بایگانی برچسب برای: dv

الگوریتم Canny در ++C

لبه یاب کنی توسط جان اف کنی در سال 1986 ایجاد شد و هنوز یک لبه یاب استاندارد و با دقت و کیفیت بالا میباشد.الگوریتم لبه یابی کنی یکی از بهترین لبه یابها تا به امروز است. در ادامه روش کار این الگوریتم و هم چنین کد الگوریتم Canny در ++C را بررسی خواهیم کرد. این الگوریتم لبه یابی از سه بخش اصلی زیر تشکیل شده است:

  • تضعیف نویز
  • پیدا کردن نقاطی که بتوان آنها را به عنوان لبه در نظر گرفت
  • حذب نقاطی که احتمال لبه بودن آنها کم است

 

معیارهایی که در لبه یاب کنی مطرح است:
1 -پایین آوردن نرخ خطا- یعنی تا حد امکان هیچ لبه ای در تصویر نباید گم شود و هم چنین هیچ چیزی که لبه نیست نباید به جای لبه فرض شود. لبه هان پیدا شده تا حد ممکن به لبه ها اصلی
نزدیک باشند.

2 -لبه در مکان واقعی خود باشد- یعنی تا حد ممکن لبه ها کمترین فاصله را با مکان واقعی خود داشته باشند.
3 -بران هر لبه فقط یک پاسخ داشته باشیم.

4 -لبه ها کمترین ضخامت را داشته باشند- (در صورت امکان یک پیکسل).
لبه یاب کنی بخاطر توانایی در تولید لبه های نازک تا حد یک ییکسل برای لبه های پیوسته معروف شده است. این لبه یاب شامل چهار مرحله و چهار ورودی زیر است:
یک تصویر ورودی
یک پارامتر به نام سیگما جهت مقدار نرم کنندگی تصویر
یک حد آستانه بالا (Th)
یک حد آستانه پایین (Tl)

 

مراحل الگوریتم Canny:

1- در ابتدا باید تصویر رنگی را به جهت لبه یابی بهتر به یک تصویر سطح خاکسترن تبدیب کرد.

2- نویز را از تصویر دریافتی حذف کرد. بدلیل اینکه فیلتر گاوسین از یک ماسک ساده برای حذف نویز استفاده می کند لبه یاب کنی در مرحله اول برای حذف نویز آن را بکار میگیرد.

3- در یک تصویر سطح خاکستر جایی را که بیشترین تغییرات را داشته باشند به عنوان لبه در نظر گرفته می شوند و این مکانها با گرفتن گرادیان تصویر با استفاده عملگر سوبل بدست می آیند. سپس لبه های مات یافت شده به لبه های تیزتر تبدیل می شوند.

4- برخی از لبه های کشف شده واقعا لبه نیستند و در واقع نویز هستند که باید آنها توسط حد آستانه هیسترزیس فیلتر شوند.هیسترزیس از دو حد آستانه بالاتر (Th) و حد آستانه پایین تر (Tl) استفاده کرده و کنی پیشنهاد می کند که نسبت استانه بالا به پایین سه به یک باشد.

 این روش بیشتر به کشف لبه های ضعیف به درستی می پردازد و کمتر فریب نویز را می خورد و از بقیه روش ها بهتر است.

 

الگوریتم Canny    عملکرد الگوریتم Canny

 

 

 

کد الگوریتم Canny در ++C:

برای الگوریتم Canny دو کد زیر ارائه می شود که کد شماره 2 کد کاملتری است.

کد شماره  الگوریتم 1 الگوریتم Canny در ++C:

در زیر استفاده از الگوریتم کنی در ++C است. توجه داشته باشید که تصویر ابتدا به تصویر سیاه و سفید تبدیل می شود، سپس فیلتر گاوسی برای کاهش نویز در تصویر استفاده می شود. سپس الگوریتم Canny برای تشخیص لبه استفاده می شود.

 

// CannyTutorial.cpp : Defines the entry point for the console application. 
// Environment: Visual studio 2015, Windows 10
// Assumptions: Opecv is installed configured in the visual studio project
// Opencv version: OpenCV 3.1

#include "stdafx.h"
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/imgproc/imgproc.hpp>
#include<string>
#include<iostream>


int main()
{

    //Modified from source: https://github.com/MicrocontrollersAndMore/OpenCV_3_Windows_10_Installation_Tutorial
    cv::Mat imgOriginal;        // input image
    cv::Mat imgGrayscale;        // grayscale of input image
    cv::Mat imgBlurred;            // intermediate blured image
    cv::Mat imgCanny;            // Canny edge image

    std::cout << "Please enter an image filename : ";     std::string img_addr;     std::cin >> img_addr;

    std::cout << "Searching for " + img_addr << std::endl;

    imgOriginal = cv::imread(img_addr);            // open image

    if (imgOriginal.empty()) {                                    // if unable to open image
        std::cout << "error: image not read from file\n\n";        // show error message on command line
        return(0);                                                // and exit program
    }

    cv::cvtColor(imgOriginal, imgGrayscale, CV_BGR2GRAY);        // convert to grayscale

    cv::GaussianBlur(imgGrayscale,            // input image
        imgBlurred,                            // output image
        cv::Size(5, 5),                        // smoothing window width and height in pixels
        1.5);                                // sigma value, determines how much the image will be blurred

    cv::Canny(imgBlurred,            // input image
        imgCanny,                    // output image
        100,                        // low threshold
        200);                        // high threshold


    // Declare windows
    // Note: you can use CV_WINDOW_NORMAL which allows resizing the window
    // or CV_WINDOW_AUTOSIZE for a fixed size window matching the resolution of the image
    // CV_WINDOW_AUTOSIZE is the default
    cv::namedWindow("imgOriginal", CV_WINDOW_AUTOSIZE);        
    cv::namedWindow("imgCanny", CV_WINDOW_AUTOSIZE);

    //Show windows
    cv::imshow("imgOriginal", imgOriginal);        
    cv::imshow("imgCanny", imgCanny);

    cv::waitKey(0);                    // hold windows open until user presses a key
    return 0;
}

 

دانلود کد فوق از طریق لینک زیر:

رمز فایل : behsanandish.com

 

 

کد شماره 2:

مرحله 1: یک blur(تار کننده) گاوسی را اعمال کنید.

اول متغیرهای ضروری اعلام شده اند و بعضی از آنها اولیه هستند. سپس Blur گاوسی اعمال می شود. برای انجام این کار یک ماسک 5×5 بر روی تصویر منتقل می شود. هر پیکسل به صورت مجموع مقادیر پیکسل در محدوده 5×5 آن ضربدر وزن گاوسی متناظر تقسیم شده توسط وزن مجموع کل ماسک تعریف می شود.

 

ماسک گاوسی

ماسک گاوسی

 

#include "stdafx.h"
#include "tripod.h"
#include "tripodDlg.h"

#include "LVServerDefs.h"
#include "math.h"
#include <fstream>
#include <string>
#include <iostream>
#include <stdlib.h>
#include <stdio.h>


#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

using namespace std;

/////////////////////////////////////////////////////////////////////////////
// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:
	CAboutDlg();

// Dialog Data
	//{{AFX_DATA(CAboutDlg)
	enum { IDD = IDD_ABOUTBOX };
	//}}AFX_DATA

	// ClassWizard generated virtual function overrides
	//{{AFX_VIRTUAL(CAboutDlg)
	protected:
	virtual void DoDataExchange(CDataExchange* pDX);    // DDX/DDV support
	//}}AFX_VIRTUAL

// Implementation
protected:
	//{{AFX_MSG(CAboutDlg)
	//}}AFX_MSG
	DECLARE_MESSAGE_MAP()
};

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
{
	//{{AFX_DATA_INIT(CAboutDlg)
	//}}AFX_DATA_INIT
}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
	CDialog::DoDataExchange(pDX);
	//{{AFX_DATA_MAP(CAboutDlg)
	//}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
	//{{AFX_MSG_MAP(CAboutDlg)
		// No message handlers
	//}}AFX_MSG_MAP
END_MESSAGE_MAP()

/////////////////////////////////////////////////////////////////////////////
// CTripodDlg dialog

CTripodDlg::CTripodDlg(CWnd* pParent /*=NULL*/)
	: CDialog(CTripodDlg::IDD, pParent)
{
	//{{AFX_DATA_INIT(CTripodDlg)
		// NOTE: the ClassWizard will add member initialization here
	//}}AFX_DATA_INIT
	// Note that LoadIcon does not require a subsequent DestroyIcon in Win32
	m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);

	//////////////// Set destination BMP to NULL first 
	m_destinationBitmapInfoHeader = NULL;

}

////////////////////// Additional generic functions

static unsigned PixelBytes(int w, int bpp)
{
    return (w * bpp + 7) / 8;
}

static unsigned DibRowSize(int w, int bpp)
{
    return (w * bpp + 31) / 32 * 4;
}

static unsigned DibRowSize(LPBITMAPINFOHEADER pbi)
{
    return DibRowSize(pbi->biWidth, pbi->biBitCount);
}

static unsigned DibRowPadding(int w, int bpp)
{
    return DibRowSize(w, bpp) - PixelBytes(w, bpp);
}

static unsigned DibRowPadding(LPBITMAPINFOHEADER pbi)
{
    return DibRowPadding(pbi->biWidth, pbi->biBitCount);
}

static unsigned DibImageSize(int w, int h, int bpp)
{
    return h * DibRowSize(w, bpp);
}

static size_t DibSize(int w, int h, int bpp)
{
    return sizeof (BITMAPINFOHEADER) + DibImageSize(w, h, bpp);
}

/////////////////////// end of generic functions


void CTripodDlg::DoDataExchange(CDataExchange* pDX)
{
	CDialog::DoDataExchange(pDX);
	//{{AFX_DATA_MAP(CTripodDlg)
	DDX_Control(pDX, IDC_PROCESSEDVIEW, m_cVideoProcessedView);
	DDX_Control(pDX, IDC_UNPROCESSEDVIEW, m_cVideoUnprocessedView);
	//}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CTripodDlg, CDialog)
	//{{AFX_MSG_MAP(CTripodDlg)
	ON_WM_SYSCOMMAND()
	ON_WM_PAINT()
	ON_WM_QUERYDRAGICON()
	ON_BN_CLICKED(IDEXIT, OnExit)
	//}}AFX_MSG_MAP
END_MESSAGE_MAP()

/////////////////////////////////////////////////////////////////////////////
// CTripodDlg message handlers

BOOL CTripodDlg::OnInitDialog()
{
	CDialog::OnInitDialog();

	// Add "About..." menu item to system menu.

	// IDM_ABOUTBOX must be in the system command range.
	ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);
	ASSERT(IDM_ABOUTBOX < 0xF000); CMenu* pSysMenu = GetSystemMenu(FALSE); if (pSysMenu != NULL) { CString strAboutMenu; strAboutMenu.LoadString(IDS_ABOUTBOX); if (!strAboutMenu.IsEmpty()) { pSysMenu->AppendMenu(MF_SEPARATOR);
			pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);
		}
	}

	// Set the icon for this dialog.  The framework does this automatically
	//  when the application's main window is not a dialog
	SetIcon(m_hIcon, TRUE);			// Set big icon
	SetIcon(m_hIcon, FALSE);		// Set small icon
	
	// TODO: Add extra initialization here

	// For Unprocessed view videoportal (top one)
	char sRegUnprocessedView[] = "HKEY_LOCAL_MACHINE\\Software\\UnprocessedView";
	m_cVideoUnprocessedView.PrepareControl("UnprocessedView", sRegUnprocessedView, 0 );	
	m_cVideoUnprocessedView.EnableUIElements(UIELEMENT_STATUSBAR,0,TRUE);
	m_cVideoUnprocessedView.ConnectCamera2();
	m_cVideoUnprocessedView.SetEnablePreview(TRUE);

	// For binary view videoportal (bottom one)
	char sRegProcessedView[] = "HKEY_LOCAL_MACHINE\\Software\\ProcessedView";
	m_cVideoProcessedView.PrepareControl("ProcessedView", sRegProcessedView, 0 );	
	m_cVideoProcessedView.EnableUIElements(UIELEMENT_STATUSBAR,0,TRUE);
	m_cVideoProcessedView.ConnectCamera2();
	m_cVideoProcessedView.SetEnablePreview(TRUE);

	// Initialize the size of binary videoportal
	m_cVideoProcessedView.SetPreviewMaxHeight(240);
	m_cVideoProcessedView.SetPreviewMaxWidth(320);

	// Uncomment if you wish to fix the live videoportal's size
	// m_cVideoUnprocessedView.SetPreviewMaxHeight(240);
	// m_cVideoUnprocessedView.SetPreviewMaxWidth(320);

	// Find the screen coodinates of the binary videoportal
	m_cVideoProcessedView.GetWindowRect(m_rectForProcessedView);
	ScreenToClient(m_rectForProcessedView);
	allocateDib(CSize(320, 240));

	// Start grabbing frame data for Procssed videoportal (bottom one)
	m_cVideoProcessedView.StartVideoHook(0);

	return TRUE;  // return TRUE  unless you set the focus to a control
}

void CTripodDlg::OnSysCommand(UINT nID, LPARAM lParam)
{
	if ((nID & 0xFFF0) == IDM_ABOUTBOX)
	{
		CAboutDlg dlgAbout;
		dlgAbout.DoModal();
	}
	else
	{
		CDialog::OnSysCommand(nID, lParam);
	}
}

// If you add a minimize button to your dialog, you will need the code below
//  to draw the icon.  For MFC applications using the document/view model,
//  this is automatically done for you by the framework.

void CTripodDlg::OnPaint() 
{
	if (IsIconic())
	{
		CPaintDC dc(this); // device context for painting

		SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);

		// Center icon in client rectangle
		int cxIcon = GetSystemMetrics(SM_CXICON);
		int cyIcon = GetSystemMetrics(SM_CYICON);
		CRect rect;
		GetClientRect(&rect);
		int x = (rect.Width() - cxIcon + 1) / 2;
		int y = (rect.Height() - cyIcon + 1) / 2;

		// Draw the icon
		dc.DrawIcon(x, y, m_hIcon);
	}
	else
	{
		CDialog::OnPaint();
	}
}

// The system calls this to obtain the cursor to display while the user drags
//  the minimized window.
HCURSOR CTripodDlg::OnQueryDragIcon()
{
	return (HCURSOR) m_hIcon;
}

void CTripodDlg::OnExit() 
{
	// TODO: Add your control notification handler code here

