAll برای اجرای چندین Task به صورت همزمان در سی شارپ