بایگانی برچسب برای: gh; o

ترکیب و تشخیص صحبت

کاربردهای نیازمند پردازش صحبت اغلب در دو دستهٔ ترکیب صحبت و تشخیص صحبت مورد بررسی قرار می‌گیرند. ترکیب صحبت عبارت است از فن آوری تولید مصنوعی صحبت به وسیلهٔ ماشین و به طور عمده از پرونده‌های متنی به عنوان ورودی آن استفاده می‌گردد. در اینجا باید به یک نکتهٔ مهم اشاره شود که بسیاری از تولیدات تجاری که صدای شبیه به صحبت انسان ایجاد می‌کنند در واقع ترکیب صحبت انجام نمی‌دهند بلکه تنها یک تکهٔ ضبط شده به صورت دیجیتال از صدای انسان را پخش می‌کنند. این روش کیفیت صدای بالایی ایجاد می‌کند اما به واژه‌ها و عبارات از پیش ضبط شده محدود است.

از کاربردهای عمدهٔ ترکیب صحبت می‌توان به ایجاد ابزارهایی برای افراد دارای ناتوانی بینایی برای مطلع شدن از آنچه بر روی صفحهٔ کامپیوتر می‌گذرد اشاره کرد. تشخیص صحبت عبارت است از تشخیص کامپیوتری صحبت تولید شده توسط انسان و تبدیل آن به یک سری فرامین یا پرونده‌های متنی. کاربردهای عمدهٔ موجود برای این گونه سیستمها دربرگیرندهٔ بازهٔ گسترده‌ای از سیستمها و کاربردها از سیستمهای دیکتهٔ کامپیوتری که در سیستمهای آموزشی و همچنین سیستمهای پردازش واژه کاربرد دارد گرفته تا سیستمهای کنترل کامپیوترها به وسیلهٔ صحبت و به طور خاص سیستمهای فراهم آورندهٔ امکان کنترل کامپیوترها برای افراد ناتوان از لحاظ بینایی یا حرکتی می‌باشد. کاربرد مورد نظر ما یعنی تشخیص گوینده از لحاظ نحوهٔ پیاده سازی و استفاده تناسب فراوانی خانوادهٔ دوم یعنی تشخیص کامپیوتری صحبت دارد، ولی از لحاظ اهداف و کاربردها می‌تواند در خانواده‌ای جداگانه از کاربردهای نیازمند پردازش صحبت قرار گیرد.

ترکیب و تشخیص کامپیوتری صحبت مسائل دشواری هستند. روشهای مختلفی مورد آزمایش قرار گرفت هاند که موفقیت کمی داشته‌اند. این زمینه از زمینه‌های فعال در تحقیقات پردازش سیگنال دیجیتال (دی. اس. پی) بوده و بدون شک سالها این گونه خواهد ماند. در حال حاضر از ابزارهای برنامه‌نویسی جاافتاده در زمینه‌های برشمرده شده می‌توان به‌ای. پی. آی صحبت شرکت مایکروسافت اشاره نمود که دارای تواناییهای عمدهای در زمینه‌های تشخیص و ترکیب صحبت است و توانایی آن تا حدی گسترده‌است که در محصول بزرگ واز آن استفادهٔ عملی شده‌است. ابزار عمد هی دیگر تولید شرکت آی. بی. ام است و MS افیس xpتوانمند نام دارد که به لحاظ پشتیبانی آن برای سیستم‌عاملهای متعدد و زبانهای گوناگون از اهمیت خاصی برخوردار است.

مدلی برای توصیف روش تولید صحبت

تقریباً تمام تکنیکهای ترکیب و تشخیص صحبت بر اساس مدل تولید صحبت انسان که در شکل شماره ۳ نشان داده شده‌است ایجاد شده‌اند. بیشتر صداهای مربوط به صحبت انسان به دو دستهٔ صدادار و سایشی تقسیم می‌شوند. اصوات صدادار وقتی که هوا از ریه‌ها و از مسیر تارهای صوتی به بیرون دهان یا بینی رانده می‌شوند ایجاد می‌گردند. تارهای صوتی دو رشتهٔ آویخته از بافت هستند که در مسیر جریان هوا کشیده شده‌اند. در پاسخ به کشش ماهیچه‌های متفاوت تارهای صوتی با فرکانسی بین ۵۰ تا ۱۰۰۰ هرتز ارتعاش می‌کنند که باعث انتقال حرکتهای متناوب هوا. در مقایسه، اصوات سایشی به صورت نویز تصادفی و نه حاصل از ارتعاش تارهای صوتی به وجود می‌آیند. این حادثه زمانی رخ می‌دهد که تقریباً جریان هوا به وسیلۀ زبان و لبها یا دندانها حبس می‌شود که این امر باعث ایجاد اغتشاش هوا در نزدیکی محل فشردگی می‌گردد شکل شماره ۳ – مدل صحبت انسان. در یک تکه زمان کوتاه، حدود ۲ تا ۴۰ میلی ثانیه صحبت می‌تواند با استفاده از سه پارامتر مدلسازی شود:

۱- انتخاب یک آشفتگی متناوب یا نویزوار. ۲- پیچ آشفتگی متناوب ۳- ضرایب یک فیلتر خطی بازگشتی که پاسخ اثر صوتی را تقلید می‌کند. اصوات سایشی زبان انگلیسی عبارتند از S،Z،TH استفاده از یک مولد نویز نشان داده شده‌اند. هر دو نوع این اصوات، توسط چاله‌های صوتی که از زبان، لبها، دهان، گلو و گذرگاه‌های بینی تشکیل شده‌اند دچار تغییر می‌شوند. چون انتشار صدا در این ساختارها یک فرایند خطی است می‌تواند با استفاده از یک فیلتر خطی با یک پاسخ ضربهٔ مناسب نمایش داده شود. در بیشتر موارد از یک فیلتر بازگشتی که ضرایب بازگشتی آن ویژگیهای فیلتر را مشخص می‌کند استفاده می‌شود. به خاطر این که چاله‌های صوتی ابعادی به اندازهٔ چند سانتیمتر دارند پاسخ فرکانسی یک دنباله از تشدیدها با اندازه‌های کیلوهرتزی است. در اصطلاح پردازش صوت این قله‌های تشدید فرکانسهای فرمانت خوانده می‌شوند. با تغییر جایگاه نسبی زبان و لبها فرکانسهای فرمانت هم از لحاظ دامنه و هم از لحاظ فرکانس ممکن است تغییر کنند.

سیگنال صوتی به تکه‌های کوچک به اندازهٔ ۲ تا ۴۰ میلی ثانیه تقسیم می‌شوند و از الگوریتم اف. اف. تی برای یافتن طیف فرکانسی هر تکه استفاده می‌شود. این طیفها در کنار هم قرار داده شده تبدیل به یک تصویر سیاه و سفید می‌شود (دامنه‌های پایین روشن و دامنه‌های بالا تیره می‌شوند). این کار یک روش گرافیکی برای مشاهدهٔ این که چگونه محتویات فرکانسی صحبت با زمان تغییر می‌کند به وجود می‌آورد. اندازهٔ هر تکه بر اساس اعمال یک بده بستان بین دقت فرکانسی (که با تکه‌های بزرگ تر بهتر می‌شود) و دقت زمانی (که با تکه‌های کوچک تر بهتر می‌شود) انتخاب می‌گردد.

ویژگیهای عمومی اصوات d و c ویژگیهای عمومی اصوات صدادار و شکلهای b و a دارای موج صوتی متناوبی مانند آنچه در رین در a همچنانکه در شکل ۴ دیده می‌شود اصوات صدا دار مثل نشان داده شده و طیف فرکانسی آنها که عبارت است از یک دنباله از همسازهای با اندازهٔ منظم a شکل دارای یک سیگنال نویزی در دامنهٔ استوم در s می‌باشد در مقابل، اصوات سایشی مانند b مانند شکل هستند. این طیفها همچنین شکل فرکانسهای فرمانت برای d و یک طیف نویزی مانند شکل c زمان مانند شکل در هر رین هر دو نوع صوت نشان می‌دهند. همچنین به این نکته توجه کنید که نمایش زمان-فرکانس کلمهٔ دو باری که ادا شده شبیه به هم است. در یک دور هی کوتاه برای نمونه ۲۵ میلی ثانیه یک سیگنال صحبت می‌تواند با مشخص کردن سه پارامتر تقریب زده شود:

۱) انتخاب یک اغتشاش متناوب یا نویزوار

۲)فرکانس موج متناوب (اگر مورد استفاده قرار گرفته باشد)

۳)ضرایب فیلتر دیجیتالی که برای تقلید پاسخ تارهای صوتی استفاده شده‌است.

صحبت پیوسته با به‌روزآوری این سه پارامتر به صورت پیوسته به انداز هی ۴۰ بار در ثانیه ترکیب شود. این نامیده می‌شود و یک وسیلهٔ «صحبت و املا» راهکار برای یکی از کاربردهای تجاری دی. اس. پی که الکترونیکی پرفروش برای بچه هاست مناسب است. کیفیت صدای این نوع ترکیب کنندهٔ صحبت پایین است و بسیار مکانیکی و متفاوت با صدای انسان به نظر می‌رسد. ولی در هر صورت نرخ دادهٔ خیلی پایینی در حدود چند کیلوبیت بر ثانیه نیاز دارد.

همچنین این راهکار پایه‌ای برای روش کدگذاری پیشگویانهٔ خطی (ال. پی. سی) در فشرده سازی صحبت فراهم می‌آورد. صحبت ضبط شدهٔ دیجیتالی انسان به تکه‌های کوچک تقسیم می‌شود و هر کدام با توجه به سه پارامتر مدل توصیف می‌شود. این عمل به طور معمول نیاز به یک دوجین بایت برای هر تکه دارد که نرخ داده‌ای برابر با ۲ تا ۶ کیلوبایت بر ثانیه را طلب می‌کند. این تکهٔ اطلاعاتی ارسال می‌شود و در صورت لزوم ذخیره می‌گردد و سپس توسط ترکیب کنند هی صحبت بازسازی می‌شود.

الگوریتمهای تشخیص صحبت با تلاش برای شناسایی الگوهای پارامترهای استخراج شده از این روش نیز پیش تر می‌روند. این روشها معمولاً شامل مقایس هی تکه‌های اطلاعاتی با قالبهای صدای از پیش ذخیره شده در تلاش برای تشخیص کلمات گفته شده می‌باشند. مشکلی که در اینجا وجود دارد این است که این روش همیشه به درستی کار نم یکند. این روش برای بعضی کاربردها قابل استفاده‌است اما با تواناییهای شنوندگان انسانی خیلی فاصله دارد.

آیندهٔ فناوریهای پردازش صحبت

ارزش ایجاد فناوریهای ترکیب و تشخیص صحبت بسیار زیاد است. صحبت سریع‌ترین و کاراترین روش ارتباط انسانهاست. تشخیص صحبت پتانسیل جایگزینی نوشتن، تایپ، ورود صفحه‌کلید و کنترل الکترونیکی را که توسط کلیدها و دکمه‌ها اعمال می‌شود را داراست و فقط نیاز به آن دارد که کمی برای پذیرش توسط بازار تجاری بهتر کار کند. ترکیب صحبت علاوه بر آن که همانند تشخیص صحبت می‌تواند استفاده از کامپیوتر را برای کلیهٔ افراد ناتوان بدنی که دارای تواناییهای شنوایی و گفتاری مناسب هستند آسا نتر سازد به عنوان یک وسیلهٔ خروجی کاربرپسند در محیطهای مختلف می‌تواند با جایگزین کردن بسیاری از علائم دیداری(انواع چراغها و…) و شنوایی (انواع زنگهای اخطار و …) با گفتارهای بیان کنندهٔ کامل پیامها استفاده از و رسیدگی به سیستمهای نیازمند این گونه پیامها را بهینه کند. در اینجا لازم است به این نکته اشاره شود که پیشرفت در فن آوری تشخیص صحبت (و همچنین تشخیص گوینده) همان قدر که محدودهٔ دی. اس. پی را در بر می‌گیرد نیازمند دانش به دست آمده از محدوده‌های هوش مصنوعی و شبکه‌های عصبی است.

شاید این تنوع دانشهای مورد نیاز به عنوان عامل دشواری مطالع هی مبحث پردازش صحبت در نظر گرفته شود حال آن که این گونه نیست و این تنوع راهکارها بخت رسیدن به سیستم با کارایی مطلوب را افزایش می‌دهد. تواناییهای ابزارهایی که در بخش اول این فصل به آنها اشاره شد امیدواریهای فراوانی را در زمینهٔ موفقیت ابزارهای موجود فراهم می‌آورد و دامنهٔ وسیع شرکتها و مراکز دانشگاهی که در این زمینه فعالیت می‌کنند بر تنوع در قابلیتها و کاربردهای پیاده سازی شدهٔ این ابزارها می‌افزاید. نتیجه در این مقاله یک سیستم تشخیص گفتار وابسته به گوینده مورد بررسی قرار گرفته‌است. که این سیستم در کنار معایب خود که از آن جمله می‌توان به شامل نشدن کلمات و جملات محاوره‌ای اشاره کرد و این که این نرم‌افزار برای زبان فارسی طراحی نشده‌است و اخیراً در داخل کشور ایران تلاش‌هایی توسط متخصصین دانشگاه صنعتی شریف جهت دستیابی به نسخه فارسی آن صورت گرفته، مزایای هم در پی دارد که از آن جمله می‌توان به عدم حساسیت آن به زبان و گویش خاص اشاره کرد و اینکه این نرم‌افزار نسبت به سروصدای محیط و همچنین مکان‌های پرنویز حساس نیست و در مقابل چنین مکان‌هایی مقاوم است اشاره کرد.

هدفی که این نرم‌افزار دنبال می‌کند آن است که به جای برقراری ارتباط با کامپیوتر توسط ماوس و صفحه کلید و… خود بتوان پیام موردنظر را بیان کرده و کامپیوتر آن فرمان مربوطه را انجام دهد یا به جای تایپ کردن متن موردنظر فقط کافی است که متن موردنظر را از طریق میکروفون به رایانه منتقل کرده و متن را تایپ شده و آماده ببنیم. هدفی که این نرم‌افزار همانند بسیاری از نرم‌افزارهای دیگر دنبال می‌کند ارتقای سطح کیفیت زندگی و تسهیل امور روزمره‌است در صورت استفاده از این نرم‌افزار در ادارات و سازمان‌های دولتی است.

منبع


مقدمه ای بر پردازش گفتار

سیگنال صوتی و شنیداری یا Audio احساس ارتعاشات و نوسانات هوا توسط گوش انسان است. اگر این صوت در محدوده فرکانسی 20Hz – 20KHz  باشد با رسیدن به گوش و سپس انتقال به مغز و پردازش روی آن باعث درک مفهوم در ذهن انسان می گردد. سیگنال گفتار Speech زیر مجموعه ای از سیگنال Audio می باشد که توسط انسان ایجاد می شود. در نمودار زیر بخش سیاه شنیده نمی شود, شنیدن بخش قرمز آزار دهنده است و بخش سبز شنیده می شود.

نمودار بازه شنوایی

از جمله کاربردهای پردازش گفتار میتوان به موارد زیر اشاره کرد:

  • مخابره صدا به همراه تصوير و سایراطلاعات
  • دادن فرمانها و دستورات كنترلي توسط صدا
  • كنترل دستگاه ها و تجهيزات صنعتي و آزمايشگاهها توسط صدا
  • دادن فرامين صوتي در جاهايي كه دست انسان مشغول است مثل هواپيما و اتوموبيل
  • ديكته اتوماتيك
  • انجام عملیات بانکی پس از تایید هویت توسط صدا
  • کلید و قفل صوتی و بازشناسی هویت افراد قبل از ورود آنها به اماکن با درجه امنیت بالا
  • شناسائی خودکار زبان گوینده در سیستم های ترجمه اتوماتیک و یا پذیرش هتل های بین المللی
  • فروش خودکار بلیط در ایستگا ه های قطار و مترو و اتوبوس و غیره
  • پردازش زبان برای نا بینایان

اکثر کاربردهای ذکر شده در یکی از سه شاخه زیر قرار میگیرند:

  • آنالیز گفتار برای تشخیص اتوماتیک و استخراج اطلاعات
  • دریافت برخی از اطلاعات فیزیولوژیکی گوینده
  • ارتباط گفتاری بین انسان و ماشین در اساسی تری شکل طبیعی آن

اما بطور کلی میتوان موارد زیر را به عنوان شاخه های پردازش گفتار نام برد:

  • کد کردن و فشرده سازی گفتار
  • سنتز گفتار
  • تشخیص و درک گفتار
  • تأیید هویت گوینده
  • تشخیص هویت گوینده
  • غنی سازی گفتار
  • ترجمه شفاهی گفتار
  • تعیین سن، جنس، لهجه، حالت روحی و روانی و نا هنجاری گفتار

برای تولید گفتار بسیاری از اندام ها به صورت هماهنگ نیاز به فعالیت دارند. که بطور کلی میتوان آن ها را در دو بخش vocal tract  و  nasal tract تقسیم بندی کرد.

Vocal Tract: شامل حلق(اتصال از مری به دهان) و محفظه دهانی میباشد. میانگین طول vocal tract برای آقایان حدود 17.5 سانتیمتر میباشد و سطح مقطع آن که توسط موقعیت زبان, لبها, فک و غشا(یک دریچه در پشت محفظه دهانی که vocal tract و nasal tract را برای تولید صداهای دماغی شبیه /m/,/n/ به هم وصل می کند) تعیین میگردد و از صفر(بسته شدن کامل) تا 20 سانتیمتر مربع متفاوت است.

Nasal Tract: از غشا تا سوراخ بینی گفته میشود.

 

اندام های داخلی دخیل در گفتار انسان

 

با کمک اندام های گفتاری میتوانیم صداهای متفاوتی ایجاد کنیم و با کنار هم قرار گرفتن پیوسته این صداها گفتار شکل میگیرد به عنوان مثال شکل مجرای گفتار را در هنگام ادای بعضی حروف به شکل زیر داریم:

شکل مجرای گفتار در هنگام ادای بعضی حروف

واکه ها (vowel) و همخوانهای(consonant) زبان فارسی با توجه به شیوه تولید و واک(voice) یا بی واک(unvoice) بودن در جدول زیر قابل مشاهده هستند:

جدول واکه ها و همخوان های زبان فارسی

انواع نویز صوتی در پردازش گفتار

برقراري ارتباط گفتاري در محيط‌هاي آرام و فواصل نزديک معمولا به درستي و بدون دخالت نويز انجام مي‌گيرد، ولي زماني که بحث برقراري ارتباط در فواصل دور مطرح باشد، نويز زمينه در آن فضا وجود دارد و کيفيت سيگنال گفتار تا حد زيادي کاهش مي‌يابد؛ در نتيجه توانايي شنونده تضعيف مي‌گردد. نکته حائز اهميت در ارائه يک روش حذف نويز، حفظ ساختار اصلي سيگنال مي‌باشد؛ بطوريکه سيگنال بهبود يافته، نسبت به سيگنال اصلي دچار تغيير شکل، جابجايي و اعوجاج نشود.

 

بر اساس ماهيت و ويژگي‌هاي منبع نويز، نويز مي‌تواند به صورت زیر دسته‌بندي شود:

    • نويز زمينه: منظور از نويز زمينه صداهايي است بـه جـز صداي فـرد گوينده کـه توسط ميکروفون دريافت شده است و معمولاً به دو دسته نويز سفيد و نـويز رنگـي تقـسيم مـي شود. مانند صداي به هم خوردن يک در، موزيک، همهمه افراد و غيره. نويز جمع شونده اسـت، کـه معمولاً با سيگنال ناهمبسته است و در محيط هاي مختلفي مثل ماشين، دفتر کار، خيابان‌هاي شهر، محيط کارخانه، هليکوپتر و غيره حاضر است. نويزهاي خيابان و کارخانه و … ويژگي‌هاي پوياي بسياري دارند. نويز کارخانـه وهليکـوپتر اجـزاء پريوديکي دارند و مثال‌هايي از نويز غير ايستا هستند که ويژگي‌هاي متغير در زماني دارند.
    • گوينده مزاحم(گفتاري که مانند نويز است): نويز جمع شونده‌ای که ترکيبي از يـک يـا چنـد گوينده است. در اين نوع، خصوصيات نويز و بازه فرکانسي‌اش بسيار مـشابه بـا سيگنال گفتـار مورد نظر است.
    • نويز ضربه‌ای: مانند بهم خوردن شدید درب، یا نويز ارشيو شده در صفحات گرامافون.
    • نويز غير افزايشي به دليل تاکيد گوينده: براي مثال اثر لمبارد، اثر نويز وقتي که گوينده تمايل به افزايش صدايش را دارد.
    • نويز همبسته با سيگنال: مانند طنين و اکوها
    • نويز کانولوشني: مشابه با کانولوشن در حوزه زمان. براي نمونه، تغييرات در سيگنال گفتـار به علت تغييرات در خواص صوتي اتاق يا تغييرات در ميکروفون ها و غيره. برخورد با ايـن مـوارد معمولاً دشوارتر از نويزهای جمع شونده است.

منبع


منابع

1.fa.wikipedia.org

2.http://yarcode.ir

پردازش گفتار (صوت) قسمت 1
پردازش گفتار (صوت) قسمت 2

طرز کار کردن دوربین دیجیتال

مگاپیکسل

فتوسلهای سنسور عکس را پیکسل هم می گویند. اکثر دوربینهای دیجیتال دارای سنسورهایی به اندازه 2/3 تا 2/10 مگاپیکسل هستند. هر چه تعداد پیکسلها بیشتر باشد، عکس دارای جزئیات بیشتری خواهد بود و از این رو می توان آنرا با کیفیت خوب در اندازه بزرگتری چاپ کرد.

سنسورهای عکس در دو مدل CCD و یا CMOS هستند.

از سنسور نوری به کارت حافظه

در یک دوربین دیجیتال که با فیلم کار می کند، عکس بر روی همان وسیله ای ثبت می شود که بعدا” نگهداری خواهد شد، یعنی فیلم نگاتیو  یا  اسلاید. دوربین دیجیتال با کمک گیرنده نوری خود یا سنسور، عکس را ثبت می کند. بعد از آن عکس یه یک وسیله ذخیره حقیقی تر انتقال پیدا می کند، یعنی یک کارت حافظه و پس از آن گیرنده CCD از محتوی خود تخلیه می شود.

زمانیکه اطلاعات مربوط به عکس به کارت حافظه انتقال پیدا می کند، اندازه های آنالوگ ولتاژ سلولهای نوری تبدیل به اعداد دیجیتال می شوند. کلمه دیجیتال از کلمه لاتینی digitus به معنی انگشت می آید. این بدین معنی است که با انگشتان اعداد را حساب کنیم تا اینکه عدد را به شکل رقم آن بیان کنیم.

انواع مختلف دوربینهای دیجیتال

دستگاه های چند منظوره

دوربینهای دیجیتالی وجود دارند که هم تلفن همراه هستند و هم می توانند موزیک در فرمت MP3 را پخش کنند و هم یک دوربین ویدیویی هستند و به وسیله آنها شما می توانید در اینترنت داخل شوید و یا با آنها یک e-mail بفرستید، و چه کار دیگری از آنها توقع دارید؟ اشکال مختلف دستگاه های کوچک با دوربینهای دیجیتال امروزه در حال گسترش هستند.