	// Kill live view videoportal (top one)
	m_cVideoUnprocessedView.StopVideoHook(0);
    m_cVideoUnprocessedView.DisconnectCamera();	
	
	// Kill binary view videoportal (bottom one)
	m_cVideoProcessedView.StopVideoHook(0);
    m_cVideoProcessedView.DisconnectCamera();	

	// Kill program
	DestroyWindow();	

	

}

BEGIN_EVENTSINK_MAP(CTripodDlg, CDialog)
    //{{AFX_EVENTSINK_MAP(CTripodDlg)
	ON_EVENT(CTripodDlg, IDC_PROCESSEDVIEW, 1 /* PortalNotification */, OnPortalNotificationProcessedview, VTS_I4 VTS_I4 VTS_I4 VTS_I4)
	//}}AFX_EVENTSINK_MAP
END_EVENTSINK_MAP()

void CTripodDlg::OnPortalNotificationProcessedview(long lMsg, long lParam1, long lParam2, long lParam3) 
{
	// TODO: Add your control notification handler code here
	
	// This function is called at the camera's frame rate
    
#define NOTIFICATIONMSG_VIDEOHOOK	10

	// Declare some useful variables
	// QCSDKMFC.pdf (Quickcam MFC documentation) p. 103 explains the variables lParam1, lParam2, lParam3 too 
	
	LPBITMAPINFOHEADER lpBitmapInfoHeader; // Frame's info header contains info like width and height
	LPBYTE lpBitmapPixelData; // This pointer-to-long will point to the start of the frame's pixel data
    unsigned long lTimeStamp; // Time when frame was grabbed

	switch(lMsg) {
		case NOTIFICATIONMSG_VIDEOHOOK:
			{
				lpBitmapInfoHeader = (LPBITMAPINFOHEADER) lParam1; 
				lpBitmapPixelData = (LPBYTE) lParam2;
				lTimeStamp = (unsigned long) lParam3;

				grayScaleTheFrameData(lpBitmapInfoHeader, lpBitmapPixelData);
				doMyImageProcessing(lpBitmapInfoHeader); // Place where you'd add your image processing code
				displayMyResults(lpBitmapInfoHeader);

			}
			break;

		default:
			break;
	}	
}

void CTripodDlg::allocateDib(CSize sz)
{
	// Purpose: allocate information for a device independent bitmap (DIB)
	// Called from OnInitVideo

	if(m_destinationBitmapInfoHeader) {
		free(m_destinationBitmapInfoHeader);
		m_destinationBitmapInfoHeader = NULL;
	}

	if(sz.cx | sz.cy) {
		m_destinationBitmapInfoHeader = (LPBITMAPINFOHEADER)malloc(DibSize(sz.cx, sz.cy, 24));
		ASSERT(m_destinationBitmapInfoHeader);
		m_destinationBitmapInfoHeader->biSize = sizeof(BITMAPINFOHEADER);
		m_destinationBitmapInfoHeader->biWidth = sz.cx;
		m_destinationBitmapInfoHeader->biHeight = sz.cy;
		m_destinationBitmapInfoHeader->biPlanes = 1;
		m_destinationBitmapInfoHeader->biBitCount = 24;
		m_destinationBitmapInfoHeader->biCompression = 0;
		m_destinationBitmapInfoHeader->biSizeImage = DibImageSize(sz.cx, sz.cy, 24);
		m_destinationBitmapInfoHeader->biXPelsPerMeter = 0;
		m_destinationBitmapInfoHeader->biYPelsPerMeter = 0;
		m_destinationBitmapInfoHeader->biClrImportant = 0;
		m_destinationBitmapInfoHeader->biClrUsed = 0;
	}
}

void CTripodDlg::displayMyResults(LPBITMAPINFOHEADER lpThisBitmapInfoHeader)
{
	// displayMyResults: Displays results of doMyImageProcessing() in the videoport
	// Notes: StretchDIBits stretches a device-independent bitmap to the appropriate size

	CDC				*pDC;	// Device context to display bitmap data
	
	pDC = GetDC();	
	int nOldMode = SetStretchBltMode(pDC->GetSafeHdc(),COLORONCOLOR);

	StretchDIBits( 
		pDC->GetSafeHdc(),
		m_rectForProcessedView.left,				// videoportal left-most coordinate
		m_rectForProcessedView.top,					// videoportal top-most coordinate
		m_rectForProcessedView.Width(),				// videoportal width
		m_rectForProcessedView.Height(),			// videoportal height
		0,											// Row position to display bitmap in videoportal
		0,											// Col position to display bitmap in videoportal
		lpThisBitmapInfoHeader->biWidth,			// m_destinationBmp's number of columns
		lpThisBitmapInfoHeader->biHeight,			// m_destinationBmp's number of rows
		m_destinationBmp,							// The bitmap to display; use the one resulting from doMyImageProcessing
		(BITMAPINFO*)m_destinationBitmapInfoHeader, // The bitmap's header info e.g. width, height, number of bits etc
		DIB_RGB_COLORS,								// Use default 24-bit color table
		SRCCOPY										// Just display
	);
 
	SetStretchBltMode(pDC->GetSafeHdc(),nOldMode);

	ReleaseDC(pDC);

	// Note: 04/24/02 - Added the following:
	// Christopher Wagner cwagner@fas.harvard.edu noticed that memory wasn't being freed

	// Recall OnPortalNotificationProcessedview, which gets called everytime
	// a frame of data arrives, performs 3 steps:
	// (1) grayScaleTheFrameData - which mallocs m_destinationBmp
	// (2) doMyImageProcesing
	// (3) displayMyResults - which we're in now
	// Since we're finished with the memory we malloc'ed for m_destinationBmp
	// we should free it: 
	
	free(m_destinationBmp);

	// End of adds
}

void CTripodDlg::grayScaleTheFrameData(LPBITMAPINFOHEADER lpThisBitmapInfoHeader, LPBYTE lpThisBitmapPixelData)
{

	// grayScaleTheFrameData: Called by CTripodDlg::OnPortalNotificationBinaryview
	// Task: Read current frame pixel data and computes a grayscale version

	unsigned int	W, H;			  // Width and Height of current frame [pixels]
	BYTE            *sourceBmp;		  // Pointer to current frame of data
	unsigned int    row, col;
	unsigned long   i;
	BYTE			grayValue;

	BYTE			redValue;
	BYTE			greenValue;
	BYTE			blueValue;

    W = lpThisBitmapInfoHeader->biWidth;  // biWidth: number of columns
    H = lpThisBitmapInfoHeader->biHeight; // biHeight: number of rows

	// Store pixel data in row-column vector format
	// Recall that each pixel requires 3 bytes (red, blue and green bytes)
	// m_destinationBmp is a protected member and declared in binarizeDlg.h

	m_destinationBmp = (BYTE*)malloc(H*3*W*sizeof(BYTE));

	// Point to the current frame's pixel data
	sourceBmp = lpThisBitmapPixelData;

	for (row = 0; row < H; row++) {
		for (col = 0; col < W; col++) { // Recall each pixel is composed of 3 bytes i = (unsigned long)(row*3*W + 3*col); // The source pixel has a blue, green andred value: blueValue = *(sourceBmp + i); greenValue = *(sourceBmp + i + 1); redValue = *(sourceBmp + i + 2); // A standard equation for computing a grayscale value based on RGB values grayValue = (BYTE)(0.299*redValue + 0.587*greenValue + 0.114*blueValue); // The destination BMP will be a grayscale version of the source BMP *(m_destinationBmp + i) = grayValue; *(m_destinationBmp + i + 1) = grayValue; *(m_destinationBmp + i + 2) = grayValue; } } } void CTripodDlg::doMyImageProcessing(LPBITMAPINFOHEADER lpThisBitmapInfoHeader) { // doMyImageProcessing: This is where you'd write your own image processing code // Task: Read a pixel's grayscale value and process accordingly unsigned int W, H; // Width and Height of current frame [pixels] unsigned int row, col; // Pixel's row and col positions unsigned long i; // Dummy variable for row-column vector int upperThreshold = 60; // Gradient strength nessicary to start edge int lowerThreshold = 30; // Minimum gradient strength to continue edge unsigned long iOffset; // Variable to offset row-column vector during sobel mask int rowOffset; // Row offset from the current pixel int colOffset; // Col offset from the current pixel int rowTotal = 0; // Row position of offset pixel int colTotal = 0; // Col position of offset pixel int Gx; // Sum of Sobel mask products values in the x direction int Gy; // Sum of Sobel mask products values in the y direction float thisAngle; // Gradient direction based on Gx and Gy int newAngle; // Approximation of the gradient direction bool edgeEnd; // Stores whether or not the edge is at the edge of the possible image int GxMask[3][3]; // Sobel mask in the x direction int GyMask[3][3]; // Sobel mask in the y direction int newPixel; // Sum pixel values for gaussian int gaussianMask[5][5]; // Gaussian mask W = lpThisBitmapInfoHeader->biWidth;  // biWidth: number of columns
    H = lpThisBitmapInfoHeader->biHeight; // biHeight: number of rows
	
	for (row = 0; row < H; row++) {
		for (col = 0; col < W; col++) {
			edgeDir[row][col] = 0;
		}
	}

	/* Declare Sobel masks */
	GxMask[0][0] = -1; GxMask[0][1] = 0; GxMask[0][2] = 1;
	GxMask[1][0] = -2; GxMask[1][1] = 0; GxMask[1][2] = 2;
	GxMask[2][0] = -1; GxMask[2][1] = 0; GxMask[2][2] = 1;
	
	GyMask[0][0] =  1; GyMask[0][1] =  2; GyMask[0][2] =  1;
	GyMask[1][0] =  0; GyMask[1][1] =  0; GyMask[1][2] =  0;
	GyMask[2][0] = -1; GyMask[2][1] = -2; GyMask[2][2] = -1;

	/* Declare Gaussian mask */
	gaussianMask[0][0] = 2;		gaussianMask[0][1] = 4;		gaussianMask[0][2] = 5;		gaussianMask[0][3] = 4;		gaussianMask[0][4] = 2;	
	gaussianMask[1][0] = 4;		gaussianMask[1][1] = 9;		gaussianMask[1][2] = 12;	gaussianMask[1][3] = 9;		gaussianMask[1][4] = 4;	
	gaussianMask[2][0] = 5;		gaussianMask[2][1] = 12;	gaussianMask[2][2] = 15;	gaussianMask[2][3] = 12;	gaussianMask[2][4] = 2;	
	gaussianMask[3][0] = 4;		gaussianMask[3][1] = 9;		gaussianMask[3][2] = 12;	gaussianMask[3][3] = 9;		gaussianMask[3][4] = 4;	
	gaussianMask[4][0] = 2;		gaussianMask[4][1] = 4;		gaussianMask[4][2] = 5;		gaussianMask[4][3] = 4;		gaussianMask[4][4] = 2;	
	

	/* Gaussian Blur */
	for (row = 2; row < H-2; row++) {
		for (col = 2; col < W-2; col++) {
			newPixel = 0;
			for (rowOffset=-2; rowOffset<=2; rowOffset++) {
				for (colOffset=-2; colOffset<=2; colOffset++) {
					rowTotal = row + rowOffset;
					colTotal = col + colOffset;
					iOffset = (unsigned long)(rowTotal*3*W + colTotal*3);
					newPixel += (*(m_destinationBmp + iOffset)) * gaussianMask[2 + rowOffset][2 + colOffset];
				}
			}
			i = (unsigned long)(row*3*W + col*3);
			*(m_destinationBmp + i) = newPixel / 159;
		}
	}

	/* Determine edge directions and gradient strengths */
	for (row = 1; row < H-1; row++) {
		for (col = 1; col < W-1; col++) {
			i = (unsigned long)(row*3*W + 3*col);
			Gx = 0;
			Gy = 0;
			/* Calculate the sum of the Sobel mask times the nine surrounding pixels in the x and y direction */
			for (rowOffset=-1; rowOffset<=1; rowOffset++) {
				for (colOffset=-1; colOffset<=1; colOffset++) {
					rowTotal = row + rowOffset;
					colTotal = col + colOffset;
					iOffset = (unsigned long)(rowTotal*3*W + colTotal*3);
					Gx = Gx + (*(m_destinationBmp + iOffset) * GxMask[rowOffset + 1][colOffset + 1]);
					Gy = Gy + (*(m_destinationBmp + iOffset) * GyMask[rowOffset + 1][colOffset + 1]);
				}
			}

			gradient[row][col] = sqrt(pow(Gx,2.0) + pow(Gy,2.0));	// Calculate gradient strength			
			thisAngle = (atan2(Gx,Gy)/3.14159) * 180.0;		// Calculate actual direction of edge
			
			/* Convert actual edge direction to approximate value */
			if ( ( (thisAngle < 22.5) && (thisAngle > -22.5) ) || (thisAngle > 157.5) || (thisAngle < -157.5) ) newAngle = 0; if ( ( (thisAngle > 22.5) && (thisAngle < 67.5) ) || ( (thisAngle < -112.5) && (thisAngle > -157.5) ) )
				newAngle = 45;
			if ( ( (thisAngle > 67.5) && (thisAngle < 112.5) ) || ( (thisAngle < -67.5) && (thisAngle > -112.5) ) )
				newAngle = 90;
			if ( ( (thisAngle > 112.5) && (thisAngle < 157.5) ) || ( (thisAngle < -22.5) && (thisAngle > -67.5) ) )
				newAngle = 135;
				
			edgeDir[row][col] = newAngle;		// Store the approximate edge direction of each pixel in one array
		}
	}

	/* Trace along all the edges in the image */
	for (row = 1; row < H - 1; row++) {
		for (col = 1; col < W - 1; col++) { edgeEnd = false; if (gradient[row][col] > upperThreshold) {		// Check to see if current pixel has a high enough gradient strength to be part of an edge
				/* Switch based on current pixel's edge direction */
				switch (edgeDir[row][col]){		
					case 0:
						findEdge(0, 1, row, col, 0, lowerThreshold);
						break;
					case 45:
						findEdge(1, 1, row, col, 45, lowerThreshold);
						break;
					case 90:
						findEdge(1, 0, row, col, 90, lowerThreshold);
						break;
					case 135:
						findEdge(1, -1, row, col, 135, lowerThreshold);
						break;
					default :
						i = (unsigned long)(row*3*W + 3*col);
						*(m_destinationBmp + i) = 
						*(m_destinationBmp + i + 1) = 
						*(m_destinationBmp + i + 2) = 0;
						break;
					}
				}
			else {
				i = (unsigned long)(row*3*W + 3*col);
					*(m_destinationBmp + i) = 
					*(m_destinationBmp + i + 1) = 
					*(m_destinationBmp + i + 2) = 0;
			}	
		}
	}
	
