بایگانی برچسب برای: کنترل تردد

تاریخچه تحولات حوزه رباتیک

1920: نمایش نامه نویس چک اسلواکی Karl capek، کلمه ربات را در نمایش«‌ربات‌های جهانی روسیه» استفاده کرد این جمله از کلمه چکی « Robota» به معنی« کوشش ملال آور‌» آمده است.
1938: نخستین الگوی قابل برنامه‌ریزی که یک دستگاه سم‌پاشی بود، توسط دو آمریکایی به نام‌های Willard pollard و Harold Roselund برای شرکت devilbiss طراحی شد.
1942: ایزاک آسیموفRunaround را منتشر کرد و در آن قوانین سه‌گانه رباتیک را تعریف کرد.

1946: ظهور کامپیوتر: George Devol، با استفاده از ضبط مغناطیسی، یک دستگاه playback همه منظوره، برای کنترل ماشین به ثبت رساند. John Mauchly اولین کامپیوتر الکترونیکی (ENIAC) را در دانشگاه پنسیلوانیا ساخت. در MIT، اولین کامپیوتر دیجیتالی همه منظوره (Whirl wind) اولین مسئله خود را حل کرد.
1951: در فرانسه Reymond Goertz اولین بازوی مفصلی کنترل از راه دور را برای انجام مأموریت هسته‌ای طراحی کرد. طراحی آن مبتنی بر کلیه روابط متقابل مکانیکی بین بازوی اصلی و فرعی با استفاده از روش متداول تسمه و قرقره بود که نمونه‌هایی برگرفته از این طرح هنوز هم در مواردی که نیاز به لمس نمونه‌های کوچک هسته‌ای است، دیده می‌شود.
1954: George Devol اولین ربات قابل برنامه‌ریزی را طراحی و عبارت جهانی اتوماسیون را ابداع کرد. این امر زمینه‌ای برای نام‌گذاری این شرکت به Unimation در آینده شد.
1959: Marvin Minsky و John McCarthy آزمایشگاه هوش مصنوعی را در MIT بنا نهادند.

1960: Unimation توسط شرکت Coudoc خریداری شد و توسعه سیستم ربات‌های آن آغاز گردید. کارخانجات ساخت تراشه مانند AMF پس از آن شناخته شدند و اولین ربات استوانه ای شکل به نام Versatran که توسط Harry Johnson&Veljkomilen kovic طراحی شده بود، فروش رفت.
1962: جنرال موتورز اولین ربات صنعتی را از Unimation خریداری کرد و آن را در خط تولید خود قرار داد.
1963: John Mccarthy آزمایشگاه هوش مصنوعی دیگری از دانشگاه استنفورد بنا کرد.
1964: آزمایشگاه‌های تحقیقاتی هوش مصنوعی در M.I.T ،مؤسسات تحقیقاتی استنفورد (SRI)، دانشگاه‌ استنفورد و دانشگاه ادین برگ گشایش یافت.
1964: رباتیک C&D پایه گذاری شد.
1965: دانشگاه Carnegie Mellon مؤسسه رباتیک خود را تأسیس کرد.

1965: حرکت یکنواخت ( Homogeneous Trans formation) در شناخت نحوه حرکات ربات به کار رفت. این روش امروزه به عنوان نظریه اسامی رباتیک وجود دارد.
1965: ژاپن ربات Verstran ( نخستین رباتی که به ژاپن وارد شد) را از AMF خریداری کرد.
1968: کاوازاکی مجوز طراحی ربات‌های هیدرولیک را از Unimation گرفت و تولید آن را در ژاپن آغاز کرد.
1968: SRI،Shakey (یک ربات سیار با قابلیت بینایی و کنترل با یک کامپیوتر به اندازه یک اتاق) را ساخت.
1970: پروفسور victor sheinman از دانشگاه استنفورد بازوی استاندارد را طراحی کرد. ساختار ترکیب حرکتی او هنوز هم به بازوی استاندارد معروف است.
1973: Cincinnate Milacron اولین مینی کامپیوتر قابل استفاده تجاری که با رباتهای صنعتی کنترل می شد(T3) را عرضه کرد. ( طراحی توسطRichard Hohn )
1974: پروفسور Victor Scheinman، سازنده بازوی استاندارد، Inc Vicarm را جهت فروش یک نسخه برای کاربردهای صنعتی ساخت. بازوی جدید با یک مینی کامپیوتر کنترل می‌شد.
1976: Vicarm Inc در کاوشگر فضایی وایکینگ 1و2 استفاده شد. یک میکرو کامپیوتر هم در طراحی vicarm به کار رفت.

1977: یک شرکت ربات اروپایی (ASEA)، دو اندازه از ربات‌های قدرتمند الکتریکی صنعتی را عرضه کرد که هر دو ربات از یک کنترلر میکرو کامپیوتر برای برنامه ریزی عملکرد خود استفاده می‌کردند.
1977: Inc, Unimation vicarm را فروخت.
1978: unimation با استفاده از تکنولوژی Vicarm ‌ ( puma) ماشین قابل برنامه‌ریزی برای مونتاژ( puma) را توسعه داد . امروزه همچنان می‌توان puma را در بسیاری از آزمایشگاه‌های تحقیقاتی یافت.
1978: ماشین خودکار Brooks تولید شد.
1978: IBM و SANKYO ربات با بازوی انتخاب کننده، جمع کننده و مفصلی (SCARA) که در دانشگاه Yamanashi ژاپن برنامه‌ریزی و تولید شده بود، را فروختند.
1980: Cognex تولید شد.

1981: گروه ربات‌های CRS عرضه شد.
1982: Fanuc از ژاپن و جنرال موتورز درGM Fanuc برای فروش ربات در شمال آمریکا قرار داد بستند.
1983: تکنولوژی Adept عرضه شد.
1984: Joseph Engelberger ایجاد تغییرات در رباتیک را آغاز کرد و پس از آن نام ربات‌های کمکی (Helpmate) به ربات‌های خدماتی توسعه یافته (developed service Robots) تغییر یافت.
1986: با خاتمه یافتن مجوز ساخت Unimation، کاوازاکی خط تولید ربات‌های الکتریکی خود را توسعه داد.
1988: گروه Staubli، Unimation را از Westing house خرید.
1989: تکنولوژی Sensable عرضه شد.

1994: یک ربات متحرک شش پا از مؤسسه رباتیک CMUیک آتشفشان در آلاسکا را برای نمونه‌برداری از گازهای آتشفشانی کاوش کرد.
1997: ربات راه‌یاب مریخ ناسا از زمانی‌که ربات وارد مریخ شد تصاویری از جهان را ضبط و ربات سیار Sojourner تصاویری از سفرهایش به سیاره‌های دور را ارسال کرد.
1998: Honda نمونه ای از p3 (هشتمین نمونه در پروژه طراحی شبیه انسان ) که در 1986 آغاز شده بود را عرضه کرد.
2000: Honda نمونه آسیمو نسل بعدی از سری ربات‌های شبیه انسان را عرضه کرد.

2000: Sony از ربات شبیه انسان خود که لقب SDR ( Sony Dream Robots) را گرفت، پرده برداری کرد.
2001: Sony دومین نسل از ربات‌های سگ Aibo را عرضه کرد.
2001: سیستم کنترل از راه دور ایستگاه فضایی(SSRMS ) توسط مؤسسه رباتیک MD در کانادا ساخته و با موفقیت به مدار پرتاب شد و عملیات تکمیل ایستگاه فضایی بین‌المللی را آغاز کرد.

منبع


تاریخچه ربات

كلمه‌ ربات‌ بعد از به‌ صحنه‌ درآمدن‌ یك‌ نمایش‌ در سال‌1920 میلادی‌ در فرانسه‌ متداول‌ و مشهور گردید. در این‌ نمایش‌ كه‌ اثر«كارل‌ كپك‌» بود، موجودات‌ مصنوعی‌ شبیه‌ انسان‌، وابستگی‌ شدیدی‌نسبت‌ به‌ اربابان‌ خویش‌ از خود نشان‌ می‌دادند. این‌ موجودات‌ مصنوعی‌شبیه‌ انسان‌ در آن‌ نمایش‌، ربات‌ نام‌ داشتند.
در حال‌ حاضر ربات‌هایی‌ را كه‌ در شاخه‌های‌ مختلف‌ صنایع‌ مورداستفاده‌ می‌باشند، می‌توان‌ به‌ عنوان‌ «ماشین‌های‌ مدرن‌، خودكار، قابل‌هدایت‌ و برنامه‌ریزی‌»تعریف‌ كرد. این‌ ربات‌ها قادرند در محل‌های‌متفاوت‌ خطوط تولید، به‌ طور خودكار، وظایف‌ گوناگون‌ تولیدی‌ را تحت‌یك‌ برنامه‌ از پیش‌ نوشته‌ شده‌ انجام‌ دهند.

گاهی‌ ممكن‌ است‌ یك‌ربات‌، جای‌ اپراتور در خط تولید بگیرد و زمانی‌ این‌ امكان‌ هم‌ وجوددار كه‌ یك‌ كار مشكل‌ و یا خطرناك‌ به‌ عهده‌ ربات‌ واگذار شود.همانطور كه‌ یك‌ ربات‌ می‌تواند به‌ صورت‌ منفرد یا مستقل‌ به‌ كاربپردازد، این‌ احتمال‌ نیز وجود دارد كه‌ چند ربات‌ به‌ صورت‌ جمعی‌ و به‌شكل‌ رایانه‌ای‌ در خط تولید به‌ كار گرفته‌ شوند.
ربات‌ها عموماً دارای‌ ابزار و آلاتی‌ هستند كه‌ به‌ وسیله‌ آنهامی‌توانند شرایط محیط را دریابند.این‌ آلات‌ و ابزار «حس‌ كننده‌» نام‌ دارند، ربات‌ها می‌توانند در چارچوب‌ برنامه‌ اصلی‌ خود، برنامه‌های‌جدید عملیاتی‌ تولید نمایند. این‌ ربات‌ها دارای‌ سیستم‌های‌ كنترل‌ وهدایت‌ خودكار هستند.

ربات‌های‌ صنایع‌ علاوه‌ بر این‌ كه‌ دارای‌ راندمان‌، سرعت‌، دقت‌ وكیفیت‌ بالای‌ عملیاتی‌ می‌باشند، از ویژگی‌های‌ زیر نیز برخوردارند:
– بسیاری‌ از عملیات‌ طاقت‌ فرسا و غیرقابل‌ انجام‌ توسط متصدیان‌ رامی‌توانند انجام‌ دهند.
– آنها، برخلاف‌ عامل‌ انسانی‌ یعنی‌ متصدی‌ خط تولید، قادر هستند سه‌شیفت‌ به‌ كار بپردازند و در این‌ خصوص‌ نه‌ منع‌ قانونی‌ وجود دارد و نه‌محدودیت‌های‌ فیزیولوژیكی‌ نیروی‌ كار.
– هزینه‌های‌ مربوط به‌ جلوگیری‌ از آلودگی‌ صوتی‌، تعدیل‌ هوا و فراهم‌آوردن‌ روشنایی‌ لازم‌ برای‌ خط تولید، دیگر بر واحد تولید تحمیل‌نخواهد شد.

– برای‌ اضافه‌ كاری‌ این‌ ربات‌ها، هزینه‌ اضافی‌ پرداخت‌ نمی‌شود.حق‌ بیمه‌، حق‌ مسكن‌ و هزینه‌ ایاب‌ و ذهاب‌ پرداخت‌ نمی‌شود. احتیاج‌ به‌افزایش‌ حقوق‌ ندارند و هزینه‌این‌ نیز از بابت‌ بهداشت‌ و درمان‌ بر واحدتولیدی‌ تحمیل‌ نمی‌كنند.
ویژگی‌های‌ ذكر شده‌ سبب‌ می‌شوند كه‌ سهم‌ هزینه‌ كار مستقیم‌ نیروی‌انسانی‌ در هزینه‌ محصولات‌ تولیدی‌، واحدهای‌ تولیدی‌ كاهش‌ پیداكند.