دوربینهای اتوماتیک یا کمپکت

اصطلاح کمپکت Compact در مورد دوربینها زمانی مورد استفاده واقع می شود که لنز و بدنه دوربین در یک واحد پیوسته قرار داشته باشند.این نوع دوربینها انواع و اقسام مدلها از کوچک ” ببینید و عکس بگیرید” تا مدلهای بزرگ تر که مانند دوربینهای بزرگ با امکانات اتوماتیک و قابلیت های تنظیم دستی هستند، وجود دارند

دوربینهای پیشرفته دیجیتال

این نوع دوربینهای دیجیتال از قطعات جدا از هم تشکیل شده اند که اغلب عبارت از یک بدنه دوربین به همراه تعدادی لنز است. دوربینهای پیشرفته دیجیتال تا کنون از گران ترین دوربینها بوده اند. این امر بستگی دارد به پیشرفته بودن و قابلیت کار کردن سریع و اتوماتیک آنها و همچنین این نکته که دوربینهای پیشرفته، دارای سنسور یا گیرنده نوری قوی هستند که درجه وضوح بالاتر و کیفیت بهتری از عکس را در مقایسه با دوربین کمپکت، عرضه می کنند. اغلب خریداران این نوع دوربینها عکاسان حرفه ای هستند که با سرمایه گذاری روی این دوربین ها می توانند از امکانات ساده تصحیح و رتوش عکس استفاده کنند ، مثل عکاسان مطبوعات.دوربینهای دیجیتال و آنالوگ معمولا” می توانند از لنزها و لوازم جانبی یکدیگر استفاده کنند.

استفاده از دوربین

عکاسی کردن با دوربین دیجیتال ، در لحظه ای که دکمه شاتر دوربین را فشار می دهید، تفاوت چندانی با لحظه ای که شاتر دوربین آنالوگ را فشار می دهید، ندارد.بزرگ ترین اختلاف در قبل از انداختن عکس است که در دوربینهای دیجیتال می توانید کنترل و تنظیم کنید که عکس چگونه بیفتد و بعد از گرفتن عکس بتوانید  مستقیما” عکس را ببینید، روی آن کار کنید و تغییراتی اعمال کنید و یا آنها را چاپ کنید. توضیحاتی که در ادامه می آیند، در مورد اکثر دوربینها صدق می کنند.

قسمتهای مختلف دوربین

بزرگ یا کوچک ،ارزان یا گران، ساده یا پیشرفته ، در همه حالات یک دوربین از این قسمتها تشکیل شده است: چشمی، شاتر، دیافراگم، لنز، نورسنج و در مورد خیلی از دوربینها فلاش . برنامه های آماده ای که در دوربین هستند تا تصمیم بگیرند که قسمتهای مختلف دوربین چگونه با یکدیگر به طور اتوماتیک کار کنند، یک امری عادی در دوربینهای امروزی هستند. توانایی انجام تغییرات دستی در دوربینها، امروزه تبدیل به نکته ای مهم و مثبت شده که قیمت بیشتری را به قیمت اصلی دوربین اضافه می کند.

چشمی یا منظره یاب

خیلی از دوربینهای کمپکت دیجیتال و آنالوگ دارای پنجره کوچکی هستند که فرد عکاس می تواند با دیدن از میان آن کادر و اجزا درون آن ، عکس خود را مشخص نماید.این پنجره کوچک که به چشمی یا منظره یاب دوربین معروف است معمولا” در کنار لنز قرار دارد. چیزی که به عنوان تصویر از درون چشمی دوربین مشاهده می کنید ، تصویری تقریبی از نظر کادر یا عکس نهایی است. اختلاف در تصویر چشمی و تصویر نهایی به خطای پارالکس معروف است.زمانیکه مسئله کادر دقیق سوژه مهم باشد، مثل عکاسی کلوزآپ، صفحه LCD دوربین دیجیتال کمک بزرگی در این مسئله است ، چرا که گیرنده نوری دقیقا” آن چیزی را که می بینید، عکس خواهد گرفت.

شما می توانید منطقه فوکوس را با نشانه گرفتن دوربین به طرف سوژه طوری انجام دهید که مستطیل منطقه فوکوس در نقطه ای از عکس واقع شود که می خواهید فوکوس را روی آن انجام دهید. تکمه شاتر را مقدار کمی به پایین فشار دهید ، دوربین در این حالت فاصله تا سوژه را اندازه می گیرد و لنز را فوکوس می کند. در حالتیکه تکمه شاتر کماکان تا نیمه به پایین فشار داده شده است، کادرعکس خود را هم انتخاب می کنید.

صفحه LCD

فقط در دوربینهای عکاسی دیجیتال وجود دارد. این نوع چشمی با همکاری لنز دوربین، کادری که در عکس ظاهر خواهد شد را نشان می دهد. با استفاده از صفحه LCD می توان نه تنها متدی را که در بالا در مورد آن شرح دادیم (یعنی فوکوس کردن) را انجام دهید ، بلکه می توانید ببینید که عکس چگونه خواهد افتاد و مثلا” عکس چقدر روشن و یا تیره ظاهر خواهد شد. روی صفحه LCD معمولا” اطلاعات مربوط به تنظیماتی که در هنگام گرفته شدن عکس استفاده خواهند شد، مثل شاتر و اندازه دیافراگم هم نمایش داده می شوند.

در یک دوربین تک لنزی انعکاسی تصویری که درون چشمی آن مشاهده می شود، از درون لنز و یک سری آینه عبور می کند تا به پنجره چشمی در پشت دوربین می رسد. از این رو چشمی این گونه دوربینها ، کادر عکس را دقیقا” نشان داده و بعضی مواقع هم اطلاعات دیگر ، مثل سرعت شاتر و دیافراگم را در آن می توان مشاهده کرد.

شاتر

اندازه سرعت بر حسب ثانیه یا کسری از ثانیه بیان می شود. این اندازه معمولا” همراه با درجه باز بودن دیافراگم بیان می شود تا مقدار مشخص نوری که گیرنده نوری باید دریافت کند را مشخص کند. اما از این اندازه برای تاثیر حرکت در عکس هم استفاده می شود.

برای سرعتهای شاتر طولانی تر از ثانیه و جهت احتراز از لرزش دست، باید از سه پایه و یا سایر وسایل ثابت نگهداشتن دوربین استفاده کنید. حتی اگر همه کارها به طور اتوماتیک در دوربین شما انجام می شود، باز هم بهتر است که قبل از گرفتن عکس کنترلی در مورد سرعت شاتر بکنید تا بدانید که عکس شما با چه سرعتی گرفته می شود.

دیافراگم

دیافراگم اغلب در لنز جای دارد. اندازه باز بودن دیافراگم همراه با سرعت شاتر، مقدار نوری که به گیرنده نوری می رسد را تنظیم می کنند. رقم پایین تر در دیافراگم به معنی بازتر بودن دیافراگم است. برای هر پله یا گامی که دیافراگم کاهش پیدا می کند ( یعنی رقم ها افزایش پیدا می کنند) مقدار نوری که به داخل دوربین راه پیدا می کند، نصف می شود. دیافراگم 8/2 دو برابر دیافراگم 4 نور به داخل دوربین وارد می کند.

اندازه دیافراگم بازتر (رقمهای کوچک تر) همچنین باعث می شود تا عمق میدان عکس کاهش پیدا کند. این بدین معنی است که تصویر فقط در محدوده کمی به صورت واضح دیده خواهد شد و قبل و بعد از این منطقه، تصویر سوژه تار خواهد بود. عمق میدان کمتر را می توان در موارد مشخصی به کار برد ، مثلا” زمانی که عکس شخصی را می خواهیم از پس زمینه متحرک آن جدا کنیم.

لنز

در یک دوربین قطع کوچک که از فیلم mm 36×24 استفاده می کند، یک لنز mm 50 لنزی نرمال به حساب می آید. این لنز نه تصویر را بزرگتر و نه کوچکتر می کند. لنزی که باعث می شود موضوع عکس بزرگتر شود به لنز تله مشهور است که فاصله کانونی آن بیشتر از mm 50 است و اگر موضوع عکس کوچکتر از اندازه طبیعی آن شود، آن لنز ، لنزی واید است. لنزهای با فاصله کانونی متغیر به لنز زوم مشهور هستند.

در لنز نرمال، فاصله کانونی برابر اندازه قطر کادر نگاتیو است. دوربین دیجیتال دارای گیرنده نوری یا سنسوری است که اندازه آن خیلی کوچکتر از قطع یک فیلم است. از این رو لنز نرمال در دوربین دیجیتال کوچکتر از لنز نرمال در دوربینهای سنتی قطع کوچک است. فاصله کانونی لنز، معمولا” در دوربینهای دیجیتال معادل فاصله کانونی لنزهای دوربینهای قطع کوچک در نظر گرفته می شود.

زوم دیجیتال

دوربینهای دیجیتال دارای هر دو نوع زوم اپتیک و دیجیتال هستند. زوم دیجیتال به معنی این است که دوربین به طریق الکترونیکی و دیجیتالی یک تصویر را بزرگ می کند. اما در این حالت عکس نمی تواند دارای اطلاعاتی بیشتر از آن چیزی که زوم اپتیک عرضه می کند ، باشد. از این رو کیفیت زوم دیجیتال بسیار پایین تر از زوم معادل اپتیک است. جهت بزرگ کردن یک عکس می توانید از یک نرم افزار تصویری ، بعد از برداشتن عکس استفاده کنید.

فلاش

حتی دوربینهای کوچک و ساده هم، امروزه مجهز به فلاش هستند. میدان روشن کردن فلاشهای ثابت روی دوربینها محدود است ( بین 5/0 تا 3 متر ، جهت اطلاع دقیق به دفترچه دوربین خود مراجعه کنید) اما این فلاش برای فاصله های کم و کوتاه در یک محیط سربسته کفایت می کند.

کاهش خطر قرمزی چشم

فلاش ها معمولا” روی یک دوربین کوچک در کنار لنز قرار گرفته اند. اگر کسی که عکس او گرفته می شود، مستقیما” به دوربین نگاه کند، نور فلاش منعکس شده از برخورد به سرخرگهای شبکیه چشم باعث قرمز شدن چشم فرد در عکس خواهد شد که پدیده چشم قرمز مشهور است. برای مقابله با بروز این پدیده ، فلاش می تواند قبل از گرفتن عکس، نوری از خود بیرون بدهد ، در این هنگام به دلیل نور بیشتر، مردمک چشم خود را جمع می کند و سپس فلاش زده می شود. از این رو یک فاصله و وقفه ای بین هنگامیکه شاتر فشارداده می شود و زمانیکه عکس گرفته می شود، بوجود می آید. در این فاصله ، ممکن است مدل عکاسی شما خسته شود و قیافه دیگری به خود بگیرد که در عکس ظاهر شود.

از آنجایی که اکثر نرم افزار های تصحیح عکس دارای ابزارهایی برای تصحیح قرمزی چشم هستند، پس فلاشهای تاخیری شاید دارای امتیاز منفی بیشتری باشند و مشکلات بیشتری تولید کنند.

فلاش حذف سایه ها

از فلاش می تواند حتی در زیر نور شدید خورشید، برای از بین بردن سایه ها و کم کردن کنتراست استفاده کرد. اگر شما بخواهید از فلاش جهت پر کردن سایه ها استفاده کنید، باید آنرا برای این کار تنظیم کنید. در این حالت هر بار که عکسی بگیرید، به طور اتوماتیک یک بار فلاش زده می شود.

نور سنجی

برای گرفتن عکس دقیق و درست ، باید مقدار مشخص و درستی نور به گیرنده نوری برسد. مقدار نور لازم، یا از طریق دوربین و یا به طور دستی تنظیم می شود که در این حالت شما خودتان اندازه شاتر و دیافراگم را تنظیم می کنید. خیلی از دوربینها این امکان را به شما می دهند که نورسنجی را خودتان انجام دهید.

نورسنجی ماتریسی

در اکثر عکسها نورسنجی بر مبنای کل عکس صورت می گیرد و نور تمام سطح عکس اندازه گیری می شود و نوردهی برای عکس بر مبنای میانگین نور دریافتی انجام می شود. این نوع نورسنجی به نورسنجی چند نقطه ای هم مشهور است.

نورسنجی نقطه ای

زمانی که اختلاف نور در نقاط مختلف عکس بسیار است، بهتر است که نور سنجی را از یک نقطه به خصوصی از عکس که مورد نظر هست و اهمیت بیشتری دارد ، انجام داد. این روش به نورسنجی نقطه ای مشهور است. در این روش فقط نوری که در مرکز چشمی دوربین دیده می شود، اندازه گیری می شود.

در نورسنجی نقطه ای می توانید دقیقا” مانند فوکوس کردن، مرکز چشمی دوربین را روی قسمتی از سوژه که مهم است، نشانه گیری کرده و مقدار نور را اندازه گیری کنید. سپس می توانید نوردهی را قفل کنید، این کار را با نیمه فشار دادن شاتر دوربین انجام می دهید. سپس کادر عکس خود را مشخص کنید و عکس دلخواه تان را بگیرید.

نورسنجی مرکزی

در نورسنجی مرکزی ، نور تمام محوطه اندازه گیری می شود ولی تاکید بیشتر بروی نقطه مرکزی عکس میباشد .

گول خوردن نورسنج دوربین

از طریق ترکیب شاتر کوتاه یا طولانی مدت با دیافراگم باز یا یسته ، دوربین مقدارنور را طوری تنظیم می کند که شما بتوانید دریک روز تاریک پاییز به خوبی روز آفتابی تابستان عکس بگیرید .اما اگر سوژه عکس شما بسیار روشن یا بسیار تاریک باشد ، نورسنج دوربین شما می تواند خیلی راحت گول بخورد وخود را برای اندازه ای اشتباه تنظیم کند .

تصحیح یا جبران نوردهی

اگر دوربین شما دارای کارکرد تصحیح نوردهی باشد ، می توانید ازاین امکان جهت تاباندن نور بیشتر یا کمتر به سنسور نوری استفاده کنید . کارکرد تصحیح نوردهی در عکاسی وسیله کمکی بسیار خوبی برای شرایط نوری نامناسب و یا مواقعی که سوژه عکس فوق العاده تیره و یا روشن است ، می باشد .

حالت اتوماتیک

درخیلی از دوربین ها تنظیم اندازه شاتر ودیافراگم به طور خودکار از طرف دوربین انجام می شود ، اما در عین حال می توان از حالتهای تقدم شاتر و یا تقدم دیافراگم ، هم جهت عکاسی در حالت اتوماتیک استفاده کرد. این بدین معنی است که شما یک سرعتی برای شاتر خود انتخاب می کنید و کار انتخاب و تنظیم دیافراگم را به دوربین واگذار می کنید و یا برعکس . استفاده از این امکانات برای به دست آوردن عمق میدان بیشتر ، حذف پس زمینه متحرک و یا منجمد کردن حرکت در عکس می تواند به کار رود .

دوربین دیجیتال چیست؟ قسمت 1
دوربین دیجیتال چیست؟ قسمت 2
دوربین دیجیتال چیست؟ قسمت 3

مدل سیستم خبره

یک مدل سیستم خبره مشتمل بر چهار بخش اصلی است:

پایگاه دانش (Knowledge Base)

    1. موتور استنتاج (Inference Engine)
    2. امکانات توضیح (Explanation Facilities)
    3. رابط کاربر (User Interface)

پایگاه دانش (Knowledge Base)

محلی است که دانش خبره به صورت کدگذاری شده و قابل فهم برای سیستم ذخیره می‌شود. با این توصیف دو اصطلاح زیر تعریف می‌شود:

— شیء (Object): منظور از شیء در اینجا نتیجه‌ای است که با توجه به قوانین مربوط به آن تعریف می‌گردد.
— شاخص (Attribute): منظور از شاخص یا «صفت» یک کیفیت ویژه است که با توجه به قوانینی که برای آن در نظر گرفته شده است به شما در تعریف شیء یاری می‌دهد.

بنابراین می‌توان پایگاه دانش را به صورت لیستی از اشیاء که در آن قوانین و شاخص‌های مربوط به هر شیء نیز ذکر شده است در نظر گرفته شود.
در ساده‌ترین حالت (که در اکثر کاربردها نیز همین حالت بکار می‌رود) قانونی که به یک شاخص اعمال می‌شود این مطلب را بیان می‌کند که آیا شیء مورد نظر شاخص دارد یا ندارد؟
یک سیستم متخصص که انواع مختلف میوه را شناسایی می‌کند احتمالاً دارای بانک اطلاعاتی به صورت زیر خواهد بود:

شیء قانون شاخص
سیب دارد روی درخت رشد می‌کند.
دارد گرد است
دارد رنگ قرمز یا زرد است
ندارد در کویر رشد می‌کند

بانک ساده شده بالا، تنها با استفاده از قانون <<دارد>>:

شیء شاخص‌هایی که دارد
سیب رشد روی درخت
سیب گرد بودن
سیب رنگ قرمز یا زرد
سیب رشد نکردن در کویر

به کسی که دانش خبره را به صورت کدگذاری شده درمی‌آورد، مهندس دانش گفته می‌شود. به طور کلی دانش به صورت عبارات شرطی و قواعد در پایگاه دانش ذخیره می‌گردد.

فریمها(Minsky(1975، و پس از آن هستان شناسی‌ها از روشهای مدرن جهت ارائه دانش در سیستم‌های خبره‌اند.

موتور استنتاج (Inference Engine)

حتی زمانی که قلمرو دانش را با قوانین نمایش می‌دهیم، باز هم یک فرد خبره باید مشخص کند که کدام قوانین را برای حل مسئله خاصی به کار می‌برد. علاوه بر این باید مشخص کند که این قوانین را در چه رده‌ای به کار می‌برد. به طور مشابه یک سیستم خبره نیاز خواهد داشت تا تصمیم بگیرد که چه قانونی و در چه مورد و رده‌ای باید برای ارزیابی انتخاب شود.

دستگاه استنتاج در واقع قلب یک سیستم خبره است. یک نظام پیچیده که قواعد استنتاج را که به صورت مجموعه‌ای از قواعد “اگر … پس …” برای یافتن پاسخ یا قضاوت نهایی به کار می‌گیرد چیزی که سیستم خبره را سیستم خبره می‌کند روشی است که این قواعد براساس آن مورد پردازش قرار می‌گیرند. دستگاه استنتاج برای رسیدن به قضاوت می‌تواند به دو صورت عمل کند و در واقع ازسلسله مراتب قواعد استدلال به دو طریق عبور کند یکی از دو شیوه روش استدلال پیش رو است که از داده‌ها شروع می‌کند و به نتیجه می‌رسد یعنی با درنظر گرفتن داده‌های مربوط به موضوع مورد سؤال از (اگر)ها شروع کرده و به نتایج یا (پس)های مناسب می‌رسد به عبارت دیگر در زنجیره پیش رو از مقدمات به نتایج می‌رسیم، روش دوم استنتاج آن است که از نتایج شروع می‌کند و برای چنان نتایج مشخص به دنبال مقامات یا شرایط اولیه مناسب می‌گردد به عبارت دیگر نقطه شروع (پس)ها هستند و از آن‌ها به (اگر)ها دست می‌یابد. روش اول استنتاج را روش مبتنی بر داده و روش دوم را روش مبتنی بر هدف می‌خوانند.

امکانات توضیح (Explanation Facilities)

برای نشان دادن مراحل نتیجه‌گیری سیستم خبره برای یک مسئله خاص با واقعیات خاص به زبان قابل فهم برای کاربر به کار می‌رود. این امکانات این فایده را دارد که کاربر با دیدن مراحل استنتاج اطمینان بیشتری به تصمیم گرفته شده توسط سیستم خواهد داشت؛ و خبره‌ای که دانش او وارد پایگاه دانش شده است اطمینان حاصل خواهد کرد که دانش او به صورت صحیح وارد پایگاه دانش شده است.

رابط کاربر

منظور از رابط کاربر، مجموعه‌ای از تجهیزات و نرم‌افزارها است که به صورت کانال ارتباط کاربر و سیستم خبره عمل می‌کند یعنی به کاربر امکان ارایه اطلاعات مربوط به مسئله مورد نظر را به سیستم می‌دهد و از طرف دیگر استنتاجات سیستم را در اختیار کاربر می‌گذارد.

واسط کاربر یک سیستم خبره طبیعتاً باید از قدرت تبادلی بالایی برخوردار باشد تا ساختار تبادل اطلاعات به شکل گفتگوی یک متقاضی و یک انسان خبره صورت گیرد.

مزایای یک سیستم خبره چیست؟

میزان مطلوب بودن یک سیستم خبره اصولاً به میزان قابلیت دسترسی به آن و میزان سهولت کار با آن بستگی دارد.

مزایای سیستم‌های خبره را می‌توان به صورت زیر دسته‌بندی کرد:

    • افزایش قابلیت دسترسی: تجربیات بسیاری از طریق کامپیوتر دراختیار قرار می‌گیرد و به طور ساده‌تر می‌توان گفت یک سیستم خبره، تولید انبوه تجربیات است.
    • کاهش هزینه:تجربیات بسیاری از طریق کامپیوتر دراختیار قرار می‌گیرد و به طور ساده‌تر می‌توان گفت یک سیستم خبره، تولید انبوه تجربیات است
    • کاهش خطر: سیستم خبره می‌تواند در محیط‌هایی که ممکن است برای انسان سخت و خطرناک باشد نیز بکار رود.
    • دائمی بودن: سیستم‌های خبره دائمی و پایدار هستند. به عبارتی مانند انسان‌ها نمی‌میرند و فنا ناپذیرند.
    • تجربیات چندگانه: یک سیستم خبره می‌تواند مجموع تجربیات و آگاهی‌های چندین فرد خبره باشد.
    • افزایش قابلیت اطمینان: سیستم‌های خبره هیچ وقت خسته و بیمار نمی‌شوند، اعتصاب نمی‌کنند یا علیه مدیرشان توطئه نمی‌کنند، درصورتی که اغلب در افراد خبره چنین حالاتی پدید می‌آید.
    • قدرت تبیین (Explanation): یک سیستم خبره می‌تواند مسیر و مراحل استدلالی منتهی شده به نتیجه‌گیری را تشریح نماید. اما افراد خبره اغلب اوقات به دلایل مختلف (خستگی، عدم تمایل و…) نمی‌توانند این عمل را در زمان‌های تصمیم‌گیری انجام دهند. این قابلیت، اطمینان شما را در مورد صحیح بودن تصمیم‌گیری افزایش می‌دهد.
    • پاسخ‌دهی سریع:سیستم‌های خبره، سریع و دراسرع وقت جواب می‌دهند.
    • پاسخ‌دهی در همه حالات: در مواقع اضطراری و مورد نیاز، ممکن است یک فرد خبره به خاطر فشار روحی یا عوامل دیگر، صحیح تصمیم‌گیری نکند ولی سیستم خبره این معایب را ندارد.
    • پایگاه تجربه: سیستم خبره می‌تواند همانند یک پایگاه تجربه عمل کند و انبوهی از تجربیات را در دسترس قرار دهد.
    • آموزش کاربر(Intelligent Tutor): سیستم خبره می‌تواند همانند یک خودآموز هوش عمل کند. بدین صورت که مثال‌هایی را به سیستم خبره می‌دهند و روش استدلال سیستم را از آن می‌خواهند.
    • سهولت انتقال دانش: یکی از مهمترین مزایای سیستم خبره، سهولت انتقال آن به مکان‌های جغرافیایی گوناگون است. این امر برای توسعه کشورهایی که استطاعت خرید دانش متخصصان را ندارند، مهم‌است.