	/* Suppress any pixels not changed by the edge tracing */
	for (row = 0; row < H; row++) {
		for (col = 0; col < W; col++) {	
			// Recall each pixel is composed of 3 bytes
			i = (unsigned long)(row*3*W + 3*col);
			// If a pixel's grayValue is not black or white make it black
			if( ((*(m_destinationBmp + i) != 255) && (*(m_destinationBmp + i) != 0)) || ((*(m_destinationBmp + i + 1) != 255) && (*(m_destinationBmp + i + 1) != 0)) || ((*(m_destinationBmp + i + 2) != 255) && (*(m_destinationBmp + i + 2) != 0)) ) 
				*(m_destinationBmp + i) = 
				*(m_destinationBmp + i + 1) = 
				*(m_destinationBmp + i + 2) = 0; // Make pixel black
		}
	}

	/* Non-maximum Suppression */
	for (row = 1; row < H - 1; row++) {
		for (col = 1; col < W - 1; col++) {
			i = (unsigned long)(row*3*W + 3*col);
			if (*(m_destinationBmp + i) == 255) {		// Check to see if current pixel is an edge
				/* Switch based on current pixel's edge direction */
				switch (edgeDir[row][col]) {		
					case 0:
						suppressNonMax( 1, 0, row, col, 0, lowerThreshold);
						break;
					case 45:
						suppressNonMax( 1, -1, row, col, 45, lowerThreshold);
						break;
					case 90:
						suppressNonMax( 0, 1, row, col, 90, lowerThreshold);
						break;
					case 135:
						suppressNonMax( 1, 1, row, col, 135, lowerThreshold);
						break;
					default :
						break;
				}
			}	
		}
	}
	
}

void CTripodDlg::findEdge(int rowShift, int colShift, int row, int col, int dir, int lowerThreshold)
{
	int W = 320;
	int H = 240;
	int newRow;
	int newCol;
	unsigned long i;
	bool edgeEnd = false;

	/* Find the row and column values for the next possible pixel on the edge */
	if (colShift < 0) { if (col > 0)
			newCol = col + colShift;
		else
			edgeEnd = true;
	} else if (col < W - 1) {
		newCol = col + colShift;
	} else
		edgeEnd = true;		// If the next pixel would be off image, don't do the while loop
	if (rowShift < 0) { if (row > 0)
			newRow = row + rowShift;
		else
			edgeEnd = true;
	} else if (row < H - 1) { newRow = row + rowShift; } else edgeEnd = true; /* Determine edge directions and gradient strengths */ while ( (edgeDir[newRow][newCol]==dir) && !edgeEnd && (gradient[newRow][newCol] > lowerThreshold) ) {
		/* Set the new pixel as white to show it is an edge */
		i = (unsigned long)(newRow*3*W + 3*newCol);
		*(m_destinationBmp + i) =
		*(m_destinationBmp + i + 1) =
		*(m_destinationBmp + i + 2) = 255;
		if (colShift < 0) { if (newCol > 0)
				newCol = newCol + colShift;
			else
				edgeEnd = true;	
		} else if (newCol < W - 1) {
			newCol = newCol + colShift;
		} else
			edgeEnd = true;	
		if (rowShift < 0) { if (newRow > 0)
				newRow = newRow + rowShift;
			else
				edgeEnd = true;
		} else if (newRow < H - 1) {
			newRow = newRow + rowShift;
		} else
			edgeEnd = true;	
	}	
}

void CTripodDlg::suppressNonMax(int rowShift, int colShift, int row, int col, int dir, int lowerThreshold)
{
	int W = 320;
	int H = 240;
	int newRow = 0;
	int newCol = 0;
	unsigned long i;
	bool edgeEnd = false;
	float nonMax[320][3];			// Temporarily stores gradients and positions of pixels in parallel edges
	int pixelCount = 0;					// Stores the number of pixels in parallel edges
	int count;						// A for loop counter
	int max[3];						// Maximum point in a wide edge
	
	if (colShift < 0) { if (col > 0)
			newCol = col + colShift;
		else
			edgeEnd = true;
	} else if (col < W - 1) {
		newCol = col + colShift;
	} else
		edgeEnd = true;		// If the next pixel would be off image, don't do the while loop
	if (rowShift < 0) { if (row > 0)
			newRow = row + rowShift;
		else
			edgeEnd = true;
	} else if (row < H - 1) {
		newRow = row + rowShift;
	} else
		edgeEnd = true;	
	i = (unsigned long)(newRow*3*W + 3*newCol);
	/* Find non-maximum parallel edges tracing up */
	while ((edgeDir[newRow][newCol] == dir) && !edgeEnd && (*(m_destinationBmp + i) == 255)) {
		if (colShift < 0) { if (newCol > 0)
				newCol = newCol + colShift;
			else
				edgeEnd = true;	
		} else if (newCol < W - 1) {
			newCol = newCol + colShift;
		} else
			edgeEnd = true;	
		if (rowShift < 0) { if (newRow > 0)
				newRow = newRow + rowShift;
			else
				edgeEnd = true;
		} else if (newRow < H - 1) {
			newRow = newRow + rowShift;
		} else
			edgeEnd = true;	
		nonMax[pixelCount][0] = newRow;
		nonMax[pixelCount][1] = newCol;
		nonMax[pixelCount][2] = gradient[newRow][newCol];
		pixelCount++;
		i = (unsigned long)(newRow*3*W + 3*newCol);
	}

	/* Find non-maximum parallel edges tracing down */
	edgeEnd = false;
	colShift *= -1;
	rowShift *= -1;
	if (colShift < 0) { if (col > 0)
			newCol = col + colShift;
		else
			edgeEnd = true;
	} else if (col < W - 1) {
		newCol = col + colShift;
	} else
		edgeEnd = true;	
	if (rowShift < 0) { if (row > 0)
			newRow = row + rowShift;
		else
			edgeEnd = true;
	} else if (row < H - 1) {
		newRow = row + rowShift;
	} else
		edgeEnd = true;	
	i = (unsigned long)(newRow*3*W + 3*newCol);
	while ((edgeDir[newRow][newCol] == dir) && !edgeEnd && (*(m_destinationBmp + i) == 255)) {
		if (colShift < 0) { if (newCol > 0)
				newCol = newCol + colShift;
			else
				edgeEnd = true;	
		} else if (newCol < W - 1) {
			newCol = newCol + colShift;
		} else
			edgeEnd = true;	
		if (rowShift < 0) { if (newRow > 0)
				newRow = newRow + rowShift;
			else
				edgeEnd = true;
		} else if (newRow < H - 1) {
			newRow = newRow + rowShift;
		} else
			edgeEnd = true;	
		nonMax[pixelCount][0] = newRow;
		nonMax[pixelCount][1] = newCol;
		nonMax[pixelCount][2] = gradient[newRow][newCol];
		pixelCount++;
		i = (unsigned long)(newRow*3*W + 3*newCol);
	}

	/* Suppress non-maximum edges */
	max[0] = 0;
	max[1] = 0;
	max[2] = 0;
	for (count = 0; count < pixelCount; count++) { if (nonMax[count][2] > max[2]) {
			max[0] = nonMax[count][0];
			max[1] = nonMax[count][1];
			max[2] = nonMax[count][2];
		}
	}
	for (count = 0; count < pixelCount; count++) {
		i = (unsigned long)(nonMax[count][0]*3*W + 3*nonMax[count][1]);
		*(m_destinationBmp + i) = 
		*(m_destinationBmp + i + 1) = 
		*(m_destinationBmp + i + 2) = 0;
	}
}

الگوریتم Canny در سی پلاس پلاس قسمت 1
الگوریتم Canny در سی پلاس پلاس قسمت 2
الگوریتم Canny در سی پلاس پلاس قسمت 3
الگوریتم Canny در سی پلاس پلاس فسمت 4

عامل‌ های هوشمند

عامل هوشمند یا کارگزار هوشمند (به انگلیسی: Intelligent agent)، در مبحث هوش مصنوعی به موجودی گفته می‌شود که در یک محیط، اطراف خود را شناخته و اعمالی را روی محیط انجام می‌دهد و کلیه اعمالی که انجام می‌دهد در جهت نیل به اهدافش می‌باشد. این سیستم‌ها امکان یادگیری دارند و سپس از دانش اکتسابی خود برای انجام اهداف خود استفاده می‌کنند. این عامل ها ممکن است بسیار ساده یا پیچیده باشند. بطور مثال ماشین‌های کوکی که با برخورد به دیوار، راه خود را عوض می‌کنند نمونه‌ای از عامل های هوشمند هستند.

تعریف عامل:

عامل هر چیزی است که می‌تواند محیطش را از طریق حسگرها درک کند و بر روی محیطش از طریق عمل‌کننده‌ها تأثیر گذارد. یک عامل انسانی دارای حس‌کننده‌هایی از قبیل چشم، گوش، لامسه و امثال آن می‌باشد. و میتوان از دست، پا، صحبت کردن و اعمال ارادی به عنوان عمل‌کننده‌ها نام برد. ورودی یک عامل نرم‌افزاری میتوانند چندین متغیر باشد که مقدار آن‌ها را عامل میخواند سپس بر اساس مکانیزم تصمیم‌گیری یک تصمیم اخذ می‌کند و عملگرهای آن میتوانند دستورهای مقداردهی چند متغیر دیگر باشد. به عنوان مثال فرض کنید یک عامل قرار است متغیر x را بخواند و توان دوم آن را حساب کند و در y قرار دهد. این عامل x را میخوانند و سپس توان دوم آن را حساب می‌کند و در y قرار می‌دهد.

نحوه کار عامل:

یک عامل چگونه باید بفهمد که بهترین عمل ممکن چیست؟ عمل درست عملی است که باعث شود عامل موفق‌ترین باشد. این امر ما را با مسئله تصمیم‌گیری در مورد چگونگی و زمان ارزیابی کردن موفقیت عامل روبرو میکند. اصطلاح میزان کارایی برای موفقیت عامل تعریف می‌کنیم. گفتنی است که میزان کارایی برای عاملهای مختلف متفاوت می‌باشد. نکته خیلی مهم این است که میزان کارایی یک عامل باید بر اساس محیط تعریف شود. به عنوان مثال فرض کنیم که یک عامل کارش جمع‌آوری آشغال‌ها از یک اتاق و دفع آن‌ها باشد، اگر عامل میزان کارایی اش بر حسب اشغال جمع شده تعریف شود آنگاه عامل می‌تواند آشغال‌ها را جمع کند و سپس دوباره در اباق بریزد تا بهترین کارایی را کسب کند. اما اگر میزان کارایی بر اساس محیط تعریف شود آنگاه عامل یک بار کار تمیز کردن را انجام می‌دهد. پس یک عامل محیطش را حس می‌کند و سپس بر اساس آن تصمیم میگیرد. این مستلزم آن است که با عامل خود مختار و انواع محیط‌ها آشنا شویم.

عامل خود مختار

به عاملی خود مختار میگوییم که تصمیم‌گیری اش بر اساس ادراکاتش باشد نه بر اساس دانش تزریق شده به آن. در واقع هر چه دانش قبلی یک عامل بیشتر باشد از خودمختاری آن کاهش مییابد و هر چه دانش قبلی کمتر باشد و مکانیزم یادگیری عامل قوی تر باشد، آن عامل خود مختار تر است.

انواع محیط ها

قابل مشاهده و غیر قابل مشاهده: اگر عامل به کل محیط دسترسی داشته باشد و بتواند آن را حس کند می‌گوییم محیط قابل مشاهده است، در غیر این صورت آن را غیر قابل مشاهده یا تا حدودی قابل مشاهده می نامیم. مثلاً در محیط عامل شطرنج باز کل محیط قابل مشاهده است. طبیعی است که یک مسئله با محیط قابل مشاهده برای طراحان عاملها مطلوب تر می‌باشد.

قطعی و غیر قطعی: اگر بتوان حالت بعدی را از حالت فعلی، عمل فعلی و کنشهایی که تاکنون انجام شده به دست بیاوریم، میگوییم که محیط قطعی است. بازهم میتوان از بازی شطرنج برای محیط قطعی مثال زد، چون با محیط فعلی و حرکت فعلی می‌شود حالت بعدی را به صورت دقیق یافت. قابل توجه است که بدانیم اگر محیط کاملاً قابل مشاهده نباشد آنگاه قطعی نخواهد بود. اما اگر با یک حرکت ممکن باشد به چندین حالت برویم محیط غیر قطعی است.

دوره‌ای یا غیر دوره ای: اگر هر دوره از دوره‌های دیگر مستقل باشد میگوییم محیط دوره‌ای است. مانند دوره‌های مختلف در مذاکرات چند عامله. محیط‌های غیر دوره‌ای به عنوان محیط‌های ترتیبی نیز یاد می‌شوند.

ایستا و پویا: اگر محیط در زمان تصمیم‌گیری عامل تغییر کند آنگاه محیط پویا است. و در غیر آن صورت محیط ایستا است. اما اگر محیط در زمان تصمیم‌گیری ثابت بماند اما زمان، کارایی عامل را کاهش دهد، محیط را نیمه پویا مینامیم.

گسسته و پیوسته: اگر مشاهدات و کنش‌های مختلف مجزا و تعریف شده باشند، محیط پیوسته است. مانند شطرنج. اما یک عامل بهینه ساز معادلات در محیط پیوسته کار میکند.

ساختار عامل های هوشمند

تا کنون در مورد محیط‌ها و کلیات مربوط به عاملها صحبت کردیم. حال نوبت بررسی ساختارهای مختلف عاملها است. مهم‌ترین وظیفه ما طراحی برنامه عامل است. برنامه عامل تابعی است که ادراکات را به یک عمل‌ها نگاشت میکند. معماری عامل ساختاری است که برنامه محاسباتی عامل تر روی آن پیاده‌سازی می‌شود. پس در کل معماری از طریق حسگرها ورودی را میگیرد، توسط برنامه تصمیم می‌گیرد و در نهایت با عملگرها عمل می‌کند و روی محیط تأثیر میگذارد.