ربات چیست؟

همیشه بین صاحب نظران رباتیک و فعالان رباتیک در دانشگاه ها بحث در مورد تعریف ربات وجود داشته است، گاهی اوقات بر اساس تولید ربات، در شرکتی، تعریفی صنعتی و بر اساس تولید آن شرکت از ربات ارایه می شود و در مواردی نسبت به تکنولوژی ربات توصیف شده است
با این همه در زمان کنونی فناوری ساخت ربات در حدی است که با تکیه بر تکنولوژی جدید و پیشرفته کنونی و با کمی آینده نگری می توان تعریف عینی و دست یافتنی از ربات کرد.در این جا چند تعریف معتبر ذکر شده است:
بیشتر مردم تصورشان از ربات ،ماشینی است که اعمالی هوشمند شبیه به انسان انجام می دهد.فرهنگ و بستر یک ربات را به این گونه تعریف می کنند: “یک دستگاه یا وسیله خود کاری که قادر به انجام اعمالی است که معمولا به انسانها نسبت داده می شود و یا مجهز به قابلیتی است که شبیه هوش بشری است.”
در حال حاضر و با شروع هزاره جدید ، هدف نهایی ،خلق رباتی است که همانند انسان خصوصیات برجسته ای در رفتار ، حرکت ،هوش و ارتباط از خود به نمایش بگذارد.یک ربات هوشمند را میتوان این گونه تعریف کرد:

“یک ربات هوشمند ،ماشین خودکار چند منظوره ای است که طیف وسیعی از وظایف متفاوت را، تحت شرایطی که حتی ممکن است به آن شناخت کافی نداشته باشد ،همانند انسان آن را انجام دهد”
موسسه صنعتی آمریکا RAI یا Robotic Industrial Association که شرکتی با سابقه در صنعت رباتیک می باشد و در تولید بازوهای ربات های صنعتی یا (Manipulators) است، این گونه ربات را تعریف می کند:
“یک ربات، یک جابجا کننده چند وظیفه ای برنامه پذیر است که برای حرکت دادن مواد ، قطعات ،ابزار ها یا وسایل خاص ،با استفاده از حرکات برنامه ریزی شده قابل تغییر برای تحقق فرامین مختلف ،طراحی شده است.
ربات در معنای عام تر و کلی تر یک ماشین الکترومکانیکی هوشمند است، با خصوصیات زیر:
1- می توان آن را مکرراً برنامه ریزی کرد.
2- چند کاره است.
3- Multi Tasking
4- کارآمد و مناسب برای محیط است و توانایی هماهنگ کردن خود با محیط را دارد.
و خلاصه ربات ماشینی است که کاری مستمر و تکراری را بدون خستگی و با سرعت بالا و بدون اشتباه (منظور با خطای کم) انجام دهد

کلمه روباتیک (robatics) اولین بار توسط ایزاک آسیموف در یک داستان کوتاه ارائه شد. ایزاک آسیموف (1920-1992) نویسنده کتابهای توصیفی درباره علوم و داستانهای علمی تخیلی است. ایزاک آسیموفRunaround را منتشر کرد و در آن قوانین سه‌گانه رباتیک را تعریف کرد.
هدف رباتیک اتصال هوش از ادراک به رفتار می باشد. رباتیک در اکثر مواقع در حوزه مهندسی برق، مهندسی مکانیک و مهندسی رایانه کاربرد دارد.
کنترل کننده ها اولین هدایت کننده های رباتیک بوده اند. استفاده از تئوری کنترل در هدایت سامانه های پیچیده ، موضوع علم سیبرنیتیک است. چرخه حس، طرح و عمل در هوش مصنوعی توسعه ای از علم سیبرنیتیک برای هدایت هوشمند سیستم ها می باشد، در این چرخه تعریف عمومی تری از خطا بکار رفته است و هدف آن حداقل سازی این خطاست.
در این چرخه حس وظیفه گرفتن اطلاعات از حسگر های ربات تبدیل آن به دانشی درباره جهان ، وظیفه اخذ دانش و حصول آگاهی، استدلال ، تصمیم گیری و تولید اوامری برای اجرا و عمل وظیفه انجام اوامر را بر عهده دارد.

ربات یک ماشین هوشمند است که قادر است در شرایط خاصی که در آن قرار می گیرد، کار تعریف شده ای را انجام دهد و همچنین قابلیت تصمیم گیری در شرایط مختلف را نیز ممکن است داشته باشد. با این تعریف می توان گفت ربات ها برای کارهای مختلفی می توانند تعریف و ساخته شوند.مانند کارهایی که انجام آن برای انسان غیرممکن یا دشوار باشد.
برای مثال در قسمت مونتاژ یک کارخانه اتومبیل سازی، قسمتی هست که چرخ زاپاس ماشین را در صندوق عقب قرار می دهند، اگر یک انسان این کار را انجام دهد خیلی زود دچار ناراحتی هایی مثل کمر درد و …می شود، اما می توان از یک ربات الکترومکانیکی برای این کار استفاده کرد و یا برای جوشکاری و سایر کارهای دشوار کارخانجات هم همینطور.
و یا ربات هایی که برای اکتشاف در سایر سیارات به کار میروند هم از انواع ربات هایی هستند که در جاهایی که حضور انسان غیرممکن است استفاده می شوند.
علم رباتیک از سه شاخه اصلی تشکیل شده است:

1 الکترونیک ( شامل مغز ربات)
2 مکانیک (شامل بدنه فیزیکی ربات)
3 نرم افزار (شامل قوه تفکر و تصمیم گیری ربات)
اگریک ربات را به یک انسان تشبیه کنیم، بخشهایی مربوط به ظاهر فیزیکی انسان را متخصصان مکانیک می سازند
مغز ربات را متخصصان الکترونیک توسط مدارای پیچیده الکترونیک طراحی و می سازند
و کارشناسان نرم افزار قوه تفکر را به وسیله برنامه های کامپیوتری برای ربات شبیه سازی می کنند تا در موقعیتهای خاص ، فعالیت مناسب را انجام دهد.
روباتیک، علم مطالعه فن آوری مرتبط با طراحی، ساخت و اصول کلی و کاربرد روباتهاست. روباتیک علم و فن آوری ماشینهای قابل برنامه ریزی، با کاربردهای عمومی می باشد.
برخلاف تصور افسانه ای عمومی از رباتها به عنوان ماشینهای سیار انسان نما که تقریباً قابلیت انجام هر کاری را دارند، بیشتر دستگاههای روباتیک در مکانهای ثابتی در کارخانه ها بسته شده اند و در فرایند ساخت با کمک کامپیوتر، اعمال قابلیت انعطاف، ولی محدودی را انجام می دهند چنین دستگاهی حداقل شامل یک کامپیوتر برای نظارت بر اعمال و عملکردهای و اسباب انجام دهنده عمل مورد نظر، می باشد. علاوه براین، ممکن است حسگرها و تجهیزات جانبی یا ابزاری را که فرمان داشته باشد بعضی از رباتها، ماشینهای مکانیکی نسبتاً ساده ای هستند که کارهای اختصاصی مانند جوشکاری و یا رنگ افشانی را انجام می دهند. که سایر سیستم های پیچیده تر که بطور همزمان چند کار انجام می دهند، از دستگاههای حسی، برای جمع آوری اطلاعات مورد نیاز برای کنترل کارشان نیاز دارند. حسگرهای یک ربات ممکن است بازخورد حسی ارائه دهند، طوریکه بتوانند اجسام را برداشته و بدون آسیب زدن، در جای مناسب قرار دهند. ربات دیگری ممکن است دارای نوعی دید باشد.، که عیوب کالاهای ساخته شده را تشخیص دهد. بعضی از رباتهای مورد استفاده در ساخت مدارهای الکترونیکی، پس از مکان یابی دیداری علامتهای تثبیت مکان بر روی برد، می توانند اجزا بسیار کوچک را در جای مناسب قرار دهند. ساده ترین شکل رباهای سیار، برای رساندن نامه در ساختمانهای اداری یا جمع آوری و رساندن قطعات در ساخت، دنبال کردن مسیر یک کابل قرار گرفته در زیر خاک یا یک مسیر رنگ شده که هرگاه حسگرهایشان در مسیر، یا فردی را پیدا کنند متوقف می شوند. رباتهای بسیار پیچیده تر رد محیط های نامعین تر مانند معادن استفاده می شود.
روباتها همانند کامپیوترها قابلیت برنامه ریزی دارند.بسته به نوع برنامه ای که شما به آنها می دهید.کارها وحرکات مختلفی را انجام می دهند.رشته دانشگاهی نیز تحت عنوان روباتیک وجود دارد.که به مسایلی از قبیل سنسورها، مدارات ، فیدبکها،پردازش اطلاعات وبست وتوسعه روباتها می پردازد.روباتها انواع مختلفی دارند از قبیل روباتهای شمشیر باز، دنبال کننده خط،کشتی گیر،
فوتبالیست،و روباتهای خیلی ریز تحت عنوان میکرو روباتها،روباتهای پرنده وغیره نیز وجود دارند.
روباتها برای انجام کارهای سخت ودشواری که بعضی مواقع انسانها از انجام آنها عاجز یا انجام آنها برای انسان خطرناک هستند.مثل روباتهایی که در نیروگاهای هسته ای وجود دارند.،استفاده می شوند.
کاری که روباتها انجام میدهند.، توسط میکرو پروسسرها(microprocessors) و میکروکنترلرها(microcontroller) کنترل می شود.با تسلط در برنامه نویسی این دو می توانید دقیقا همان کاری را که انتظار دارید روبات انجام دهد.
روباتهایی شبیه انسان (human robotic)نیز ساخته شده اند.،آنها قادرند اعمالی شبیه انسان را انجام دهند.حتی بعضی از آنها همانند انسان دارای احساسات نیز هستند.بعضی از آنها شکلهای خیلی ساده ای دارند.آنها دارای چرخ یا بازویی هستند که توسط میکرو کنترلرها یا میکرو پرسسرها کنترل می شوند.در واقع میکروکنترلر یا میکرو پروسسر به مانند مغز انسان در روبات کار می کند.برخی از روباتها مانند انسانها وجانوران خون گرم در برخورد و رویارویی با حوادث ومثایل مختلف به صورت هوشمند از خود واکنش نشان می دهند.یک نمونه از این روباتها روبات مامور است.
برخی روباتها نیز یکسری کارها را به صورت تکراری با سرعت ودقت بالا انجام می دهند مثل روبات هایی که در کارخانه های خودرو سازی استفاده می شوند.این گونه روبات کارهایی از قبیل جوش دادن بدنه ماشین ، رنگ کردن ماشین را با دقتی بالاتر از انسان بدون خستگی و وقفه انجام می دهند.

ربات چیست؟ قسمت 1
ربات چیست؟ قسمت 2
ربات چیست؟ قسمت 3
ربات چیست؟ قسمت 4
ربات چیست؟ قسمت 5
ربات چیست؟ قسمت 6
ربات چیست؟ قسمت 7
ربات چیست؟ قسمت 8

تعریف

به عنوان یکی از شاخه‌های وسیع و پرکاربرد هوش مصنوعی، یادگیری ماشین (Machine learning) به تنظیم و اکتشاف شیوه‌ها و الگوریتم‌هایی می‌پردازد که بر اساس آنها رایانه‌ها و سامانه‌ها توانایی تعلٌم و یادگیری پیدا می‌کنند.

Machine Learning

اهداف و انگیزه‌ها

هدف یادگیری ماشین این است که کامپیوتر (در کلی‌ترین مفهوم آن) بتواند به تدریج و با افزایش داده‌ها کارایی بهتری در انجام وظیفهٔ مورد نظر پیدا کند. گسترهٔ این وظیفه می‌تواند از تشخیص خودکار چهره با دیدن چند نمونه از چهرهٔ مورد نظر تا فراگیری شیوهٔ گام‌برداری روبات‌های دوپا با دریافت سیگنال پاداش و تنبیه باشد.

طیف پژوهش‌هایی که در یادگیری ماشینی می‌شود گسترده‌است. در سوی نظری‌ی آن پژوهش‌گران بر آن‌اند که روش‌های یادگیری تازه‌ای به وجود بیاورند و امکان‌پذیری و کیفیت یادگیری را برای روش‌های‌شان مطالعه کنند و در سوی دیگر عده‌ای از پژوهش‌گران سعی می‌کنند روش‌های یادگیری ماشینی را بر مسایل تازه‌ای اعمال کنند. البته این طیف گسسته نیست و پژوهش‌های انجام‌شده دارای مولفه‌هایی از هر دو روی‌کرد هستند.

یادگیری ماشین کمک فراوانی به صرفه جویی در هزینه‌های عملیاتی و بهبود سرعت عمل تجزیه و تحلیل داده‌ها می‌کند. به عنوان مثال در صنعت نفت و پتروشیمی با استفاده از یادگیری ماشین، داده‌های عملیاتی تمام حفاری‌ها اندازه‌گیری شده و با تجزیه و تحلیل داده‌ها، الگوریتم‌هایی تنظیم می‌شود که در حفاری‌های بعدی بیشترین نتیجه و استخراج بهینه ای را داشته باشیم.