مثال‌هایی از سیستم‌های خبره تجاری:

    • MYCIN : اولین سیستم متخصص موفق جهان بود که در سال ۱۹۷۰ در دانشگاه استنفورد طراحی شد. هدف از ساخت این سیستم کمک به پزشکان در تشخیص بیماری‌های ناشی از باکتری بود. مشکل عمده در تشخیص بیماری برای یک پزشک آن است که تشخیص سریع و قاطع یک بیماری با توجه به تعداد بسیار زیاد بیماری موجود، عملی دشوار است.MYCIN با تشخیص دادن قاطع بیماری‌ها توانست که این نیاز را برآورده سازد.
    • PROSPECTOR: یک متخصص در امر زمین‌شناسی است که احتمال وجود رسوبات معدنی در یک ناحیه بخصوص را پیش بینی می‌کند. این سیستم در سال ۱۹۸۷ توسط «ریچارد دودا» و «پیتر هارد» و «رنه ربو» ساخته شد.

در اوایل دهه ۸۰ سیستم‌های متخصص به بازار عرضه شد که می‌توانستند مشورت‌های مالیاتی، توصیه‌های بیمه‌ای یا قانونی را به استفاده کنندگان خود ارائه دهند.

مشخصه‌های سیستم خبره

    1. جداسازی دانش از کنترل – یک سطح پایین‌تر این مبحث، در پایگاه داده قابل مشاهده است. در پایگاه داده سعی بر این است که داده‌ها از رویه‌های پیاده‌سازی شونده روی داده‌ها، مجزا باشند. مزیت این جداسازی این است که تعمیم یافتگی در سیستم، افزایش می‌یابد.
    2. برخورداری از دانش خبره و تخصصی
    3. تمرکز بر روی تخصص‌های خاص و ویژه
    4. استدلال با نمادها
    5. استدلال هیوریستیک و تجربی – استدلالی که بر اثر تجربه به دست می‌آید.
    6. قابلیت استدلال نادقیق – یعنی با قوانین احتمالی هم استدلال نماید. سیستم خبره باید بتواند در محیط‌هایی که اطلاعات نادقیق است(کامل نیست) استدلال کند. این استدلال می‌تواند اشتباه باشد چون اطلاعات کامل نیست. مثلاً پزشکی را در نظر بگیرید که تجربه داردو تازه‌کار هم نیست، ولی زمانی که وضعیت بحرانی پیش می‌آید بااید بتواند با اطلاعات کم، بهترین تصمیم را بگیرد.
    7. محدودیت نسبت به مسائل قابل حل – تنها مسائل قابل حل، توسط سیستم‌های خبره، قابل پیاده‌سازی باشد. تا مسئله‌ای حل نشده باشد، سیستم خبره نمی‌تواند به آن پاسخ دهد. باید یک فرد خبره‌ای باشد که اطلاعات از او گرفته شده و در سیستم قرار داده شود.
    8. مناسب بودن سیستم خبره از نظر پیچیدگی – مسائل سیستم خبره نباید خیلی سخت و نه خیلی راحت باشد.
    9. احتمال اشتباه – ممکن است سیستم خبره در تعیین راه‌حل دچار مشکل شود.

منبع


سیستم های خبره

سیستم های خِبره یا سیستم‌های خِبره (Expert systems) به دسته‌ای خاص از نرم‌افزارهای رایانه‌ای اطلاق می‌شود که در راستای کمک به کاردانان و متخصّصان انسانی و یا جایگزین جزئی آنان در زمینه‌های محدود تخصّصی تلاش دارند. اینگونه سیستم ها، در واقع، نمونه‌های آغازین و ساده‌تری از فناوری پیش‌رفته‌تر سیستم های دانش-بنیان به شمار می‌آیند. تیم ما توانایی اجرا و پیاده سازی انواع سیستم های خبره را دارد.

اگر بخواهیم سیستم‌های خبره را در یک جمله توصیف کنیم باید بگوییم که این سیستم‌ها به‌طور کلی برنامه‌هایی هستند که قادرند همانند انسان مسایل خاصی را استدلال کنند. این سیستم‌ها برای استدلال، از الگوهای منطقی خاصی استفاده می‌کنند که مشابه همان کاری است که انسان در زمان حل یک مسئله عمل می‌کند. در واقع همان‌طور که انسان برای حل یک مسئله، تعقل یا اندیشه می‌کند، سیستم‌های خبره نیز برای این کار به الگوها و راه و روش‌هایی متوسل می‌شوند که انسان برای آن‌ها مشخص کرده است، بنابراین چون از منطق بشری استفاده می‌کنند می‌توان گفت که تا حدودی همانند انسان فکر می‌کنند.

سیستم های خبره در زمینه‌های بسیار متنوعی کاربرد یافته‌اند که برخی از این زمینه‌ها عبارتند از پزشکی، حسابداری، کنترل فرایندها، منابع انسانی، خدمات مالی، و GIS. حسابداری، تجزیه و تحلیلهای مالی پزشکی (تشخیص بیماری)، آنژیوگرافی، باستان شناسی، تولید ویفرهای سیلیکونی و انواع خاصی از پرتونگاری در زمینه‌های مختلف دیگری نیز سیستمهای خبره پدید آمده‌اند همانند: مشاوره حقوقی، مشاوره برای انتخاب بهترین معماری یا ترکیب بندی سیستم کامپیوتری، مشاوره مهندسی ساختمان و غیره.

در هر یک از این زمینه‌ها می‌توان کارهایی از نوع راهنمایی، پردازش، دسته‌بندی، مشاوره، طراحی، تشخیص، کاوش، پیش بینی، ایجاد مفاهیم، شناسایی، توجیه، یادگیری، مدیریت، واپایش، برنامه‌ریزی، زمان‌بندی و آزمایش را با مددجویی از سیستم های تجربی با سرعت و آسانی بیشتری به انجام رسانید.

سیستم های خبره یا به عنوان جایگزین فرد متخصص یا به عنوان کمک به وی استفاده می‌شوند.

سیستم­ های خبره سیستم­ های برنامه ­ریزی شده­ای هستند که پایگاه­ دانش آنها انباشته از اطلاعاتی است که انسان­ها هنگام تصمیم­ گیری درباره یک موضوع خاص بر اساس آن تصمیم می­گیرند.

درواقع سیستم خبره برنامه­ های کامپیوتری هستند که نحوه تفکر یک متخصص در یک زمینه خاص را شبیه‌سازی می­کند. این نرم‌افزارها، دارای الگوی منطقی­ هستند که یک متخصص براساس آنان تصمیم‌گیری می­کند. یکی از اهداف هوش مصنوعی، فهم هوش انسانی با شبیه‌سازی آن توسط برنامه کامپیوتری است. البته بدیهی است که هوش را می‌توان به بسیاری از مهارت­های مبتنی بر فهم، از جمله توانایی تصمیم­ گیری، یادگیری و فهم زبان تعمیم داده و از این‌رو یک واژه کلی محسوب می­شود. بیشترین دستاوردهای هوش مصنوعی، در زمینه تصمیم‌گیری و حل مسئله بوده است؛ که عالی­ترین موضوع سیستم خبره را شامل می­شود. به آن نوعی از برنامه هوش مصنوعی که به سطحی از خبرگی می­رسند که می­توانند به‌جای یک متخصص در یک زمینه خاص تصمیم­ گیری کنند، سیستم خبره می‌گویند.

جهانی شدن در هر مکانی سازمان­ها را در مقابل موقعیت­ های جدید رقابتی قرار داده است، مکانی که توانمندی‌های علمی و رفتارهای کارآ را به‌سوی فراهم کردن حاشیه رقابتی سوق می‌دهد. این روزها بسیاری از سازمان­ها سعی می‌کنند تا موقعیت رقابتی‌شان را از طریق استفاده بهتر از دانش و جستجو برای روش‌های جدید، به‌منظور آماده کردن و ارتقای تجربیات و سرمایه‌های عقلانی که برای خود در نظر گرفته‌اند، بهبود دهند. به‌عبارت دیگر، محیط­های تجاری پیچیده‌تر و رقابتی‌تر شده‌اند و نیاز به ابزارها برای کمک به تصمیم­گیران که قادر به تصمیم­گیری دقیق نیستند، بیشتر شده است. موفقیت یک سازمان به بسیاری از عوامل بستگی دارد. بسیاری از این عوامل، در خارج از کنترل سازمان­ها است؛ عواملی از قبیل قوانین و مقررات دولتی و غیره که تأثیر نسبتا شدیدی را بر تصمیم‌های سازمانی دارند؛ اما اکثر عواملی که بر تصمیم­های سازمان اثرگذارند، در حیطه کنترل و اختیار سازمان­ها است. تکنولوژی سخت‌افزارها و نرم­افزارهای کامپیوتری در سال­های اخیر، تغییرات مشخصی را ایجاد کرده‌اند.

مزیت این قبیل تکنولوژی­ها تولید، جمع ­آوری، ذخیره ­سازی، مدیریت و توزیع اطلاعات به‌صورتی راحت‌تر و اثربخش‌تر است. کامپیوترها رشد چشم‌گیری داشته‌اند و قابلیت در دسترس بودن آنها، موجب رشد استفاده از سیستم‌های اطلاعاتی را فراهم آورده است. سیستم­ خبره به‌عنوان سیستم اطلاعاتی که به‌منظور توجه به امکان‌پذیری و انتخاب مناسب در شرایط معین طراحی شده است، جهت­ گیری متفاوت و برجسته­ ای در مقایسه با سیستم­های اطلاعاتی که مبنای آن مبادله­ ای است، دارند. سیستم اطلاعاتی مبادله­ ای، ابزاری کارآ در رابطه با فرآیند ذخیره‌سازی مبادلات است؛ بدین دلیل، این سیستم­ها ساختار ویژه­ای را ارائه می‌دهند که به‌طور خلاصه بر مبنای پایگاه منظمی قرارگرفته است. بنابراین در حالی‌که سیستم­های اطلاعاتی مبادله‌گرا، دارای تمرکز اطلاعاتی هستند، سیستم خبره دارای تمرکز خاصی برتصمیم ­گیری­ ها است.

با توسعه تحقیقات هوش مصنوعی که هدف آن مشابه‌سازی ویژگی‌های انسان از طریق سیستم‌های کامپیوتر است، سیستم‌های خبره به‌عنوان سیستم‌هایی که بتوانند به‌جای انسان در فرایند تصمیم‌گیری به انتخاب بپردازند، در اواخر دهه 90 مطرح گردید. اما نخستین سیستم خبره اتوماتیک در سال 1965 میلادی در دانشگاه استنفورد به‌نام DENDRAL طراحی شد؛ که در شیمی کاربرد داشت و هدف آن کمک به جستجوی ساختار ترکیبات ارگانیکی بود که از راه محاسبه بر روی فرمول‌های شیمیایی به‌دست می‌آمد.

سیستم‌های پشتیبانی تصمیم (DSS Design Support System)

سیستم­های خبره یکی از شاخه ­ها و زیرمجموعه­ های مهم سیستم­های پشتیبانی تصمیم هستند؛ که با کمک به متخصصان انسانی و با شبیه­ سازی تفکر خاص یک متخصص به فرآیند تصمیم­ گیری و تصمیم‌سازی در سازمان­ها کمک­ های فراونی می­کنند. می­توان DSS یا سیستم‌های پشتیبانی تصمیم را به‌عنوان یک سیستم پشتیبانی مدیران، جهت حل مسائل نیمه ساختاریافته به‌وسیله فراهم کردن اطلاعات و پیشنهادات تعریف کرد .این پیشنهاد می­تواند به‌شکل تصمیم ­های توصیه‌شده و هم‌چنین فرآیندهای توصیه ­ای برای به جریان انداختن امور جاریه سازمان باشد؛ ظرفیت فرآیند توصیه­ ای در این مقوله، DSS را به‌عنوان یک سیستم خبره معرفی می­نماید.

DSS سیستم‌های هدفمندی هستند که مدل‌های تحلیلی را باداده‌های عملیاتی برای مدیرانی که با موقعیت‌های تصمیم نیمه ساختاریافته مواجه هستند، ترکیب می‌نمایند. این سیستم­ها، به تحلیل و مدل‌سازی مشکلات و مسائل غیر ساختاریافته کمک شایانی می­کنند؛ یکی از مواردی که مکرر از سیستم‌های DSS استفاده می­شود، بسته یا نرم‌افزارهای صفحه‌گستر هستند؛ که توسط این صفحه‌گسترها کاربران می­توانند مدل­های مختلف را ساخته و متغیرها و فرضیات مختلف را بررسی کنند.

اجزای سیستم­های خبره

کاربر؛ شخصی است که با سیستم ارتباط متقابل دارد؛ که دسته بندی‌های مختلفی از آن وجود دارد. در بین این دسته‌بندی‌ها، کاربری که از هرجهت درگیر با پروژه سیستم باشد، نقش مهمی در موفقیت ایجاد سیستم‌های خبره دارد. ایجاد سیستم‌های خبره تا زمانی‌که مورد پذیرش کاربر قرارنگرفته باشند، سودی نخواهد داشت.

فرد خبره؛ شخصی که متخصص در یک زمینه خاص نه در تمام زمینه‌ها بوده و طی سال‌ها تجربه در حل مسائل مربوط به یک زمینه خاص، تخصص یافته است.

مهندس دانش؛ شخصی است که سیستم‌های خبره را طراحی کرده و می‌سازد؛ یک متخصص کامپیوتر که بر روش‌های هوش مصنوعی اشراف دارد و می‌تواند روش‌های متفاوت هوش مصنوعی را به‌طور مقتضی در حل مسائل واقعی به‌کار گیرد.

پایگاه داده؛ مجموع داده‌هایی درباره موضوع‌ها و وقایعی است که در پایگاه دانش، به‌منظور دست‌یابی به‌نتایج مورد نظر به‌کار خواهد رفت.

پایگاه دانش؛ مشتمل بر دانش متخصص و شیوه‌های داد و ستد با پایگاه داده برای دست‌یابی به نتایج مورد نظر است.

موتور استنتاج؛ امکان استنتاج و نتیجه‌گیری از ارتباط بین پایگاه داده و پایگاه دانش را فراهم می‌کند.

سیستم توضیح؛ چگونگی دست‌یابی سیستم به یک نتیجه خاصی را برای کاربر تشریح می‌نماید. این موضوع از اهمیت ویژه‌ای برخوردار است؛ زیرا پذیرش و تأیید کاربر را افزایش می‌دهد و به شناسایی و تصحیح خطا واشکال‌های ساده سیستم نیز کمک می‌کند.

قسمت اکتساب دانش؛ که فرایند استخراج، طراحی و ارائه دانش است. در‌ اغلب موارد، استخراج دانش متخصص از طریق تکنیک مصاحبه صورت می‌گیرد.

مزایا و محدودیت­های سیستم­های خبره

از دستاوردهای سیستم­های خبره می­توان صرفه‌جویی در هزینه­ ها و نیز تصمیم­ گیری بهتر و دقیق‌تر را نام برد. استفاده از سیستم­های خبره، برای شرکت­ها می­تواند صرفه­ جویی به‌همراه داشته باشد، در زمینه تصمیم­ گیری نیز گاهی می­توان در شرایط پیچیده با بهره­ گیری از چنین سیستم­ هایی تصمیم‌های بهتری را اتخاذ کرد و جنبه­ های پیچیده­ ای را در مدت زمان بسیار کمی مورد بررسی قرار داد که تحلیل آن به روزها زمان احتیاج دارد.

از سوی دیگر، به‌کارگیری سیستم­ های خبره، محدودیت­های خاصی را به‌دنبال دارد؛ به‌عنوان نمونه، این سیستم­ ها نسبت به آنچه انجام می­دهند، هیچ حسی ندارند. چنین سیستم­ هایی نمی­توانند خبرگی خود را به گستردگی وسیعی تعمیم دهند؛ چراکه تنها برای یک منظور خاص طراحی شده­ اند و پایگاه دانش آنان از دانش متخصصان آن حوزه نشات گرفته است؛ به‌همین علت، محدود هستند. این سیستم‌ها از آنجا که توسط دانش متخصصان، تغذیه اطلاعاتی شده­ اند، درصورت بروز برخی از موارد پیش‌بینی نشده نمی­توانند شرایط جدید را به‌درستی تجزیه و تحلیل کنند.

ریموند دو مشخصه برای محدودیت پتانسیل سسیستم‌های خبره به‌عنوان یک وسیله حل مسئله امور بازرگانی بر‌می‌شمارد: نخست اینکه، آنها علم متناقض را نمی‌توانند کنترل نمایند. دوم، سیستم‌های خبره نمی‌توانند مهارت‌های غیر استدلالی که به‌عنوان مشخصه شخص حل‌کننده مسئله است، را به‌کار برند.

مشکلات استقرار سیستم­های خبره

یکی از موانع اصلی بر سر استقرار سیستم‌های اطلاعاتی و به‌خصوص سیستم­های هوشمند تصمیم ­گیری، نیروی انسانی موجود در سازمان است. مقاومت در برابر تغییر یکی از نشانه‌های اهمیت نیروی انسانی سازمان است. بیشتر افراد با شدت­های متفاوت به تغییرپذیری بی­علاقه ­اند. انسان­ها متشکل از عادات خود هستند هرچه انسان­ها می­دانند، حتی اگر مطلبی را به اشتباه یاد گرفته باشند، آن‌را به‌عنوان ارزش قابل احترامی برای خود می‌دانند. تغییر و اصلاح این ارزش­ها هرچند در افراد مختلف متفاوت است، ولی تغییرپذیری انسان‌ها مترادف با بی‌ارزش شدن دانسته­ هایشان تلقی می‌شود و مقاومت ناخودآگاه با آن امری اجتناب‌ناپذیر است.

از جمله کاربردهای سیستم های خبره می توان به موارد زیر اشاره کرد:

  • کنترل ترافیک شهرهای بزرگ
  • هواپیما و فرودگاه ها
  • کتابخانه ها
  • سامانه های تحلیل مالی
  • سامانه های آماری
  • سامانه های آسان کننده تصمیم گیری

منبع

سیستم خبره قسمت 1
سیستم خبره قسمت 2
سیستم خبره قسمت 3
سیستم خبره قسمت 4
سیستم خبره قسمت 5
سیستم خبره قسمت 6

مثال (۲) : بهبود کارایی الگوریتم سیستم ایمنی مصنوعی در مسائل بهینه‌سازی

برخی مسائل وجود دارند که به دلیل گستردگی و پیچیدگی بیش از حد فضای حالت مساله ، دستیابی به یک پاسخ بهینه در مدت زمان معقول و با استفاده از ابزارهای متعارف امکان پذیر نمی‌باشد. در این مثال الگوریتم های سبستم ایمنی به عنوان متاهیوریستیک استفاده شده است. همانند متاهیوریستیک‌های رایج الگوریتم سیستم ایمنی در گام‌های نخست ، ناحیه‌هایی از فضای حالت مساله که بهینه‌های محلی و سرارسری را در بر می گیرند را شناسایی نموده و در ادامه مسیر با همگرا شدن به بهینه‌های سراسری ، روند بهینه‌سازی متوقف می گردد. به بیان دیگر کاهش تنوع ژنتیکی در طی فرآیند تکامل باعث می‌شود تا روند جستجوی حالت مساله مختل گردد. دومین مشکلی که الگوریتم‌های سیستم ایمنی مصنوعی با آن مواجه می‌باشند ، عدم پایداری این الگوریتم‌ها در اجرا‌های مختلف می‌باشد. ماهیت اتفاقی بودن این الگوریتم ها باعث می شود تا کیفیت پاسخ‌هایی که الگوریتم در اجراهای مختلف نتیجه می‌دهد بسیار متنوع باشد.

در مثال ارائه شده جواد‌زاده و میبدی تلاش در تقویت الگوریتم‌های سیستم ایمنی مصنوعی با استفاده از استراتژی ترکیب دارند. بدین صورت که از یک هیوریستیک جستجوی محلی در آنتی‌بادی های حافظه استفاده می‌شود.

ترکیب الگوریتم سیستم ایمنی مصنوعی و جستجوی محلی

یکی از مهمترین جنبه‌های الگوریتم‌های سیستم ایمنی مصنوعی ، انتخاب و جامعه سلول‌هایی که بیشترین سطح تحریک را دارند که متناسب با میزان وابستگی آنتی‌ژنی است و همچنین از بین رفتن سلول‌هایی که تحریک نمی شوند می باشد. بر اساس این الگوریتم‌ها ، آنتی‌بادی‌ها بر اساس اعضاء جامعه با جهش و تکامی شناسگرهایشان تکامل می یابند و بهترین آنها وارد حافظه می شوند. به بیان دیگر آنتی بادی سلول های حافظه با استفاده از آنتی بادی هایی که در روند اجرای الگوریتم در برابر آنتی ژن ها ارزیابی و بهبود یافته اند ، بروزرسانی می شوند. بنابراین آنتی بادی سلول های حافظه بیشترین شایستگی را کسب می نمایند.

جهت بهبود دقت الگوریتم از روش جستجوی محلی در ناحیه آنتی بادی سلول های حافظه استفاده شده است. علت نامگذاری جستجو به جستجوی محلی ، انجام جستجو فقط در اطراف آنتی بادی سلول های حافظه در مقیاس کوچک می باشد. بنابراین با جستجوی محلی در ناحیه آنتی بادی های سلول های حافظه با مقیاس کوچک در اطراف بهترین آنتی بادی سلول های حافظه ، دقت الگوریتم افزایش یافته و شایستگی های آنتی بادی های سلول های حافظه افزایش یافته و بر سرعت همگرایی افزوده می شود.
جوادزاده و میبدی برای جستجوی محلی از جستجوی تپه نوردی و الگوریتم های ژنتیک استفاده نموده اند. در مسائلی که ابعاد فضای مسئله کوچک باشد جستجوی تپه نوردی دقت بالایی دارد و با بالا رفتن ابعاد فضای مسئله ، زمان اجراء به صورت نمایی افزایش می یابد. الگوریتم پیشنهادی به صورت زیر می باشد.

Code New Algorithm

 

در ادامه روند الگوریتم ، پس از بهبود آنتی بادی های سلول های حافظه ، علاوه بر اضافه نمودن تعداد آنتی بادی ها به صورت تصادفی به جمعیت آنتی بادی ها ، بخشی از آنتی بادی های حافظه برای افزایش سرعت همگرایی به جمعیت آنتی بادی ها افزوده می شود. برای اعمال عملگر ابرجهش از رابطه های (۷) و (۸) و برای تعیین اندازه جمعیت برای n آنتی بادی از رابطه (۹) استفاده شده است.