عامل های واکنشی ساده

در این گونه عاملها سعی بر این است که به ازای هر حالت ممکن در دنیا یک عمل مناسب انجام دهیم. برای این کار می‌توانیم حالت محیط را در ستون اول یک جدول قرار دهیم و عمل مربوط به آن را در ستون دوم نکه داری کنیم. به چنین عاملی وابسته به جدول نیز می‌گویند. و به این جدول، جدول حالت-قانون نیز میگویند. در همان ابتدا مشخص می‌شود که برای طراحی چنین عاملی محیط باید کاملاً قابل مشاهده باشد. مهمترین مشکلی که در راه طراحی این عامل به وجود می‌آید این است در مسائل دنیای واقعی پر کردن چنین جدولی غیرممکن است. مثلاً برای شطرنج 35100 حالت مختلف برای محیط وجود دارد. حال اگر فرض کنیم توانایی پر کردن جدول را داشته باشیم، آنگاه اولا حافظه لازم را نخواهیم داشت و ثانیا جستجو جهت یافتن جواب زمان زیادی خواهد گرفت. ساختار این عامل در شکل زیر دیده می‌شود.

منبع


 به هر موجودیت که از طریق گیرنده ها و سنسورهایش محیط اطراف خود را مشاهده نموده و از طریق اندام های خود در آن محیط عمل مینماید (بر روی آن محیط تاثیر میگذارد) عامل (Agent) میگویند. برای مثال انسان به عنوان یک عامل از گوش ها، چشم ها و دیگر اندام های خود جهت دریافت اطلاعات از محیط استفاده کرده و از طریق دست و پا و زبان  برای عمل نمودن در همان محیط استفاده مینماید. به همین ترتیب یک عامل رباتیک نیز از سنسورهای خود به عنوان دریافت کننده و از بازو های خود به عنوان عمل کننده، در محیط اطراف استفاده مینماید.

ساختار یک عامل

هر موجودیت که نسبت به مشاهدات خود از محیط اطراف واکنش نشان میدهد را عامل مینامند.

عامل هوشمند (Rational Agent)

 عاملی است که در محیط خود کار صحیح را انجام میدهد. قطعا انجام کار صحیح بهتر از انجام کار اشتباه است! اما سوالی که پیش می آید این است که براستی تعریف کار صحیح چیست؟

در حال حاضر میتوان بطور تقریبی اینگونه به این سوال پاسخ داد که کار صحیح کاریست که باعث کسب موفقیت توسط عامل هوشمند میشود. با این حال توجه داشته باشید که همین تعریف تقریبی هم ما را با دو سوال چگونه و چه زمان در ابهام باقی میگذار. اگر اینگونه تفسیر نمایید که چگونه به موفقیت برسیم؟ و چه زمان به موفقیت رسیده ایم؟ این ابهام برای شما ملموس تر خواهد شد.

برای رفع ابهام در مورد موفقیت عامل هوشمند، مفهومی با عنوان اندازه گیری عملکرد یا performance measure تعریف میشود. اندازه گیری عملکرد در واقع مجموعه ای از قوانین هستند که ما به عنوان طراحان یا شاهدان عملکرد عامل هشومند، وضع مینماییم تا بتوانیم عامل هوشمند خود را مورد سنجش قرار دهیم.

فرض کنید که ما بعنوان سازنده، عامل هوشمندی ساخته ایم که در واقع یک ربات نظافت گر خودکار میباشد. برای مثال یک معیار اندازه گیری عملکرد برای این ربات میتواند میزان جمع آوری گرد غبار در طول مدت یک شیفت کاری باشد. یا مثلا برای توانمند تر ساختن ربات میتوان مقدار انرژی الکتریکی مصرف شده و سر و صدای تولید شده توسط آن را به مجموعه معیار های اندازه گیری اضافه نمود. برای مثال میتوانیم بگوئیم اگر ربات ما در طول یک ساعت حداقل  x لیتر غبار جمع آوری و کمتر از y  انرژی مصرف نمود، کار خود به درستی انجام داده است.

تفاوت ِعقلانیت و علم لایتناهی

نکته ای که از اهمیت بسیاری برخوردا است، تمیز دادن بین دو مفهوم عقلانیت و علم لایتناهی میباشد. یک عامل با علم لایتناهی نتیجه خروجی تمامی اعمال خود را میداند که بسیار هم عالی و خوب است! اما در دنیای واقعی عملا همچین عاملی وجود نخواهد داشت! به مثالی که در ادامه آماده توجه فرمایید.

شما در یک منطقه دورافتاده و بی آب و علف هستید که ناگهان یک دختر بسیار زیبا را در طرف دیگر خیابان مشاهده مینمایید. هیچ ماشینی در حال تردد در خیابان نیست و شما نیز مجرد و تنها هستید! بنظر میرسد که با توجه به شرایط اطراف عاقلانه ترین کار این است که از عرض خیابان رد شده، به سراغ دختر زیبا بروید و او را به صرف یک نوشیدنی دعوت نمایید. در همین لحظه در ارتفاع 33000 پایی یک هواپیمای بار بری در حال عبور از منطقه شماست که ناگهان درب هواپیما کنده شده و به سمت زمین پرتاب میشود و با شما برخورد میکند. نتیجتا قبل از اینکه شما  به طرف دیگر برسید مانند گوجه فرنگی در کف خیابان له خواهید شد!

سوالی که پیش می آید این است که تصمیم شما برای عبور از خیابان یک تصمیم اشتباه و غیر هوشمندانه بوده است؟ آیا از عمل شما به عنوان یک عمل غیر عقلانی یاد خواهد شد؟

اینجاست که باید بگوییم که در واقع، عقلانیت، با موفقیتی که ناشی از مجموعه مشاهدات عامل است تعریف میشود. (در مثال بالا، شخص عبور کننده توانایی دیدن درب هواپیما را نداشته برای همین تصمیم به عبور از خیابان گرفته است) به زبان دیگر ما نمیتوانیم یک عامل را که به خاطر عدم توانایی در مشاهده تمام محیط اطراف، شکست خورده است، سرزنش نماییم. نتیجه این بحث میتواند این باشد که در شرایط واقعی نمیتوان همیشه از عامل هوشمند خود انتظار داشت که کار صحیح را انجام دهد.

بطور خلاصه میتوان گفت که هوشمند بودن یک موجودیت به چهار عامل بستگی دارد.

اندازه گیری عملکرد که درجات موفقیت را مشخص مینماید.
هر آن چیز که عامل  اخیرا مشاهده و یا در یافت نموده است.توالی مشاهدات.
هر آنچه که عامل از مورد محیط خود میداند.
مجموعه عمل هایی که عامل میتواند در محیط انجام دهد.

عامل هوشمند ایده آل

مجموعه تعاریف و مطالب فوق، ما را به سمت تعرف مفوهم عامل هوشمند ایده آل هدایت مینماید. عامل هوشمند ایده آل، عاملی است که برای هر مجموعه از توالی مشاهدات، با توجه به شواهد موجود در محیط و دانش پیش ساخته خود، آن عملِ مورد انتظاری را انجام دهد که باعث افزایش اندازه عملکرد و یا همان performance measure بشود.

توجه داشته باشید در نگاه اول ممکن است بنظر برسد که این تعریف باعث ساخت عامل های هوشمندانه ای خواهد شد که خود را در شرایطی که به انجام عمل غیر عقلانی ختم میشود قرار خواهد داد. در واقع ممکن است عامل هوشمند به خیال خود در حال افزایش اندازه عملکرد باشد در حالی که برای این افزایش آن از بسیاری از مسائل چشم پوشی نماید.

برای مثال اگر عامل برای عبور از خیابان به طرفین نگاه نکند (در حالی که هدفش عبور از خیابان است) توالی مشاهداتش او را از خطر تصادف با یک کامیون که با سرعت به طرف او می آید آگاه نخواهد کرد. در نتیجه طبق تعریف، عبور از خیابان برای عامل، عملی هوشمندانه به حساب آمده و او به راه خود ادامه خواهد. در صورتی که چنین تفسیری به دو دلیل اشتباه میباشد. اول آنکه بطور کلی ریسک عبور از خیابان بدون نگاه بطرفین بسیار بالا میباشد. دوم آنکه در صورت نتیجه گیری صحیح از تعریف عامل هوشمند ایده آل، چنین عاملی برای افزایش اندازه عملکرد خود باید به طرفین نگاه کند.

نگاشت ایده آل، از توالی مشاهدات به عمل

با توجه به مطالب فوق میتوان نتیجه گیری کرد از آنجا که رفتار عامل ما بر اساس توالی مشاهداتش میباشد، میتوان برای عامل ها با رسم جدول، مشاهده و عمل را به یکدیگر نگاشت نمود. با این حال باید توجه داشت  که برای تمامی عامل ها چنین جدولی بسیار طولانی و یا دارای بی نهایت سطر میباشد مگر آنکه محدودیتی در طول مشاهدات، از طرف طراح برای آن جدول تعیین شده باشد.

به چنین جدولی، جدول “نگاشت مشاهدات به عمل” میگویند. در اصول میتوان با تست اینکه چه عملی برای مشاهدات مناسب است این جدول را تکمیل نمود. باید توجه نمود که اگر میتوانیم از روی نگاشت، عامل هوشمند داشته باشیم از روی نگاشت ایده آل نیز میتوان به عامل هوشمند ایده آل رسید.

البته معنی توضیحات بالا این نیست که ما باید همیشه و بطور ضمنی و دقیق جدولی تهیه نماییم. در واقع در بسیاری از موارد به جای یک جدول ضمنی میتوان از یک تعریف مشخص که خود تولید کننده سطرهای جدول میباشد استفاده نماییم. برای مثال فرض کنید که ما یک عامل هوشمند بسیار ساده داریم که قرار است توان اعداد را محاسبه نمایید. برای طراحی چنین عاملی احتیاجی به ایجاد یک جدول واقعی نخواهیم داشت و عملا میتوان سطرهای این جدول را با فرمول توان یک عدد به عدد دیگر محاسبه نمود.

 

برنامه نویسی Parallel در سی شارپ :: متوقف کردن Task ها در سی شارپ – کلاس CancellationToken

زمانی که عملیاتی را به عنوان یک Task اجرا می کنیم، ممکن است بخواهیم آن Task را در حین اجرا متوقف کنیم، برای مثال، Task ای داریم که در حال پردازش 1000 فایل است و کاربر باید این امکان را داشته باشد که Task در حال اجرا را متوقف کند. عملیات متوقف کردن Task ها هم برای متدهای کلاس Parallel امکان پذیر است و هم کلاس Task. برای اینکار می بایست از کلاس CancellationToken استفاده کنیم. برای مثال Task زیر را در نظر بگیرید که حاصل میانگین جمع اعداد 1 تا 100 را محاسبه می کند:

Task < int > averageTask = new Task < int > (() =>
{
    Console.WriteLine("Calculating average...");
    Console.WriteLine("Press Ctrl+C to cancel...");
    var sum = 0;
    for (int counter = 1; counter < = 100; counter++)
    {
        sum += counter;
        Thread.Sleep(100);
    }
    Console.WriteLine("All done.");
    return sum/100;
});
averageTask.Start();
Console.WriteLine(averageTask.Result);

قبلاً با این کد آشنا شدیم، اما کاری که در این قسمت می خواهیم انجام دهیم اضافه کردن قابلیتی است که کاربر بتواند با فشردن کلید های Ctrl+C عملیات را متوقف کند. برای اینکار ابتدا شئ ای از نوع کلاس CancellationTokenSource که در فضای نام System.Threading قرار دارد، در کلاس Program به صورت زیر تعریف می کنیم:

Task < int > averageTask = new Task < int > (() = >
{
    Console.WriteLine("Calculating average...");
    Console.WriteLine("Press q to cancel...");
    var sum = 0;
    for (int counter = 1; counter < = 100; counter++)
    {
        sum += counter;
        Thread.Sleep(100);
    }
    Console.WriteLine("All done.");
    return sum/100;
}, source.Token);

شئ source که در کلاس Program ایجاد کردیم متدی دارد با نام Cancel که این متد را زمانی که قصد داریم Task متوقف شود باید فراخوانی کنیم. فراخوانی این متد باید زمانی انجام شود که کاربر کلید های Ctrl+C را فشار داده است. در محیط Console، زمانی که کاربر کلید های Ctrl+C را فشار می دهد، event ای با نام CancelPressKey در کلاس Console فراخوانی می شود، پس باید این از این event برای فراخوانی متد Cancel به صورت زیر استفاده کنیم:

Console.CancelKeyPress += (sender, eventArgs) = >
{
    source.Cancel();
    eventArgs.Cancel = true;
};

به خط دوم داخل event دقت کنید، زمانی که کلید های Ctrl+C فشرده می شوند، به صورت پیش فرض کل برنامه Console متوقف می شود، برای جلوگیری از این کار مقدار خصوصیت Cancel را در شئ eventArgs به مقدار true ست می کنیم، یعنی عملیات متوقف کردن محیط کنسول به صورت دستی توسط ما انجام شده و خود سیستم نیاز به انجام کاری در این باره ندارد.

بعد از Subscribe کردن event بالا، باید به برنامه بگوییم تا زمانی که task به اتمام نرسیده یا کاربر کلید های Ctrl+C را فشار نداده نباید از برنامه خارج شویم، به همین خاطر یک حلقه while به صورت زیر ایجاد می کنیم:

while (!averageTask.IsCompleted &amp;&amp; !source.IsCancellationRequested)
{                                                                                                
}

با خصوصیت IsCompleted در کلاس Task قبلاً آشنا شدیم، اما خصوصیت IsCancellationRequested در شئ source زمانی مقدارش true می شود که متد Cancel فراخوانی شود، پس تا زمانی که عملیات Task به اتمام نرسیده و زمانی که کاربر کلید های Ctrl+C را فشار نداده برنامه در حلقه while منتظر می ماند.