تقسیم‌بندی مسایل

یکی از تقسیم‌بندی‌های متداول در یادگیری ماشینی، تقسیم‌بندی بر اساس نوع داده‌های در اختیار عامل هوش‌مند است. به سناریوی زیر توجه کنید:

فرض کنید به تازگی رباتی سگ‌نما خریده‌اید که می‌تواند توسط دوربینی دنیای خارج را مشاهده کند، به کمک میکروفن‌هایش صداها را بشنود، با بلندگوهایی با شما سخن بگوید (گیریم محدود) و چهارپایش را حرکت دهد. هم‌چنین در جعبهٔ این ربات دستگاه کنترل از راه دوری وجود دارد که می‌توانید انواع مختلف دستورها را به ربات بدهید. در پاراگراف‌های آینده با بعضی از نمونه‌های این دستورات آشنا خواهید شد.

اولین کاری که می‌خواهید بکنید این است که اگر ربات شما را دید خرناسه بکشد اما اگر غریبه‌ای را مشاهده کرد با صدای بلند عوعو کند. فعلاً فرض می‌کنیم که ربات توانایی تولید آن صداها را دارد اما هنوز چهرهٔ شما را یادنگرفته‌است. پس کاری که می‌کنید این است که جلوی چشم‌های‌اش قرار می‌گیرید و به کمک کنترل از راه دورتان به او دستور می‌دهید که چهره‌ای که جلوی‌اش می‌بیند را با خرناسه‌کشیدن مربوط کند.

این‌کار را برای چند زاویهٔ مختلف از صورت‌تان انجام می‌دهید تا مطمئن باشید که ربات در صورتی که شما را از مثلاً نیم‌رخ ببیند بهتان عوعو نکند. هم‌چنین شما چند چهرهٔ غریبه نیز به او نشان می‌دهید و چهرهٔ غریبه را با دستور عوعوکردن مشخص می‌کنید. در این حالت شما به کامپیوتر ربات گفته‌اید که چه ورودی را به چه خروجی مربوط کند. دقت کنید که هم ورودی و هم خروجی مشخص است و در اصطلاح خروجی برچسب‌دار است. به این شیوهٔ یادگیری، یادگیری بانظارت می‌گویند.

اینک حالت دیگری را فرض کنید. برخلاف دفعهٔ پیشین که به ربات‌تان می‌گفتید چه محرکه ای را به چه خروجی ربط دهد، این‌بار می‌خواهید ربات خودش چنین چیزی را یاد بگیرد. به این صورت که اگر شما را دید و خرناسه کشید به نحوی به او پاداش دهید (مثلاً به کمک همان کنترل از راه دورتان) و اگر به اشتباه به شما عوعو کرد، او را تنبیه کنید (باز هم با همان کنترل از راه دورتان). در این حالت به ربات نمی‌گویید به ازای هر شرایطی چه کاری مناسب است، بلکه اجازه می‌دهید ربات خود کاوش کند و تنها شما نتیجهٔ نهایی را تشویق یا تنبیه می‌کنید. به این شیوهٔ یادگیری، یادگیری تقویتی می‌گویند.

در دو حالت پیش قرار بود ربات ورودی را به خروجی مرتبط کند. اما گاهی وقت‌ها تنها می‌خواهیم ربات بتواند تشخیص دهد که آنچه می‌بیند (یا می‌شنود و…) را به نوعی به آنچه پیش‌تر دیده‌است ربط دهد بدون این‌که به طور مشخص بداند آن‌چیزی که دیده شده‌است چه چیزی است یا این‌که چه کاری در موقع دیدنش باید انجام دهد. ربات هوش‌مند شما باید بتواند بین صندلی و انسان تفاوت قایل شود بی‌آنکه به او بگوییم این نمونه‌ها صندلی‌اند و آن نمونه‌های دیگر انسان. در این‌جا برخلاف یادگیری بانظارت هدف ارتباط ورودی و خروجی نیست، بلکه تنها دسته‌بندی‌ی آن‌ها است. این نوع یادگیری که به آن یادگیری بی نظارت می‌گویند بسیار مهم است چون دنیای ربات پر از ورودی‌هایی است که کسی برچسبی به آن‌ها اختصاص نداده اما به وضوح جزئی از یک دسته هستند.

یادگیری بی‌نظارت را می‌توان به صورت عمل کاهش بعد در نظر گرفت.

از آن‌جا که شما سرتان شلوغ است، در نتیجه در روز فقط می‌توانید مدت محدودی با رباتتان بازی کنید و به او چیزها را نشان دهید و نام‌شان را بگویید (برچسب‌گذاری کنید). اما ربات در طول روز روشن است و داده‌های بسیاری را دریافت می‌کند. در این‌جا ربات می‌تواند هم به خودی خود و بدون نظارت یاد بگیرد و هم این‌که هنگامی که شما او را راه‌نمایی می‌کنید، سعی کند از آن تجارب شخصی‌اش استفاده کند و از آموزش شما بهرهٔ بیش‌تری ببرد. ترکیبی که عامل هوش‌مند هم از داده‌های بدون برچسب و هم از داده‌های با برچسب استفاده می‌کند به یادگیری نیمه نظارتی می‌گویند.

یادگیری با نظارت

یادگیری تحت نظارت، یک روش عمومی در یادگیری ماشین است که در آن به یک سیستم، مجموعه‌ای از جفت‌های ورودی – خروجی ارائه شده و سیستم تلاش می‌کند تا تابعی از ورودی به خروجی را فرا گیرد. یادگیری تحت نظارت نیازمند تعدادی داده ورودی به منظور آموزش سیستم است. با این حال رده‌ای از مسائل وجود دارند که خروجی مناسب که یک سیستم یادگیری تحت نظارت نیازمند آن است، برای آن‌ها موجود نیست. این نوع از مسائل چندان قابل جوابگویی با استفاده از یادگیری تحت نظارت نیستند.

یادگیری تقویتی مدلی برای مسائلی از این قبیل فراهم می‌آورد. در یادگیری تقویتی، سیستم تلاش می‌کند تا تقابلات خود با یک محیط پویا را از طریق آزمون و خطا بهینه نماید. یادگیری تقویتی مسئله‌ای است که یک عامل که می‌بایست رفتار خود را از طریق تعاملات آزمون و خطا با یک محیط پویا فرا گیرد، با آن مواجه است. در یادگیری تقویتی هیچ نوع زوج ورودی- خروجی ارائه نمی‌شود. به جای آن، پس از اتخاذ یک عمل، حالت بعدی و پاداش بلافصل به عامل ارائه می‌شود. هدف اولیه برنامه‌ریزی عامل‌ها با استفاده از تنبیه و تشویق است بدون آنکه ذکری از چگونگی انجام وظیفه آن‌ها شود.

تعریف ریاضی مسایل یادگیری ماشین

یادگیری با نظارت

در این مدل یادگیری مثال‌های آموزشی به صورت جفت‌های (x^{i},y^{i}) که در آن هر نمونه به همراه بر چسب آن داده شده‌اند و i اندیس هر مثال در مجموعه مثال‌های آموزشی D است. هدف در این یادگیری بدست آوردن تابع f است که بتواند برای نمونه‌های ورودی دیده نشده x بر چسب مناسب را برگرداند(f(x) = y). نمونه و بر چسب هر دو می‌توانند یک بردار باشند. اگر بر چسب یک عدد حقیقی باشد مسئله پیش روی ما رگرسیون نامیده می‌شود. اگر بر چسب یک عدد صحیح باشد به مسئله دستبه بندی گفته می‌شود.

 

یکی از انواع یادگیری از داده‌ها

منبع


یادگیری ماشین قسمت 1
یادگیری ماشین قسمت 2
یادگیری ماشین قسمت 3

منطق فازی (fuzzy logic) چیست؟

منطق فازی (Fuzzy Logic) قسمت 1
منطق فازی (Fuzzy Logic) قسمت 2

فشرده سازی تصویر (Image Compression)، کاربردی از فشرده سازی اطلاعات در تصاویر دیجیتال است. هدف از آن کاهش افزونگی (redundancy) محتویات تصویر است برای ذخیره کردن یاانتقال اطلاعات به شکل بهینه.

فشرده سازی تصویر می‌تواند به صورت بی اتلاف (Lossless) و با اتلاف (Lossy) صورت گیرد. فشرده سازی بی اتلاف برای بعضی تصاویر مثل نقشه‌ های فنی و آیکون‌ها ترجیح داده می‌شود، به این دلیل که فشرده سازی با اتلاف خصوصاً وقتی برای نرخ بیت‌های پایین استفاده شود به کیفیت تصویر لطمه می‌زند. روش‌های فشرده سازی بی اتلاف همچنین ممکن است برای محتویات پر ارزش مثل تصاویر پزشکی یا تصاویر اسکن شده برای بایگانی شدن نیز ترجیح داده شوند. روش با اتلاف مخصوصاً برای تصاویر طبیعی مناسب است که از دست رفتن کیفیت برای دست یافتن به کاهش نرخ بیتقابل توجه باشد.

روش‌های فشرده سازی بدون اتلاف عکس‌ها عبارتند از

– کدگذاری بر اساس طولِ ران (run-length encoding)، استفاده شده در روش‌های پیش‌فرض در dcx و یکی از امکانات TIFF ,TGA ,BMP

– entropy coding

– الگوریتم‌های مطابق واژه‌نامه مثل lzw استفاده شده در GIF,TIFF

– کاهش اعتبار (deflation) استفاده شده در TIFF ,MNG ,PNG

روش‌های فشرده سازی پراتلاف عبارتند از

کاهش فضای رنگی

کاهش فضای رنگی برای رنگهایی که بیشتر در عکس استفاده شده‌اند. رنگی که انتخاب شده در پالت رنگ در بالای عکس فشرده شده مشخص می‌شود. هرپیکسل فقط به شاخص رنگ در پالت رنگ اشاره داده می‌شود.

chroma subsampling

این روش براساس این واقعیت است که چون چشم انسان تغییرات مکانی روشنایی را سخت تر از رنگ درک می‌کند به وسیلهٔ میانگین‌گیری یا حذف کردن برخی از اطلاعات رنگ تابی یک عکس عمل فشرده سازی صورت گیرد.

تغییر شکل دادن کدگذاری (transform coding)

این روش بطور عادی بیشترین استفاده را دارد.

fractal compression

بهترین کیفیت عکس در یک نرخ بیت (یا نرخ فشرده سازی) معین هدف اصلی از فشرده سازی عکس است.

به هر حال ویژگی‌های مهم دیگری از رویه‌های فشرده سازی عکس وجود دارد که عبارتند از: ‘

مقیاس پذیری (scability)

به‌طور کلی به کاهش کیفیت حاصل شده در اثر دستکاری گروه بیتی یا فایل گفته می‌شود. (بدون بازیابی). نام‌های دیگر برای مقیاس پذیری،progressive coding یا embedded biststream است. با وجود خلاف واقعی بودنش مقیاس‌پذیری نیز می‌تواند در رمز گذارهای (codec) بدون اتلاف یافت شود. مقیاس‌پذیری خصوصاَ برای پیش نمایش عکس‌ها در حال دریافت کردن آن‌ها یا برای تهیه کیفیت دستیابی متغیر در پایگاه‌های داده مفید است.

انواع مختلف مقیاس پذیری عبارتند از :

 کیفیت مترقی(progressive quality)

یا لایه مترقی (layer progressive) گروه بیتی پی در پی عکس را از نو می‌سازد.

وضوح مترقی (progressive resoloution)

ابتدا یک عکس وضوح پایین را کدگذاری می کند سپس تفاوت‌های وضوح بالاتر را کدگذاری می‌کند.

مؤلفه مترقی (progressive component)

ابتدا رنگ را کدگذاری می‌کند.

ناحیه

جذاب کدگذاری (region of interest coding) نواحی خاصی از عکس باکیفیت بالاتری نسبت به سایر نقاط کد گذاری می‌شوند و می‌تواند با مقیاس‌پذیری (کدگذاری ابتدایی یک بخش و دیگران بعداً) ترکیب شود.

اطلاعات

غیر نمادین(meta information) داده‌های فشرده شده می‌توانند شامل اطلاعاتی در رابطه با عکس باشد که می‌توان برای طبقه‌بندی کردن، جستجو یا بررسی عمومی عکس از آن‌ها استفاده کرد. مانند اطلاعاتی که می‌توانند شامل رنگ و الگو و پیش نمایش کوچکتر عکس‌ها و اطلاعات خالق و کپی رایت باشد.

قدرت

پردازش(processing power) الگوریتم‌های فشرده سازی اندازه‌های متفاوتی از قدرت پردازش را برای کدگذاری و کدگشایی درخواست می‌کنند. بعضی از الگوریتم‌های فشرده‌سازی عالی قدرت پردازش بالا می‌خواهند.

کیفیت

روش فشرده سازی اغلب به وسیلهٔ سیگنال ماکزیمم به نسبت پارازیت (peak signal-to-noise ratio) اندازه‌گیری می شونداندازه پارازیت‌ها نشان دهند؟ فشرده سازی پراتلاف عکس است به هر حال قضاوت موضوع گرایانه بیننده همیشه بیان کنند؟ اهمیت اندازه‌گیری است.