روابط 7 و8

 

 

 

 

در رابطه (۷) متغیر c’ تعداد آنتی بادی هایی است که تحت تاثیر عملگر ابرجهش قرار گرفته اند. و (N(0,1 عدد تصادفی تابع گوسین با میانگین صفر و انحراف معیار δ=1 می باشد.
در رابطه (۸) پارامتر β، پارامتری برای کنترل ضریب کاهش تابع نمایی و *f مقدار شایستگی است که در بازه [۰,۱] نرمال شده است.

روابط 9

 

 

 

در رابطه (۹) متغیر Nc مجموع اعضاء جمعیت تولید شده برای آنتی بادی ها، ضریب تکثیر، N تعداد آنتی بادی ها و ()round عملگری است که آرگومان ورودی خود را به نزدیکترین عدد گرد می نماید.

نتایج آزمایش ها

در این قسمت شبیه سازی راهکار پیشنهادی برای چهار تابع محک استاندارد یعنی روابط (۱۰) تا (۱۳) به ازاء کیفیت جواب بدست آمده بر اساس روش های مختلف جستجوی محلی توسط جوادزاده و میبدی مورد مطالعه قرار گرفته است.

روابط 10و11و12

 

 

 

 

 

 

روابط 13

 

جهت ارزیابی راهکارهای پیشنهادی (بجز در مورد جستجوی محلی تپه نوردی) توابع مورد آزمایش به صورت سی بُعدی و آنتی بادی ها به صورت اعداد حقیقی استفاده شده و راهکار پیشنهادی با ۱۰۰ بار تکرار برای بدست اوردن پاسخ بهینه مورد آزمون قرار گرفتند.

راهکار پیشنهادی با جستجوی محلی تپه نوردی

راهکار پیشنهادی از جستجوی تپه نوردی به عنوان جستجوی محلی استفاده می نماید و آنتی بادی های حافظه با استفاده از آن بهبود می یابند.جستجوی تپه نوردی مورد استفاده ، جستجوی تپه نوردی کامل است که در این روش مام همسایه ها در شعاع همسایگی معین بررسی و بهترین همسایه ، جایگزین حالت فعلی می گردد.

جواد زاده و میبدی در ادامه برای مطالعه روند همگرایی راهکار پیشنهادی با جستجوی محلی تپه نوردی ، بهترین ، بدترین ، میانگین و انحراف معیار ارزش تمام آنتی بادی های حافظه برای تمام توابع (روابط ۱۰ تا ۱۳) را آزمایش نموده اند. در جدول ۴ نتایج شیه سازی شده را برای راهکار پیشنهادی مشاهده می نمائید.

 

جدول 4

با توجه به این که تعداد تکرارهای مورد نیاز برای هربار اجرای جستجوی تپه نوردی از قبل قابل پیش بینی نبوده و پیچیدگی زمانی هر تکرار نیز نمایی می باشد ، زمان لازم برای اجرای الگوریتم در تکرارهای مختلف یکسان نبوده و حتی ممکن است در یک حالت خاص ، الگوریتم تقلیدی تبدیل به یک جستجوی کامل گردد و با بالا رفتن ابعاد فضای مسئله عملا این روش کارایی مناسبی نخواهد داشت.

بنابراین برای ارزیابی این راهکار پیشنهادی ، توابع مود آزمایش به صورا دو بعدی و آنتی بادی ها به صورت اعداد حقیقی کد گذاری می شوند.

راهکار پیشنهادی با جستجوی محلی ژنتیک

در این قسمت جوادزاده و میبدی از الگوریتم ژنتیکی استاندارد جهت جستجوی محلی استفاده نموده اند و آنتی بادی های حافظه را با استفاده از آن بهبود می بخشند. برای مطالعه روند همگرایی راهکار پیشنهادی با جستجوی محلی ژنتیک ، بهترین ، بدترین میانگین و انحراف معیار ارزش صآنتی باتدی های حافظه برای تمام توابع ۱۰ تا ۱۳ گزارش شده اند.

جدول ۵ نتایج شبیه سازی راهکار پیشنهادی را نشان می دهد. نتایج نشان می دهند که راهکار پیشنهادی با جستجوی محلی ژنتیک به جواب های بهینه همگرا می شوند و برای مقایسه ، نتایج الگوریتم سیستم ایمنی مصنوعی استاندارد در جدول ۶ مشاهده می شود.

 

جدول 5 و 6

در راهکار پیشنهادی از الگوریتم ژنتیکی استاندارد با مشخصات ارائه شده در جدول ۷ به منظور بهبود در آنتی بادی های حافظه استفاده شده است. همچنین در این الگوریتم از مکانیزم انتخاب چرخ رولت به منظور انتخاب والدها در عملگر پیوند استفاده شده است.

 

جدول 7

با توجه به نتایج حاصله در جدول های ۵ و ۶ جوادزاده و میبدی نتیجه گیری کرده اند که کارایی راهکار پیشنهادی نسبت به الگوریتم سیستم ایمنی مصنوعی تائید شده است.

نتیجه گیری

از مهمترین مشکلاتی که الگوریتم های سیستم ایمنی مصنوعی رایج با آن مواجه می باشند ، می توان به همگرایی کند به بهینه سراسری و همچنین عدم پایداری در اجراهای مختلف اشاره نمود. در مقاله جوادزاده و میبدی برای علبه بر این مشکلات از یک جستجوی محلی در اطراف آنتی بادی های حتافظه استفاده شده است. نتایج حاصل از شبیه سازی توسط این دو نفر نشان می دهد که این راهکار پاسخ های بهتری را در مقایسه با الگوریتم استاندارد یسیتم ایمنی مصنوعی نتیجه می دهد. اجرای مکرر شبیه سازی ها توسط این دو نفر نشان داده است که راهکار پیشنهادی از پایداری قابل قبولی برخوردار است.

 

برای دریافت مقاله به صورت pdf بر روی لینک کلیک کنید: Artificial-Immune-System-AIS

منبع


سیستم ایمنی مصنوعی به طور موفقیت آمیزی برای دامنه وسیعی از مسائل مانند تشخیص نفوذ به شبکه تا مدل های دسته بندی داده، یادگیری مفهوم، خوشه بندی داده، رباتیک، شناسایی الگو، داده کاوی، همچنین برای مقدار دهی اولیه وزن ها در شبکه عصبی و بهینه سازی توابع چند وجهی استفاده می شود.

هدف اصلی سیستم ایمنی طبیعی در بدن انسان، تمایز بین بافت خودی و عامل خارجی (غیر خودی یا آنتی ژن) است. سیستم ایمنی بدن، به مواد خارجی یا مواد بیماری زا (معروف به آنتی ژن) عکسل العمل نشان می دهد. در حین این واکنش، سیستم ایمنی برای تشخیص بهتر آنتی ژن دیده شده، تطبیق یافته و حافظه ای برای ثبت آنتی ژن های رایج ایجاد می کند. حافظه ایجاد شده باعث بهبود و سرعت بخشیدن به واکنش سیستم ایمنی تطبیق پذیر در برخوردهای آینده با همان آنتی ژن خواهد شد. شناسایی آنتی ژن ها منجر به تولید سلول های خاصی می شود که آنتی ژن را غیر فعال و یا نابود می کند. سیستم ایمنی بدن، همانند یک سیستم تشخیص الگو کار می کند، برای تشخیص الگوهای غیر خودی از الگوهای خودی.

در سیستم ایمنی طبیعی، آنتی ژن ها موادی هستند که می توانند پاسخ ایمنی را ایجاد کنند. پاسخ ایمنی واکنش بدن به آنتی ژن است، بنابراین از صدمه زدن آنتی ژن به بدن جلوگیری می کند. آنتی ژن ها می توانند باکتری، قارچ، انگل و یا ویروس باشند. یک آنتی ژن باید به عنوان یک خارجی تشخیص داده شود.

وظیفه تشخیص آنتی ژن ها بر عهده گلبول سفید با نام لنفوسیت است. دو نوع لنفوسیت وجود دارد: T-Cell و B-Cell، که هر دو در مغز استخوان تولید می شوند. B-Cell ها در تماس با آنتی ژن ها، آنتی بادی هایی تولید می کند که در مقابل آنتی ژن ها موثر است. آنتی بادی ها پروتئین های شیمیایی هستند و دارای شکل Y مانند هستند.

آنتی بادی ها دارای گیرنده های خاص برای تشخیص آنتی ژن ها هستند. زمانی که تماس بین آنتی بادی با یک B-Cell و آنتی ژن برقرار می شود، تکثیر کلونی در سطح B-Cell اتفاق می افتد و به کمک T-Cell تقویت می شود. در صورت آنکه یک آنتی بادی به جای تشخیص آنتی ژن، بافت خودی را به عنوان عامل خارجی تشخیص داد خودش را نابود می کند.

در حین تکثیر کلونی، دو نوع از سلول شکل می گیرد: سلول های پلاسما و سلول های حافظه. وظیفه سلول های حافظه تکثیر سلول های پلاسما برای واکنش سریعتر در مواجه تکراری با آنتی ژن ها و تولید آنتی بادی برای آن هاست. سلول پلاسما یک سلول B-Cell است که آنتی بادی تولید می کند.

بخش کوچکی از یک آنتی ژن اپیتپ و بخش کوچکی از آنتی بادی ها پاراتپ نامیده می شود. اپیتپ ها پاسخ ایمنی خاصی را طلب می کنند و پاراتپ ها در آنتی بادی ها می توانند به این اپیتپ با یک توان پیوند مشخص، پیوند بخورند. بعد از برقراری پیوند، بین پاراتپ یک آنتی بادی و اپیتپ یک آنتی ژن، ترکیب آنتی بادی-آنتی ژن تشکیل می شود که منجر به از کار افتادن آنتی ژن می شود.

از عملکرد سیستم ایمنی بدن در تشخیص و انهدام عوامل خارجی برای طراحی الگوریتم های متنوعی در بهینه سازی، یادگیری ماشین و شناسایی الگو بهره برداری شده است. سیستم ایمنی مصنوعی یا AIS مخفف Artificial Immune System است که اولین بار به عنوان یک الگوریتم توسط دی کاسترو و زوبن تحت نام الگوریتم کلونی ارائه شد.

ایده اصلی در سیستم ایمنی مصنوعی، برگرفته از فرآیند تکثیر سلولی پس از تشخیص عامل خارجی در سیستم ایمنی طبیعی است. این فرآیند در سیستم ایمنی مصنوعی با نام انتخاب کلونی شناخته می شود و شامل سه مرحله است. در مرحله اول، گروهی از بهترین سلول ها ( سلول هایی که آنتی بادی مربوط به آنها بیشترین تطابق را با آنتی ژن ها داشته باشد) انتخاب می شود. در اینجا عملا هر سلول معادل یه پاسخ مساله است همانند کروموزوم در یک الگوریتم ژنتیک. در مرحله دوم، سلول های انتخاب شده تحت عملیات کلون قرار گرفته و با توجه به یک پارامتر با نام نرخ تکثیر، مورد تکثیر واقع می شود. تعداد کپی هایی که از هر سلول تولید می شود بستگی به ارزش آن سلول دارد. هر چقدر برازش یک سلول بیشتر باشد، تعداد کپی های بیشتری از آن ایجاد خواهد شد. در مرحله سوم، سلول تکثیر شده تحت عملگری با نام فراجهش قرار می گیرد. این عملگر که مشابه عملگر جهش در الگوریتم ژنتیک است، با توجه به پارامتری با نام Pm که نرخ جهش است، تغییر کوچکی را به هر سلول تکثیر شده اعمال می کند. (شبیه عملگر جهش در GA). تفاوتی که عملگر فراجهش با عملگر جهش در GA دارد آن است که در فراجهش، اندازه تغییراتی که در سلول ایجاد می شود بستگی به برازش آن سلول دارد. هر چقدر یک سلول برازنده تر باشد، تغییرات کمتری به آن اعمال خواهد شد.

سیستم ایمنی مصنوعی به طور موفقیت آمیزی برای دامنه وسیعی از مسائل به کار رفته است. از مسائل تشخیص نفوذ به شبکه تا مدل های دسته بندی داده، یادگیری مفهوم، خوشه بندی داده، رباتیک، شناسایی الگو، داده کاوی، همچنین از سیستم ایمنی مصنوعی برای مقدار دهی اولیه وزن ها در شبکه عصبی و بهینه سازی توابع چند وجهی استفاده می شود.

خصوصیات مهم سیستم ایمنی مصنوعی به شرح زیر است:

1- استفاده از نمایش رشته بیتی

2- طول ثابت و یکسان برای هر سلول

3- به کارگیری یک جمعیت یا تعداد اعضا ثابت، البته در سیستم ایمنی مصنوعی می توان با تعریف طول عمر برای سلول های جمعیت، از یک جمعیت با تعداد اعضای متغیر نیز بهره برد.

4- در شبه کد، Selectionsize نشان گر تعداد سلول هایی است که برای انجام عملیات تکثیر، از جمعیت دور جاری در حلقه while انتخاب می شوند. به خاطر وجود همین مرحله در سیستم ایمنی مصنوعی، ماهیتی مشابه انتخاب داروینی وجود دارد.

5- برای تعیین عدد تکثیر سلولی برای یک سلول ایمنی انتخاب شده در تابع Clone از رابطه (Nc=Round(β,N,R استفاده می شود. در این رابطه Nc بیانگر تعداد کپی سلول β مبین نرخ تکثیرClonerate، همچنین N نشان گر تعداد سلول های جمعیت (Populationsize) و R بیانگر برازش مبتنی بر رتبه سلول مورد تکثیر است.

6- استفاده از جهش معکوش سازی بیت در عملگر فراجهش (عملگر جهش در AIS عملگر اصلی است).

7- برخلاف الگوریتم های تکاملی که معمولا احتمال جهش مقداری ثابت است، احتمال فراجهش Phm در سیستم ایمنی مصنوعی مقداری متغیر داشته و اندازه آن بستگی به برازش سلول ایمنی (عضو جمعیت) دارد. برای محاسبه احتمال فراجهش داریم: (Phm=exp(-Pm.f، در این رابطه Pm نرخ جهش بوده و f برازش سلول ایمنی مورد جهش است.

 

Code

 

منبع

 

 

سیستم ایمنی مصنوعی (AIS) قسمت 1
سیستم ایمنی مصنوعی (AIS) قسمت 2
سیستم ایمنی مصنوعی (AIS) قسمت 3
سیستم ایمنی مصنوعی (AIS) قسمت 4
سیستم ایمنی مصنوعی (AIS) قسمت 5
سیستم ایمنی مصنوعی (AIS) قسمت 6

نحوه عملکرد الگوریتم های ایمنی مصنوعی

الگوریتم های مطرح شده در سیستم های ایمنی مصنوعی را می توان به سه دسته تقسیم بندی نمود. دسته اول الگوریتم هایی که بر مبنای انتخاب جامعه سلول های B ایجاد شده اند. دسته دوم الگوریتم هایی که بر مبنای انتخاب معکوس سلول های T ایجاد شده اند. دسته سوم الگوریتم هایی که بر مبنای تئوری شبکه ایمنی بوجود آمده اند.

الگوریتم انتخاب جامعه (Clonal Selection)

این الگوریتم بر مبنای انتخاب جامعه سلول های B ایجاد شده است.بخش های اصلی این الگوریتم شامل شناسایی آنتی ژن، تکثیر و جهش سلول های B (آنتی بادی ها) و ایجاد سلول های حافظه است. در این الگوریتم اکثر سلول ها برای تکثیر انتخاب می شوند اما از همه سلول ها به یک اندازه تکثیر نمی شوند؛ بلکه سلول هایی که میل ترکیبی بیشتری دارند ، بیشتر تکثیر می شوند.

از طرف دیگر سلول هایی که میل ترکیبی کمتری داشته اند بیشتر تغییر می یابند. به بیان دیگر تکثیر نسبت مستقیمی با میل ترکیبی و جهش نسبت عکس با میل ترکیبی دارد. بدین ترتیب میل ترکیبی سلول ها به مرور زمان افزایش یافته و تنوع نیز حفظ می شود.

مراحل الگوریتم انتخاب جامعه

مراحل الگوریتم انتخاب جامعه عبارتند از :

 

 

Code Clonal Selection

 

مراحل الگوریتم انتخاب جامعه

 

الگوریتم انتخاب معکوس (Negative Selection)

این الگوریتم بر مبنای سلول های T ایجاد شده است.سلول های T می توانند سلول های خودی و غیر خودی را از یکدیگر تشخیص دهند.الگوریتم انتخاب معکوس دو مرحله دارد. مرحله اول که مرحله یادگیری است مشابه کار تیموس را انجام می دهد. یعنی سلول هایی که سلول های خودی را شناسایی می کنند را حذف می کند. مرحله دوم، مرحله نظارت یا اجراء است. در این مرحله الگوها (آنتی ژن ها) با سلول های T باقیمانده از مرحله اول مقایسه شده و در صورت شناسایی حذف می شوند. این الگوریتم در شناسایی الگو و امنیت نظارتی کاربرد دارد.

مراحل الگوریتم انتخاب معکوس

فرض می کنیم S مجموعه الگوهای خودی باشد که باید محافظت شده و مجموعه A نیز محافظ ها می باشند.

 

با توجه به مراحل فوق این الگوریتم دارای قابلیت یادگیری است. پس از یادگیری از مجموعه A در مرحله نظارت یا اجراء استفاده می شود.در این مرحله هر الگوی ورودی با الگوهای جدیددر مجموعه A مقایسه می شود و در صورتی که میل ترکیبی آنها از یک حد آستانه ای بیشتر شود ، الگوی ورودی به عنوان یک الگوی غیرخودی حذف می شود.

الگوریتم شبکه ایمنی (Immune Network)

الگوریتم انتخاب جامعه دارای چند مشکل است. اول اینکه آنتی بادی های حاصل از این الگوریتم نسبت به آخرین داده های ورودی یعنی آنتی ژن ها تنظیم می شوند. دوم اینکه آنتی بادی ها تمایل دارند که در نزدیکی یکدیگر تجمع کنند.به بیان دیگر چندین آنتی بادی مقداری نزدیک به هم بدست می آورند. الگوریتم شبکه ایمنی مصنوعی این دو نقص الگوریتم انتخاب جامعه را برطرف می نماید.

در یک شبکه ایمنی مصنوعی ، برای آنتی بادی بجز میل ترکیبی با آنتی ژن ، معیارهای ارزیابی دیگری نیز وجود دارد.معیار ارزیابی اصلی در شبکه ایمنی مصنوعی میزان تحریک شدن آنتی بادی است.میزان تحریک آنتی بادی بر مبنای میل ترکیبی آنتی بادی با آنتی بادی های دیگر و میل ترکیبی سایر آنتی بادی ها با آنتی بادی مورد نظر محاسبه می شود.در صورتیکه یک آنتی بادی ، آنتی بادی دیگر یا آنتی ژن را شناسایی کند ، تحریک می شود اما از طرف دیگر شناسایی شدن یک آنتی بادی توسط آنتی بادی دیگر تاثیر بازدارندگی بر روی آن دارد. میزان تحریک یک آنتی بادی بطور کلی از رابطه زیر بدست می آید:

S = Nt – ct + Ag

Nt : میزان تحریک شدن آنتی بادی توسط شبکه است.
ct : میزان بازدارندگی شبکه ای آنتی بادی می باشد.
A : میزان تحریک آنتی بادی توسط آنتی ژن است.

به دلیل هزینه محاسباتی زیاد رابطه فوق ، الگوریتم های مختلفی برای شبکه ایمنی مصنوعی ارائه شده که از نسخه ساده شده رابطه فوق استفاده می نمایند.

مراحل الگوریتم شبکه ایمنی مصنوعی

الگوریتم شبکه ایمنی مصنوعی را می توان بطور کلی به صورت زیر تعریف کرد:

Code Immune Network

مراحل الگوریتم شبکه ایمنی مصنوعی

الگوریتم aiNET

الگوریتم های متفاوتی برای شبکه ایمنی مصنوعی مطرح شده است که هر یک از آنها بخش های مختلف را به روش خود تعریف کرده اند. یکی از الگوریتم های معروف؛ الگوریتم aiNET می باشد. طبق تعریف aiNET گرافی وزن دار است که ممکن است کاملا همبند نباشد. گره های این گراف را آنتی بادی ها تشکیل می دهند و وزن لبه ها نمایانگر استحکام ارتباط میان دو گره می باشد. مراحل الگوریتم aiNET عبارتند از :

مراحل الگوریتم aiNETمراحل الگوریتم aiNET

مراحل ۱،۲ تا ۸،۲ در الگوریتم فوق انتخاب جامعه می باشد. در مرحله ۴،۲ جهش از رابطه   فرمول جهش   بدست می آید که در آن c’ ماتریس آنتی ژن، c جامعه آنتی بادی ها و ضریب یادگیری یا نرخ جهش است. نرخ جهش در این الگوریتم از حاصل ضرب یک عدد ثابت و یک عدد تصادفی با توزیع یکنواخت در بازه صفرو یک در فاصله آنتی بادی و آنتی ژن بدست می آید.

در الگوریتم فوق، جامعه سازی متناسب با میل ترکیبی باعث می شود که عمل استخراج در نزدیکی پاسخ به خوبی انجام شود زیرا هرچه آنتی بادی به آنتی ژن نزدیک تر باشد، نمونه های مشابه بیشتری تولید می کند و در نتیجه عمل استخراج بهتری انجام می شود.

جهش نیز با توجه به رابطه ای که بیان شد، منتاسب با عکس میل ترکیبی است. یعنی هرچه میل ترکیبی بیشتر باشد (فاصله کمتر)، جهش ها کوچکتر می شود و عمل استخراج صورت می پذیرد و هرچه میل ترکیبی کمتر باشد (فاصله بیشتر) در نتیجه جهش های برزگتری انجام می شود. بدین ترتیب آنتی بادی هایی که از جواب دور هستند عمل اکتشاف و آنتی بادی هایی که نزدیک جواب هستند عمل استخراج را انجام خواهند داد.

مراحل ۹،۲ و ۴ به ترتیب اعمال بازدارندگی جامعه و شبکه را انجام خواهند داد. در مرحله ۹،۲ الگوریتم عمل بازدارندگی روی مجموعه اعضاء جامعه ایجاد شده برای هر آنتی زن جاری انجام می گیرد و در مرحله ۴ این عمل بر روی تمامی آنتی بادی های شبکه انجام می شود. این دو مرحله باعث می شوند آنتی بادی هایی که آنتی ژن های مشابهی را شناسایی می کنند، حذف شوند.

پارامتر حد آستانه، انعطاف پذیری شبکه، دقت خوشه بندی و میزان اختصاص بودن هر یک از آنتی بادی ها را تعیین می کند. هرچه مقدار کوچکتر باشد، آنتی بادی های شبکه می توانند به هم نزدیکتر شوند و در نتیجه دقت خوشه بندی شبکه و میزان اختصاص بودن بیشتر می شود. از طرف دیگر هرچه اتدازه بزرگتر شود، هر آنتی بادی محدوده بزرگتری را شناسایی می کند و در نتیجه شبکه از نظر حاصل از نظر تعداد آنتی بادی کوچک تر می شود و دقت خوشه بندی آن کمتر می شود.