در ادامه باید Task ایجاد شده را به صورتی تغییر دهیم که داخل حلقه for بررسی شود که متد Cancel فراخوانی شده است یا خیر، اگر فراخوانی شده بود باید از Task خارج شویم، برای این کار نیز از خصوصیت IsCancellationRequested در شئ source استفاده می کنیم، Task ایجاد شده را به صورت زیر تغییر می دهیم:

Task < int > averageTask = new Task < int > (() = >
{
    Console.WriteLine("Calculating average...");
    Console.WriteLine("Press Ctrl+C to cancel...");
    var sum = 0;
    for (int counter = 1; counter < = 100; counter++)
    {
        if (source.IsCancellationRequested)
        {
            Console.WriteLine("Operation terminated!");
            return 0;
        }
        sum += counter;
        Thread.Sleep(100);
    }
    Console.WriteLine("All done.");
    return sum/100;
}, source.Token);

همانطور که مشاهده می کنید داخل حلقه for گفتیم که اگر IsCancellationRequested برابر true بود پیغامی را نمایش بده و مقدار 0 را برگردان. کد نهایی ما به صورت زیر می باشد:

class Program
{
    private static CancellationTokenSource source = new CancellationTokenSource();
    static void Main(string[] args)
    {
        Task < int > averageTask = new Task < int >(() = >
        {
            Console.WriteLine("Calculating average...");
            Console.WriteLine("Press Ctrl+C to cancel...");
            var sum = 0;
            for (int counter = 1; counter <= 100; counter++) { if (source.IsCancellationRequested) { Console.WriteLine("Operation terminated!"); return 0; } sum += counter; Thread.Sleep(100); } Console.WriteLine("All done."); return sum/100; }, source.Token); averageTask.Start(); Console.CancelKeyPress += (sender, eventArgs) = >
        {
            source.Cancel();
            eventArgs.Cancel = true;
        };
        while (!averageTask.IsCompleted && !source.IsCancellationRequested)
        {                                                                                                
        }
 
        Console.WriteLine(averageTask.Result);
    }
}

در صورتی که برنامه بالا را اجرا کرده و کلید های Ctrl+C را فشار دهیم خروجی زیر برای ما نمایش داده می شود:

Calculating average...
Press Ctrl+C to cancel...
Operation terminated!
0
Press any key to continue . . .

استفاده از CancellationToken در کلاس Parallel

علاوه بر کلاس Task می توان از قابلیت CancellationToken در متدهای کلاس Parallel نیز استفاده کرد، برای آشنایی بیشتر فرض کنید کدی به صورت زیر تعریف شده که لیست فایل های jpg داخل یک پوشه را پردازش می کند:

var jpegFiles = System.IO.Directory.GetFiles("D:\\Images", "*.jpg");
 
Parallel.ForEach(jpegFiles, file = >
{
    var fileInfo = new FileInfo(file);
    // process file
});

برای متوقف کردن عملیات پردازش فایل ها، ابتدا شئ ای از نوع CancellationTokenSource مانند مثال قبل ایجاد می کنیم:

private static CancellationTokenSource source = new CancellationTokenSource();

در قدم بعدی کلاسی از نوع ParallelOptions به صورت زیر تعریف کرده، خصوصیت CancellationToken را برابر خصوصیت Token در شئ source قرار داده و این کلاس را به عنوان پارامتر ورودی به متد ForEach به صورت زیر ارسال می کنیم:

ParallelOptions options = new ParallelOptions();
options.CancellationToken = source.Token;
 
try
{
    Parallel.ForEach(jpegFiles,options, file = >
    {
        options.CancellationToken.ThrowIfCancellationRequested();                                                
        var fileInfo = new FileInfo(file);
        // process file
    });
}
catch (OperationCanceledException ex)
{
    Console.WriteLine(ex);
}

دقت کنید در قسمت ForEach متدی با نام ThrowIfCancellationRequested فراخوانی شده است، در حقیقت این متد بعد از فراخوانی بررسی می کند که آیا متد Cancel برای شئ source فراخوانی شده است یا خیر، اگر فراخوانی شده بود خطایی از نوع OperationCanceledException ایجاد می شود که در خارج از بدنه ForEach کلاس Parallel، بوسیله ساختار try..catch این خطا مدیریت شده است. دقت کنید که روند مدیریت Cancel کردن در کلاس Parallel با کلاس Task متفاوت است و دلیل این موضوع نوع برخورد برنامه با این کلاس ها است. در قسمت بعدی با مبحث Parallel LINQ آشنا خواهیم شد.

منبع



قسمت اول آموزش-برنامه نویسی Asynchronous – آشنایی با Process ها، Thread ها و AppDomain ها

قسمت دوم آموزش- آشنایی با ماهیت Asynchronous در Delegate ها

قسمت سوم آموزش-آشنایی با فضای نام System.Threading و کلاس Thread

قسمت چهارم آموزش- آشنایی با Thread های Foreground و Background در دات نت

قسمت پنجم آموزش- آشنایی با مشکل Concurrency در برنامه های Multi-Threaded و راهکار های رفع این مشکل

قسمت ششم آموزش- آشنایی با کلاس Timer در زبان سی شارپ

قسمت هفتم آموزش-آشنایی با CLR ThreadPool در دات نت

قسمت هشتم آموزش- مقدمه ای بر Task Parallel Library و کلاس Parallel در دات نت

قسمت نهم آموزش- برنامه نویسی Parallel:آشنایی با کلاس Task در سی شارپ

قسمت دهم آموزش-برنامه نویسی Parallel در سی شارپ :: متوقف کردن Task ها در سی شارپ – کلاس CancellationToken

قسمت یازدهم آموزش- برنامه نویسی Parallel در سی شارپ :: کوئری های Parallel در LINQ

قسمت دوازدهم آموزش- آشنایی با کلمات کلیدی async و await در زبان سی شارپ

قسمت سیزدهم آموزش- استفاده از متد WhenAll برای اجرای چندین Task به صورت همزمان در سی شارپ

آشنایی با کلمات کلیدی async و await در زبان سی شارپ

تا این لحظه از مجموعه مطالب مرتبط با مباحث Asynchronous Programming در سی شارپ با ماهیت Asynchronous در delegate ها، کار با Thread ها و کتابخانه TPL در دات نت آشنا شدیم. اما باز هم در برخی سناریو ها و انجام کارهای پیچیده در برنامه نویسی Asynchronous، نیاز به حجم زیادی از کدها دارد.

از نسخه 4.5 دات، در زبان سی شارپ (و همینطور زبان VB) دو کلمه کلیدی اضافه شد که اجازه نوشتن کدهای Asynchronous را به شکل دیگری به برنامه نویسان می داد. این دو کلمه کلیدی، کلمات async و await هستند و زمانی که شما در کدهای خود از این دو کلمه کلیدی استفاده می کنید، در زمان کامپایل کدها، کامپایلر کدهایی را برای شما تولید می کند که به صورت بهینه و البته مطمئن کارهای Asynchronous را برای شما انجام می دهند، کدهای تولید شده از کلاس هایی که در فضای نام System.Threading.Tasks قرار دارند استفاده می کنند.

نگاه اولیه با ساختار async و await

زمانی که شما در بخشی از کد خود از کلمه کلیدی async و بر روی متدها، عبارات لامبدا یا متدهای بدون نام استفاده می کنید، در حقیقت می گویید که این قطعه کد به صورت خودکار باید به صورت Asynchronous فراخوانی شود و زمان استفاده از کدی که به صورت async تعریف شده، CLR به صورت خودکار thread جدیدی ایجاد کرده و کد را اجرا می کند. اما زمان فراخوانی کدهایی که به صورت async تعریف شده اند، استفاده از کلمه await این امکان را فراهم می کند که اجرای thread جاری تا زمان تکمیل اجرای کدی که به صورت async تعریف شده، می بایست متوقف شود.

برای آشنایی بیشتر برنامه ای از نوع Windows Forms Application ایجاد کرده، یک Button بر روی فرم قرار می دهیم. زمانی که بر روی Button ایجاد شده کلیک می شود، یک متد دیگر فراخوانی شده و بعد از یک وقفه 10 ثانیه ای عبارتی را بر میگرداند و در نهایت این متن به عنوان Title برای فرم برنامه ست می شود:

public partial class MainForm : Form
{
    public MainForm()
    {
        InitializeComponent();
    }
 
    private void CallButton_Click(object sender, EventArgs e)
    {
        this.Text = DoWork();
    }
 
    private string DoWork()
    {
        Thread.Sleep(10000);
        return "Done.";
    }
}

مشکلی که وجود دارد این است که بعد از کلیک بر روی Button ایجاد شده، 10 ثانیه باید منتظر شده تا عنوان فرم تغییر کند. اما با انجام یکسری تغییرات در کد بالا، می توان بوسیله کلمات کلیدی async و await کاری کرد که عملیات اجرای متد به صورت Asynchronous انجام شود. برای اینکار کد بالا را به صورت زیر تغییر می دهیم:

public partial class MainForm : Form
{
    public MainForm()
    {
        InitializeComponent();
    }
 
    private async void CallButton_Click(object sender, EventArgs e)
    {
        this.Text = await DoWork();
    }
 
    private Task<string> DoWork()
    {
        return Task.Run(() = >
        {
            Thread.Sleep(10000);
            return "Done.";
        });
    }
}

بعد از اجرای برنامه، خواهیم دید که فرم ما به قول معروف block نمی شود، یعنی تا زمان اتمام فراخوانی DoWork می توانیم کارهای دیگری در فرم انجام دهیم. اگر در کد بالا دقت کنید، متدی که برای رویداد Click دکمه CallButton تعریف شده، با کلمه کلیدی async مشخص شده، یعنی اجرای این متد باید به صورت Aynchronous انجام شود.

علاوه بر این، داخل بدنه این متد، زمان فراخوانی DoWork از کلمه await استفاده کردیم، دقت کنید که نوشتن کلمه کلیدی await اینجا الزامی است، اگر این کلمه کلیدی نوشته نشود، زمان اجرای DoWork باز هم عملیات فراخوانی متد باعث block شدن فرم ما می شود. همچنین دقت کنید که متد DoWork به جای اینکه مقدار string برگرداند، مقداری از نوع <Task<string بر میگرداند. به طور خلاصه کاری که DoWork انجام می دهد به صورت زیر است:

زمانی که متد DoWork فراخوانی می شود، یک Task جدید اجرا می شود و داخل Task ابتدا عملیات اجرای Thread به مدت 10 ثانیه متوقف می شود و بعد از 10 ثانیه یک رشته به عنوان خروجی برگردانده می شود. البته این رشته تحت یک شئ از نوع Task به متدی که DoWork را فراخوانی کرده بازگردانده می شود.

با تعریف بالا، شاید بتوان بهتر نقش کلمه کلیدی await را متوجه شد، زمانی که برنامه به کلمه کلیدی await می رسد، در حقیقت منتظر می ماند تا عملیات فراخوانی متدی که await قبل از آن نوشته شده به اتمام برسد، سپس مقدار خروجی از داخل Task مربوطه برداشته شده و داخل خصوصیت Text قرار داده می شود.

قواعد نام گذاری برای متدهای Async

همانطور که گفتیم، داخل متدهایی که با async مشخص شده اند، حتماً می بایست کلمه کلیدی await نیز نوشته شود. اما از کجا بدانیم کدام متدها می توانند به صورت Async فراخوانی شوند؟ یعنی نوع خروجی آن ها یک Task است؟ اصطلاحاً به متدهایی که خروجی آن ها از نوع <Task<T است Awaitable گفته می شود. برای اینکار باید از قواعد نامگذاری متدهای Async پیروی کنیم. بر اساس مستندات مایکروسافت، می بایست کلیه متدهایی که مقدار خروجی آن ها از نوع Task است، به صورت async تعریف شوند و در انتهای نام متد کلمه Async نوشته شود، بر اساس مطالب گفته شده، متد DoWork را به صورت زیر تغییر می دهیم:

private async Task<string> DoWorkAsync()
{
    return await Task.Run(() = >
    {
        Thread.Sleep(10000);
        return "Done.";
    });
}

با انجام تغییرات بالا، کد رویداد Click را برای CallButton به صورت زیر تغییر می دهیم:

private async void CallButton_Click(object sender, EventArgs e)
{
    this.Text = await DoWorkAsync();
}

متدهای Async با مقدار خروجی void

در صورتی که متدی که قرار است به صورت async فراخوانی شود، مقدار خروجی ندارد می توان نوع خروجی متد را از نوع کلاس غیر جنریک Task انتخاب کرد و کلمه کلیدی return را ننوشت:

private async Task DoWorkAsync()
{
    await Task.Run(() = >
    {
        Thread.Sleep(10000);
    });
}

فراخوانی این متد نیز به صورت زیر خواهد بود:

await DoWorkAsync();
MessageBox.Show("Done.");

متدهای async با چندین await

یکی از قابلیت های async و await، نوشتن چندین قسمت await در یک متد async است. نمونه کد زیر حالت گفته شده را نشان می دهد:

private async void CallButton_Click(object sender, EventArgs e)
{
    await Task.Run(() = > { Thread.Sleep(5000); });
    MessageBox.Show("First Task Done!");
 
    await Task.Run(() = > { Thread.Sleep(5000); });
    MessageBox.Show("Second Task Done!");
 
    await Task.Run(() = > { Thread.Sleep(5000); });
    MessageBox.Show("Third Task Done!");
}

دقت کنید که برای await های بالا متدی تعریف نکردیم و تنها در مقابل آن متد Run از کلاس Task را فراخوانی کردیم. البته این موضوع ربطی به چند await بودن متد ندارد و شما می تواند متد هایی که خروجی آن ها از نوع Task است را نیز فراخوانی کنید، این حالت تنها برای مثال به این صورت نوشته شده است.

منبع


قسمت اول آموزش-برنامه نویسی Asynchronous – آشنایی با Process ها، Thread ها و AppDomain ها

قسمت دوم آموزش- آشنایی با ماهیت Asynchronous در Delegate ها

قسمت سوم آموزش-آشنایی با فضای نام System.Threading و کلاس Thread

قسمت چهارم آموزش- آشنایی با Thread های Foreground و Background در دات نت

قسمت پنجم آموزش- آشنایی با مشکل Concurrency در برنامه های Multi-Threaded و راهکار های رفع این مشکل

قسمت ششم آموزش- آشنایی با کلاس Timer در زبان سی شارپ

قسمت هفتم آموزش-آشنایی با CLR ThreadPool در دات نت

قسمت هشتم آموزش- مقدمه ای بر Task Parallel Library و کلاس Parallel در دات نت

قسمت نهم آموزش- برنامه نویسی Parallel:آشنایی با کلاس Task در سی شارپ

قسمت دهم آموزش-برنامه نویسی Parallel در سی شارپ :: متوقف کردن Task ها در سی شارپ – کلاس CancellationToken

قسمت یازدهم آموزش- برنامه نویسی Parallel در سی شارپ :: کوئری های Parallel در LINQ

قسمت دوازدهم آموزش- آشنایی با کلمات کلیدی async و await در زبان سی شارپ

قسمت سیزدهم آموزش- استفاده از متد WhenAll برای اجرای چندین Task به صورت همزمان در سی شارپ

 

مقالات پیرامون تشخیص اعداد و حروف دست نویس فارسی

 

1. ارائه یک روش ساختاری جدید مبتنی بر قطعه بندی تصویر نازک شده برای شناسایی اعداد دست نویس فارسی/عربی

چکیده- در این مقاله، یک روش ساختاری جدید برای استخراج ویژگی از اعداد فارسی/عربی دست نوشته، ارائه شده است. پس از پیش پردازش اولیه و تبدیل تصویر به تصویر باینری، ابتدا رقم دست نوشته، نازک شده و اسکلت آن از تصویر استخراج می شود. سپس نقاط مهم تصویر به دست آمده مشخص می شوند. رقم نازک شده به قطعه خط هایی تقسیم می شود و از هر قطعه، کدهای اولیه استخراج می شود. در نهایت یک بردار ویژگی به دست می آید که طول آن به تعداد قطعه خط ها بستگی دارد. یک مقایسه بین روش ساختاری ارائه شده و روش های آماری دیگر مانند روش های مبتنی بر تبدیل موجک، فرکتال و زرنیک، از نظر زمانی و درصد تشخیص انجام شده است. نتایج نشان می دهند که عملکرد این ویژگیهای ساختاری بسیار بهتر از ویژگی های آماری است. درصد تشخیص با این ویژگی ها و با طبقه بندی کننده مبتنی بر نزدیکترین همسایه، 94/44% به دست آمد. این آزمایشات بر روی دادگانی شامل 480 نمونه برای هر رقم انجام شد که 280 نمونه برای آموزش و 200 نمونه برای آزمایش به کار گرفته شدند.