Jpeg2000

Jpeg2000 یک استاندارد فشرده سازی عکس براساس wavelet (wavelet-basedاست؛ و در سال 2000 به‌وسیله کمیته Joint Photographic Experts Group با نیت جایگزین کردن با استاندارد اصلیJpegکه براساس تغییر گسسته(discrete cosine transform-based) است (محصول سال1991) تولید شده‌است. jpeg2000 زمان بیشتری را برای عملیات باز کردن فشردگی نسبت به JPEG طلب می‌کند.

اثبات از بالا به پایین محصولات فشرده سازی JPEG 2000: شماره‌ها نشان‌دهنده ضریب تراکم استفاده شده‌است.برای مقایسه بهتر شکل بدون مقیاس را نگاه کنید. محصولات JPEG 2000 به فرم JPEG متفاوت به نظر می‌رسند و یک جلوه صیقلی روی عکس وجود دارد و برای نمایان شدن سطوح فشرده سازی بالاتری اختیار می کنند. اغلب یک عکس گرفته شده می‌تواند به اندازه اندازه فایل اصلی خود(bitmapفشرده نشده) بدون متحمل شدن اثر نمایان شدن فشرده شوند

منبع


فشرده سازی با اتلاف داده و بدون اتلاف داده

بسیاری از افراد احساس می‌کنند که تنها باید از فرمت‌های تصاویری استفاده شود که از تکنولوژی فشرده سازی بدون اتلاف داده بهره می‌برند. این نوع فشرده سازی برای بسیاری از تصاویر مناسب است اما در بسیاری از موارد نیازی به آن نیست. استفاده از این نوع فشرده سازی به این معناست که همه داده‌ها از فایل اولیه حفظ شوند اما فشرده سازی با اتلاف داده برخی داده‌ها را از فایل اولیه حذف می‌کند و تصویر را با حجم کم ذخیره می‌کند. در فشرده سازی با اتلاف داده شما می‌توانید بگویید نرخ فشرده سازی تصاویر چقدر باشد و چه میزان از داده‌ها در نظر گرفته نشود.

فشرده سازی بدون اتلاف داده

روش‌های کمی برای فشرده سازی بدون اتلاف داده وجود دارد. روش اولکدگذاری طول اجرا (run-length encoding) است که برای فایل‌های BMP استفاده می‌شود. این روش داده‌های متوالی با مقادیر یکسان را می‌گیرد و آن‌ها را با یک متغیر count که بیانگر طول داده‌های یکسان است، ذخیره می‌کند. این روش برای فایل‌های گرافیکی مناسب است زیرا مقادیر داده یکسان بسیاری دارند.

فشرده سازی بدون اتلاف

روش دیگر فشرده سازی بدون اتلاف داده، DEFLATE نام دارد که برای تصاویر PNG نیز استفاده می‌شود. این روش از ترکیب الگوریتم کدینگ هافمن و LZ77 ساخته شده است. از این روش در فشرده سازی gzip و ZIP نیز استفاده می‌شود. الگوریتم Lempel-Ziv-Welch یا LZW هم یکی دیگر از روش‌های فشرده سازی است بدون اتلاف داده است که روی داده‌ها یک آنالیز ساده و محدود انجام می‌دهد. از این روش در فرمت‌های TIFF و GIF استفاده می‌شود.

فشرده سازی با اتلاف داده

روش‌های فشرده سازی با اتلاف داده محدود هستند، برخی از آن‌ها با روش‌های بدون اتلاف داده هم ترکیب می‌شوند تا فایل‌هایی با اندازه کوچک‌تر ایجاد کنند. یکی از این روش‌ها، کاهش فضای رنگ تصویر به متداول‌ترین رنگ‌های داخل تصویر است. از این روش برخی اوقات در فرمت تصاویر PNG و GIF استفاده می‌شود.

فشرده سازی با اتلاف

یک روش دیگر، تبدیل رمزگذاری (Transform encoding) است که برای تصاویر JPEG استفاده می‌شود. در این روش تصاویر با روش DCT یا تبدیل کسینوس گسسته به بلوک‌هایی تقسیم می‌شوند و در نهایت تصویری ایجاد می‌کنند که رنگ‌هایی کمتر از تصویر اولیه داشته باشد.

نمونه‌برداری کروما (Chroma subsampling) نام روش دیگری است که بر مبنای این اصل عمل می‌کند: «چشم انسان تغییرات در روشنایی را سخت‌تر از تغییر رنگ متوجه می‌شود.» نمونه‌برداری کروما اطلاعات روشنایی را نگه‌می‌دارد و برخی از اطلاعات رنگ را حذف می‌کند. از این روش در تصاویر JPEG و برخی الگوریتم‌های کاهش حجم ویدئو استفاده می‌شود.

انواع مختلف فایل‌ها

در این مقاله سه فرمت مشترک در طراحی وب یعنی PNG ،JPEG و GIF را معرفی می‌کنیم. غیر از این سه، تعداد زیادی فرمت دیگر هم وجود دارند که از روش‌های فشرده سازی استفاده می‌کنند، مثل: TIFF ،PCX ،TGA و غیره.

فرمت GIF

GIF یا فرمت تبادل گرافیکی (Graphics Interchange Format) در سال ۱۹۸۷ به‌وسیله CompuServe معرفی شد و یک فرمت تصویربرداری است. این فرمت تا ۸ بیت در هر پیکسل را پشتیبانی می‌کند، یعنی یک تصویر می‌تواند تا ۲۵۶ رنگ RGB مختلف داشته باشد. یکی از بزرگ‌ترین ویژگی‌های این فرمت توانایی ایجاد تصاویر متحرک است.

انواع فایل

فرمت JPEG

JPEG یا Joint Photographic Experts Group فرمتی برای تصاویر است که از فشرده سازی با اتلاف داده استفاده می‌کند. یکی از بزرگ‌ترین مزیت‌های JPEG این است که به طراح اجازه می‌دهد مقدار فشرده سازی را به میزان لازم تنظیم کند. این کار نتیجه بهتری درباره کیفیت و اندازه مناسب به دست می‌دهد. چون JPEG از فشرده سازی با اتلاف داده استفاده می‌کند، تصاویری که با این فرمت ذخیره می‌شوند مصنوعی به نظر می‌رسند و می‌توان هاله نور عجیبی در قسمت‌های خاصی از آن‌ها دید. همچنین در بسیاری از قسمت‌های یک تصویر می‌توان کنتراست شدیدی بین رنگ‌ها مشاهده کرد.

انواع فایل

فرمت PNG

PNG یا Portable Network Graphics یک فرمت تصویر است که از فشرده سازی بدون اتلاف داده استفاده می‌کند و برای جایگزین شدن فرمت GIF ایجاد شده است. این فرمت برای مدت طولانی در اینترنت اکسپلورر پشتیبانی نمی‌شد که به همین دلیل فرمت‌های JPEG و GIF متداول‌تر شدند؛ اگرچه در حال حاضر PNG در همه مرورگرها پشتیبانی می‌شود. یکی از بزرگ‌ترین مزیت‌های PNG این است که از تنظیمات متفاوت شفافیت (transparency)، مانند شفافیت کانال آلفا (alpha channel transparency)، پشتیبانی می‌کند.

انواع فایل

 انتخاب یک فرمت فایل مناسب

هر کدام از فرمت‌هایی که در بالا ذکر شد، برای انواع متفاوتی از تصاویر مناسب هستند. انتخاب فرمت مناسب منجر به کیفیت بالاتر و اندازه فایل کوچک‌تر می‌شود. انتخاب یک فرمت اشتباه به این معناست که تصاویر شما کیفیت متناسبی با حجمشان ندارند.

برای تصاویر گرافیکی ساده مانند لوگوها یا ترسیم خطوط، فرمت GIF بهتر کار می‌کند زیرا GIF پالت رنگ محدودی دارد. اگر پیچیدگی بیشتر باشد بهتر است از فرمت دیگری استفاده شود.

فرمت مناسب

برای تصاویر با گرادیان، فرمت GIF مناسب نیست. در این موارد فرمت JPEG هنگامی مفید است که تصویر کنتراست شدیدی نداشته باشد. برای تصاویری با کنتراست بالا یا تصاویر شفاف، فرمت PNG بهترین فرمت است. در اغلب موارد اندازه تصاویر PNG از JPEG بزرگ‌تر است. توجه کنید که فایل‌های PNG از روش بدون اتلاف داده استفاده می‌کنند و کیفیت تصویر اولیه حفظ می‌شود.

فرمت مناسب

در زیر به طور خلاصه، فرمت مناسب برای انواع تصویر را مرور می‌کنیم:

فرمت GIF

اگر در تصویری، انیمیشن، رسم خط یا تصویر گرافیکی ساده نیاز باشد، GIF بهترین گزینه است اما برای تصاویر گرادیان این فرمت مناسب نیست.

فرمت JPEG

برای اغلب تصاویر دوربین که کنتراست بالا ندارند یا برای بازی‌ها و فیلم‌ها این فرمت مناسب است. فرمت JPEG برای تصاویر دارای کنتراست بالا یا جزئیات بالا مناسب نیست، به طور مثال برای دیاگرام یا اینفوگرافیک. همچنین برای تصاویر گرافیکی ساده (به دلیل حجم بالا) بهتر است از فرمت GIF استفاده شود.

فرمت PNG

برای تصاویر حاوی خطوط، تصاویر دارای کنتراست شدید، تصاویر دارای شفافیت (transparency)، دیاگرام‌ها، اینفوگرافیک‌ها و اسکرین‌شات‌ها، فرمت PNG مناسب است. این فرمت برای تصاویر با کنتراست پایین، به دلیل افزایش حجم فایل، توصیه نمی‌شود.

فشرده سازی در پرینت تصاویر

آنچه در بالا گفته شد مربوط به انتخاب فرمت مناسب برای فشرده سازی تصاویر در طراحی وب بود ولی هنگام پرینت گرفتن داستان متفاوت است. الگوریتم فشرده سازی با اتلاف داده برای پرینت گرفتن مناسب نیست و در صورت استفاده، کیفیت افت فاحشی خواهد کرد. برای مثال یک تصویر JPEG ممکن است در مانیتور خوب نمایش داده شود اما هنگام چاپ افت کیفیتش نامطلوب باشد.

به منظور پرینت تصاویر فرمت TIFF یا Tagged Image File Format اغلب بهترین گزینه است. در این حالت باید از فرمت‌هایی (مانند LZW) استفاده کرد که فشرده سازی بدون اتلاف داده به حساب می‌آیند.

منبع

فشرده سازی تصویر قسمت 1
فشرده سازی تصویر قسمت 2

شبکه های عصبی مصنوعی – از صفر تا صد

پیدایش شبکه های عصبی مصنوعی

مغر انسان، به اذعان بسیاری از دانشمندان، پیچیده ترین سیستمی است که تا کنون در کل گیتی مشاهده شده و مورد مطالعه قرار گرفته است. اما این پیچیده ترین سیستم، نه ابعادی در حد کهشکشان دارد و نه تعداد اجزای سازنده اش، بیشتر از پردازنده های ابر کامپیوترهای امروزی است. پیچیدگی راز آلود این سیستم بی نظیر، به ارتباط های فراوان موجود میان عناصر آن بر می گردد. چیزی که، مغز 1400 گرمی انسان را، از همه سیستم های دیگر، متمایز می کند.

فرایندهای خودآگاه و ناخودآگاهی که در حدود جغرافیایی بدن انسان رخ می دهند، همگی تحت مدیریت مغز هستند. برخی از این فرایندها آن قدر پیچیده هستند، که هیچ کامپیوتر یا اَبَر کامپیوتری در جهان، امکان پردازش و انجام آن را ندارد. با این حال، تحقیقات نشان می دهند که واحدهای سازنده مغز انسان، از نظر سرعت عملکرد، حدود یک میلیون بار، کندتر از ترانزیستورهای مورد استفاده در تراشه های سیلیکونی CPU هستند.

سرعت و قدرت پردازش بسیار بالای مغز انسان، به ارتباط های بسیار انبوهی بر می گردد که در میان سلول های سازنده مغز وجود دارد و اساسا، بدون وجود این لینک های ارتباطی، مغز انسان هم به یک سیستم معمول کاهش می یابد، که قطعا امکانات فعلی را نخواهد داشت.

گذشته از همه این ها، عملکرد عالی مغز در حل انواع مسائل و کارایی بالای آن، شبیه سازی مغز و قابلیت های آن را، به مهم ترین آرمان معماران سخت افزار و نرم افزار تبدیل کرده است. در واقع، اگر روزی فرا برسد (که البته ظاهرا خیلی هم دور نیست)، که ما بتوانیم کامپیوتری در حد و اندازه های مغز انسان را بسازیم، قطعا یک انقلاب بزرگ در علم، صنعت و االبته زندگی انسان ها، رخ خواهد داد.