پس از مرحله ۵ الگوریتم، خروجی شبکه به صورت مجموعه ای از آنتی بادی ها (گره های گراف) و میل ترکیبی آنها (لبه های گراف) بدست می آید که یک گراف کامل است. به منظور انجام عمل خوشه بندی، باید تعدادی از یال های گراف حذف شوند تا گراف خوشه های مختلف گراف از یکدیگر جدا شوند. برای این منظور می توان از مقدار آستانه استفاده کرد اما این روش کارایی ندارد.

در سال ۲۰۰۰ میلادی کاسترو در همایش شبکه های عصبی مصنوعی در ریودژانیروی برزیل، روش دیگری ارائه نمود. در روش کاسترو ابتدا درخت پوشای مینیمم گراف محاسبه شده و سپس یال هایی که مقدار آنها از یال های هم جوارشان به صورت مشخصی بیشتر است حذف می شوند. گره های باقیمانده به یک کلاس تعلق دارند.

 

Code aiNET Algorithm

 

معرفی انواع کاربرد سیستم های ایمنی مصنوعی

به طور کلی، سیستم‌های ایمنی مصنوعی جزء الگوریتم‌های الهام گرفته شده از بیولوژی هستند. این نوع الگوریتم‌ها، الگوریتم‍ هایی کامپیوتری هستند که اصول و ویژگی‌های آنها نتیجه بررسی در خواص وفقی و مقاومت نمونه‌ها بیولوژیکی است. سیستم ایمنی مصنوعی نوعی الگو برای یادگیری ماشین است. یادگیری ماشین، توانایی کامپیوتر برای انجام یک کار با یادگیری داده‌ها یا از روی تجربه است. تعریف کاسترو از سیستم ایمنی عبارتست از :

“سيستم هاي وفقي كه با الهام از ايمونولوژي نظري و توابع، اصول و مدل هاي ايمني مشاهده شده به وجود آمده‌اند و برای حل مسائل مورد استفاده قرار می‌گیرند.”

كاسترو و تيميس سه ویژگی زیر را برای الگوريتم ايمني مصنوعي معرفی نموده اند:

۱٫ در هر الگوريتم ايمني مصنوعي، حداقل بايد يك جزء ايمني مانند لنفوسيت ها وجود داشته باشد.
۲٫ در هر الگوريتم ايمني مصنوعي بايد ايده اي برگرفته از بيولوژي نظري يا تجربي استفاده شود.
۳٫ الگوريتم ايمني مصنوعي طراحي شده بايد به حل مسئله اي كمك كند.

بر اساس سه ویژگی فوق، كاسترو و تيميس، اولين الگوريتم هاي ايمني مصنوعي را در سال ۱۹۸۶ طراحي كردند. در همان سال فارمر مدلی برای تئوری شبکه ایمنی ارائه کرد و بر اساس این مدل اعلام کرد که “سیستم ایمنی قادر به یادگیری، به خاطر سپردن و تشخیص الگوست.” بعد از نظر فارمر، توجه به سیستم ایمنی مصنوعی به عنوان یک مکانیزم یادگیری ماشین شروع شد. پس از آن به تدریج سیستم ایمنی مصنوعی ، در زمینه‌های مختلف وفق پذیر و جذاب بودن خود را نشان داد.

سیستم ایمنی علاوه بر توانایی تشخیص الگو، صفات دیگری از قبیل یادگیری، حافظه، خود سازماندهی و از منظر مهندسی، خصوصیات دیگری مانند تشخیص بی‌قاعدگی، تحمل خطا، توزیع‌پذیری و مقاومت بالا دارا می باشد. از زمان آغاز بحث سیستم ایمنی مصنوعی ، این سیستم برای اهداف متنوعی به کار گرفته شده است. این کاربردها را می توان تحت ۹ عنوان کاربردی دسته‌بندی نمود. این عناوین کاربردی عبارتند از :

۱٫ تشخیص عیب (Fault Detection)
۲٫ تشخیص ناهنجاری (Anomaly Detection)
۳٫ تشخیص نفوذ (Intrusion Detection)
۴٫ امنیت اطلاعات (Information Security)
۵٫ مسائل بهینه سازی (Optimization Problems)
۶٫ دسته بندی الگوها (Patterns Classification)
۷٫ زمانبندی (Scheduling)
۸٫ خوشه بندی (Clustering)
۹٫ سیستم های یادگیرنده (Learning Systems)

در ادامه به تشریح دو مثال از کاربردهای سیستم ایمنی مصنوعی می پردازیم.

سیستم ایمنی مصنوعی (AIS) قسمت 1
سیستم ایمنی مصنوعی (AIS) قسمت 2
سیستم ایمنی مصنوعی (AIS) قسمت 3
سیستم ایمنی مصنوعی (AIS) قسمت 4
سیستم ایمنی مصنوعی (AIS) قسمت 5
سیستم ایمنی مصنوعی (AIS) قسمت 6

مسئله چند وزیر یک معمای شطرنجی و ریاضیاتی است که بر اساس آن باید n وزیر شطرنج در یک صفحه n×n شطرنج به‌گونه‌ای قرار داده شوند که هیچ‌یک زیر ضرب دیگری نباشند. با توجه به اینکه وزیر به‌صورت افقی، عمودی و اُریب حرکت می‌کند، باید هر وزیر را در طول، عرض و قطر متفاوتی قرار داد.

اولین و مشهورترین شکل این مسئله معمای هشت وزیر است که برای حل آن باید ۸ وزیر را در یک صفحهً معمولی (۸×۸) شطرنج قرار داد. این مسئله ۹۲ جواب دارد که ۱۲ جواب آن منحصر به‌فرد است یعنی بقیه جواب‌ها از تقارن جواب‌های اصلی به‌دست می‌آید.

مسئله n وزیر در صورتی جواب دارد که n مساوی ۱ یا بیشتر از ۳ باشد. یعنی مسئله دو وزیر و سه وزیر راه حلی ندارند.

تاریخچه

این مسئله در سال ۱۸۴۸ توسط شطرنج بازی به نام Max Bezzel عنوان شد و ریاضی دانان بسیاری ازجمله Gauss و Georg Cantor بر روی این مسئله کار کرده و در نهایت آن را به n وزیر تعمیم دادند. اولین راه حل توسط Franz Nauck در سال ۱۸۵۰ ارائه شد که به همان مسئله n وزیر تعمیم داده شد. پس از آن Gunther راه حلی با استفاده از دترمینان ارائه داد که J.W.L. Glaisher آن را کامل نمود. در سال ۱۹۷۹، Edsger Dijkstra Nauck این مسئله را با استفاده از الگوریتم عقب‌گرد حل کرد.

حل مسئله

هشت وزیر را می‌توان با الگوریتم‌های مختلفی مانند تپه نوردی و روش ارضای محدودیت(csp) حل کرد که در زیر روش ارضای محدودیت را بررسی می‌کنیم. هر وزیری در هر ستونی هدفی دارد که همان مکانش در هرستون می‌شود یک گره .در کد زیر تعریف مکان‌ها را داریم:

Variables: { Q1, Q2, Q3, Q4 }

Domain: { (1, 2, 3, 4), (1, 2, 3, 4), (1, 2, 3, 4), (1, 2, 3, 4) }

Constraints: Alldifferent( Q1, Q2, Q3, Q4 ) and 
for i = 0...n and j = (i+1)...n, k = j-i, Q[i] != Q[j] + k and Q[i] != Q[j] - k

و این الگوریتم که برای جواب هر خانه‌است به دست می‌آید که یک csp است

min-conflicts(csp, max):
initial := complete assignment ;jamiyate avaliye
for 1..max do: ;az 1 .. akharin khane
if initial is a solution: ;if jamiyate tolide javab bod 
return initial ;barmigardanad
var := nextVar() ;da ghire indorat yek motaghair be jelo
value := leastConflicts( var ) ;taeein meghdar
var := value in initial ;gharar dadan meghdar dar motaghair
return failure ;bargash be ebtedaye algoritm

صورت مسئله

هدف از مسئله n وزیر، چیدن n مهره وزیر در یک صفحه شطرنج(n*n) است، به‌طوری‌که هیچ دو وزیری یکدیگر را گارد ندهند، یعنی هیچ دو مهره‌ای نباید در یک سطر، ستون یا قطر یکسان باشند. وزیر در خانه‌های شطرنج به صورت عرضی، طولی و قطری می‌تواند حرکت کند. مسئله n وزیر از جمله مسائل NP در هوش مصنوعی است که روش‌های جستجوی معمولی قادر به حل آن‌ها نخواهد بود

شمردن تعداد جواب‌ها

جدول زیر تعداد راه حل‌ها برای قرار دادن n وزیر بر روی صفحه n × nنشان می‌دهد. هر دو منحصر به فرد و متمایز، برای تعداد ۱-۱۴،۲۴-۲۶ است.

مسئله ی چند وزیر

  • توجه:

حالت شش وزیر جواب‌های کمتری نسبت به پنج وزیر دارد و فرمول صریحی برای یافتن تعداد جواب‌ها وجود ندارد.

روش‌های حل مسئله

الگوریتم عقبگرد

از تکنیک عقبگرد Backtracking برای حل مسائلی استفاده می‌شود که در آن‌ها دنباله‌ای از اشیاء از یک مجموعه مشخص انتخاب می‌شود، به‌طوری‌که این دنباله، ملاکی را در بر می‌گیرد. عقبگرد حالت اصلاح شدهٔ جستجوی عمقی یک درخت است. این الگوریتم همانند جستجوی عمقی است، با این تفاوت که فرزندان یک گره فقط هنگامی ملاقات می‌شوند که گره امید بخش باشد و در آن گره حلی وجود نداشته باشد. با توجه به اینکه هیچ ۲ وزیری نباید همدیگر را گارد کنند و در یک سطر نمی‌توانند باشند، تعداد کل حالت‌ها برای n=۴ برابر ۴*۴*۴*۴=۲۵۶ است. در شطرنج یک وزیر می‌تواند به مهره‌هایی که در خانه‌های عمود یا مورب به وی قرار دارند حمله کند. یا به عبارت ریاضی، اگر ردیفها و ستونهای شطرنج را از یک تا هشت شماره‌گذاری کنیم و وزیر در خانه (i، j) قرار داشته باشد، مهره‌هایی که در خانه‌های (i، m) یا (m، j) یا (i ± m، j ± m) قرار دارند توسط وزیر تهدید می‌شوند.

برای سادگی تشریح این مسئله با استفاده از روش بازگشت به عقب، فرض می‌کنیم که خانه‌های شطرنج ۴x۴ و تعداد وزیرها نیز ۴ باشد. سپس بعد از یافتن راه حل برای این مسئله ساده شده، اقدام به نوشتن الگوریتم برای مسئله اصلی می‌کنیم.

مراحل جستجو برای یافتن جواب را به این صورت دنبال می‌کنیم که: وزیر اول را در ردیف اول و ستون اول قرار می‌دهیم.

در ردیف دوم از اولین ستون به جلو رفته و به دنبال خانه‌ای می‌گردیم که مورد تهدید وزیر اول نباشد و وزیر دوم را در این خانه قرار می‌دهیم.

همانند قبل، در ردیف سوم از اولین ستون به جلو رفته و به دنبال خانه‌ای می‌گردیم که مورد تهدید وزیران اول و دوم نباشد. می‌بینیم که چنین خانه‌ای موجود نیست. پس به عقب یعنی ردیف دوم برگشته و وزیر دوم را به خانه‌ای دیگر از ردیف دوم منتقل می‌کنیم که مورد تهدید وزیر اول نباشد.

دوباره در ردیف سوم اولین خانه‌ای را میابیم که مورد تهدید دو وزیر قبلی نباشد. این بار خانه را می‌یابیم و وزیر سوم را در آن قرار می‌دهیم.

همانند قبل، در ردیف چهارم به دنبال اولین خانه‌ای می‌گردیم که مورد تهدید وزیران پیشین نباشد. چنین خانه‌ای موجود نیست. به ردیف قبل یعنی ردیف سوم باز می‌گردیم تا خانه‌ای دیگر برای وزیر سوم بیابیم. خانه دیگری وجود ندارد. به ردیف قبل یعنی ردیف دوم بر می‌گردیم تا خانه دیگری برای وزیر دوم پیدا کنیم. به آخرین ستون رسیده‌ایم و خانه دیگری نیست. به ردیف قبل یعنی ردیف اول بر می‌گردیم و وزیر اول را یک ستون به جلو می‌بریم.

در ردیف دوم اولین خانه‌ای را میابیم که مورد تهدید وزیر اول نباشد و وزیر دوم را در آن خانه قرار می‌دهیم.

در ردیف سوم اولین خانه‌ای را میابیم که مورد تهدید وزیران اول و دوم نباشد و وزیر سوم را در آن خانه می‌گذاریم.

در ردیف چهارم اولین خانه‌ای را میابیم که مورد تهدید وزیران پیشین نباشد. این بار خانه را می‌یابیم و وزیر چهارم را در آن خانه قرار می‌دهیم.

به یک جواب می‌رسیم. حال اگر فرض کنیم که این خانه جواب نیست و به مسیر خود ادامه دهیم، احتمالاً” می‌توانیم جوابهای دیگری نیز بیابیم.

شبه کد پیاده‌سازی الگوریتم عقبگرد برای مسئله n وزیر

void queens (index i)
{
	index j;
	if (promising(i))
		if (i == n)
			cout &amp;amp;amp;amp;lt;&amp;amp;amp;amp;lt; col[1] through col[n];
		else
			for (j = 1; j &amp;amp;amp;amp;lt;= n; j++) {
				col[i + 1] = j;
				queens(i + 1);
			}
}
bool promising (index i)
{
	index k;
	bool Switch;
	k = 1;
	Switch = true ;
	while (k &amp;amp;amp;amp;lt; i &amp;amp;amp;amp;amp;&amp;amp;amp;amp;amp; switch) {
		if (col[i] == col[k] || abs(col[i] – col[k] == i - k))
			switch = false;
		k++;
	}
	return Switch;
}

برنامه زبان C به صورت غیر بازگشتی

# include &amp;amp;amp;amp;lt;stdio.h&amp;amp;amp;amp;gt;

int b[8];

inline static int unsafe(int y) {
        int i, t, x;
        x = b[y];
        for (i = 1; i &amp;amp;amp;amp;lt;= y; i++) {
                t = b[y - i];
                if ((t == x) ||
                     (t == x - i) ||
                     (t == x + i)) {
                        return 1;
               }
       }

        return 0;
}

static void putboard(void) {
        static int s = ۰;
        int x, y;
        printf("\n\nSolution #٪i\n", ++s);
        for (y = 0; y &amp;amp;amp;amp;lt; 8; y++) {
                for (x = 0; x &amp;amp;amp;amp;lt; 8; x++) {
                        printf((b[y] == x) ? "|Q": "|_");
               }
                printf("|\n");
       }
}

int main(void) {
        int y = ۰;
        b[۰] = -۱;
        while (y &amp;amp;amp;amp;gt;= ۰) {
                do {
                        b[y]++;
               } while ((b[y] &amp;amp;amp;amp;lt; 8) &amp;amp;amp;amp;amp;&amp;amp;amp;amp;amp; unsafe(y));
                if (b[y] &amp;amp;amp;amp;lt; 8) {
                        if (y &amp;amp;amp;amp;lt; 7) {
                                b[++y] = -۱;
                       } else {
                                putboard();
                       }
               } else {
                        y--;
               }
       }

        return 0;
}

برنامه زبان ++C به صورت بازگشتی

  • برنامه زیر برای هشت وزیر نوشته شده‌است با انتخاب اعداد دیگر به جای هشت در define MAXSIZE 8 # می‌توان برای تعداد دیگری وزیر نیز استفاده کرد.
# include &amp;amp;amp;amp;lt;assert.h&amp;amp;amp;amp;gt;
# include &amp;amp;amp;amp;lt;stdio.h&amp;amp;amp;amp;gt;

# define MAXSIZE 8
class EightQueens
{
    int m_size;				
    int m_solution_count;		
    int m_attempt_count;		
    int m_queen[MAXSIZE];		
    bool m_row_inuse[MAXSIZE]; 		
    bool m_diag_rise[MAXSIZE*2];	
    bool m_diag_fall[MAXSIZE*2];	

public:

    EightQueens(int size, bool is_alt) {

	assert(size &amp;amp;amp;amp;lt;= MAXSIZE);

	m_size = size;
	m_solution_count = 0;
	m_attempt_count = 0;

	for (int i = 0; i &amp;amp;amp;amp;lt; m_size; i++) {
	    m_queen[i] = i;
	    m_row_inuse[i] = 0;
	}

	for (int j = 0; j &amp;amp;amp;amp;lt; m_size*2; j++) {
	    m_diag_rise[j] = 0;
	    m_diag_fall[j] = 0;
	}

	if (is_alt) SearchAlt(0);
	else        Search(0);

   }

    int GetSolutionCount() {
	return m_solution_count;
   }

    int GetAttemptCount() {
	return m_attempt_count;
   }

private:

    void SearchAlt(int col){

	if (col == m_size) {
	    m_solution_count++;
	    return;
	}

	for (int row = 0; row &amp;amp;amp;amp;lt; m_size; row++) {
	    m_attempt_count++;
	    if (m_row_inuse[row] == 0 &amp;amp;amp;amp;amp;&amp;amp;amp;amp;amp; IsDiagValid(col, row)) {
		m_queen[col] = row;
		m_row_inuse[row] = 1;
		SetDiags(col, 1);
		SearchAlt(col+1);
		SetDiags(col, 0);
		m_row_inuse[row] = 0;
		m_queen[col] = -1;
	   }
	}

   }

    void Search(int col) {
	if (col == m_size) {
	    m_solution_count++;
	    return;
	}

	for (int i = col; i &amp;amp;amp;amp;lt; m_size; i++) {
	    if (SwapQueenIfDiagValid(col, i)) {
		Search(col+1);
		UnSwapQueen(col, i);
	   };
	}
   }

    void SwapQueenBasic(int i, int j) {
	    int hold = m_queen[i];
	    m_queen[i] = m_queen[j];
	    m_queen[j] = hold;
   }

    void SetDiags(int col, int val) {
	assert(m_diag_rise[m_queen[col] + col]!= val);
	       m_diag_rise[m_queen[col] + col] =  val;
	assert(m_diag_fall[m_queen[col] - col + m_size]!= val);
	       m_diag_fall[m_queen[col] - col + m_size] =  val;
   }

    bool IsDiagValid(int col, int row) {
	return (m_diag_rise[row + col] == 0 &amp;amp;amp;amp;amp;&amp;amp;amp;amp;amp;
		m_diag_fall[row - col + m_size] == 0);
   }

    bool SwapQueenIfDiagValid(int i, int j) {
	m_attempt_count++;
	if (IsDiagValid(i, m_queen[j])) {
	    SwapQueenBasic(i, j);
	    SetDiags(i, 1);
            return true;
	}
        return false;
   }

    void UnSwapQueen(int i, int j) {
	SetDiags(i, 0);
	SwapQueenBasic(i, j);
   }

};

void
do_work(bool is_alt)
{
    int size = 8;

    EightQueens puzzle(size, is_alt);
    int soln = puzzle.GetSolutionCount();
    int attempt = puzzle.GetAttemptCount();
    assert(size!= 8 || soln == 92);
    const char* style = is_alt ? "cartesian": "permutation";
    printf("EightQueens[%d] has %d solutions found in %5d attempts using %s search. \n", size, soln, attempt, style);
}

int main()
{
    printf("We should have 92 solutions for 8x8. \n");
    do_work(0);
    do_work(1);
}

انیمیشن روش بازگشتی

 

مسئله چند وزیر

 

الگوریتم مونت کارلو

از الگوریتم مونت کارلو برای برآورد کردن کارایی یک الگوریتم عقبگرد استفاده می‌شود. الگوریتم‌های مونت کارلو، احتمالی هستند، یعنی دستور اجرایی بعدی گاه به‌طور تصادفی تعیین می‌شوند. در الگوریتم قطعی چنین چیزی رخ نمی‌دهد. الگوریتم مونت کارلو مقدار مورد انتظار یک متغیر تصادفی را که روی یک فضای ساده تعریف می‌شود، با استفاده از مقدار میانگین آن روی نمونه تصادفی از فضای ساده بر آورد می‌کند. تضمینی وجود ندارد که این برآورد به مقدار مورد انتظار واقعی نزدیک باشد، ولی احتمال نزدیک شدن آن، با افزایش زمان در دسترس برای الگوریتم، افزایش می‌یابد.

شبه کد پیاده‌سازی الگوریتم مونت کارلو برای الگوریتم عقبگرد مسئله n وزیر

  int ostimate _ n_ queens (int n)
   {
          index i , j , col [1..n];
          int m , mprod , numnodes ;
          set _of_ index  prom _children;
          i = ۰;
          numnodes =۱ ;
          m = ۱;

        mprod  = ۱ ;
        while  (m!= 0 &amp;amp;amp;amp;amp;&amp;amp;amp;amp;amp; i!= n) {
        mprod = mprod * m ;
        numnodes  = numnodes + mprod * n;
        i ++;
        m = ۰ ;
        prom_childern  = Ø;
        for (j = 1 ; j ≤ n ; j++;) {
                col [i]  = j ;
                if (promising(i)) {

         m++;
         prom_children = prom _ children U {i};
                }
            }
             if (m!= ۰)  {
                 j = random selection from prom _childeren;
                 col [i];
             }
        }
         return numnodes;
     }

روش مکاشفه‌ای

برای حل این مسئله که دارای ۹۲ جواب است، باید تکنیکهایی جهت کاهش حالات، روش Brute Force یا امتحان تک تک جواب‌ها انجام شود. تعداد همه حالاتی که می‌تواند در روش Brute Force چک شود برابر ۱۶٬۷۷۷٬۲۱۶ یا هشت به توان هشت است! یکی از روش‌های حل این مسئله برای n>=4 یا n=1 استفاده از روش مکاشفه‌ای ( heuristic)است:

1- عدد n را بر عدد ۱۲ تقسیم کن و باقی‌مانده را یادداشت کن

۲- به ترتیب اعداد زوج ۲ تا n را در لیستی بنویس

۳- اگر باقی‌مانده ۳ یا ۹ بود، عدد ۲ را به انتهای لیست انتقال بده.

۴- به لیست اعداد فرد ۱ تا n را به ترتیب اضافه کن، اما اگر باقی‌مانده ۸ بود اعداد را دو به دو باهم عوض کند (مثلاً ۱و۳و۵و۷و۹ تبدیل به ۳و۱و۷و۵و۹ میشه)

۵- اگر باقی‌مانده ۲ بود جای ۱ و۳ را با هم عوض کن و ۵ را به انتهای لیست ببر.

۶- اگر باقی‌مانده ۳ یا ۹ بود، اعداد ۱ و ۳ را به انتهای لیست ببر.

۷- حال با استفاده از لیست بدست آمده وزیرها در صفحه شطرنج چیده می‌شوند، به‌طوری‌که جای وزیر ستون اول، اولین عدد لیست، جای وزیر ستون دوم، دومین عدد لیست و…

این الگوریتم یک راه حل برای حل این مسئله‌است، برای بدست آوردن همه حالات از روش‌های دیگری می‌توان استفاده کرد. روش حل مسئله ۱۲ راه حل یکتا دارد که با در نظرگیری تقارن و چرخش به ۹۲ حالت قابل تبدیل است.