کلمات کلیدی- روش ساختاری جدید، تشخیص دست نوشته، اعداد فارسی

فایل PDF – در 7 صفحه- نویسندگان: مجید زیارت بان، کریم فائز، سعید مظفری، مهدی ازوجی

ارائه یک روش ساختاری جدید مبتنی بر قطعه بندی تصویر نازک شده برای شناسایی اعداد دست نویس فارسی یا عربی

پسورد فایل : behsanandish.com


2.  بازشناسی برخط حروف مجزای فارسی با شبکه عصبی

چکیده- در این مقاله روشی برای بازشناسی برخط حروف مجزای فارسی با شبکههای عصبی ارائه می شود. پس از بازشناسی علامت های بالا یا پایین حرف ناشناخته، بدنه ی حرف از نظر تعداد نقاط و اندازه نرمالیزه می شود و مختصات نقاط بدنه ی نرمالیزه شده به عنوان ورودی یک شبکه ی عصبی سه لایه در نظر گرفته می شود و بدنه ی حرف ناشناخته بازشناسی می شود. میزان بازشناسی درست برای 4144 حرف، 93/9% است.

واژه های کلیدی- بازشناسی برخط، حروف مجزا،شبکه ی عصبی

فایل PDF – در 7 صفحه- نویسندگان: سید محمد رضوی، احسان اله کبیر

بازشناسی برخط حروف مجزای فارسی با شبکه عصبی

پسورد فایل : behsanandish.com


3. کاربرد ترکیب طبقه ها در بازشناسی ارقام فارسی

چکیده- در این تحقیق، برای بهبود بازشناسی ارقام دستنویس از ترکیب طبقه بندی هایی استفاده می شود که از یک الگوریتم یادگیری دو مرحله ای بهره می گیرند. از تصویر هر رقم دستنویس، یک بردار ویژگی با 81 مؤلفه استخراج می شود. به روش تحلیل مؤلفه های اصلی، یک بردار ویژگی با پانزده مؤلفه برای هر رقم انتخاب شده و به سه شبکه عصبی پرسپترون با تعداد نرون های متفاوت در لایه مخفی و وزن های اولیه متفاوت اعمال شده و بازشناسی مستقل در هر طبقه بند صورت می گیرد. در مرحله بعد، نتایج بازشناسی این سه طبقه بند، به یک شبکه عصبی پرسپترون با یک لایه مخفی به عنوان ترکیب کننده اعمال می شود.

پایگاه داده استفاده شده شامل 2430 نمونه است. نرخ بازشناسی شبکه های عصبی پایه بر روی 530 نمونه آزمایشی 87% ، 85% و 83% و برای سیستم مرکب 91% است.

واژه های کلیدی- بازشناسی ارقام، ترکیب طبقه بندها، شبکه عصبی پرسپترون، مکان مشخصه، تحلیل مؤلفه های اصلی.

فایل PDF – در 5 صفحه- نویسندگان: سید حسن نبوی کریزی، رضا ابراهیم پور، احسان اله کبیر

کاربرد ترکیب طبقه ها در بازشناسی ارقام فارسی

پسورد فایل : behsanandish.com


4. بازشناسی حروف برخط فارسی با استفاده از مدل مخفی مارکوف

چکیده- در این مقاله، روشی برای بازشناسی حروف برخط فارسی که به صورت تنها نوشته شده اند، معرفی شده است. با توجه به شکل و ساختار بدنه اصلی، حروف فارسی به 17 گروه تقسیم می شوند. ابتدا، با استفاده از روش آماری مدل مخفی مارکوف به بازشناسی بدنه اصلی پرداخته شده است. در گام بعدی، بازشناسی نهایی در هر گروه با توجه به موقعیت علائم، نقاط و مدل مخفی مارکوف آن ها انجام شده است. روش پیشنهادی بر روی مجموعه داده “حروف برخط دانشگاه تربیت مدرس” اجرا شده و گروه بندی درست با دقت 96% و بازشناسی حروف با دقت 94% به دست آمده است.

کلمات کلیدی- دستنوشته برخط، فارسی، بازشناسی، مدل مخفی مارکوف.

فایل PDF – در 6 صفحه- نویسندگان: وحید قدس، احسان اله کبیر

بازشناسی حروف برخط فارسی با استفاده از مدل مخفی مارکوف

پسورد فایل : behsanandish.com


5.بازشناسی ارقام دستنویس فارسی مقاوم در برابر چرخش و تغییر مقیاس توسط طبقه بندی کننده SVM فازی مبتنی بر خوشه بند K-means

چکیده- در این مقاله روشی را برای تشخیص این ارقام معرفی کردیم که در برابر چرخش و تغییر مقیاس تا حد قابل قبولی مقاوم می باشد. در این مقاله هم برای استخراج ویژگی و هم برای طبقه بندی از دو روش مجزا استفاده کردیم. در مرحله اول برای استخراج ویژگی از آنالیز اجزای اصلی (PCA) استفاده کرده و در نوع دیگری از استخراج ویژگی از آنالیز تفکیک کننده ی خط (LDA) که برای کاهش ابعاد LDA، از تکنینک PCA استفاده کردیم. این ویژگی ها را با طبقه بندی کننده ی MLP و Fuzzy SVM به صورت جداگانه کلاسه بندی کردیم و نتایج را با هم مقایسه کردیم. برای نمایش اینکه روشمان در برابر چرخش و تغییر مقیاس مقاوم می باشد، 30 درصد کل ارقام پایگاه داده مان که متشکل از 860 رقم برای هر کدام از ارقام 0 تا 9 می باشد را با زاویه های مختلف به صورت تصادفی در جهت یا خلاف جهت عقربه ساعت چرخانه و نتایج به دست آمده را با حالت بدون چرخش مقایسه کردیم. نرخ بازشناسی روش پیشنهادی بر روی 7600 نمونه آزمایشی در حالت بدون چرخش، 97/3% به دست آمده که نسبت به نرخ بازشناسی همین پایگاه داده، در [1] و [2] به ترتیب 15/4% و 1/9% بهبود را نشان می دهد.

کلمات کلیدی- ارقام دستنویس، PCA-LDA، Fuzzy SVM، MLP، PCA

فایل PDF – در 6 صفحه- نویسنده: مهدی صالح پور

بازشناسی ارقام دستنویس فارسی مقاوم در برابر چرخش و تغییر مقیاس توسط طبقه بندی کننده SVM فازی مبتنی بر خوشه بند K-means

پسورد فایل : behsanandish.com


6. بررسی تأثیر ارتقاء تصویر و اصلاح شیب در بهبود نرخ بازشناسی ارقام جدا شده از اسناد دست نویس فارسی

چکیده- در این مقاله برای اولین بار میزان تأثیر ارتقاء تصویر و اصلاح شیب موجود در ارقام دست نویس فارسی، بر بهبود نرخ بازشناسی ارقام مورد بررسی قرار گرفته است. در ابتدا به دلیل اینکه جداسازی ارقام از تصاویر اسناد دست نویس منجر به ایجاد شکاف هایی در تصاویر ارقام جدا شده می شود، از عنصر ساختاری مناسبی برای ارتقاء تصاویر استفاده شده است. در گام بعدی، شیب موجود در ارقام، تخمین زده شده و اصلاح می گردد. بانک اطلاعاتی استفاده شده در این مقاله شامل ارقام جدا شده (4096 رقم در مجموعه آموزشی و 1532 رقم در مجموعه آزمایشی) از فرم هایی با پس زمینه ی رنگی است که توسط 500 نویسنده پر شده اند. آزمایشات انجام شده نشان می دهد که ارتقاء تصویر و اصلاح شیب در مرحله پیش پردازش، به طور میانگین نرخ بازشناسی را به میزان 3/3 درصد افزایش می دهد که نشان دهنده ی کارآمدی گام های پیشنهادی( ارتقاء تصویر و اصلاح شیب) در مرحله پیش پردازش است.

کلمات کلیدی- ارتقاء تصویر، عنصر ساختاری، اصلاح شیب، ماتریس شکاف، بازشناسی ارقام دست نویس فارسی.

فایل PDF – در 5 صفحه- نویسندگان: یونس اکبری، محمدجواد جلیلی، عاطفه فروزنده، جواد صدری

بررسی تأثیر ارتقاء تصویر و اصلاح شیب در بهبود نرخ بازشناسی ارقام جدا شده از اسناد دست نویس فارسی

پسورد فایل : behsanandish.com

برنامه نویسی Parallel در سی شارپ :: مقدمه ای بر Task Parallel Library و کلاس Parallel در دات نت

پیش از این ما در سری مطالب مرتبط با بحث کار با Thread با نحوه ایجاد و مدیریت Thread ها در دات نت آشنا شدیم. از نسخه 4 دات نت قابلیتی اضافه شد با نام Task Parallel Programming یا TPL که روش جدیدی برای نوشتن برنامه Multi-Theaded است. این قابلیت بوسیله یکسری از کلاس ها که در فضای نام System.Threading.Tasks قرار دارد فراهم شده و به ما این اجازه را می دهد که بدون درگیر شدن مستقیم با Thread ها و Thread Pool ها برنامه های Multi-Threaded بنوسیم.

دقت کنید که زمان استفاده از قابلیت TPL دیگر نیازی به استفاده از کلاس های فضای نام System.Threading نمی باشد و به صورت پشت زمینه عملیات ساخت و مدیریت Thread ها برای ما انجام می شود. با این کار شیوه کار با Threadها بسیار ساده شده و یکسری از پیچیدگی ها در این بین حذف می شود.

فضای نام System.Threading.Tasks

همانطور که گفتیم TPL در حقیقت مجموعه ای از کلاس ها است که در فضای نام System.Threading.Tasks قرار گرفته. یکی از قابلیت های TPL این است که کارهای محوله را به صورت خودکار بین CPU های سیستم (در صورت وجود) توزیع می کند که این کار در پشت زمینه بوسیله CLR Thread Pool انجام می شود.

کارهای انجام شده توسط TPL در پشت زمینه عبارتند از تقسیم بندی وظایف، زمانبندی Thread ها، مدیریت وضعیت (State Management) و یکسری از کارهای اصطلاحاً Low-Level دیگر. نتیجه این کار برای شما بالا رفتن کارآیی برنامه ها بوده بدون اینکه درگیر پیچیدگی های کار با Thread ها شوید. همانطور که گفتیم فضای نام System.Threading.Tasks شامل یکسری کلاس ها مانند کلاس Parallel، کلاس Task و … می باشد که در ادامه با این کلاس ها بیشتر آشنا می شویم.

نقش کلاس Parallel

یکی از کلاس های TPL که نقش کلیدی را در نوشتن کدهای Parallel ایفا می کند، کلاس Parallel است، این کلاس یکسری متدها در اختیار ما قرار می دهد که بتوانیم بر روی آیتم های یک مجموعه (علی الخصوص مجموعه هایی که اینترفیس IEnumerable را پیاده سازی کرده اند) به صورت parallel عملیات هایی را انجام دهیم.

متدهای این کلاس عبارتند از متد های For و ForEach که البته Overload های متفاوتی برای این متدها وجود دارد. بوسیله این متدها می توان کدهایی نوشتن که عملیات مورد نظر را به صورت parallel بر روی آیتم های یک مجموعه انجام دهند. دقت کنید کدهایی که برای این متدها نوشته می شوند در حقیقت همان کدهایی هستند که معمولاً در حلقه های for و foreach استفاده می شوند، با این تفاوت که به صورت parallel اجرا شده و اجرا و مدیریت کدها بوسیله thread ها و CLR Thread Pool انجام شده و البته بحث همزمانی نیز به صورت خودکار مدیریت می شود.

کار با متد ForEach

در ابتدا به سراغ متد ForEach می رویم، این متد یک مجموعه که ایترفیس IEnumerable را پیاده سازی کرده به عنوان پارامتر اول و متدی که باید بر روی هر یک اعضای این مجموعه انجام شود را به عنوان پارامتر دوم قبول می کند:

var numbers = new List &lt; int &gt; {2, 6, 8, 1, 3, 9, 6, 10, 5, 4};
Parallel.For(3, 6, index  = &gt;
{
    Console.WriteLine(numbers[index]);
    Console.WriteLine("Thread Id: {0}", System.Threading.Thread.CurrentThread.ManagedThreadId);
});

در کد بالا یک آرایه از لیست از نوع int تعریف کرده و در مرحله بعد بوسیله متد ForEach در کلاس Parallel اعضای لیست را پردازش می کنیم، با هر بار اجرا خروجی های متفاوتی دریافت خواهیم کرد:

8
5
Thread Id: 6
4
2
Thread Id: 1
6
3
Thread Id: 5
9
Thread Id: 5
10
Thread Id: 5
1
Thread Id: 5
Thread Id: 4
Thread Id: 6
6
Thread Id: 1
Thread Id: 3

همانطور که مشاهده می کنید شناسه های مربوط به thread در هر بار اجرای کدی مشخص شده در متد ForEach با یکدگیر متفاوت است، دلیل این موضوع ایجاد و مدیریت Thread ها توسط CLR Thread Pool است که ممکن است با هر بار فراخوانی متد مشخص شده به عنوان پارامتر دوم یک thread جدید ایجاد شده یا عملیات در یک thread موجود انجام شود.