در راستای شبیه سازی رفتار محاسباتی مغز انسان، از چند دهه گذشته، که کامپیوترها امکان پیاده سازی الگوریتم های محاسباتی را فراهم نمودند، کارهای پژوهشی توسط متخصصین علوم کامپیوتر، مهندسین و ریاضی دان ها شروع شده است، که ما حصل کار آن ها، در شاخه ای از علم هوش مصنوعی، و در زیر شاخه هوش محاسباتی، تحت عنوان موضوع «شبکه های عصبی مصنوعی» یا Artificial Neural Networks (به اختصار: ANNs) طبقه بندی شده است. در مبحث شبکه های عصبی مصنوعی، مدل های ریاضی و نرم افزاری متعددی با الهام گرفتن از مغز انسان پیشنهاد شده اند، که برای حل گستره وسیعی از مسائل علمی، مهندسی و کاربردی، در حوزه های مختلف کاربرد دارند.

 کاربردهای شبکه های عصبی مصنوعی

امروز به قدری استفاده از سیستم های هوشمند، به ویژه شبکه عصبی مصنوعی گسترده شده است، که می توان این ابزارها را، در ردیف عملیات پایه ریاضی و به عنوان ابزارهای عمومی و مشترک طبقه بندی کرد. چرا که کمتر رشته دانشگاهی است که نیازی به تحلیل، تصمیم گیری، تخمین، پیش بینی، طراحی و ساخت داشته باشد، و در آن از موضوع شبکه های عصبی استفاده نشده باشد. فهرستی که در ادامه آمده است، یک فهرست نه چندان کامل است، اما گستردگی کاربردهای شبکه های عصبی مصنوعی را، تا حدود زیادی به تصویر می کشد.

 

زمینه کلی کاربرد
علوم کامپیوتر
  • طبقه بندی اسناد و اطلاعات در شبکه های کامپیوتری و اینترنت
  • توسعه نرم افزارهای نظارتی و ویروس کش ها
علوم فنی و مهندسی
  • مهندسی معکوس و مدل سازی سیستم ها
  • پیش بینی مصرف بار الکتریکی
  • عیب یابی سیستم های صنعتی و فنی
  • طراحی انواع سیستم های کنترل
  • طراحی و بهینه سازی سیستم های فنی و مهندسی
  • تصمیم گیری بهینه در پروژه های مهندسی
علوم پایه و نجوم
  • پیش بینی نتایج آزمایش ها
  • ارزیابی و تخمین صحت فرضیه ها و نظریه ها
  • مدل سازی پدیده های فیزیکی پیچیده
علوم پزشکی
  • مدل سازی فرایندهای زیست-پزشکی
  • تشخیص بیماری ها با توجه به نتایج آزمایش پزشکی و تصویر برداری
  • پیش بینی نتایج درمان و عمل جراحی
  • پیاده سازی ادوات و الگوهای درمانی اختصاصی بیمار
علوم تجربی و زیستی
  • مدل سازی و پیش بینی پدیده های زیستی و محیطی
  • پیش بینی سری های زمانی با کاربرد در علوم زیست-محیطی
  • طبقه بندی یافته های ناشی از مشاهدات تجربی
  • شناسایی الگوهای مخفی و تکرار شونده در طبیعت
علوم اقتصادی و مالی
  • پیش بینی قیمت سهام و شاخص بورس
  • طبقه بندی علایم و نمادهای بورس
  • تحلیل و ارزیابی ریسک
  • تخصیص سرمایه و اعتبار
علوم اجتماعی و روانشناسی
  • طبقه بندی و خوشه بندی افراد و گروه ها
  • مدل سازی و پیش بینی رفتارهای فردی و اجتماعی
هنر و ادبیات
  • پیش بینی موفقیت و مقبولیت عمومی آثار هنری
  • استخراج مولفه های اساسی از متون ادبی و آثار هنری
  • طبقه بندی و کاوش متون ادبی
علوم نظامی
  • هدف گیری و تعقیب در سلاح های موشکی
  • پیاده سازی سیستم های دفاعی و پدافند هوشمند
  • پیش بینی رفتار نیروی مهاجم و دشمن
  • پیاده سازی حملات و سیستم های دفاعی در جنگ الکترونیک (جنگال)

 

انواع شبکه های عصبی مصنوعی

انواع مختلفی از مدل های محاسباتی تحت عنوان کلی شبکه های عصبی مصنوعی معرفی شده اند، که هر یک برای دسته ای از کاربردها قابل استفاده اند و در هر کدام، از وجه مشخصی از قابلیت ها و خواص مغز انسان، الهام گرفته شده است.

در همه این مدل ها، یک ساختار ریاضی، که البته به صورت گرافیکی هم قابل نمایش دادن است، در نظر گرفته می شود که یک سری پارامترها و پیچ های تنظیم دارد. این ساختار کلی، توسط یک الگوریتم یادگیری یا تربیت (Training Algorithm) آن قدر تنظیم و بهینه می شود، که بتواند رفتار مناسبی را از خود نشان دهد.

نگاهی به فرایند یادگیری در مغز انسان نیز، نشان می دهد که در واقع ما نیز در مغزمان فرایندی مشابه با این را تجربه می کنیم و همه مهارت ها، دانسته ها و خاطرات ما، در اثر تضعیف یا تقویت ارتباط میان سلول های عصبی مغز شکل می گیرند. این تقویت و تضعیف، در زبان ریاضی خودش را به صورت تنظیم یک پارامتر (موسوم به وزن یا Weight) مدل سازی و توصیف می شود.

اما طرز نگاه مدل های مختلف شبکه های عصبی مصنوعی کاملا متفاوت است و هر یک، بخشی از قابلیت های یادگیری و تطبیق مغز انسان را هدف قرار داده و تقلید نموده اند. در ادامه، یک بررسی مروری از انواع مختلف شبکه های عصبی آمده است که مطالعه آن، در ایجاد یک آشنایی اولیه، بسیار موثر خواهد بود.

پرسپترون چند لایه یا MLP

یکی از پایه ای ترین مدل های عصبی موجود، مدل پرسپترون چند لایه یا Multi-Layer Perceptron (به اختصار MLP) است که عملکرد انتقالی مغز انسان را شبیه سازی می کند. در این نوع شبکه عصبی، رفتار شبکه ای مغز انسان و انتشار سیگنال در آن بیشتر مد نظر بوده است و از این رو، گهگاه با نام شبکه های پیشرو (Feedforward Networks) نیز خوانده می شوند. هر یک از سلول های عصبی مغز انسان، موسوم به نورون (Neuron)، پس از دریافت ورودی (از یک سلول عصبی یا غیر عصبی دیگر)، پردازشی روی آن انجام می دهند و نتیجه را به یک سلول دیگر (عصبی یا غیر عصبی) انتقال می دهد. این رفتار تا حصول نتیجه ای مشخص ادامه دارد، که احتمالا منجر به یک تصمیم، پردازش، تفکر و یا حرکت خواهد شد.

شبکه های عصبی شعاعی یا RBF

مشابه با الگوی شبکه های عصبی MLP، نوع دیگری از شبکه های عصبی وجود دارند که در آن ها، واحدها پردازنده، از نظر پردازشی بر موقعیت خاصی متمرکز هستند. این تمرکز، از طریق توابع شعاعی یا Radial Basis Functions (به اختصار RBF) مدل سازی می شود. از نظر ساختار کلی، شبکه های عصبی RBF تفاوت چندانی با شبکه های MLP ندارند و صرفا نوع پردازشی که نورون ها روی ورودهایشان انجام می دهند، متفاوت است. با این حال، شبکه های RBF غالبا دارای فرایند یادگیری و آماده سازی سریع تری هستند. در واقع، به دلیل تمرکز نورون ها بر محدوده عملکردی خاص، کار تنظیم آن ها، راحت تر خواهد بود.

ماشین های بردار پشتیبان یا SVM

در شبکه های عصبی MLP و RBF، غالبا توجه بر بهبود ساختار شبکه عصبی است، به نحوی که خطای تخمین و میزان اشتباه های شبکه عصبی کمینه شود. اما در نوع خاصی از شبکه عصبی، موسوم به ماشین بردار پشتیبان یا Support Vector Machine (به اختصار SVM)، صرفا بر روی کاهش ریسک عملیاتی مربوط به عدم عملکرد صحیح، تمرکز می شود. ساختار یک شبکه SVM، اشتراکات زیادی با شبکه عصبی MLP دارد و عملا تفاوت اصلی آن، در شیوه یادگیری است.

نگاشت های خود سازمان ده یا SOM

شبکه عصبی کوهونن (Kohonen) و یا نگاشت خود سازمان ده یا Self-Organizing Map (به اختصار SOM) نوع خاصی از شبکه عصبی که از نظر شیوه عملکرد، ساختار و کاربرد، کاملا با انواع شبکه عصبی که پیش از این مورد بررسی قرار گرفتند، متفاوت است. ایده اصلی نگاشت خود سازمان ده، از تقسیم عملکردی ناحیه قشری مغز، الهام گرفته شده است و کاربرد اصلی آن در حل مسائلی است که به مسائل «یادگیری غیر نظارت شده» معروف هستند. در واقع کارکرد اصلی یک SOM، در پیدا کردن شباهت ها و دسته های مشابه در میان انبوهی از داده هاست که در اختیار آن قرار گرفته است. مشابه با کاری که قشر مغز انسان انجام داده است و انبوهی از ورودی های حسی و حرکتی به مغز را، در گروه های مشابهی طبقه بندی (یا بهتر است بگوییم: خوشه بندی) کرده است.

یادگیرنده رقمی ساز بردار یا LVQ

این نوع خاص شبکه عصبی، تعمیم ایده شبکه های عصبی SOM برای حل مسائل یادگیری نظارت شده است. از طرفی شبکه عصبی LVQ (یا Learning Vector Quantization)، می تواند به این صورت تعبیر شود که، گویا شبکه عصبی MLP با یک رویکرد متفاوت کاری را که باید انجام بدهد، یاد می گیرد. اصلی ترین کاربرد این نوع شبکه عصبی، در حل مسائل طبقه بندی است، که گستره وسیعی از کاربردهای سیستم های هوشمند را پوشش می دهد.

شبکه عصبی هاپفیلد یا Hopfield

این نوع شبکه عصبی، بیشتر دارای ماهیتی شبیه به یک سیستم دینامیکی است، که دو یا چند نقطه تعادل پایدار دارد. این سیستم با شروع از هر شرایط اولیه، نهایتا به یکی از نقاط تعادلش همگرا می شود. همگرایی به هر نقطه تعادل، به عنوان تشخیصی است که شبکه عصبی آن را ایجاد کرده است و در واقع می تواند به عنوان یک رویکرد برای حل مسائل طبقه بندی استفاده شود. این سیستم، یکی از قدیمی ترین انواع شبکه های عصبی است، که دارای ساختار بازگشتی است و در ساختار آن، فیدبک های داخلی وجود دارند.

 منبع

شبکه های عصبی مصنوعی چیست؟ قسمت 1
شبکه های عصبی مصنوعی چیست؟ قسمت 2
شبکه های عصبی مصنوعی چیست؟ قسمت 3
شبکه های عصبی مصنوعی چیست؟ قسمت 4

کارکرد سیستم‌های بینایی ماشین

روال کار به این صورت است که کامپیوترها با استفاده از دوربین‌ها تصویربرداری می‌کنند، به کمک الگوریتم‌های بینایی ماشین تصاویر را پردازش و سپس تصاویر پردازش شده را تحلیل می‌کنند، در نهایت اشیای موجود در تصویر را می‌فهمند و بر اساس نوع اشیای موجود در تصویر، تصمیم گیری لازم را انجام می‌دهند. معمولا به هر سیستم بینایی ماشین یک یا چنددوربین، مبدل آنالوگ به دیجیتال و غیره متصل است و خروجی این سیستم به یک کنترلر کامپیوتر یا یک ربات می‌رود.

پردازش‌های بینایی ماشین را در سه سطح دسته بندی می‌کنند:

  • بینایی سطح پایین (Low Level Vision)

در بینایی سطح پایین، پردازش تصویر به منظور استخراج ویژگی (لبه، گوشه، یا جریان نوری) انجام می‌شود.

  • بینایی سطح میانی (Mid Level Vision)

بینایی سطح میانی با بهره گیری از ویژگی‌های استخراج شده از بینایی سطح پایین تشخیص اشیا، تحلیل حرکت و بازسازی سه بعدی صورت می‌گیرد.