روش‌های جستجوی محلی

می‌توان به مسئله ۸ وزیر به عنوان یک مسئله بهینه‌سازی نیز نگریست که در آن هدف بهینه کردن تعداد گاردهای جفت وزیرها می‌باشد.

به عنوان مثال فرض کنید در صفحه شطرنج معمولی، ۸ وزیر را به دو روش زیر قرار دهیم:

مسئله ی چند وزیرمسئله ی چند وزیر

در روش چینش سمت چپ ۳ وزیر و در روش چینش سمت راست ۴ وزیر همدیگر را گارد می‌دهند. بنابراین روش چینش قبلی بهینه تر از روش چینش فعلی است. در واقع می‌توان مسئله بهینه‌سازی را به صورت زیر تعریف کرد. فرض کنید S مجموعه همه جواب‌های ممکن برای مسئله باشد. در صورتی S* می‌تواند جواب مسئله باشد که به ازای همه جواب‌های موجود در S، S* بهینه تر از دیگر جواب‌ها باشد. در مسئله ۸ وزیر دیدیم که جوابی بهینه‌است که تعداد گاردهای جفت وزیر آن کمتر باشد.

روش‌های جستجوی محلی همگی حالت‌های همسایه حالت فعلی را برای رسیدن به بهینه‌ترین جواب بررسی می‌کنند. از این رو وجود دو تابع در همه این روش‌های جستجو الزامی است. اولین تابع میزان بهینگی جواب مسئله ارزیابی می‌کند و تابع دوم یکی از حالت‌های همسایه حالت فعلی را انتخاب می‌کند.

نحوه پیاده‌سازی و طراحی الگوریتم برای انتخاب حالت هسایه در این روش‌های جستجو از اهمیت ویژه‌ای برخوردار است. به عنوان مثال برای مسئله ۸ وزیر می‌توان به شکل‌های زیر حالت‌های همسایگی را تولید کرد:

۱) دو وزیر به تصادف انتخاب شده و جای آن دو باهم عوض گردد.

۲) یکی از وزیرها به تصادف انتخاب شده و شماره سطر آن به تصادف تغییر کند.

۳) ویزیری به تصادف انتخاب شده و یک خانه به سمت بالا یا پایین حرکت کند

مسئله چند وزیر قسمت 1
مسئله چند وزیر قسمت 2
مسئله چند وزیر قسمت 3
مسئله چند وزیر قسمت 4

9.آشکار سازی صورت با استفاده فیلترهای گابور و شبکه های عصبی

ﭼﻜﻴﺪه: در این مقاله، روشی قدرتمند برای آشکارسازی صورت از زوایای مختلف با استفاده از ترکیب فیلترهای گابور و شبکه ی عصبی بیان می شود. در ابتدا رابطه ی ریاضی تولید فیلتر گابور ورد بررسی قرار می گیرد و در مرحله بعد با برسسی 75 بانک فیلتر مختلف، محدوده مقادیر پارامترهای مؤثر در تولید فیلتر گابور مشخص شده و سپس بهترین مقدار برای آنها به دست می آید. شبکه ی عصبی مورد استفاده در این نوع مقاله از نوع پیش خور با روش بازگشتی است و بردار ورودی این شبکه عصبی از کانوالو تصویر با تنها یک فیلتر گابور با زاویه  و فرکانس  در خوزه فرکانس به دست می آید. الگوریتم پیشنهادی در این مقاله روی 550 تصویر از 2 پایگاه تصویر فرت با پس زمینه ساده و مارکوس وبر با پس زمینه پیچیده آزمایش شده و دقت آشکارسازی آن به ترتیب 98/4% و 95% است. همچنین به کمک الگوریتم ویولا جونز ناحیه صورت را در 550 نمونه تصویر به دست آورده و مقایسه ای بین نتایج به دست آمده از الگوریتم ویولاجونز و آلگوریتم پیشنهادی آورده می شود.
کلمات کلیدی: آشکار سازی صورت، شبکه عصبی، فیلتر گابور، ویژگی های گابور

فایل PDF – در 13 صفحه- نویسنده : ﻣﺤﻤﻮد ﻣﺤﻠﻮﺟﻲ و رضا محمدیان

آشکار سازی صورت با استفاده فیلترهای گابور و شبکه های عصبی

پسورد فایل : behsanandish.com


10.بهبود روش های ناحیه بندی تصاویر MRI مغز انسان با استفاده از عملگر گابور

 

فایل PDF – در 15 صفحه- نویسنده : فرزاد فلاحی

بهبود روش های ناحیه بندی تصاویر MRI مغز انسان با استفاده از عملگر گابور

پسورد فایل : behsanandish.com


11. بهبود سیستم های ایمنی برای تشخیص اجسام در تصویرهای پرتونگاری بار

 

چکیده: بازرسی چشمی بار در فرودگاهها و مراکز حساس مستلزم صرف زمان زيادی است و اجسام در بسياری از موارد خصوصاً زمانی که در موقعيت و زاويههای خاصی قرار گرفته باشند قابل شناسايی با بازرسیهای سريع چشمی نيستند. امروزه از دستگاههای تصويربرداری پرتو ايکس برای تشخيص اجسام در بار استفاده میشود. تصاوير پرتونگاری حاصل به علت پراکندگی فوتونی دارای ميزانی از مهآلودگی هستند و گاهی تشخيص دقيق اجسام با مشکل مواجه میشود. روشهای پردازش تصوير میتوانند به بهبود کنتراست و در نتيجه بهتر شدن قابليت تشخيص اجسام کمک کنند. در پرتونگاری بار سطح نويز و پراکندگی در تصويرهای مختلف با هم تفاوت زيادی دارند که اين موضوع ضرورت استفاده از روشهای پردازش تصوير خودکار را ايجاب میکند. در اين پژوهش از دو روش موجک و صافی گابور با سطح آستانهی خودکار استفاده شده است. نتايج حاصل نشان میدهد تصويرهای بازسازی شده اگرچه در جزييات دارای اختلافاتی هستنند ولی در ميزان تشخيص اجسام توسط افراد تفاوت زيادی ندارند. در هر دو روش کنتراست و قابليت تشخيص اجسام نسبت به تصويرهای اوليه بهبود قابل ملاحظهای يافته است. زمان اجرای الگوريتم موجک گسسته حدود يک هشتم زمان اجرای صافی گابور است که با توجه به اهميت سرعت پردازش تصوير در بازرسی بار برتری قابل ملاحظهای است.

کلید واژهها: پرتونگاری بار،سیستم بازرسی بار،پرتو ایکس، روش موجک گسسته، فیلتر گابور

 

فایل PDF – در 13 صفحه- نویسندگان : سمانه شیخ ربیعی، بهروز رکرک، عفت یاحقی، بهنام آرضابک

بهبود سیستم های ایمنی برای تشخیص اجسام در تصویرهای پرتونگاری بار

پسورد فایل : behsanandish.com


12. ﺑﻬﺒﻮد کیفیت تصویر اﺛﺮاﻧﮕﺸﺖ ﺑﺎ اﺳﺘﻔﺎده از فیلتر بانک ﮐﻤﺎﻧﯽ گابور

ﭼﮑﯿﺪه: ﺗﺄﯾﯿﺪ و ﺷﻨﺎﺳﺎﯾﯽ ﻫﻮﯾﺖ از روی ﺗﺼﻮﯾﺮ اﺛﺮاﻧﮕﺸﺖ ارﺗﺒﺎط ﻣﺴﺘﻘﯿﻤﯽ ﺑﺎ ﮐﯿﻔﯿﺖ اﯾﻦ ﺗﺼـﻮﯾﺮ دارد. در اﯾـﻦ ﻣﻘﺎﻟـﻪ روش ﺟﺪﯾـﺪی ﺑﺮای ﺑﻬﺒﻮد ﮐﯿﻔﯿﺖ ﺗﺼﻮﯾر اﺛﺮ اﻧﮕﺸﺖ ﺑﺎ اﺳﺘﻔﺎده از ﻓﯿﻠﺘﺮ ﺑﺎﻧﮏ اﺳـﺖ ﮐﻤﺎﻧﯽ ﮔـﺎﺑﻮر اراﺋـﻪ ﺷـﺪه است. ﻓﯿﻠﺘـﺮ ﺑﺎﻧـﮏ ﮐﻤـﺎﻧﯽ ﮔـﺎﺑﻮر در ﺣﻘﯿﻘﺖ ﻧﻮﻋﯽ ﻓﯿﻠﺘﺮ ﺑﺎﻧﮏ ﮔﺎﺑﻮر اﺳﺘﺎﻧﺪارد ﻣﺘﺒﺤﺮ ﺷﺪه ﺑﺮای اﺳﺘﻔﺎده روی ﺗﺼﺎوﯾﺮ اﺛﺮ اﻧﮕﺸﺖ می ﺑﺎﺷﺪ. ارزﯾﺎﺑﯽ ﻣﯿـﺰان ﺗﻮﻓﯿـﻖ روش در بهبود ﮐﯿﻔﯿﺖ ﺗﺼﺎوﯾﺮ اﺛﺮ اﻧﮕﺸﺖ ﺑﻪ دو روش اﻧﺠﺎم ﺷﺪه است. در روش اول، ﻣﻘﺎﯾﺴﻪ ﺑﯿﻦ ﺗﺼﺎوﯾﺮ اﺻـﻠﯽ و ﺗﺼـﺎوﯾﺮ ﺑﻬﺒﻮد ﯾﺎﻓﺘﻪ ﺑﺮاﺳﺎس ﻧﺘﺎﯾﺞ ﺑﺪﺳﺖ آﻣﺪه از ارزﯾﺎﺑﯽ ﺗﺄﯾﯿﺪ و ﺷﻨﺎﺳﺎﯾﯽ ﻫﻮﯾﺖ ﺻﻮرت ﭘﺬﯾﺮﻓﺘﻪ اﺳﺖ که ﺳﯿﺴﺘﻢ ﺗﺸﺨﯿﺺ ﻫﻮﯾـﺖ ﭘﯿﺸﻨﻬﺎدی ﻣﺒﺘﻨﯽ ﺑﺮ معیار ﻫﻤﺒﺴﺘﮕﯽ ﻫﯿﺴﺘﻮﮔﺮام ﻧﺮﻣﺎﻟﯿﺰه ﺷﺪه ویژگی های تصویر آماری باینری شده (BSIF) است. در روش دوم، از ﻣﻌﯿﺎر ﻧﺴﺒﺖ ﺳﯿﮕﻨﺎل ﺑﻪ ﻧﻮﯾﺰ ﺑﯿﺸﯿﻨﻪ (PSNR) به منظور ارزﯾﺎﺑﯽ میزان بهبود ﮐﯿﻔﯿﺖ، اﺳﺘﻔﺎده ﺷـﺪه است. دو ﭘﺎﯾﮕـﺎه DBI و DBII برای اجرای روش و ارزیابی نتایج مورد استفاده ﻗﺮار گرفته اﻧﺪ .ﻧﺮخ ﺗﺴﺎوی ﺧﻄﺎی (EER) ﺗﺄﯾﯿﺪ ﻫﻮﯾـﺖ ﺑﺮای ﺗﺼﺎوﯾﺮ اﺻﻠﯽ از (ﺑﻪ ترتیب % ۱۵/۸۹ و  ۱۱/۷۰%) به ( % ۱۱/۳۵ و  ۸/۰۰%) ﺑـﺮای ﺗﺼـﺎوﯾﺮ ﺑﻬﺒـﻮد ﯾﺎﻓﺘـﻪ کاهش ﯾﺎﻓﺘﻪ اﺳﺖ .ﺑﺮای ﺗﺸﺨﯿﺺ ﻫﻮﯾﺖ ﻧﯿﺰ ﻧﺮخ ﻣﺮﺗﺒﻪ اول ﻣﯿﺰان ﺑﺎزﺷﻨﺎﺳـﯽ ﺻـﺤﯿﺢ ﺑـﺮای ﺗﺼـﺎوﯾﺮ اصلی از مقادیر( ۶۹/۲۸% و ۷۱/۱۶ %) به (۷۸/۸۰% و ۸۱/۷۰ %) ﺑﺮای ﺗﺼﺎوﯾﺮ ﺑﻬﺒﻮد ﯾﺎﻓﺘﻪ اﻓﺰاﯾﺶ ﯾﺎﻓﺘﻪ است.  ﻣﯿﺰان متوسط PSNR ﻣﺮﺑﻮط ﺑﻪ ﺗﺼﺎوﯾﺮ ﺑﻬﺒﻮد ﯾﺎﻓﺘﻪ ﻧﯿﺰ از ﻣﻮرد ﻣﺸﺎﺑﻪ ﺑﺮای ﺗﺼﺎوﯾﺮ اﺻﻠﯽ ﺑﯿﺸﺘﺮ اﺳﺖ.

ﮐﻠﯿﺪ واژهﻫﺎ: ﮐﯿﻔﯿﺖ ﺗﺼﻮﯾﺮ، ﻓﯿﻠﺘﺮﺑﺎﻧﮏ اﺛﺮاﻧﮕﺸﺖ، ﺑﻬﺒﻮد ﮐﻤﺎﻧﯽ ﮔﺎﺑﻮر

 

فایل PDF – در 17 صفحه- نویسندگان : مهران تقی پور گرجی کلایی، سید محمد رضوی و ناصر مهرشاد

ﺑﻬﺒﻮد کیفیت تصویر اﺛﺮاﻧﮕﺸﺖ ﺑﺎ اﺳﺘﻔﺎده از فیلتر بانک ﮐﻤﺎﻧﯽ گابور

پسورد فایل : behsanandish.com


13. تشخیص چهره با استفاده از PCA و فیلتر گابور

 

فایل PDF – در 8 صفحه- نویسندگان : حمیدرضا قجر، محسن سریانی و عباس کوچاری

تشخیص چهره با استفاده از PCA و فیلتر گابور

پسورد فایل : behsanandish.com


14. تعیین توزیع دانه بندی سنگ دانه های بتن و آسفالت با استفاده از استخراج ویژگی های گابور و شبکه های عصبی

چکیده: توزیع ابعادی سنگدانه های تشکیل دهنده بتن و آسفالت، از مهمترین پارامترها در کنترل طرحهای اختلاط بتن و آسفالت است که میتواند بر کیفیت نهایی، مقاومت و دوام بتن و آسفالت تاثیر گذار باشد. بهمنظور ارزیابی درصد اختلاط سنگدانه ها، روش پردازش تصویری دیجیتال یک روش غیر مستقیم، سریع و قابل اعتماد است. در این تحقیق بر پایه یکی از روشهای استخراج ویژگیهای دیداری تصویر (فیلترهای گابور) و استفاده از شبکه های عصبی، الگوریتمی جهت تعیین توزیع دانه بندی تصاویر سنگدانه های تشکیل دهنده بتن و آسفالت ارائه شده است. تعداد 100 تصویر از سنگدانه های تشکیل دهنده بتن و آسفالت برای آموزش شبکه عصبی به کار برده شد. سپس نتایج حاصله با نتایج تخمین خودکار دانه بندی سنگدانه ها در نرم افزار Split-Desktop و همچنین تجزیه سرندی مقایسه شد.نتایج به دست آمده بیانگر یک بهبود کلی در ارزیابی توزیع اندازه سنگدانه های تشکیل دهنده بتن و آسفالت و کاهش خطای 67% با استفاده از روش پیشنهادی نسبت به تخمین خودکار نرم افزار Split-Desktop است. همچنین در ارزیابی اندازه های F10 تا F100، روش پیشنهادی بهبود 62% را نشان داد.

واژه های کلیدی: توزیع دانه بندی، سنگدانه های بتن و آسفالت، استخراج ویژگی تصویر، فیلترهای گابور، شبکه های عصبی.

 

فایل PDF – در 14 صفحه- نویسندگان : هادی یعقوبی، حمید منصوری، محمد علی ابراهیمی فرسنگی و حسین نظام آبادی پور

تعیین توزیع دانه بندی سنگ دانه های بتن و آسفالت با استفاده از استخراج ویژگی های گابور و شبکه های عصبی

پسورد فایل : behsanandish.com


15. خوشه بندی سبک نگارش دست نوشته برون خط فارسی

 

چکیده– ﻫﺪﻑ ﺍﻳﻦ ﭘﺎﻳﺎﻥ ﻧﺎﻣﻪ، ﻳﺎﻓﺘﻦ ﻭ ﺍﺳﺘﺨﺮﺍﺝ ﻭﻳﮋﮔﻲ ﻫﺎﻳﻲ ﺍﺳﺖ ﮐﻪ ﺑﺮ ﻣﺒﻨﺎﻱ ﺁﻥ ﺑﺘﻮﺍﻥ ﺩﺳﺖ ﺧﻂ ﻓﺎﺭﺳﻲ ﺭﺍ ﺧﻮﺷﻪ ﺑﻨﺪﻱ ﮐﺮﺩ .ﺩﺭ ﺍﻳﻦ ﮐﺎﺭ، ﺩﺭ ﺍﺑﺘﺪﺍ ﺑﺮ ﺭﻭﻱ ﻭﻳﮋﮔﻲ ﻫﺎﻱ ﻣﺒﺘﻨﻲ ﺑﺮ ﺑﺎﻓﺖ، ﺗﻤﺮﮐﺰ ﺷﺪﻩ ﺍﺳﺖ .ﺍﻳﻦ ﻭﻳﮋﮔﻲ ﻫﺎ ﺷﺎﻣﻞ ﺩﻭ ﺩﺳﺘﻪ ﻭﻳﮋﮔﻲ ﺁﻣﺎﺭﻱ ﻣﺎﺗﺮﻳﺲ ﺑﺎﻫﻢ ﺁﻳﻲ ﻭ ﻭﻳﮋﮔﻲ ﻣﺒﺘﻨﻲ ﺑﺮ ﺗﺒﺪﻳﻞ ﮔﺎﺑﻮﺭ ﺍﺳﺖ .ﺑﺮﺍﻱ ﺍﺳﺘﺨﺮﺍﺝ ﺍﻳﻦ ﻭﻳﮋﮔﻲﻫﺎ، ﻳﮏ ﺑﺎﻓﺖ ﻣﻨﺎﺳﺐ ﺩﺭ ﺍﺑﻌﺎﺩ ۱۰۲۴×۱۰۲۴ ﻣﺴﺘﻘﻞ ﺍﺯ ﻣﺤﺘﻮﺍﻱ ﺳﻨﺪ، ﺍﺯ ﺗﺼﻮﻳﺮ ﺩﺳﺘﻨﻮﺷﺘﻪ ﺍﻳﺠﺎﺩ ﻣﻲ ﺷﻮﺩ .ﺍﺯ ﻭﻳﮋﮔﻲ ﻫﺎﻱ ﺩﻳﮕﺮﻱ ﮐﻪ ﺩﺭ ﺍﻳﻦ ﮐﺎﺭ ﺍﺯ ﺁﻥ ﻫﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺷﺪﻩ ﺍﺳﺖ، ﺗﻌﺪﺍﺩﻱ ﻭﻳﮋﮔﻲ ﺳﺎﺧﺘﺎﺭﻱ ﻣﺒﺘﻨﻲ ﺑﺮ ﻣﻨﺤﻨﻲ ﭘﻴﺮﺍﻣﻮﻧﻲ ﺍﺳﺖ .ﺍﻳﻦ ﻭﻳﮋﮔﻲ ﻫﺎ ﺭﺍ ﺍﺯ ﻫﺮ ﻳﮏ ﺍﺯ ﺗﺼﺎﻭﻳﺮ ﻣﻮﺟﻮﺩ ﺩﺭ ﻳﮏ ﻣﺠﻤﻮﻋﻪ ﺩﺍﺩﻩ ﺍﺯ 97 ﺩﺳﺘﻨﻮﺷﺘﻪ ﻓﺎﺭﺳﻲ ﮐﻪ ﺩﺍﺭﺍﻱ ﻣﺘﻮﻥ ﻣﺘﻔﺎﻭﺗﻲ ﺑﻮﺩﻧﺪ، ﺍﺳﺘﺨﺮﺍﺝ ﮐﺮﺩﻳﻢ ﻭ ﺍﺯ ﺍﻟﮕﻮﺭﻳﺘﻢ k ﻣﻴﺎﻧﮕﻴﻦ ﻭ ﺷﺒﮑﻪ ﻋﺼﺒﻲ ﻧﮕﺎﺷﺖ ﻭﻳﮋﮔﻲ ﺧﻮﺩ ﺳﺎﻣﺎﻥ، ﺑﺮﺍﻱ ﺧﻮﺷﻪ ﺑﻨﺪﻱ ﺍﻳﻦ ﻭﻳﮋﮔﻲ ﻫﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺷﺪﻩ ﺍﺳﺖ.

ﺑﺮﺍﻱ ﺍﺭﺯﻳﺎﺑﻲ ﺍﻳﻦ ﻭﻳﮋﮔﻲ ﻫﺎ، ﻳﮏ ﺭﻭﺵ ﺍﺭﺯﻳﺎﺑﻲ ﺑﺮ ﻣﺒﻨﺎﻱ ﺍﻟﮕﻮﺭﻳﺘﻢ ﺧﻮﺷﻪ ﺑﻨﺪﻱ k ﻣﻴﺎﻧﮕﻴﻦ، ﻃﺮﺍﺣﻲ ﮐﺮﺩﻩ ﺍﻳﻢ .ﺩﺭ ﺍﻳﻦ ﺍﻟﮕﻮﺭﻳﺘﻢ ﺍﺯ ﻣﻌﻴﺎﺭ ﻣﻘﺎﻳﺴﻪ ﺑﺎﻳﻨﺮﻱ ﮊﺍﮐﺎﺭﺩ ﺍﺳﺘﻔﺎﺩﻩ ﮐﺮﺩﻩ ﺍﻳﻢ، ﻫﻢ ﭼﻨﻴﻦ ﺑﺮﺍﻱ ﻣﺤﺎﺳﺒﻪ ﻣﺮﺍﮐﺰ ﺧﻮﺷﻪ ﺩﺭ ﻫﺮ ﺩﻭﺭﻩ ﺗﮑﺮﺍﺭ ﺍﺯ ﺍﻟﮕﻮﺭﻳﺘﻢ k ﻣﻴﺎﻧﮕﻴﻦ، ﺍﺯ ﺭﻭﺵ ﺍﻧﺘﺨﺎﺏ ﺩﺍﺩﻩ ﭼﺮﺥ ﺭﻭﻟﺖ، ﺑﻬﺮﻩ ﮔﺮﻓﺘﻪﺍﻳﻢ.