کار با متد For

اما علاوه بر متد ForEach متد For نیست را می توان برای پردازش یک مجموعه استفاده کرد. در ساده ترین حالت این متد یک عدد به عنوان اندیس شروع حلقه، عدد دوم به عنوان اندیس پایان حلقه و یک پارامتر که متدی با پارامتر ورودی از نوع int یا long که نشان دهنده اندیس جاری است قبول می کند، برای مثال در متد زیر بوسیله متد For لیست numbers را در خروجی چاپ می کنیم، اما نه همه خانه های آن را پس عبارت اند از:

var numbers = new List &lt; int &gt;  {2, 6, 8, 1, 3, 9, 6, 10, 5, 4};
Parallel.For(3, 6, index  = &gt;
{
    Console.WriteLine(numbers[index]);
    Console.WriteLine("Thread Id: {0}", System.Threading.Thread.CurrentThread.ManagedThreadId);
});

با اجرای کد بالا خروجی زیر نمایش داده می شود، البته با هر بار اجرا ممکن است خروجی ها با هم متفاوت باشند:

1
Thread Id: 1
9
3
Thread Id: 3
Thread Id: 4

یکی از کاربردی ترین موارد برای استفاده از کلاس Parallel و متدهای For و ForEach زمانی است که قصد داریم مجموعه حجیمی از اطلاعات را پردازش کنیم و البته پردازش هر المان وابسته به سایر المان ها نیست، زیرا عملیات پردازش المان ها به دلیل اینکه در Thread های مختلف انجام می شوند، ترتیبی در زمان اجرای المان ها در نظر گرفته نشده و ممکن است آیتمی در وسط لیست قبل از آیتم ابتدای لیست پردازش شود.

برای مثال، فرض کنید قصد دارید لیستی از تصاویر را گرفته و بر روی آن ها پردازشی انجام دهید یا لیستی از فایل ها را می خواهیم پردازش کنید، در اینجور مواقع به راحتی می توان از کلاس Parallel و متدهای آن استفاده کرد. یکی از مزیت های استفاده از کلاس Task این است که علاوه بر توزیع انجام کارها در میان Thread ها، در صورت موجود بودن بیش از یک CPU در سیستم شما، از سایر CPU ها هم برای پردازش اطلاعات استفاده می کند. در قسمت بعدی در مورد کلاس Task صحبت خواهیم کرد.

منبع



قسمت اول آموزش-برنامه نویسی Asynchronous – آشنایی با Process ها، Thread ها و AppDomain ها

قسمت دوم آموزش- آشنایی با ماهیت Asynchronous در Delegate ها

قسمت سوم آموزش-آشنایی با فضای نام System.Threading و کلاس Thread

قسمت چهارم آموزش- آشنایی با Thread های Foreground و Background در دات نت

قسمت پنجم آموزش- آشنایی با مشکل Concurrency در برنامه های Multi-Threaded و راهکار های رفع این مشکل

قسمت ششم آموزش- آشنایی با کلاس Timer در زبان سی شارپ

قسمت هفتم آموزش-آشنایی با CLR ThreadPool در دات نت

قسمت هشتم آموزش- مقدمه ای بر Task Parallel Library و کلاس Parallel در دات نت

قسمت نهم آموزش- برنامه نویسی Parallel:آشنایی با کلاس Task در سی شارپ

قسمت دهم آموزش-برنامه نویسی Parallel در سی شارپ :: متوقف کردن Task ها در سی شارپ – کلاس CancellationToken

قسمت یازدهم آموزش- برنامه نویسی Parallel در سی شارپ :: کوئری های Parallel در LINQ

قسمت دوازدهم آموزش- آشنایی با کلمات کلیدی async و await در زبان سی شارپ

قسمت سیزدهم آموزش- استفاده از متد WhenAll برای اجرای چندین Task به صورت همزمان در سی شارپ

 OSD (on screen Display) Menu Setup

دوربین ها با ویژگی های متفاوت در پروژه های مختلف در محیط های متنوع شرایط نوری گوناگونی دارند. همچنین فاکتورهای دیگری هم وجود دارد که ممکن است تصویر تولید شده توسط دوربین کیفیت مورد انتظار را به ما ندهد. برای رسیدن به بهترین کیفیت تصویر، کاربران می توانند تنظیمات و ویژگی های تصویر دوربین را بر اساس محیط نصب با کمک منوی OSD انجام دهند.

Menu Setup

DWDR

تصاویر ویدئویی واضح تر و با جزئیات بیشتر. DWDR نقاط سایه ای سیاهی که در تصویر بوجود می آید را از بین می برد این قابلیت در محیط هایی که هم نقاط تیره و هم نقاط روشن دارد بسیار کاربردی است .

DWDR

SMART IR

این ویژگی از بین برنده ی نوردهی بالای چراغ های IR روی دوربین ها در شرایطی است که ممکن است فاصله ی دوربین تا جسم خیلی زیاد نباشد.

SMART IR

(DNR(Digital Noise Redctron

کاهش نویز تصویر در محیط های با نور پایین (تصویر تهیه شده در شب).
دوربین های با امکان DNR در مقایسه با دوربین هایی که امکان DNR ندارند نویز کمتری ایجاد می کنند.

(DNR(Digital Noise Redctron

HLC Highlight Compensation

ویژگی مفیدی که به کاربران اجازه می دهد پلاک ماشین هایی که در حال عبور هستند را حتی با وجود چراغ های جلوی قدرتمند به خوبی تشخیص دهند.

HLC Highlight Compensation

الگوریتم Canny

لبه یاب کنی توسط جان اف کنی در سال 1986 ایجاد شد و هنوز یک لبه یاب استاندارد و با دقت و کیفیت بالا میباشد.الگوریتم لبه یابی کنی یکی از بهترین لبه یابها تا به امروز است. در ادامه روش کار این الگوریتم و هم چنین کد الگوریتم Canny در C را بررسی خواهیم کرد. این الگوریتم لبه یابی از سه بخش اصلی زیر تشکیل شده است:

  • تضعیف نویز
  • پیدا کردن نقاطی که بتوان آنها را به عنوان لبه در نظر گرفت
  • جذب نقاطی که احتمال لبه بودن آنها کم است

 

معیارهایی که در لبه یاب کنی مطرح می باشد:
1 -پایین آوردن نرخ خطا- یعنی تا حد امکان هیچ لبه ای در تصویر نباید گم شود و هم چنین هیچ چیزی که لبه نیست نباید به جای لبه فرض شود. لبه هان پیدا شده تا حد ممکن به لبه ها اصلی
نزدیک باشند.

2 -لبه در مکان واقعی خود باشد- یعنی تا حد ممکن لبه ها کمترین فاصله را با مکان واقعی خود داشته باشند.
3 -بران هر لبه فقط یک پاسخ داشته باشیم.

4 -لبه ها کمترین ضخامت را داشته باشند- (در صورت امکان یک پیکسل).
لبه یاب کنی بخاطر توانایی در تولید لبه های نازک تا حد یک ییکسل برای لبه های پیوسته معروف شده است. این لبه یاب شامل چهار مرحله و چهار ورودی زیر است:
یک تصویر ورودی
یک پارامتر به نام سیگما جهت مقدار نرم کنندگی تصویر
یک حد آستانه بالا (Th)
یک حد آستانه پایین (Tl)

 

مراحل الگوریتم Canny:

1- در ابتدا باید تصویر رنگی را به جهت لبه یابی بهتر به یک تصویر سطح خاکسترن تبدیب کرد.

2- نویز را از تصویر دریافتی حذف کرد. بدلیل اینکه فیلتر گاوسین از یک ماسک ساده برای حذف نویز استفاده می کند لبه یاب کنی در مرحله اول برای حذف نویز آن را بکار می گیرد.

3- در یک تصویر سطح خاکستر جایی را که بیشترین تغییرات را داشته باشند به عنوان لبه در نظر گرفته می شوند و این مکانها با گرفتن گرادیان تصویر با استفاده عملگر سوبل بدست می آیند. سپس لبه های مات یافت شده به لبه های تیزتر تبدیل می شوند.

4- برخی از لبه های کشف شده واقعا لبه نیستند و در واقع نویز هستند که باید آنها توسط حد آستانه هیسترزیس فیلتر شوند.هیسترزیس از دو حد آستانه بالاتر (Th) و حد آستانه پایین تر (Tl) استفاده کرده و کنی پیشنهاد می کند که نسبت استانه بالا به پایین سه به یک باشد.

 این روش بیشتر به کشف لبه های ضعیف به درستی می پردازد و کمتر فریب نویز را می خورد و از بقیه روش ها بهتر است.

 

الگوریتم Canny    عملکرد الگوریتم Canny

 

 

کد الگوریتم Canny در C :

برنامه زیر یک فایل BMP سیاه و سفید 8 بیت در هر پیکسل را می خواند و نتیجه را در ‘out.bmp’ ذخیره می کند.با `-lm ‘ کامپایل می شود.

 

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <float.h>
#include <math.h>
#include <string.h>
#include <stdbool.h>
#include <assert.h>
 
#define MAX_BRIGHTNESS 255
 
// C99 doesn't define M_PI (GNU-C99 does)
#define M_PI 3.14159265358979323846264338327
 
/*
 * Loading part taken from
 * http://www.vbforums.com/showthread.php?t=261522
 * BMP info:
 * http://en.wikipedia.org/wiki/BMP_file_format
 *
 * Note: the magic number has been removed from the bmpfile_header_t
 * structure since it causes alignment problems
 * bmpfile_magic_t should be written/read first
 * followed by the
 * bmpfile_header_t
 * [this avoids compiler-specific alignment pragmas etc.]
 */
 
typedef struct {
 uint8_t magic[2];
} bmpfile_magic_t;
 
typedef struct {
 uint32_t filesz;
 uint16_t creator1;
 uint16_t creator2;
 uint32_t bmp_offset;
} bmpfile_header_t;
 
typedef struct {
 uint32_t header_sz;
 int32_t width;
 int32_t height;
 uint16_t nplanes;
 uint16_t bitspp;
 uint32_t compress_type;
 uint32_t bmp_bytesz;
 int32_t hres;
 int32_t vres;
 uint32_t ncolors;
 uint32_t nimpcolors;
} bitmap_info_header_t;
 
typedef struct {
 uint8_t r;
 uint8_t g;
 uint8_t b;
 uint8_t nothing;
} rgb_t;
 
// Use short int instead `unsigned char' so that we can
// store negative values.
typedef short int pixel_t;
 
pixel_t *load_bmp(const char *filename,
 bitmap_info_header_t *bitmapInfoHeader)
{
 FILE *filePtr = fopen(filename, "rb");
 if (filePtr == NULL) {
 perror("fopen()");
 return NULL;
 }
 
 bmpfile_magic_t mag;
 if (fread(&mag, sizeof(bmpfile_magic_t), 1, filePtr) != 1) {
 fclose(filePtr);
 return NULL;
 }
 
 // verify that this is a bmp file by check bitmap id
 // warning: dereferencing type-punned pointer will break
 // strict-aliasing rules [-Wstrict-aliasing]
 if (*((uint16_t*)mag.magic) != 0x4D42) {
 fprintf(stderr, "Not a BMP file: magic=%c%c\n",
 mag.magic[0], mag.magic[1]);
 fclose(filePtr);
 return NULL;
 }
 
 bmpfile_header_t bitmapFileHeader; // our bitmap file header
 // read the bitmap file header
 if (fread(&bitmapFileHeader, sizeof(bmpfile_header_t),
 1, filePtr) != 1) {
 fclose(filePtr);
 return NULL;
 }
 
 // read the bitmap info header
 if (fread(bitmapInfoHeader, sizeof(bitmap_info_header_t),
 1, filePtr) != 1) {
 fclose(filePtr);
 return NULL;
 }
 
 if (bitmapInfoHeader->compress_type != 0)
 fprintf(stderr, "Warning, compression is not supported.\n");
 
 // move file point to the beginning of bitmap data
 if (fseek(filePtr, bitmapFileHeader.bmp_offset, SEEK_SET)) {
 fclose(filePtr);
 return NULL;
 }
 
 // allocate enough memory for the bitmap image data
 pixel_t *bitmapImage = malloc(bitmapInfoHeader->bmp_bytesz *
 sizeof(pixel_t));
 
 // verify memory allocation
 if (bitmapImage == NULL) {
 fclose(filePtr);
 return NULL;
 }
 
 // read in the bitmap image data
 size_t pad, count=0;
 unsigned char c;
 pad = 4*ceil(bitmapInfoHeader->bitspp*bitmapInfoHeader->width/32.) - bitmapInfoHeader->width;
 for(size_t i=0; i<bitmapInfoHeader->height; i++){
 for(size_t j=0; j<bitmapInfoHeader->width; j++){
 if (fread(&c, sizeof(unsigned char), 1, filePtr) != 1) {
 fclose(filePtr);
 return NULL;
 }
 bitmapImage[count++] = (pixel_t) c;
 }
 fseek(filePtr, pad, SEEK_CUR);
 }
 
 // If we were using unsigned char as pixel_t, then:
 // fread(bitmapImage, 1, bitmapInfoHeader->bmp_bytesz, filePtr);
 
 // close file and return bitmap image data
 fclose(filePtr);
 return bitmapImage;
}
 
// Return: true on error.
bool save_bmp(const char *filename, const bitmap_info_header_t *bmp_ih,
 const pixel_t *data)
{
 FILE* filePtr = fopen(filename, "wb");
 if (filePtr == NULL)
 return true;
 
 bmpfile_magic_t mag = {{0x42, 0x4d}};
 if (fwrite(&mag, sizeof(bmpfile_magic_t), 1, filePtr) != 1) {
 fclose(filePtr);
 return true;
 }
 
 const uint32_t offset = sizeof(bmpfile_magic_t) +
 sizeof(bmpfile_header_t) +
 sizeof(bitmap_info_header_t) +
 ((1U << bmp_ih->bitspp) * 4);
 
 const bmpfile_header_t bmp_fh = {
 .filesz = offset + bmp_ih->bmp_bytesz,
 .creator1 = 0,
 .creator2 = 0,
 .bmp_offset = offset
 };
 
 if (fwrite(&bmp_fh, sizeof(bmpfile_header_t), 1, filePtr) != 1) {
 fclose(filePtr);
 return true;
 }
 if (fwrite(bmp_ih, sizeof(bitmap_info_header_t), 1, filePtr) != 1) {
 fclose(filePtr);
 return true;
 }
 
 // Palette
 for (size_t i = 0; i < (1U << bmp_ih->bitspp); i++) {
 const rgb_t color = {(uint8_t)i, (uint8_t)i, (uint8_t)i};
 if (fwrite(&color, sizeof(rgb_t), 1, filePtr) != 1) {
 fclose(filePtr);
 return true;
 }
 }
 