  • بینایی سطح بالا (High Level Vision)

بینایی سطح بالا وظیفه تفسیر اطلاعات مهیا شده به وسیله بینایی سطح میانی را بر عهده دارد، این تفسیرها ممکن است شامل توصیف‌های مفهومی از صحنه مانند فعالیت، قصد و رفتار باشند. این سطح هم چنین مشخص می‌کند بینایی سطح پایین و میانی چه کارهایی باید انجام دهند.

 

کاربرد‌های بینایی ماشین

امروزه می‌توان ردپای بینایی ماشین را در صنعت، هواشناسی، شهرسازی، کشاورزی، نجوم و فضا نوردی، پزشکی و غیره که در ادامه درباره هرکدام مختصرا بحث شده است، مشاهده کرد.
  • صنعت (Industry)

امروزه کمتر کارخانه پیشرفته‌ای وجود دارد که بخشی از خط تولید آن توسط برنامه‌های هوشمند بینایی ماشین کنترل نشود.

خطای بسیار کم، سرعت زیاد، هزینه نگهداری بسیار پایین، عدم نیاز به حضور  ٢۴ ساعته اپراتور و خیلی مزایای دیگر باعث شده که صنایع و کارخانه‌ها به‌سرعت به سمت پردازش تصویر و بینایی ماشین روی بیاورند. برای مثال: دستگاهی ساخته‌شده که قادر است نان‌های پخته را از نان‌هایی که نیاز به پخت مجدد دارند، تشخیص دهد و آنها را به صورت اتوماتیک به بسته بندی بفرستد و نان‌هایی که نیاز به پخت دارند را دوباره برای پختن ارسال کند.

بینایی ماشین-صنعت-نان

  •  هواشناسی (Meteorology)

در علم هواشناسی تشخیص و پیش بینی آب و هوا اکثرا از طریق تصاویر هوایی و ماهواره‌ای انجام می‌گیرد. پردازش تصویر در این علم کاربرد زیادی دارد و دقت و سرعت پیش بینی آب و هوا را بسیار بالا می‌برد.

بینایی ماشین-آب و هوا

  • شهرسازی (Urbanization)

با مقایسه عکس‌های مختلف از سال‌های مختلف یک شهر می‌توان میزان گسترش و پیشرفت آن را مشاهده کرد. کاربرد دیگر پردازش تصویر می‌تواند در کنترل ترافیک باشد. با گرفتن عکس‌های هوایی از زمین ترافیک هر قسمت از شهر مشخص می‌شود.

همچنین قبل از ساختن یک شهر می‌توان آن را توسط کامپیوتر شبیه‌سازی کرد که به صورت دوبعدی از بالا و حتی به‌صورت سه‌بعدی از دیدهای مختلف، یک شهرک چطور ممکن است به نظر برسد. تصاویر ماهواره‌ای که از شهرها گرفته می‌شود، می‌تواند توسط فیلترهای مختلف پردازش تصویر فیلتر شود و اطلاعات مختلفی از آن استخراج شود. به طور مثال این که شهر در چه قسمت‌هایی دارای ساختمان‌ها، آب‌ها یا راه‌های بیشتری است و همین‌طور می‌توان جاده‌هایی که داخل یا خارج از شهر کشیده شده‌اند را تحلیل کرد.

 

بینایی ماشین-شهر سازی

  • کشاورزی (Agricultural)

این علم در بخش کشاورزی معمولا در دو حالت کاربرد دارد. یکی در پردازش تصاویر گرفته‌شده از ارتفاعات بالا مثلا از هواپیما و دیگری در پردازش تصاویر نزدیک به زمین .

در تصاویر دور به ‌عنوان ‌مثال می‌توان تقسیم‌بندی اراضی را تحلیل کرد. همچنین می‌توان با مقایسه تصاویر دریافتی در زمان‌های متفاوت میزان صدمات احتمالی وارد به محیط‌زیست را دید. به ‌عنوان مثال می‌توان برنامه‌ای نوشت که با توجه به محل رودخانه‌ها و نوع خاک مناطق مختلف، به صورت اتوماتیک بهترین نقاط برای کشت محصولات مختلف را تعیین می‌کند.

تصاویر نزدیک در ساخت ماشین‌های هرز چین اتوماتیک کاربرد دارد. امروزه ماشین‌های بسیار گران‌قیمت کشاورزی وجود دارند که می‌توانند علف‌های هرز را از گیاهان تشخیص بدهند و به‌صورت خودکار آن‌ها را نابود کنند. برای مثال یکی از پروژه‌های جالب در بخش کشاورزی، تشخیص خودکار گل زعفران برای جداسازی پرچم قرمزرنگ آن بوده است. این پردازش توسط نرم‌افزار Stigma detection انجام گرفته است.

بینایی ماشین-کشاورزی

  • نظامی (Martial)

پردازش تصویر بخصوص بینایی ماشین، کاربردهای نظامی بسیاری دارد و این کاربرد برای دولت اکثر کشورها بسیار مهم است. به عنوان مثال موشک هدایت شونده خودکاری وجود دارد که می‌تواند روی یک ساختمان قفل کند و حتی می‌تواند به درز بین در و دیوار آن ساختمان که حساس ترین جای ساختمان است به راحتی نفوذ کند. این موشک به صورت اتوماتیک این قسمت را شناسایی کرده و به سمت آن حمله می‌کند.

بینایی ماشین-نظامی

  •  امنیتی (Security)

در مسائل امنیتی هم کاربرد بینایی ماشین کاملا در زندگی ما مشهود است. از سیستم‌های امنیتی می‌توان سیستم تشخیص اثر انگشت اتوماتیک را نام برد. در گوشی ها و  لپ تاپ های جدید قابلیت finger print به آنها اضافه شده و می‌تواند صاحب خود را توسط اثر انگشت شناسایی کند.

کد امنیتی دیگری که همیشه همراه انسان حمل می شود، چشم انسان است. دانشمندان ثابت کرده اند که بافت‌های (Pattern) موجود در مردمک چشم هر انسان منحصر به فرد است و هیچ دو فردی در دنیا وجود ندارند که پترن هایی که در مردمک چشم آنها وجود دارد دقیقا مثل هم باشد. از همین روش برای شناخت افراد و سیستم های امنیتی استفاده می‌شود.

 

بینایی ماشین-امنیتی

  •  نجوم و فضا نوردی (Astronomy and Space Exploration)

ساخت دستگاه‌های اتوماتیک رصد آسمان و ثبت وقایع آسمانی به صورت خودکار از کاربردهای بینایی ماشین است که امروزه روی آن کار می‌شود.

از پروژه‌های جدید در بخش نجوم که بخشی از آن توسط سیستم پردازش تصویر انجام می‌شود، تهیه نقشه سه‌بعدی از کل عالم کائنات است. پردازش تصویر در فضانوردی هم کاربرد زیادی دارد. در تصاویر دور می‌توان سطح سیارات و همچنین سطح قمرها را اسکن کرده و اطلاعات بسیار ریزی از آن‌ها استخراج‌کنیم.

کاربرد دیگر پردازش تصویر در فـیلتر کردن عکس‌هایی است که توسط تلسکوپ‌های فضایی مختلف مانند هابل، از فضا گرفته می‌شود.

کاربرد دیگر آن حذف گردوخاک و جو سیاره‌ها از تصاویر به کمک تصویربرداری IR و X-RAY به‌صورت همزمان و ترکیب این تصاویر است.

 

بینایی ماشین-تلسکوپ هابل-نجوم

  •  پزشکی (Medic)

یکی از مهم‌ترین کاربردهای پردازش تصویر در مهندسی پزشکی است. درجایی که ما نیاز داریم تمام عکس‌ها با نهایت شفافیت و وضوح گرفته شوند زیرا دیدن تمام جزئیات لازم است. جراحی‌های ریز Microsurgery با ایجاد یک سوراخ کوچک و فقط دیدن محل جراحی توسط پزشک، از راه دور و توسط بازوهای رباتیک بسیار دقیق انجام می‌شوند.

 

بینایی ماشین-پزشکی

  •  فناوری‌های علمی (Scientific Technology)

بینایی ماشین در افزایش سرعت پیشرفت‌های علمی تاثیر فوق‌العاده داشته است. اولین و مشخص‌ترین تاثیر آن را می‌توان در علم عکاسی یا هنر دید. شکار لحظه‌های شگفت‌آوری که در کسری از ثانیه اتفاق می‌افتد، بالا بردن وضوح عکس‌های گرفته‌شده و ایجاد افکت‌های خیره‌کننده، از دستاوردهای پردازش تصویر است.

بینایی ماشین در توسعه فناوری پیشرفته Global Positioning Systems) GPS) نقش زیادی داشته و تهیه نقشه‌های سه‌بعدی از جاده‌ها در تمام نقاط جهان، از کاربردهای دیگر آن است. هم چنین با به وجود آمدن این علم، مسابقات ربات‌های فوتبالیست به‌صورت جدی دنبال شد.

رباتیک-ربات فوتبالیست

  • باستان‌شناسی (Archaeology)

در علم باستان‌شناسی تنها مدارک باقی‌مانده از دوران باستان، دست‌نوشته‌ها، نقاشی‌ها و غار نگاری‌های قدیمی است. تهیه تصاویر از بناهای گذشته و بازسازی مجازی این بناهای تاریخی یکی از کاربردهای پردازش تصویر در این علم است. همچنین می‌توان نقاشی‌ها و غار‌نگاری‌ها را مورد پردازش دقیق قرار داد و شکل آنها را همان طور که در ابتدا بوده اند، شبیه‌سازی کرد. حتی می‌توان مکان‎‌های باستانی را از زوایایی که تصاویر مستندی از آن‌ها وجود ندارد، شبیه سازی کرد.

بینایی ماشین-باستان شناسی

  •  سینما (Cinema)

اولین علمی که پردازش تصویر در آن مورد استفاده قرار گرفت، هنر و سینما بود. یکی از تکنولوژی های برتر دنیا Motion Capture است که در آن یک کاراکتر انیمیشنی قادر است حرکات دست انسان را تقلید کند. امروزه این سیستم جهت ساخت فیلم ها و بازی های کامپیوتری مورد استفاده قرار می‌گیرد.

بینایی ماشین-پردازش تصویر-سینما

  •  اقتصاد (Economy)

در دنیای امروز تمام نوآوری‌ها، به نوعی مستقیم یا غیر مستقیم باعث تغییراتی در اقتصاد گروهی از کشورها و یا کل دنیا می‌شوند. پردازش تصویر هم  به صورت مستقیم و غیر مستقیم در اقتصاد تاثیر گذار است. از تاثیر مستقیم آن در اقتصاد، می‌توان به وجود شعبه‌های بانک بدون کارمند اشاره کرد. این شعبه‌ها قادرند به صورت خودکار سریال چک ها و قبوض پرداختی را بخوانند، نوع اسکناس‌ها را تشخیص دهند و تا حد زیادی از کارهای یک بانک عادی را انجام دهند.

  •  زمین شناسی (Geology)

با پردازش تصویر می‌توان کانی‌های مختلف را از روی رنگ و اندازه آن ها شناسایی و دسته بندی کرد. همچنین درزمین‌شناسی برای پی بردن به مواد تشکیل دهنده کانی ها از روش پرتونگاری (Tomography) استفاده می‌کنند و پردازش تصویر در این بخش می‌تواند سرعت و دقت این روش را بسیار بالا ببرد.

بینایی ماشین-زمین شناسی

تشخیص پلاک از جمله کاربردهای فراگیر  بینایی ماشین می‌باشد. با شناساندن کاراکترهای پلاک هر کشور به سیستم پردازشی و جستجوی شباهت میان آن‌ها و تصاویر ورودی دوربین می‌توان پلاک موجود در تصویر را خواند. این سیستم‌ها در پارکینگ‌های هوشمند، ورودی و خروجی سازمان‌ها و مجتمع‌های بزرگ جهت کنترل تردد مورد استفاده قرار می‌گیرد. علاوه بر این‌ها در صورت پلاک خوانی یک خودرو در ابتدا و انتهای یک مسیر می‌توان سرعت میانگین آن را محاسبه و متخلفین را اعمال قانون کرد.

  •  سرعت سنج (Speedometer)

در نوعی از سرعت سنج‌های بزرگراهی از بینایی ماشین جهت استخراج سرعت استفاده می‌شود. این سیستم‌ها در نوع ثابت و متحرک طراحی می‌شوند. سیستم‌های ثابت در کنار خیابان، جاده و یا بزرگراه نصب شده و سیستم‌های متحرک بر روی خودروی‌های پلیس نصب می‌شوند. از این سیستم‌ها می‌توان به عنوان تردد شمار و سیستم کنترل ترافیک نیز بهره برد.