ﻧﺘﺎﻳﺞ ﺑﺪﺳﺖ ﺁﻣﺪﻩ، ﻧﺸﺎﻥ ﻣﻲ ﺩﻫﺪ ﺑﺎ ﺗﺮﮐﻴﺐ ﺩﻭ ﻧﻮﻉ ﺍﺯ ﻭﻳﮋﮔﻲ ﻫﺎﻱ ﻣﺒﺘﻨﻲ ﺑﺮ ﻣﻨﺤﻨﻲ ﭘﻴﺮﺍﻣﻮﻧﻲ، ﻧﺮﺥ ﺧﻮﺷﻪ بندی 75 ﺩﺭﺻﺪ ﺍﺳﺖ ﮐﻪ ﻧﺴﺒﺖ ﺑﻪ ﺳﺎﻳﺮ ﺭﻭﺵﻫﺎﻱ ﻣﻮﺭﺩ ﺍﺳﺘﻔﺎﺩﻩ ﺩﺭ ﺍﻳﻦ ﮐﺎﺭ، ﻧﺮﺥ ﺑﻬﺘﺮﻱ ﺭﺍ ﺩﺭ ﺑﺮﺩﺍﺷﺘﻪ ﺍﺳﺖ .

ﮐﻠﻴﺪ ﻭﺍﮊﻩ: ﺳﺒﮏ ﻧﮕﺎﺭﺵ، ﺧﻮﺷﻪ ﺑﻨﺪﻱ، ﺑﺎﻓﺖ، ﻓﻴﻠﺘﺮ ﮔﺎﺑﻮﺭ، ﻣﺎﺗﺮﻳﺲ ﺑﺎ ﻫﻢ ، ﺁﻳﻲ، ﻣﻨﺤﻨﻲ ﭘﻴﺮﺍﻣﻮﻧﻲ، ﮊﺍﮐﺎﺭﺩ ﭼﺮﺥ ﺭﻭﻟﺖ

فایل PDF – در 20 صفحه- نویسنده : فاطمه ولایتی

خوشه بندی سبک نگارش دست نوشته برون خط فارسی

پسورد فایل : behsanandish.com


16. شاخص گذاری بر روی تصاویر با استفاده از موجک های گابور و ممان های لژاندر

 

چکیده- در این مقاله، یک سیستم جدید شاخص گذاری و بازیابی تصاویر (CBIR) با استفاده از موجک های گابور و ممان های لژاندار پیشنهاد گردیده است. از انجائیکه موجک های گایور قادر به استخراج مطلوب اطلاعات خطوط و لبه های تصاویر در مقیاس ها و درجات تفکیک مختلف می باشند و از طرف دیگر، این تبدیل تنها تابعی است که می تواند حد تئوری دقت تفکیک توأم اطلاعات در هر حوزه مکان و فرکانس را حاصل نماید، در اینجا از آن به منظور تشخیص محتوای بصری تصاویر به کار گرفته شده است. هم چنین ممانهای لژاندار جهت بهبود نتایج حاصل از عمل بازیابی الگوریتم استفاده شده اند. کوچکی نسبی طول بردار ویژگی (58)، از مزایای این روش می باشد که عمل بازیابی را تسریع می بخشد. همچنین به دلیل آنکه اطلاعات رنگ تصاویر مورد استفاده قرار نمی گیرند، الگوریتم قادر به تشخیص تصاویر مشابه با رنگ های متفاوت نیز خواهد بود. نتایج حاصل از اجرای این سیستم، راندمان بالای آن را در تشخیص تصاویر مشابه مورد تأییید قرار می دهد.

واژگان کلیدی: شاخص گذاری و بازیابی تصاویر، فیلترهای گابور، ممانهای لژاندار، سیستم های مستقل از رنگ، پردازش تصویر.

 

فایل PDF – در 8 صفحه- نویسندگان : اسماعیل فرامرزی، ابوالقاسم صیادیان، علیرضا احمدیان

شاخص گذاری بر روی تصاویر با استفاده از موجک های گابور و ممان های لژاندر

پسورد فایل : behsanandish.com


17. طراحی بخش دریافت و پردازش تصویر برای یک پروتز بینایی

 

ﭼﮑﯿﺪه ﺗﻼش ﻫﺎ ﺑﺮاي ﺗﺤﻘﻖ ﭘﺮوﺗﺰﻫﺎي ﺑﯿﻨﺎﯾﯽ از دﻫﻪ ﮔﺬﺷﺘﻪ آﻏﺎز ﺷﺪه اﺳﺖ. ﭘﺮوﺗﺰﻫﺎي ﺑﯿﻨﺎﯾﯽ ﺟﺎﻧﺸﯿﻨﯽ ﺑﺮاي ﺳﯿﺴﺘﻢ ﺑﯿﻨﺎﯾﯽ ﻣﻌﯿﻮب ﻫﺴﺘﻨﺪ ﺗﺎ ﺑﺘﻮاﻧﻨﺪ ﺑﯿﻨﺎﯾﯽ را ﺑﻪ اﻓﺮاد ﻧﺎﺑﯿﻨﺎ ﺑﺎزﮔﺮداﻧﻨﺪ. ﺑﺎ وﺟﻮد اﯾﻦ ﺗﻼش ﻫﺎ، داﻧﺸﻤﻨﺪان ﻣﻮﻓﻖ ﺑﻪ ﺳﺎﺧﺖ ﭘﺮوﺗﺰ ﺑﯿﻨﺎﯾﯽ ﮐﻪ ﺑﺘﻮاﻧﺪ ﺟﺎﻧﺸﯿﻦ ﻣﻨﺎﺳﺒﯽ ﺑﺮاي ﺳﯿﺴﺘﻢ ﺑﯿﻨﺎﯾﯽ ﺷﻮد، ﻧﺸﺪه اﻧﺪ.
ﭘﺮدازش ﺗﺼﻮﯾﺮ در ﭘﺮوﺗﺰﻫﺎي ﺑﯿﻨﺎﯾﯽ ﺑﺮاي اﻓﺰاﯾﺶ درك ﺗﺼﻮﯾﺮي ﻓﺮد ﻧﺎﺑﯿﻨﺎ از ﻣﺤﯿﻂ اﻃﺮاف ﻫﻨﮕﺎم اﺳﺘﻔﺎده از ﭘﺮوﺗﺰ ﺑﯿﻨﺎﯾﯽ ﮐﺎرﺑﺮد دارد. در اﯾﻦ رﺳﺎﻟﻪ ﯾﮏ روش ﺟﺪﯾﺪ ﺑﺮ ﻣﺒﻨﺎي ﻓﯿﻠﺘﺮ ﮔﺎﺑﻮر و ﺗﺒﺪﯾﻞ ﮐﺴﯿﻨﻮﺳﯽ ﮔﺴﺴﺘﻪ ﺑﺮاي اﺳﺘﻔﺎده درﯾﮏ ﺳﯿﺴﺘﻢ ﭘﺮوﺗﺰ ﺑﯿﻨﺎﯾﯽ ﻣﻌﺮﻓﯽ ﺷﺪه اﺳﺖ. در اداﻣﻪ اﻟﮕﻮرﯾﺘﻢ ﻫﺎي ﺟﺪﯾﺪ و ﭘﺮدازش ﺗﺼﻮﯾﺮ ﭘﯿﺸﻨﻬﺎد ﺷﺪه در اﯾﻦ رﺳﺎﻟﻪ ارزﯾﺎﺑﯽ و ﻣﻘﺎﯾﺴﻪ ﺷﺪه اﻧﺪ و اﻟﮕﻮرﯾﺘﻢ ﭘﯿﺸﻨﻬﺎد ﺷﺪه ﺑﺎ 78 % ﻧﺮخ ﺑﺎزﺷﻨﺎﺳﯽ، ﮐﺎراﯾﯽ ﺑﻬﺘﺮي ﻧﺴﺒﺖ ﺑﻪ دﯾﮕﺮ روش ﻫﺎ داﺷﺘﻪ اﺳﺖ. ﺑﻪ ﻣﻨﻈﻮر ارزﯾﺎﺑﯽ اﻟﮕﻮرﯾﺘﻢ ﻫﺎي ﭘﯿﺸﻨﻬﺎدي و ﻫﻤﭽﻨﯿﻦ ﺑﺮاي ﺑﻪ ﮐﺎر ﮔﯿﺮي در ﻧﻤﻮﻧﻪ اوﻟﯿﻪ ﺳﯿﺴﺘﻢ ﭘﺮوﺗﺰ ﺑﯿﻨﺎﯾﯽ، اﯾﻦ ﭘﺮدازش ﻫﺎ ﺑﻪ ﺻﻮرت ﺳﺨﺖ اﻓﺰاري ﭘﯿﺎده ﺳﺎزي و آزﻣﺎﯾﺶ ﺷﺪه اﻧﺪ. ﺑﺮاي ﭘﯿﺎده ﺳﺎزي ﺳﺨﺖ اﻓﺰاري اﻟﮕﻮرﯾﺘﻢ ﻫﺎي ﭘﺮدازﺷﯽ از ﺑﺮد MINI2440 اﺳﺘﻔﺎده ﺷﺪه اﺳﺖ. ﺑﺮاي آزﻣﺎﯾﺶ ﻫﺎي ﻣﺮﺑﻮﻃﻪ، ﻣﺠﻤﻮﻋﻪ اي از اﻧﻮاع ﻣﺨﺘﻠﻒ ﺗﺼﺎوﯾﺮ ﺛﺎﺑﺖ و ﻫﻤﭽﻨﯿﻦ ﺗﺼﺎوﯾﺮ متحرک درﯾﺎﻓﺖ ﺷﺪه ﺗﻮﺳﻂ ﯾﮏ دورﺑﯿﻦ ﻣﻮرد اﺳﺘﻔﺎده ﻗﺮار ﮔﺮﻓﺘﻪ اﺳﺖ. تصاویر ﺑﺎ ﻧﺮخ 15 ﻓﺮﯾﻢ در ثانیه درﯾﺎﻓﺖ، ﭘﺮدازش و ﺑﺎ ﭘﺮوﺗﮑﻞ ﻣﻌﺮﻓﯽ ﺷﺪه و ﮐﺪﯾﻨﮓ ﻣﻨﭽﺴﺘﺮ ﺑﻪ ﭘﺮوﺗﺰ ﺑﯿﻨﺎﯾﯽ ارﺳﺎل ﻣﯽ ﺷﻮﻧﺪ.

ﮐﻠﻤﺎت ﮐﻠﯿﺪي: ﭘﺮوﺗﺰ ﺑﯿﻨﺎﯾﯽ، ﭘﺮدازش ﺗﺼﻮﯾﺮ، ﻓﯿﻠﺘﺮ ﮔﺎﺑﻮر، ﺗﺒﺪﯾﻞ ﮐﺴﯿﻨﻮﺳﯽ ﮔﺴﺴﺘﻪ، MINI2440

 

فایل PDF – در 20 صفحه- نویسنده : علی شاکر

طراحی بخش دریافت و پردازش تصویر برای یک پروتز بینایی

پسورد فایل : behsanandish.com

مجموعه مقالات فیلتر گابور (Gabor Filter) قسمت 1
مجموعه مقالات فیلتر گابور (Gabor Filter) قسمت 2

تاريخچه

الگوريتم SVM اوليه در ۱۹۶۳ توسط Vladimir Vapnik ابداع شد و در سال ۱۹۹۵ توسطVapnik و Corinna Cortes براي حالت غيرخطي تعميم داده شد.

ماشين بردار پشتيباني (Support vector machines) يکي از روش‌هاي يادگيري بانظارت(Supervised learning) است که از آن براي طبقه‌بندي و رگرسيون استفاده مي‌کنند.

اين روش از جمله روش‌هاي نسبتاً جديدي است که در سال‌هاي اخير کارايي خوبي نسبت به روش‌هاي قديمي‌تر براي طبقه‌بندي از جمله شبکه‌هاي عصبي پرسپترون نشان داده است. مبناي کاري دسته‌بنديکنندة SVM دسته‌بندي خطي داده‌ها است و در تقسيم خطي داده‌ها سعي مي‌کنيم خطي را انتخاب کنيم که حاشيه اطمينان بيشتري داشته باشد. حل معادلة پيدا کردن خط بهينه براي داده‌ها به وسيله روش‌هايQP (Quadratic Programming) که روش‌هاي شناخته شده‌اي در حل مسائل محدوديت‌دار هستند صورت مي‌گيرد.

SVM از يک تکنيک که kernel trick ناميده مي شود، براي تبديل داده هاي شما استفاده مي کند و سپس بر اساس اين تبديل، مرز بهينه بين خروجي هاي ممکن را پيدا مي کند. به عبارت ساده تبديلات بسيار پيچيده را انجام مي دهد، سپس مشخص مي کند چگونه داده هايتان را بر اساس برچسب ها يا خروجي هايي که تعريف کرده ايد، جدا کنيد.

يکي از روش هايي که در حال حاضر به صورت گسترده براي مسئله دسته بندي (Classification) مورد استفاده قرار مي گيرد، روش ماشين بردار پشتيبان (SVM) است. شايد به گونه اي بتوان محبوبيت کنوني روش ماشين بردار پشتيبان را با محبوبيت شبکه هاي عصبي در دهه گذشته مقايسه کرد. علت اين قضيه نيز قابليت استفاده اين روش در حل مسائل گوناگون مي باشد، در حاليکه روش هايي مانند درخت تصميم گيري را نمي توان به راحتي در مسائل مختلف به کار برد.

کاربردهاي SVM

الگوريتم  SVM، جز الگوريتم هاي تشخيص الگو دسته بندي مي شود. از الگوريتم SVM، در هر جايي که نياز به تشخيص الگو يا دسته بندي اشيا در کلاس هاي خاص باشد مي توان استفاده کرد. در ادامه به کاربرد هاي اين الگوريتم به صورت موردي اشاره مي شود:

سيستم آناليز ريسک، کنترل هواپيما بدون خلبان، رديابي انحراف هواپيما، شبيه سازي مسير، سيستم راهنمايي اتوماتيک اتومبيل، سيستمهاي بازرسي کيفيت، آناليز کيفيت جوشکاري، پيش بيني کيفيت، آناليز کيفيت کامپيوتر، آناليز عملياتهاي آسياب، آناليز طراحي محصول شيميايي، آناليز نگهداري ماشين، پيشنهاد پروژه، مديريت و برنامه ريزي، کنترل سيستم فرايند شيميايي و ديناميکي، طراحي اعضاي مصنوعي، بهينه سازي زمان پيوند اعضا، کاهش هزينه بيمارستان، بهبود کيفيت بيمارستان، آزمايش اتاق اورژانس، اکتشاف روغن و گاز، کنترل مسير در دستگاههاي خودکار، ربات، جراثقال، سيستمهاي بصري، تشخيص صدا، اختصار سخن، کلاسه بندي صوتي، آناليز بازار، سيستمهاي مشاوره اي محاسبه هزينه موجودي، اختصار اطلاعات و تصاوير، خدمات اطلاعاتي اتوماتيک، مترجم لحظه اي زبان، سيستمهاي پردازش وجه مشتري، سيستمهاي تشخيص ترمز کاميون، زمانبندي وسيله نقليه، سيستمهاي مسيريابي، کلاسه بندي نمودارهاي مشتري/بازار، تشخيص دارو، بازبيني امضا، تخمين ريسک وام، شناسايي طيفي، ارزيابي سرمايه، کلاسه بندي انواع سلولها، ميکروبها و نمونه ها، پيش بيني فروشهاي آينده، پيش بيني نيازهاي محصول، پيش بيني وضعيت بازار، پيش بيني شاخصهاي اقتصادي، پيش بيني ملزومات انرژي، پيش بيني واکنشهاي دارويي، پيش بيني بازتاب محصولات شيميايي، پيش بيني هوا، پيش بيني محصول، پيش بيني ريسک محيطي، پيش بيني جداول داوري، مدل کردن کنترل فرآيند، آناليز فعاليت گارانتي، بازرسي اسناد، تشخيص هدف، تشخيص چهره، انواع جديد سنسورها، دستگاه کاشف زير دريايي بوسيله امواج صوتي، رادار، پردازش سيگنالهاي تصويري شامل مقايسه اطلاعات، پيگيري هدف، هدايت جنگ افزارها، تعيين قيمت وضعيت فعلي، جلوگيري از پارازيت، شناسايي تصوير /سيگنال، چيدمان يک مدار کامل، بينايي ماشين، مدل کردن غير خطي، ترکيب صدا، کنترل فرآيند ساخت، آناليز مالي، پيش بيني فرآيندهاي توليد، ارزيابي بکارگيري يک سياست، بهينه سازي محصول، تشخيص ماشين و فرآيند، مدل کردن کنترل سيستمها، مدل کردن ساختارهاي شيميايي، مدل کردن سيستمهاي ديناميکي، مدل کردن سيگنال تراکم، مدل کردن قالبسازي پلاستيکي، مديريت قراردادهاي سهام، مديريت وجوه بيمه، ديريت سهام، تصويب چک بانکي، اکتشاف تقلب در کارت اعتباري، ثبت نسيه، بازبيني امضا از چکها، پيش بيني ارزش نسيه، مديريت ريسک رهن، تشخيص حروف و اعدا، تشخيص بيماري و…..

ايده اصلي SVM

l      با فرض اينکه دسته ها بصورت خطي جداپذير باشند، ابرصفحه هائي با حداکثر حاشيه(maximum margin)  را بدست مي آورد که دسته ها را جدا کنند.

l      در مسايلي که داده ها بصورت خطي جداپذير نباشند، داده ها به فضاي با ابعاد بيشتر نگاشت پيدا مي کنند تا بتوان آنها را در اين فضاي جديد بصورت خطي جدا نمود.

l      در يک فرايند يادگيري که شامل دو کلاس مي­باشد، هدف SVM پيدا کردن بهترين تابع براي طبقه­بندي مي­باشد به نحوي که بتوان اعضاي دو کلاس را در مجموعه داده­ها از هم تشخيص داد. معيار بهترين طبقه­بندي به­صورت هندسي مشخص مي­شود، براي مجموعه داده­هايي که به­صورت خطي قابل تجزيه هستند. به­طور حسي آن مرزي که به­صورت بخشي از فضا تعريف مي­شود يا همان تفکيک بين دو کلاس بوسيله hyperplane تعريف مي­شود. همين تعريف هندسي به ما اجازه مي­دهد تا کشف کنيم که چگونه مرزها را بيشينه کنيم ولو اينکه تعداد بيشماري hyperplane داشته باشيم و فقط تعداد کمي، شايستگي راه حل براي SVM دارند.

مسئله جداسازي خطي: Linear Discrimination

اگر دو دسته وجود داشته باشند که بصورت خطي از هم جداپذير باشند، بهترين جدا کننده اين دو دسته چيست؟

الگوريتم هاي مختلفي از جمله  پرسپترون ميتوانند اين جداسازي را انجام دهند.

آيا همه اين الگوريتمها بخوبي از عهده اين کار بر مي آيند؟

 

آشنايي با مفاهيم ابتدايي

خط يا ابر صفحه جدا کننده:

هدف: پيدا کردن بهترين خط ( ابر صفحه) که دو دسته را از هم جدا کند. در حالت دو بعدي معادله اين خط بصورت زير است:

در حالت n  بعدي خواهيم داشت:

حداکثر حاشيه (maximum margin)

بر طبق قضيه اي در تئوري يادگيري اگر مثالهاي آموزشي بدرستي دسته بندي شده باشند، از بين جداسازهاي خطي، آن جداسازي که حاشيه داده هاي آموزشي را حداکثر مي کند، خطاي تعميم را حداقل خواهد کرد.

چرا حداکثر حاشيه؟

¢     به نظر مي رسد که مطمئن ترين راه باشد.

¢     تئوري هائي برمبناي VC dimension وجود دارد که مفيد بودن آنرا اثبات مي کند.

¢     بطور تجربي اين روش خيلي خوب جواب داده است.

¢     دليل اينکه SVM روي بزرگ­ترين مرز براي hyperplane پافشاري مي­کند اين­ست که قضيه قابليت عموميت بخشيدن به الگوريتم را بهتر تامين مي­کند. اين نه تنها به کارايي طبقه­بندي و دقت  آن روي داده­هاي آزمايشي کمک مي­کند، فضا را نيز براي طبقه­بندي بهتر داده­هاي آتي مهيا مي­کند.

بردار پشتيبان

نزديکترين داده هاي آموزشي به ابر صفحه هاي جدا کننده بردار پشتيبان ناميده مي شوند.

ماشين بردار پشتيبان خطي

ماشين بردار پشتيبان يک روش يادگيري نسبتا جديد است که اغلب براي کلاسبندي باينري مورد استفاده واقع مي شود. فرض کنيد L مشاهده داريم که هر مشاهده مشتمل بر زوج هاي است که در آن . بردار ورودي و  يک مقدار دو وضعيتي (1- يا 1+) است. ايده ي ماشين بردار پشتيبان مي کوشد، ابرصفحاتي در فضا رسم کند که عمل تمايز نمونه هاي کلاس هاي مختلف داده ها را بطور بهينه انجام دهد. مي توان يک ابرصفحه را از طريق رابطه زير نشان داد:

براي يک بردار خطي b با وزن w ، حاشيه جداسازي عبارتست از فاصله ي بين ابرصفحه تعريف شده توسط رابطه ي فوق و نزديکترين ويژگي به آن. هدف ماشين بردار پشتيبان يافتن ابرصفحه اي ست که بيشترين حاشيه ي جداسازي را داشته باشد. مهمترين وظيفه SVM ، يافتن پارامترهاي w0 و b0 بر اساس بردارهاي آموزشي داده شده، براي اين ابرصفحه بهينه است. براي يک بردار ويژگي X، فاصله تا ابرصفحه بهينه به صورت زير است:

از رابطه بالا نتيجه مي شود که ماکزيموم کردن حاشيه جداسازي بين الگوها و ابرصفحه، معادلست با مينيموم کردن فرم اقليدسي بردار وزن w. بنابراين مساله بهينه سازي مقيد را مي توان به صورت زير تعريف کرد:

براي حل اين مساله، تابع لاگرانژ زير را تشکيل داده و حل مي کنيم:

لاگرانژين L بايد نسبت به متغيرهاي اوليه  bو w مينيموم و نسبت به متغيرهاي دوگان ماکزيموم شود. با مساوي صفر قراردادن مشتق L نسبت به b،w:

به معادلات زير خواهيم رسيد:

مجموعه جواب، بسطي از نمونه هاي آموزشي است که مقدار  متناظر با آن ها، يک مقدار غير صفر است. اين نمونه هاي آموزشي خاص به بردارهاي پشتيبان مشهورند. بردارهاي پشتيبان روي مرز حاشيه قرار دارند. مابقي نمونه هاي آموزشي در اين قسمت نقشي ندارند.