 // We use int instead of uchar, so we can't write img
 // in 1 call any more.
 // fwrite(data, 1, bmp_ih->bmp_bytesz, filePtr);
 
 // Padding: http://en.wikipedia.org/wiki/BMP_file_format#Pixel_storage
 size_t pad = 4*ceil(bmp_ih->bitspp*bmp_ih->width/32.) - bmp_ih->width;
 unsigned char c;
 for(size_t i=0; i < bmp_ih->height; i++) {
 for(size_t j=0; j < bmp_ih->width; j++) {
 c = (unsigned char) data[j + bmp_ih->width*i];
 if (fwrite(&c, sizeof(char), 1, filePtr) != 1) {
 fclose(filePtr);
 return true;
 }
 }
 c = 0;
 for(size_t j=0; j<pad; j++)
 if (fwrite(&c, sizeof(char), 1, filePtr) != 1) {
 fclose(filePtr);
 return true;
 }
 }
 
 fclose(filePtr);
 return false;
}
 
// if normalize is true, map pixels to range 0..MAX_BRIGHTNESS
void convolution(const pixel_t *in, pixel_t *out, const float *kernel,
 const int nx, const int ny, const int kn,
 const bool normalize)
{
 assert(kn % 2 == 1);
 assert(nx > kn && ny > kn);
 const int khalf = kn / 2;
 float min = FLT_MAX, max = -FLT_MAX;
 
 if (normalize)
 for (int m = khalf; m < nx - khalf; m++)
 for (int n = khalf; n < ny - khalf; n++) {
 float pixel = 0.0;
 size_t c = 0;
 for (int j = -khalf; j <= khalf; j++)
 for (int i = -khalf; i <= khalf; i++) {
 pixel += in[(n - j) * nx + m - i] * kernel;
 c++;
 }
 if (pixel < min)
 min = pixel;
 if (pixel > max)
 max = pixel;
 }
 
 for (int m = khalf; m < nx - khalf; m++)
 for (int n = khalf; n < ny - khalf; n++) {
 float pixel = 0.0;
 size_t c = 0;
 for (int j = -khalf; j <= khalf; j++)
 for (int i = -khalf; i <= khalf; i++) {
 pixel += in[(n - j) * nx + m - i] * kernel;
 c++;
 }
 
 if (normalize)
 pixel = MAX_BRIGHTNESS * (pixel - min) / (max - min);
 out[n * nx + m] = (pixel_t)pixel;
 }
}
 
/*
 * gaussianFilter:
 * http://www.songho.ca/dsp/cannyedge/cannyedge.html
 * determine size of kernel (odd #)
 * 0.0 <= sigma < 0.5 : 3
 * 0.5 <= sigma < 1.0 : 5
 * 1.0 <= sigma < 1.5 : 7
 * 1.5 <= sigma < 2.0 : 9
 * 2.0 <= sigma < 2.5 : 11
 * 2.5 <= sigma < 3.0 : 13 ...
 * kernelSize = 2 * int(2*sigma) + 3;
 */
void gaussian_filter(const pixel_t *in, pixel_t *out,
 const int nx, const int ny, const float sigma)
{
 const int n = 2 * (int)(2 * sigma) + 3;
 const float mean = (float)floor(n / 2.0);
 float kernel[n * n]; // variable length array
 
 fprintf(stderr, "gaussian_filter: kernel size %d, sigma=%g\n",
 n, sigma);
 size_t c = 0;
 for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++) {
 kernel = exp(-0.5 * (pow((i - mean) / sigma, 2.0) +
 pow((j - mean) / sigma, 2.0)))
 / (2 * M_PI * sigma * sigma);
 c++;
 }
 
 convolution(in, out, kernel, nx, ny, n, true);
}
 
/*
 * Links:
 * http://en.wikipedia.org/wiki/Canny_edge_detector
 * http://www.tomgibara.com/computer-vision/CannyEdgeDetector.java
 * http://fourier.eng.hmc.edu/e161/lectures/canny/node1.html
 * http://www.songho.ca/dsp/cannyedge/cannyedge.html
 *
 * Note: T1 and T2 are lower and upper thresholds.
 */
pixel_t *canny_edge_detection(const pixel_t *in,
 const bitmap_info_header_t *bmp_ih,
 const int tmin, const int tmax,
 const float sigma)
{
 const int nx = bmp_ih->width;
 const int ny = bmp_ih->height;
 
 pixel_t *G = calloc(nx * ny * sizeof(pixel_t), 1);
 pixel_t *after_Gx = calloc(nx * ny * sizeof(pixel_t), 1);
 pixel_t *after_Gy = calloc(nx * ny * sizeof(pixel_t), 1);
 pixel_t *nms = calloc(nx * ny * sizeof(pixel_t), 1);
 pixel_t *out = malloc(bmp_ih->bmp_bytesz * sizeof(pixel_t));
 
 if (G == NULL || after_Gx == NULL || after_Gy == NULL ||
 nms == NULL || out == NULL) {
 fprintf(stderr, "canny_edge_detection:"
 " Failed memory allocation(s).\n");
 exit(1);
 }
 
 gaussian_filter(in, out, nx, ny, sigma);
 
 const float Gx[] = {-1, 0, 1,
 -2, 0, 2,
 -1, 0, 1};
 
 convolution(out, after_Gx, Gx, nx, ny, 3, false);
 
 const float Gy[] = { 1, 2, 1,
 0, 0, 0,
 -1,-2,-1};
 
 convolution(out, after_Gy, Gy, nx, ny, 3, false);
 
 for (int i = 1; i < nx - 1; i++)
 for (int j = 1; j < ny - 1; j++) {
 const int c = i + nx * j;
 // G = abs(after_Gx) + abs(after_Gy);
 G = (pixel_t)hypot(after_Gx, after_Gy);
 }
 
 // Non-maximum suppression, straightforward implementation.
 for (int i = 1; i < nx - 1; i++)
 for (int j = 1; j < ny - 1; j++) {
 const int c = i + nx * j;
 const int nn = c - nx;
 const int ss = c + nx;
 const int ww = c + 1;
 const int ee = c - 1;
 const int nw = nn + 1;
 const int ne = nn - 1;
 const int sw = ss + 1;
 const int se = ss - 1;
 
 const float dir = (float)(fmod(atan2(after_Gy,
 after_Gx) + M_PI,
 M_PI) / M_PI) * 8;
 
 if (((dir <= 1 || dir > 7) && G > G[ee] &&
 G > G[ww]) || // 0 deg
 ((dir > 1 && dir <= 3) && G > G[nw] &&
 G > G[se]) || // 45 deg
 ((dir > 3 && dir <= 5) && G > G[nn] &&
 G > G[ss]) || // 90 deg
 ((dir > 5 && dir <= 7) && G > G[ne] &&
 G > G[sw])) // 135 deg
 nms = G;
 else
 nms = 0;
 }
 
 // Reuse array
 // used as a stack. nx*ny/2 elements should be enough.
 int *edges = (int*) after_Gy;
 memset(out, 0, sizeof(pixel_t) * nx * ny);
 memset(edges, 0, sizeof(pixel_t) * nx * ny);
 
 // Tracing edges with hysteresis . Non-recursive implementation.
 size_t c = 1;
 for (int j = 1; j < ny - 1; j++)
 for (int i = 1; i < nx - 1; i++) {
 if (nms >= tmax && out == 0) { // trace edges
 out = MAX_BRIGHTNESS;
 int nedges = 1;
 edges[0] = c;
 
 do {
 nedges--;
 const int t = edges[nedges];
 
 int nbs[8]; // neighbours
 nbs[0] = t - nx; // nn
 nbs[1] = t + nx; // ss
 nbs[2] = t + 1; // ww
 nbs[3] = t - 1; // ee
 nbs[4] = nbs[0] + 1; // nw
 nbs[5] = nbs[0] - 1; // ne
 nbs[6] = nbs[1] + 1; // sw
 nbs[7] = nbs[1] - 1; // se
 
 for (int k = 0; k < 8; k++)
 if (nms[nbs[k]] >= tmin && out[nbs[k]] == 0) {
 out[nbs[k]] = MAX_BRIGHTNESS;
 edges[nedges] = nbs[k];
 nedges++;
 }
 } while (nedges > 0);
 }
 c++;
 }
 
 free(after_Gx);
 free(after_Gy);
 free(G);
 free(nms);
 
 return out;
}
 
int main(const int argc, const char ** const argv)
{
 if (argc < 2) {
 printf("Usage: %s image.bmp\n", argv[0]);
 return 1;
 }
 
 static bitmap_info_header_t ih;
 const pixel_t *in_bitmap_data = load_bmp(argv[1], &ih);
 if (in_bitmap_data == NULL) {
 fprintf(stderr, "main: BMP image not loaded.\n");
 return 1;
 }
 
 printf("Info: %d x %d x %d\n", ih.width, ih.height, ih.bitspp);
 
 const pixel_t *out_bitmap_data =
 canny_edge_detection(in_bitmap_data, &ih, 45, 50, 1.0f);
 if (out_bitmap_data == NULL) {
 fprintf(stderr, "main: failed canny_edge_detection.\n");
 return 1;
 }
 
 if (save_bmp("out.bmp", &ih, out_bitmap_data)) {
 fprintf(stderr, "main: BMP image not saved.\n");
 return 1;
 }
 
 free((pixel_t*)in_bitmap_data);
 free((pixel_t*)out_bitmap_data);
 return 0;
}

 

دانلود کد فوق از طریق لینک زیر:

Canny in C

رمز فایل : behsanandish.com

الگوریتم Canny

لبه یاب کنی توسط جان اف کنی در سال 1986 ایجاد شد و هنوز یک لبه یاب استاندارد و با دقت و کیفیت بالا میباشد.الگوریتم لبه یابی کنی یکی از بهترین لبه یابها تا به امروز است. در ادامه روش کار این الگوریتم و هم چنین کد الگوریتم Canny در OpenCV را بررسی خواهیم کرد. این الگوریتم لبه یابی از سه بخش اصلی زیر تشکیل شده:

  • تضعیف نویز
  • پیدا کردن نقاطی که بتوان آنها را به عنوان لبه در نظر گرفت
  • حذب نقاطی که احتمال لبه بودن آنها کم است

 

معیارهایی که در لبه یاب کنی مطرح است:
1 -پایین آوردن نرخ خطا- یعنی تا حد امکان هیچ لبه ای در تصویر نباید گم شود و هم چنین هیچ چیزی که لبه نیست نباید به جای لبه فرض شود. لبه هان پیدا شده تا حد ممکن به لبه ها اصلی
نزدیک باشند.

2 -لبه در مکان واقعی خود باشد- یعنی تا حد ممکن لبه ها کمترین فاصله را با مکان واقعی خود داشته باشند.
3 -بران هر لبه فقط یک پاسخ داشته باشیم.

4 -لبه ها کمترین ضخامت را داشته باشند- (در صورت امکان یک پیکسل).
لبه یاب کنی بخاطر توانایی در تولید لبه های نازک تا حد یک ییکسل برای لبه های پیوسته معروف شده است. این لبه یاب شامل چهار مرحله و چهار ورودی زیر است:
یک تصویر ورودی
یک پارامتر به نام سیگما جهت مقدار نرم کنندگی تصویر
یک حد آستانه بالا (Th)
یک حد آستانه پایین (Tl)

 

مراحل الگوریتم Canny:

1- در ابتدا باید تصویر رنگی را به جهت لبه یابی بهتر به یک تصویر سطح خاکسترن تبدیب کرد.

2- نویز را از تصویر دریافتی حذف کرد. بدلیل اینکه فیلتر گاوسین از یک ماسک ساده برای حذف نویز استفاده می کند لبه یاب کنی در مرحله اول برای حذف نویز آن را بکار میگیرد.

3- در یک تصویر سطح خاکستر جایی را که بیشترین تغییرات را داشته باشند به عنوان لبه در نظر گرفته می شوند و این مکانها با گرفتن گرادیان تصویر با استفاده عملگر سوبل بدست می آیند. سپس لبه های مات یافت شده به لبه های تیزتر تبدیل می شوند.

4- برخی از لبه های کشف شده واقعا لبه نیستند و در واقع نویز هستند که باید آنها توسط حد آستانه هیسترزیس فیلتر شوند.هیسترزیس از دو حد آستانه بالاتر (Th) و حد آستانه پایین تر (Tl) استفاده کرده و کنی پیشنهاد می کند که نسبت استانه بالا به پایین سه به یک باشد.

 این روش بیشتر به کشف لبه های ضعیف به درستی می پردازد و کمتر فریب نویز را می خورد و از بقیه روش ها بهتر است.

 

 

الگوریتم Canny    عملکرد الگوریتم Canny

 

کد الگوریتم Canny در OpenCV:

 

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <stdlib.h>
#include <stdio.h>

using namespace cv;

/// Global variables

Mat src, src_gray;
Mat dst, detected_edges;

int edgeThresh = 1;
int lowThreshold;
int const max_lowThreshold = 100;
int ratio = 3;
int kernel_size = 3;
char* window_name = "Edge Map";

/**
 * @function CannyThreshold
 * @brief Trackbar callback - Canny thresholds input with a ratio 1:3
 */
void CannyThreshold(int, void*)
{
  /// Reduce noise with a kernel 3x3
  blur( src_gray, detected_edges, Size(3,3) );

  /// Canny detector
  Canny( detected_edges, detected_edges, lowThreshold, lowThreshold*ratio, kernel_size );

  /// Using Canny's output as a mask, we display our result
  dst = Scalar::all(0);

  src.copyTo( dst, detected_edges);
  imshow( window_name, dst );
 }

/** @function main */
int main( int argc, char** argv )
{
  /// Load an image
  src = imread( argv[1] );

  if( !src.data )
  { return -1; }</pre>
<pre>  /// Create a matrix of the same type and size as src (for dst)
  dst.create( src.size(), src.type() );

  /// Convert the image to grayscale
  cvtColor( src, src_gray, CV_BGR2GRAY );

  /// Create a window
  namedWindow( window_name, CV_WINDOW_AUTOSIZE );

  /// Create a Trackbar for user to enter threshold
  createTrackbar( "Min Threshold:", window_name, &lowThreshold, max_lowThreshold, CannyThreshold );

  /// Show the image
  CannyThreshold(0, 0);

  /// Wait until user exit program by pressing a key
  waitKey(0);

  return 0;
  }

 

 

دانلود کد فوق از طریق لینک زیر:

CannyInOpenCV

رمز فایل : behsanandish.com