بینایی ماشین-سرعت سنج

  • ثبت تخلف (Submit an Infringement)

با پردازش تصاویر دوربین‌های نصب شده در تقاطع‌ها می‌توان زمان، سرعت، جهت حرکت و پلاک خودروها را بدست آورد و بدین ترتیب تخلفات متنوعی از جمله عبور از چراغ قرمز، توقف روی خط عابر پیاده، گردش به چپ و راست و تخطی از سرعت مجاز هنگام عبور از تقاطع را ثبت کرد.

بینایی ماشین-ثبت تخلف

  • ایمنی در رانندگی (Driving Safety)

برای افزایش سطح ایمنی در رانندگی، ماشین‌های جدید مجهز به سیستم‌های بینایی ماشینی شده‌اند که به راننده در حفظ هوشیاری و دقت کمک می‌کنند. از جمله این سیستم‌ها می‌توان به سیستم‌های تشخیص مانع، آینه کنار هشدار دهنده، هشدار دهنده تابلوهای راهنمایی و رانندگی و هشدار دهنده خارج شدن از خطوط جاده اشاره کرد.

بینایی ماشین-ایمنی رانندگی

  •  تشخیص حجم (Volume Detection)

با توجه به اینکه سیستم‌های بینایی ماشین قادرند مشخصات مکانی نقاط تصاویر را استخراج کنند، می‌توان از آن‌ها به عنوان سیستم‌های تشخیص حجم بهره برد. این سیستم‌ در محل‌های دفن زباله پسماند و یا نخاله ساختمانی، معادن و کارخانجات تولید مصالح ساختمانی کاربرد دارد.

بینایی ماشین-نخاله ساختمانی

نرم افزارهای بینایی ماشین

 

بینایی ماشین-متلب

 

از سال‌ها پیش نرم افزارهای زیادی برای تسهیل کاربرد‌های پردازش تصویر و بینایی ماشین توسعه یافته‌اند که شاید معروف ترین آن‌ها جعبه ابزار پردازش تصویر نرم افزار MATLAB باشد.

اما کسانی که تجربه کار با این نرم افزار را دارند به خوبی می‌دانند که با وجود سهولت برنامه نویسی با آن، سرعت اجرای MATLAB به خصوص برای کار با ویدیو بسیار آزاردهنده است. همچنین این نرم افزار متن باز (Open Source) نیست.

یکی از پروژه‌های پر سر و صدای بازسازی بناهای باستانی، بازسازی شهر روم باستان توسط دانشمندان ایتالیایی است. هم اکنون با کمک پردازش تصویر، توریست‌ها با زدن عینک‌های مخصوص می‌توانند در خیابان‌های شهر روم باستان قدم بزنند.

امروزه با پیشرفت علم و تکنولوژی، بشر سعی در استفاده حداکثری از دست‌آوردهای خود را دارد و بینایی ماشین یکی از ابزار‌هایی است که او را در این مسیر کمک می‌کند. بینایی ماشین علمی است وسیع با کاربرد‌های فراوان.

 


منابع

fa.wikipedia.org

www.enline.ir

 

بینایی ماشین چیست؟قسمت اول
بینایی ماشین چیست؟قسمت دوم

تاریخچه پردازش تصویر چیست؟

در اوایل دهه ۶۰ متعلق به ناسا شروع به ارسال تصاویر تلویزیونی مبهمی از سطح ماه به زمین کرد. استخراج جزئیات تصویر برای یافتن محلی برای فرود سفینه آپولو نیازمند اعمال تصمیماتی روی تصاویر بود. این کار مهم به عهده لابراتوار  Jet Propulsion قرار داده شد. بدین ترتیب زمینه تخصصی پردازش تصاویر رقومی آغاز گردید و مثل تمام تکنولوژی های دیگر سریعاً استفاده های متعدد پیدا کرد.

از سال ۱۹۶۴ تاکنون، موضوع پردازش تصویر، رشد زیادی کرده است.

پردازش تصویر روشی برای تبدیل یک تصویر به صورت دیجیتال و انجام برخی از عملیات بر روی آن، به منظور دریافت یک تصویر بهبود یافته و یا برای استخراج برخی از اطلاعات مفید از آن است.

این کار درواقع  یک نوع تبدیل سیگنال است  که ورودی  آن تصویر است، مانند ( ویدئوها  و عکس ها ) و خروجی ها ممکن است تصویر یا ویژگی های مرتبط با آن تصویر باشند.
امروزه با پیشرفت و توسعه سریع تکنولوژی، پردازش تصویر  کاربرد بیشتری در جنبه های مختلف کسب و کار و علوم مهندسی و علوم کامپیوتر از خود به نمایش گذاشته است.

آموزش MATLAB - تاریخچه پردازش تصویر

 پردازش تصویر اساسا شامل سه مرحله زیر است:

۱) گرفتن تصویر با اسکنر های نوری یا با دوربین ها و حسگرهای دیجیتال.
۲) تجزیه و تحلیل و دستکاری تصویر ، شامل:  فشرده سازی داده ها ، ترمیم تصویر و استخراج اطلاعات خاص از تصویر توسط فرآیند پردازش تصویر.
۳) آخرین مرحله که در آن نتیجه خروجی می تواند تصویر یا گزارشی از اطلاعاتی که در مرحله تجزیه و تحلیل تصویر در مرحله قبل بدست آمد، باشد.

عملیات اصلی در پردازش تصویر :

  1. تبدیلات هندسی: همانند تغییر اندازه، چرخش و…
  2. رنگ: همانند تغییر روشنایی، وضوح و یا تغییر فضای رنگ
  3. ترکیب تصاویر: ترکیب دو یا چند تصویر
  4. فشرده سازی پرونده: کاهش حجم تصویر
  5. ناحیه بندی پرونده: تجزیهٔ تصویر به نواحی با معنی
  6. بهبود کیفیت پرونده: کاهش نویز، افزایش کنتراست، اصلاح گاما و …
  7. سنجش کیفیت تصویر
  8. ذخیره سازی اطلاعات در تصویر
  9. انطباق تصاویر

هدف از پردازش تصویر :

هدف از پردازش تصویر را می توان به ۴ گروه تقسیم کرد.

۱٫ تشدید تصویر و بهبود

۲٫ بازیابی تصویر

۳٫ اندازه گیری الگو

۴٫ تشخیص تصویر

 پردازش تصویر با نرم افزار MATLAB :

از جمله نرم افزار های قوی و توانمند در خصوص پردازش تصویر به نرم افزار متلب می توان اشاره کرد که دانستن دانش آن برای متخصصین گرایش های مختلف علوم مهندسی و پزشکی هر روز پررنگ تر می شود.

کاربردهای پردازش تصویر :

ابتدایی ترین کاربردهای پردازش تصاویر رقومی در دهه ۶۰ و۷۰ جنبه های نظامی و جاسوسی بود که باعث شد نیاز به تصاویر با کیفیت بالاتر بوجود آید. پس از آن مصارف دیگری برای تصاویر رقومی سطح زمین پیدا شد که کاربرد تصاویر چند طیفی (Multi Spectral)  در کشاورزی و جنگل داری از آن جمله است. همچنین با استفاده از تصاویر رقومی عملیاتهایی مثل کنکاش نفت در سرزمین های دور افتاده و یا ردیابی منابع آلودگی شهری از داخل دفتر کار متخصصین آنها انجام شد.

بزودی کاربردهای زمینی زیادتری برای پردازش تصاویر رقومی پیدا شد . از اواسط دهه ۷۰ تا اواسط دهه ۸۰ اختراع اسکنر ها ی CAT یا (Computerized Arial Topography )  و اسکنر های MRI یا (Magnetic Resonance Imagery ) پزشکی را متحول کردند. صنعت چاپ استفاده کننده بعدی بود. در اواخر دهه ۸۰ پردازش تصاویر رقومی وارد دنیای سرگرمی شد بطوریکه امروزه این نقش به امر عادی تبدیل شده است. بهمین ترتیب دنیای صنعت با روباتهایی که عملا می بینند یعنی در واقع با ظهور تکنولوژی Machine Vision  متحول شد و هنوز هم در حال تحول است.

هر ساله با سریعتر و ارزانتر شدن کامپیوتر ها و ایجاد امکان پخش تصاویر با استفاده از تکنولوژی ارتباطات، افراد بیشتری به این تصاویر دسترسی پیدا می کنند. کنفرانس های ویدئویی یک روش زنده برای انجام کسب و کار شده اند و کامپیوترها ی خانگی توانایی نمایش و مدیریت تصاویر را به خوبی پیدا کرده اند. خوشبختانه با بالاتر رفتن سرعت پردازش و فضای حافظه کامپیوترها دیگر از بابت امکانات پردازش تصاویر نگرانی ها کمتر شده است و روز به روز این روند رو به رشد ادامه پیدا می کند.

با استفاده از پردازش تصویر، شمارش و اندازه گیری اشیا، تشخیص عیوب، تشخیص ترک، دسته بندی اشیا و عملیات بیشمار دیگری را انجام می‌دهند:

۱٫         اندازه گیری و کالیبراسیون

۲٫         جداسازی پینهای معیوب

۳٫         بازرسی لیبل و خواندن بارکد

۴٫         بازرسی عیوب چوب

۵٫         بازرسی قرص و بلیسترها

۶٫         بازرسی و دسته بندی

۷٫         درجه بندی و دسته بندی کاشی

۸٫         بازرسی و درجه بندی میوه

۹٫         بازرسی عیوب ورق های فلزی، پلیمری و …

۱۰٫       بازرسی لوله ها

۱۱٫       میکروسکوپ های دیجیتال

۱۲٫       اسکن سه بعدی

۱۳٫       بازرسی کمی بطری ها

۱۴٫       هدایت روبات ها

کاربرد پردازش تصویر در اتوماسیون صنعتی 

با استفاده از تکنیکهای پردازش تصویر می‌توان دگرگونی اساسی در خطوط تولید ایجاد کرد. بسیاری از پروسه‌های صنعتی که تا چند دهه پیش پیاده سازیشان دور از انتظار بود، هم اکنون با بهرگیری از پردازش هوشمند تصاویر به مرحله عمل رسیده‌اند. از جمله منافع کاربرد پردازش تصویر به شرح زیر است.

  • افزایش سرعت و کیفیت تولید
  • کاهش ضایعات
  • اصلاح روند تولید
  • گسترش کنترل کیفیت

منبع

پردازش تصویر چیست؟

تعریف پردازش تصویر:

پردازش تصویر روشی برای تبدیل یک تصویر به صورت دیجیتال و انجام برخی از عملیات بر روی آن، به منظور دریافت یک تصویر بهبود یافته و یا برای استخراج برخی از اطلاعات مفید از آن است.

تاریخچه:

در اوايل دهه 60 سفينه فضايي رنجر 7 متعلق به ناسا شروع به ارسال تصاوير تلويزيوني مبهمي از سطح ماه به زمين کرد. استخراج جزئيات تصوير براي يافتن محلي براي فرود سفينه آپولو نيازمند اعمال تصميماتي روي تصاوير بود. اين کار مهم به عهده لابراتوار  Jet Propulsion قرار داده شد. بدين ترتيب زمينه تخصصي پردازش تصاوير رقومي آغاز گرديد و مثل تمام تکنولوژي های ديگر سريعاً استفاده هاي متعدد پيدا کرد.

از سال 1964 تاكنون، موضوع پردازش تصوير، رشد فراواني كرده است. علاوه بر برنامه تحقيقات فضايي، اكنون از فنون پردازش تصوير، در موارد متعددي استفاده مي شود. براي نمونه در پزشكي شيوه هاي رايانه اي Contrast تصوير را ارتقا مي دهند يا اين كه براي تعبير آسانتر تصاوير اشعه ايكس يا ساير تصاوير پزشكي، سطوح شدت روشنايي را با رنگ، نشانه گذاری می کنند. متخصصان جغرافيايي نيز از اين روش ها يا روش هاي مشابه براي مطالعه الگوهاي آلودگي هوا كه با تصوير برداري هوايي و ماهواره اي بدست آمده است، استفاده مي كنند. در باستان شناسی برای تصویربرداری سه بعدی از اجسام و فسیل ها مورد استفاده قرار می گیرد. در موزه های نيز روش هاي پردازش تصوير براي بازيابي عكس هاي مات شده اي كه تنها باقي مانده آثار هنري نادر هستند، مورد استفاده قرار مي گيرد. كاربردهاي موفق ديگري از پردازش تصوير را نيز مي توان در نجوم، زيست شناسي، پزشكي هسته ای، صنعت بيان كرد. پردازش تصویر در صنایع مختلف از جمله صنايع هوافضا،صنایع بسته‌بندي و چاپ، صنايع خودرو، داروسازي و پزشكي، صنايع الكترونيك، صنايع غذايي، صنایع فولاد، آلومينيوم، مس و …،صنایع سلولوزي(كاغذ، مقوا، كارتن)، صنایع لوله، پروفيل فلزي، لوله پليمري و كابل، صنایع منسوجات (پارچه، موكت، فرش و بافته‌هاي صنعتي)، صنایع كاشي، سراميك کاربردهای فراوانی دارد.