تمايز نمونه هاي دو کلاس با ابرصفحه ي بهينه

با قرار دادن 7 و 8 در  به مساله دوگان ولف زير خواهيم رسيد:

حل اين مساله دوگان ضرايب لاگرانژ را به ما مي دهد. تابع ابرصفحه متمايز کننده را مي توان به صورت زير نوشت:

ماشين بردار پشتيبان براي بردارهاي ورودي جدايي ناپذير:

اغلب در عمل، يافتن يک ابرصفحه متمايز کننده به راحتي امکان پذير نيست. زيرا مثلا يک نويز قوي مي تواند باعث ايجاد رويهم افتادگي کلاس ها شود. در اين حالت از متغير هايي به نام متغيرهاي کمبود(Slack Variables) استفاده مي کنيم. به گونه اي که شرايط زير برقرار باشند:

حال يک تعميم خوب براي ابرصفحه ي متمايز کننده، با کنترل ظرفيت کلاسبند (از طريق ) و همچنين تعداد خطاهاي مرحله آموزش بدست مي آيد. مساله بهينه سازي به صورت زير تعريف خواهد شد:

مساله دوگان به فرم زير خواهد بود:

ماشين بردار پشتيبان غيرخطي:

ابرصفحه جداکننده بهينه اولين بار توسط Vapnik در سال ۱۹۶۳ ارائه شد که يک دسته کننده خطي بود. در سال ۱۹۹۲ ،Bernhard Boser ،  Isabelle GuyonوVapnik راهي را براي ايجاد دسته بند غيرخطي، با استفاده قرار دادن هسته براي پيدا کردن ابرصفحه با بيشتر حاشيه، پيشنهاد دادند. الگوريتم نتيجه شده ظاهرا مشابه است، به جز آنکه تمام ضرب هاي نقطه اي با يک تابع هسته غيرخطي جايگزين شده اند. اين اجازه مي دهد، الگوريتم، براي ابرصفحه با بيشترين حاشيه در يک فضاي ويژگيِ تغييرشکل داده، مناسب باشد. ممکن است، تغييرشکل غيرخطي باشد و فضاي تغيير يافته، داراي ابعاد بالاتري باشد. به هر حال دسته کننده، يک ابرصفحه در فضاي ويژگي با ابعاد بالا است، که ممکن است در فضاي ورودي نيز غيرخطي باشد.

در حالت غيرخطي، مي توان با اعمال پيش پردازش داده ها، مساله را به فضايي برد که در آن جا با يک ابرصفحه ساده قابل حل باشد. براي اين منظور يک نگاشت  تعريف مي کنيم که بردار ورودي d بعدي x را به بردار d’ بعدي z تبديل مي کند.

بايد به گونه اي انتخاب شود که بردارهاي فضاي ويژگي جديد جدايي پذير باشند. در حالت کلي مي توان گفت که اگر  بردارهاي ورودي را به فضايي ببرد که تعداد ابعاد آن به اندازه کافي بزرگ باشد (

منبع


منابع

1.https://fa.wikipedia.org

2.http://www.bigdata.ir

3.www.barjoueian.com

4.http://fumblog.um.ac.ir

ماشین بردار پشتیبان (svm) قسمت 1
ماشین بردار پشتیبان (svm) قسمت 2
ماشین بردار پشتیبان (svm) قسمت 3

ماشین بردار پشتیبانی

ماشین بردار پشتیبان (Support vector machines – SVMs) یکی از روش‌های یادگیری بانظارت است که از آن برای طبقه‌بندی و رگرسیون استفاده می‌کنند.

این روش از جملهٔ روش‌های نسبتاً جدیدی است که در سال‌های اخیر کارایی خوبی نسبت به روش‌های قدیمی‌تر برای طبقه‌بندی از جمله شبکه‌های عصبی پرسپترون نشان داده است. مبنای کاریدسته‌بندی کنندۀ SVM دسته‌بندی خطی داده‌ها است و در تقسیم خطی داده‌ها سعی می‌کنیم خطی را انتخاب کنیم که حاشیه اطمینان بیشتری داشته باشد. حل معادله پیدا کردن خط بهینه برای داده‌ها به وسیله روش‌های QP که روش‌های شناخته شده‌ای در حل مسائل محدودیت‌دار هستند صورت می‌گیرد. قبل از تقسیمِ خطی برای اینکه ماشین بتواند داده‌های با پیچیدگی بالا را دسته‌بندی کند داده‌ها را به وسیلهٔ تابعِ phi به فضای با ابعاد خیلی بالاتر می‌بریم. برای اینکه بتوانیم مسئله ابعاد خیلی بالا را با استفاده از این روش‌ها حل کنیم از قضیه دوگانی لاگرانژ برای تبدیلِ مسئلهٔ مینیمم‌سازی مورد نظر به فرم دوگانی آن که در آن به جای تابع پیچیدهٔ phi که ما را به فضایی با ابعاد بالا می‌برد، تابعِ ساده‌تری به نامِ تابع هسته که ضرب برداری تابع phi است ظاهر می‌شود استفاده می‌کنیم. از توابع هسته مختلفی از جمله هسته‌های نمایی، چندجمله‌ای و سیگموید می‌توان استفاده نمود.

یکی از معروفترین خودآموزها مربوط به است.

کاربردهای SVM

الگوریتم SVM، جز الگوریتم‌های تشخیص الگو دسته بندی می‌شود.از الگوریتم SVM، در هر جایی که نیاز به تشخیص الگو یا دسته بندی اشیا در کلاس‌های خاص باشد می‌توان استفاده کرد.در ادامه به کاربردهای این الگوریتم به صورت موردی اشاره می‌شود:

سیستم آنالیز ریسک، کنترل هواپیما بدون خلبان، ردیابی انحراف هواپیما، شبیه‌سازی مسیر، سیستم راهنمایی اتوماتیک اتومبیل، سیستم‌های بازرسی کیفیت، آنالیز کیفیت جوشکاری، پیش‌بینی کیفیت، آنالیز کیفیت کامپیوتر، آنالیز عملیاتهای آسیاب، آنالیز طراحی محصول شیمیایی، آنالیز نگهداری ماشین، پیشنهاد پروژه، مدیریت و برنامه‌ریزی، کنترل سیستم فرایند شیمیایی و دینامیکی، طراحی اعضای مصنوعی، بهینه‌سازی زمان پیوند اعضا، کاهش هزینه بیمارستان، بهبود کیفیت بیمارستان، آزمایش اتاق اورژانس، اکتشاف روغن و گاز، کنترل مسیر در دستگاه‌های خودکار، ربات، جراثقال، سیستم‌های بصری، تشخیص صدا، اختصار سخن، کلاسه بندی صوتی، آنالیز بازار، سیستم‌های مشاوره‌ای محاسبه هزینه موجودی، اختصار اطلاعات و تصاویر، خدمات اطلاعاتی اتوماتیک، مترجم لحظه‌ای زبان، سیستم‌های پردازش وجه مشتری، سیستم‌های تشخیص ترمز کامیون، زمانبندی وسیله نقلیه، سیستم‌های مسیریابی، کلاسه بندی نمودارهای مشتری/بازار، تشخیص دارو، بازبینی امضا، تخمین ریسک وام، شناسایی طیفی، ارزیابی سرمایه، کلاسه بندی انواع سلول‌ها، میکروبها و نمونه ها، پیش‌بینی فروشهای آینده، پیش‌بینی نیازهای محصول، پیش‌بینی وضعیت بازار، پیش‌بینی شاخصهای اقتصادی، پیش‌بینی ملزومات انرژی، پیش‌بینی واکنش‌های دارویی، پیش‌بینی بازتاب محصولات شیمیایی، پیش‌بینی هوا، پیش‌بینی محصول، پیش‌بینی ریسک محیطی، پیش‌بینی جداول داوری، مدل کردن کنترل فرایند، آنالیز فعالیت گارانتی، بازرسی اسناد، تشخیص هدف، تشخیص چهره، انواع جدید سنسورها، دستگاه کاشف زیر دریایی بوسیله امواج صوتی، رادار، پردازش سیگنالهای تصویری شامل مقایسه اطلاعات، پیگیری هدف، هدایت جنگ افزارها، تعیین قیمت وضعیت فعلی، جلوگیری از پارازیت، شناسایی تصویر /سیگنال، چیدمان یک مدار کامل، بینایی ماشین، مدل کردن غیر خطی، ترکیب صدا، کنترل فرایند ساخت، آنالیز مالی، پیش‌بینی فرایندهای تولید، ارزیابی بکارگیری یک سیاست، بهینه‌سازی محصول، تشخیص ماشین و فرایند، مدل کردن کنترل سیستم‌ها، مدل کردن ساختارهای شیمیایی، مدل کردن سیستم‌های دینامیکی، مدل کردن سیگنال تراکم، مدل کردن قالب‌سازی پلاستیکی، مدیریت قراردادهای سهام، مدیریت وجوه بیمه، دیریت سهام، تصویب چک بانکی، اکتشاف تقلب در کارت اعتباری، ثبت نسیه، بازبینی امضا از چکها، پیش‌بینی ارزش نسیه، مدیریت ریسک رهن، تشخیص حروف و اعدا، تشخیص بیماری و…..

تاریخچه

الگوریتم SVM اولیه در ۱۹۶۳ توسط Vladimir Vapnik ابداع شدو در سال ۱۹۹۵ توسط Vapnik و Corinna Cortes برای حالت غیرخطی تعمیم داده شد.

خلاصه استفاده عملی از SVM

ماتریس الگو را آماده می کنیم. تابع کرنلی را برای استفاده انتخاب می کنیم. پارامتر تابع کرنل و مقدار C را انتخاب می کنیم. برای محاسبه ی مقادیرα_i الگوریتم آموزشی را با استفاده از حل‌کننده‌های QP اجرا می کنیم. داده‌های جدید با استفاده از مقادیرα_i و بردارهای پشتیبان می‌توانند دسته بندی شوند.

مزایا و معایب SVM

آموزش نسبتاً ساده است برخلاف شبکه‌های عصبی در ماکزیمم‌های محلی گیر نمی‌افتد. برای داده‌های با ابعاد بالا تقریباً خوب جواب می‌دهد. مصالحه بین پیچیدگی دسته بندی‌کننده و میزان خطا به‌طور واضح کنترل می‌شود. به یک تابع کرنل خوب و انتخاب پارامتر C نیاز دارد.

ماشین بردار پشتیبان خطی

شکل 1

ما مجموعه داده‌های آزمایش {\displaystyle {\mathcal {D}}} شامل n عضو(نقطه)را در اختیار داریم که به صورت زیر تعریف می‌شود:

{\displaystyle {\mathcal {D}}=\left\{(\mathbf {x} _{i},y_{i})\mid \mathbf {x} _{i}\in \mathbb {R} ^{p},\,y_{i}\in \{-1,1\}\right\}_{i=1}^{n}}

جایی که مقدار y برابر ۱ یا -۱ و هر {\displaystyle \mathbf {x} _{i}} یک بردار حقیقی p-بعدی است. هدف پیدا کردن ابرصفحه جداکننده با بیشترین فاصله از نقاط حاشیه‌ای است که نقاط با {\displaystyle y_{i}=1} را از نقاط با {\displaystyle y_{i}=-1} جدا کند. هر ابر صفحه می‌تواند به صورت مجموعه‌ای از نقاط {\mathbf {x}} که شرط زیر را ارضا می‌کند نوشت:

{\displaystyle \mathbf {w} \cdot \mathbf {x} -b=0,\,} جایی که . علامت ضرب است. {\displaystyle {\mathbf {w} }} بردار نرمال است، که به ابرصفحه عمود است. ما می خواهیم {\displaystyle {\mathbf {w} }} و {\displaystyle {\mathbf {b} }} را طوری انتخاب کنیم که بیشترین فاصله بین ابر صفحه‌های موازی که داده‌ها را از هم جدا می‌کنند، ایجاد شود. این ابرصفحه‌ها با استفاده از رابطه زیر توصیف می‌شوند.
{\displaystyle \mathbf {w} \cdot \mathbf {x} -b=1\,}

و

شکل 2
{\displaystyle \mathbf {w} \cdot \mathbf {x} -b=-1.\,}
اگر داده‌های آموزشی جدایی پذیر خطی باشند، ما می‌توانیم دو ابر صفحه در حاشیه نقاط به‌طوری‌که هیچ نقطه مشترکی نداشته باشند، در نظر بگیریم و سپس سعی کنیم، فاصله آن‌ها را، ماکسیمم کنیم. با استفاده از هندسه، فاصله این دو صفحه {\displaystyle {\tfrac {2}{\|\mathbf {w} \|}}} است. بنابراین ما باید {\displaystyle \|\mathbf {w} \|} را مینیمم کنیم. برای اینکه از ورود نقاط به حاشیه جلوگیری کنیم، شرایط زیر را اضافه می کنیم: برای هر i
of the first class {\displaystyle \mathbf {w} \cdot \mathbf {x} _{i}-b\geq 1\qquad {\text{ for }}\mathbf {x} _{i}}

یا

of the second class {\displaystyle \mathbf {w} \cdot \mathbf {x} _{i}-b\leq -1\qquad {\text{ for }}\mathbf {x} _{i}}

این می‌تواند به صورت زیر نوشته شود:

{\displaystyle y_{i}(\mathbf {w} \cdot \mathbf {x} _{i}-b)\geq 1,\quad {\text{ for all }}1\leq i\leq n.\qquad \qquad (1)}

با کنار هم قرار دادن این دو یک مسئله بهینه‌سازی به دست می‌آید:

Minimize (in {\displaystyle {\mathbf {w} ,b}})

{\displaystyle \|\mathbf {w} \|}

subject to (for any {\displaystyle i=1,\dots ,n})

{\displaystyle y_{i}(\mathbf {w} \cdot \mathbf {x_{i}} -b)\geq 1.\,}

فرم اولیه

مسئله بهینه‌سازی مشاهده شده در قسمت قبل، مسئله سختی، برای حل کردن است، زیرا به||w|| وابسته است (نرم w ) . خوشبختانه می‌توانیم، بدون تغییر در مسئله||w|| را با{\displaystyle {\tfrac {1}{2}}\|\mathbf {w} \|^{2}}جانشین کنیم( عبارت ½ برای آسودگی در محاسبات ریاضی آورده شده). این یک مسئله بهینه سازی (OP)برنامه‌ریزی غیرخطی(QP) است. به‌طور واضح تر :

Minimize (in {\displaystyle {\mathbf {w} ,b}}) c

{\displaystyle {\frac {1}{2}}\|\mathbf {w} \|^{2}}

subject to (for any {\displaystyle i=1,\dots ,n})

{\displaystyle y_{i}(\mathbf {w} \cdot \mathbf {x_{i}} -b)\geq 1.}

می توان عبارت قبل را با استفاده از ضرایب نا منفی لاگرانژ به صورت زیر نوشت که در آن ضرایب لاگرانژ هستند {\displaystyle \alpha _{i}}:

{\displaystyle \min _{\mathbf {w} ,b,{\boldsymbol {\alpha }}}\{{\frac {1}{2}}\|\mathbf {w} \|^{2}-\sum _{i=1}^{n}{\alpha _{i}[y_{i}(\mathbf {w} \cdot \mathbf {x_{i}} -b)-1]}\}}

اما فرمول فوق اشتباه است . فرض کنید ما بتوانیم خانواده‌ای از ابرصفحات که نقاط را تقسیم می‌کنند پیدا کنیم . پس همه {\displaystyle y_{i}(\mathbf {w} \cdot \mathbf {x_{i}} -b)-1\geq 0} . بنا بر این ما می‌توانیم مینیمم را با فرستادن همه {\displaystyle \alpha _{i}} به{\displaystyle +\infty } پیدا کنیم. با این حال شرط پیش گفته می‌تواند به صورت پایین بیان شود:

{\displaystyle \min _{\mathbf {w} ,b}\max _{\boldsymbol {\alpha }}\{{\frac {1}{2}}\|\mathbf {w} \|^{2}-\sum _{i=1}^{n}{\alpha _{i}[y_{i}(\mathbf {w} \cdot \mathbf {x_{i}} -b)-1]}\}}

ما به دنبال نقاط saddle میگردیم.حالا می‌توان این مسئله را به کمک برنامه‌ریزی غیرخطی استاندارد حل کرد. جواب می‌تواند به صورت ترکیب خطی از بردارهای آموزشی بیان شود :

{\displaystyle \mathbf {w} =\sum _{i=1}^{n}{\alpha _{i}y_{i}\mathbf {x_{i}} }}

تنها چند{\displaystyle \alpha _{i}} بزرگتر از صفر خواهد بود.{\displaystyle \mathbf {x_{i}} } متناظر، دقیقاً همان بردار پشتیبان خواهد بود و به شرط را ارضا خواهد کرد. از این می‌توان نتیجه گرفت که بردارهای پشتیبان شرط زیر را نیز ارضا می‌کنند: {\displaystyle y_{i}(\mathbf {w} \cdot \mathbf {x_{i}} -b)=1} که اجازه می دهد مفدار b تعریف شود. در عمل الگوریتم مقاوم تر خواهد بود اگر از تمام {\displaystyle N_{SV}} بردار پشتیبان میانگین گرفته شود:

{\displaystyle b={\frac {1}{N_{SV}}}\sum _{i=1}^{N_{SV}}{(\mathbf {w} \cdot \mathbf {x_{i}} -y_{i})}}

فرم دوگان

استفاده از این واقعیت که {\displaystyle \|\mathbf {w} \|^{2}=w\cdot w} و جانشینی {\displaystyle \mathbf {w} =\sum _{i=1}^{n}{\alpha _{i}y_{i}\mathbf {x_{i}} }} می‌توان نشان داد که دوگان SVM به مسئله بهینه‌سازی زیر ساده می‌شود:

Maximize (in {\displaystyle \alpha _{i}} )

{\displaystyle {\tilde {L}}(\mathbf {\alpha } )=\sum _{i=1}^{n}\alpha _{i}-{\frac {1}{2}}\sum _{i,j}\alpha _{i}\alpha _{j}y_{i}y_{j}\mathbf {x} _{i}^{T}\mathbf {x} _{j}=\sum _{i=1}^{n}\alpha _{i}-{\frac {1}{2}}\sum _{i,j}\alpha _{i}\alpha _{j}y_{i}y_{j}k(\mathbf {x} _{i},\mathbf {x} _{j})}

subject to (for any}{\displaystyle i=1,\dots ,n})

{\displaystyle \alpha _{i}\geq 0,\,}

and to the constraint from the minimization in {\displaystyle b}

{\displaystyle \sum _{i=1}^{n}\alpha _{i}y_{i}=0.}

در اینجا هسته به صورت {\displaystyle k(\mathbf {x} _{i},\mathbf {x} _{j})=\mathbf {x} _{i}\cdot \mathbf {x} _{j}} تعریف می‌شود. عبارت \alpha  تشکیل یک دوگان برای بردار وزن‌ها مجموعه آموزشی می دهد:

{\displaystyle \mathbf {w} =\sum _{i}\alpha _{i}y_{i}\mathbf {x} _{i}.}

ماشین بردار پشتیبان چند کلاسی

SVM اساساً یک جداکننده دودویی است. در بخش قبلی پایه‌های تئوری ماشین‌های بردار پشتیبان برای دسته بندی دو کلاس تشریح شد. یک تشخیص الگوی چند کلاسی می‌تواند به وسیله ی ترکیب ماشین‌های بردار پشیبان دو کلاسی حاصل شود. به‌طور معمول دو دید برای این هدف وجود دارد. یکی از آن‌ها استراتژی “یک در مقابل همه ” برای دسته بندی هر جفت کلاس و کلاس‌های باقی‌مانده‌است. دیگر استراتژی “یک در مقابل یک” برای دسته بندی هر جفت است. در شرایطی که دسته بندی اول به دسته بندی مبهم منجر می‌شود.برای مسائل چند کلاسی٬رهیافت کلی کاهش مسئله ی چند کلاسی به چندین مسئله دودویی است. هریک از مسائل با یک جداکننده دودویی حل می‌شود. سپس خروجی جداکننده‌های دودویی SVM با هم ترکیب شده و به این ترتیب مسئله چند کلاس حل می‌شود.

ماشین‌های بردار پشتیبان غیرخطی

شکل 3

ابرصفحه جداکننده بهینه اولین بار توسط Vapnik در سال ۱۹۶۳ ارائه شد که یک دسته‌کننده خطی بود. در سال ۱۹۹۲ ،Bernhard Boser ، Isabelle GuyonوVapnik راهی را برای ایجاد دسته بند غیرخطی، با استفاده قرار دادن هسته برای پیدا کردن ابرصفحه با بیشتر حاشیه، پیشنهاد دادند. الگوریتم نتیجه شده ظاهراً مشابه است، به جز آنکه تمام ضرب‌های نقطه‌ای با یک تابع هسته غیرخطی جایگزین شداند. این اجازه می‌دهد، الگوریتم، برای ابرصفحه با بیشترین حاشیه در یک فضای ویژگی تغییرشکل داده، مناسب باشد. ممکن است، تغییرشکل غیرخطی باشد و فضای تغییر یافته، دارای ابعاد بالاتری باشد. به هر حال دسته‌کننده، یک ابرصفحه در فضای ویژگی با ابعاد بالا است، که ممکن است در فضای ورودی نیز غیرخطی باشد.

اگر از هسته با تابع گوسیین استفاده شود، فضای ویژگی متناظر، یک فضای هیلبرت نامتناهی است. دسته‌کننده ی بیشترین حاشیه، خوش ترتیب است، بنابراین ابعاد نامتناهی، نتیجه را خراب نمی‌کند. هسته‌های متداول به صورت زیر هستند:

  • چندجمله‌ای (همگن): {\displaystyle k(\mathbf {x_{i}} ,\mathbf {x_{j}} )=(\mathbf {x_{i}} \cdot \mathbf {x_{j}} )^{d}}
  • چندجمله‌ای (ناهمگن): {\displaystyle k(\mathbf {x_{i}} ,\mathbf {x_{j}} )=(\mathbf {x_{i}} \cdot \mathbf {x_{j}} +1)^{d}}
  • گوسیین Radial Basis Function:  {\displaystyle k(\mathbf {x_{i}} ,\mathbf {x_{j}} )=\exp(-\gamma \|\mathbf {x_{i}} -\mathbf {x_{j}} \|^{2})}، for {\displaystyle \gamma >0.} Sometimes parametrized using {\displaystyle \gamma =1/{2\sigma ^{2}}}
  • تانژانت هذلولی: {\displaystyle k(\mathbf {x_{i}} ,\mathbf {x_{j}} )=\tanh(\kappa \mathbf {x_{i}} \cdot \mathbf {x_{j}} +c)}، for some (not every) {\displaystyle \kappa >0} and {\displaystyle c<0}

هسته با انتقال {\displaystyle \varphi (\mathbf {x_{i}} )} با تساوی {\displaystyle k(\mathbf {x_{i}} ,\mathbf {x_{j}} )=\varphi (\mathbf {x_{i}} )\cdot \varphi (\mathbf {x_{j}} )} در ارتباط است. همچنین مقدار wدر فضای انتقال یافته برابر{\displaystyle \textstyle \mathbf {w} =\sum _{i}\alpha _{i}y_{i}\varphi (\mathbf {x} _{i}).} است. ضرب نقطه‌ای با w می‌تواند توسط هسته محاسبه شود یعنی {\displaystyle \textstyle \mathbf {w} \cdot \varphi (\mathbf {x} )=\sum _{i}\alpha _{i}y_{i}k(\mathbf {x} _{i},\mathbf {x} )}. به هر حال در حالت عادی w’ وجود ندارد، به‌طوری‌که {\displaystyle \mathbf {w} \cdot \varphi (\mathbf {x} )=k(\mathbf {w'} ,\mathbf {x} ).}

 

منبع

 

 

ماشین بردار پشتیبان (svm) قسمت 1
ماشین بردار پشتیبان (svm) قسمت 2
ماشین بردار پشتیبان (svm) قسمت 3