پردازش تصویر اساسا شامل سه مرحله زیر است.

    • گرفتن تصویر با اسکنر های نوری یا با دوربین ها و حسگرهای دیجیتال.
    •  تجزیه و تحلیل تصویر که شامل فشرده سازی اطلاعات، بهبود تصویر، تشخیص الگوها
  •  آخرین مرحله خروجی است که می تواند تصویر یا گزارش باشد که از نتیجه تجزیه و تحلیل تصویر حاصل شده است.

هدف از پردازش تصویر

هدف از پردازش تصویر را می توان به 4 گروه تقسیم کرد.

1. تشدید تصویر و بهبود

2. بازیابی تصویر

3. اندازه گیری الگو

4. تشخیص تصویر

انواع پردازش تصویر

دو نوع از روش های مورد استفاده برای پردازش تصویر پردازش تصویر آنالوگ و دیجیتال می باشد.  تکنیک های بصری  آنالوگ از پردازش تصویر را برای نسخه های سخت مانند چاپ و عکس استفاده می شود و پردازش تصویر دیجیتال که امروز بیشتر شناخته شده است دارای کاربردهای متعددی از تجزیه و تحلیل تصاویر ماهوارهای تا کنترل ابعادی قطعات میکروسکوپی می باشد.

ماشین بینایی و پردازش تصویر در اتوماسیون صنعتی

کنترل ماشین آلات و تجهیزات صنعتی یکی از وظایف مهم در فرآیندهای تولیدی است. بکارگیری کنترل خودکار و اتوماسیون روزبه روز گسترده تر شده و رویکردهای جدید با بهره گیری از تکنولوژی‌های نو امکان رقابت در تولید را فراهم می‌سازد. لازمه افزایش کیفیت و کمیت یک محصول، استفاده از ماشین آلات پیشرفته و اتوماتیک می‌باشد. ماشین آلاتی که بیشتر مراحل کاری آنها به طور خودکار صورت گرفته و اتکای آن به عوامل انسانی کمتر باشد. امروزه استفاده از تکنولوژی ماشین بینایی و تکنیک‌های پردازش تصویر کاربرد گسترده‌ای در صنعت پیدا کرده‌است و کاربرد آن بویژه در کنترل کیفیت محصولات تولیدی، هدایت روبات و مکانیزم‌های خود هدایت شونده روز به روز گسترده تر می‌شود.

عدم اطلاع کافی مهندسین از تکنولوژی ماشین بینایی و عدم آشنایی با توجیه اقتصادی بکارگیری آن موجب شده‌است که در استفاده از این تکنولوژی تردید و در بعضی مواقع واکنش منفی وجود داشته باشد. علی رغم این موضوع، ماشین بینایی روز به روز کاربرد بیشتری پیدا کرده و روند رشد آن چشمگیر بوده‌است. عملیات پردازش تصویر در حقیقت مقایسه دو مجموعه عدد است که اگر تفاوت این دو مجموعه از یک محدوده خاص فراتر رود، از پذیرفتن محصول امتناع شده و در غیر این‌صورت محصول پذیرفته می‌شود. در زیر پروژه‌هایی که در زمینه پردازش تصاویر پیاده سازی شده‌است، توضیح داده می‌شود. این پروژه‌ها با استفاده از پردازش تصویر، شمارش و اندازه گیری اشیا، تشخیص عیوب، تشخیص ترک، دسته بندی اشیا و عملیات بیشمار دیگری را انجام می‌دهند:

1.         اندازه گیری و کالیبراسیون

2.         جداسازی پینهای معیوب

3.         بازرسی لیبل و خواندن بارکد

4.         بازرسی عیوب چوب

5.         بازرسی قرص و بلیسترها

6.         بازرسی و دسته بندی

7.         درجه بندی و دسته بندی کاشی

8.         بازرسی و درجه بندی میوه

9.         بازرسی عیوب ورق های فلزی، پلیمری و …

10.       بازرسی لوله ها

11.       میکروسکوپ های دیجیتال

12.       اسکن سه بعدی

13.       بازرسی کمی بطری ها

14.       هدایت روبات ها

منبع

پردازش تصویر چیست؟ قسمت 1
پردازش تصویر چیست؟ قسمت 2

ﺑﺨﺸﻬﺎی ﻣﺨﺘﻠﻒ ﻳک ﺳﻴﺴﺘﻢ OCRﻛﺎﻣﻞ و انواع آن

ﺍﻧﻮﺍﻉ ﺳﻴﺴﺘﻤﻬﺎی OCR

ﺩﺭ ﻳﻚ ﺗﻘﺴﻴﻢ كلی می توان سیستمهای OCR را به ﻟﺤﺎﻅ ﻧﻮﻉ ﺍﻟﮕﻮﻱ ﻭﺭﻭﺩﻱ ﺑﻪ ﺩﻭ ﮔﺮﻭﻩ ﺍﺻﻠﻲ ﺗﻘﺴﻴﻢ ﻛﺮﺩ :
الف ) ﺳﻴﺴﺘم های ﺑﺎﺯﺷﻨﺎﺳﻲ ﻣﺘﻮﻥ ﭼﺎﭘﻲ
ب ) ﺳﻴﺴﺘم های ﺑﺎﺯﺷﻨﺎﺳﻲ ﻣﺘﻮﻥ ﺩﺳﺘﻨﻮﻳﺲ
ﻫﺮ ﻳﻚ ﺍﺯ ﺍﻳﻦ ﮔﺮﻭﻫﻬﺎ ﺗﻜﻨﻴﻜﻬﺎﻱ ﺧﺎﺹ ﺧﻮﺩ ﺭﺍ ﺩﺍﺭﻧﺪ. همچنین ﺍﺯ ﺟﻨﺒﺔ ﻧﺤﻮﺓ ﻭﺭﻭﺩ اطلاعات، سیستمهای OCR به دو دسته زیر تقسیم میﺷﻮﻧﺪ :
الف ) ﺳﻴﺴﺘﻤﻬﺎﻱ ﺑﺮﺧﻂ (OnLine)
ﺩﺭ ﺑﺎﺯﺷﻨﺎﺳﻲ ﺑﺮﺧﻂ، حروف در همان زمان نگارش ﺗﻮﺳﻂ ﺳﻴﺴﺘﻢ ﺗﺸﺨﻴﺺ ﺩﺍﺩه می شوند. دستگاههای ورودی ﺍﻳﻦ ﺳﻴﺴﺘﻤﻬﺎ ﻳﻚ ﻗﻠﻢ ﻧﻮﺭﻱ ﺍﺳﺖ. ﺩﺭ ﺍﻳﻦ ﺭﻭﺵ ﻋﻼﻭﻩ ﺑﺮ اطلاعات ﻣﺮﺑﻮﻁ ﺑﻪ ﻣﻮﻗﻌﻴﺖ قلم، اطلاعات ﺯﻣﺎﻧﻲ ﻣﺮﺑﻮﻁ ﺑﻪ ﻣﺴﻴﺮ ﻗﻠﻢ ﻧﻴﺰ ﺩﺭ ﺍﺧﺘﻴﺎﺭ می باشد. ﺍﻳﻦ اطلاعات ﻣﻌﻤﻮﻻً ﺗﻮﺳﻂ ﻳﻚ صفحه Digitizer اخذ می شوند.
ﺩﺭ ﺍﻳﻦ ﺭﻭﺵ ﻣﻲ توان ﺍﺯ اطلاعات ﺯﻣﺎﻧﻲ، ﺳﺮﻋﺖ، شتاب، ﻓﺸﺎﺭ ﻭ ﺯﻣﺎﻥ برداشتن و گذاشتن قلم روی صفحه در بازشناسایی استفاده كرد.
ب ) ﺳﻴﺴﺘﻤﻬﺎﻱ ﺑﺮﻭﻥ ﺧﻂ (OutLine)
ﺩﺭ ﺑﺎﺯﺷﻨﺎﺳﻲ ﺑﺮﻭﻥ خط، ﺍﺯ ﺗﺼﻮﻳﺮ ﺩﻭ ﺑﻌﺪی ﻣﺘﻦ ﻭﺭﻭﺩی ﺍﺳﺘﻔﺎﺩﻩ ﻣﻲشود. ﺩﺭ ﺍﻳﻦ ﺭﻭﺵ ﺑﻪ ﻫﻴﭻ ﻧﻮﻉ ﻭﺳﻴﻠﻪ ﻧﮕﺎﺭﺵ ﺧﺎﺻﻲ ﻧﻴﺎﺯ ﻧﻴﺴﺖ ﻭ ﺗﻔﺴﻴﺮ ﺩﺍﺩﻩ ﻣﺴﺘﻘﻞ ﺍﺯ ﻓﺮﺁﻳﻨﺪ ﺗﻮﻟﻴﺪ ﺁﻧﻬﺎ ﺗﻨﻬﺎ ﺑﺮﺍﺳﺎﺱ ﺗﺼﻮﻳﺮ ﻣﺘﻦ ﺻﻮﺭﺕ ﻣﻲ’گیرد. ﺍﻳﻦ ﺭﻭﺵ ﺑﻪ ﻧﺤﻮﺓ ﺑﺎﺯﺷﻨﺎﺳﻲ ﺗﻮﺳﻂ انسان ﺷﺒﺎﻫﺖ ﺑﻴﺸﺘﺮﻱ ﺩﺍﺭﺩ.


ﺑﺨﺸﻬﺎی ﻣﺨﺘﻠﻒ ﻳﻚ ﺳﻴﺴﺘﻢ OCR ﻛﺎﻣﻞ 

ﻳﻚ ﺳﻴﺴﺘﻢ OCR ﻛﺎﻣﻞ مركب از 5 ﻗﺴﻤﺖ ﺍﺻﻠﻲ زیر می باشد :

الف ) ﭘﻴﺶ ﭘﺮﺩﺍﺯﺵ  (Preprocessing):
ﺷﺎﻣﻞ ﻛﻠﻴه ﺍﻋﻤﺎﻟﻲ ﻛﻪ ﺭﻭﻱ ﺳﻴﮕﻨﺎﻝ ﺗﺼﻮﻳﺮﻱ ﺧﺎﻡ ﺻﻮﺭﺕ ﻣﻲ ﮔﻴﺮﻧﺪ ﺗﺎ موجب ﺗﺴﻬﻴﻞ ﺭﻭﻧﺪ ﺍﺟﺮﺍﻱ ﻓﺎﺯﻫﺎﻱ ﺑﻌﺪﻱﮔﺮﺩﻧﺪ؛ ﻣﺎﻧﻨﺪ ﺑﺎﻳﻨﺮﻱ ﻛﺮﺩﻥ ﺗﺼﻮﻳﺮ ، ﺣﺬﻑ ﻧﻮﻳﺰ ، ﻫﻤﻮﺍﺭﺳﺎﺯﻱ، ﻧﺎﺯﻛﺴﺎﺯﻱ ، ﺗﺸﺨﻴﺺ ﺯﺑﺎﻥ ﻭ ﻓﻮﻧﺖ ﻛﻠﻤﺎﺕ و ﻧﻈﺎﻳﺮ ﺍﻳﻨﻬﺎ.

ب) قطعه بندی (Segmentation) :
ﻋﺒﺎﺭﺕ ﺍﺳﺖ ﺍﺯ ﺭﻭﺷﻬﺎﻳﻲ ﻛﻪ ﺑﺨﺸﻬﺎﻱ ﻣﺨﺘﻠﻔﻲ ﻫﻤﭽﻮﻥ ﭘﺎﺭﺍﮔﺮﺍﻓﻬﺎ، ﺟﻤﻼﺕ ﻳﺎ ﻛﻠﻤﺎﺕ ﻭ ﺣﺮﻭﻑ ﺭﺍ ﺍﺯ ﺗﺼﻮﻳﺮﺳﻨﺪ ﺍﺳﺘﺨﺮﺍﺝ ﻣﻲ کنند.

ج ) ﺍﺳﺘﺨﺮﺍﺝ ﻭﻳﮋﮔﻴﻬﺎ (Feature Extraction) :
ﻣﺠﻤﻮﻋﺔ از ﻛﻠیه ﻣﺤﺎﺳﺒﺎﺗﻲ است ﻛﻪ ﺭﻭﻱ ﺍﻟﮕﻮﻫﺎﻱ ﺑﺪﺳﺖ ﺁﻣﺪﻩ ﺍﺯ ﻣﺮحله ﭘﻴﺶ پردازش ﺍﻧﺠﺎﻡ ﻣﻲ شود ﺗﺎ ﺑﺮﺩﺍﺭ ﻭﻳﮋﮔﻴﻬﺎﻱ ﻣﺘﻨﺎﻇﺮ ﺑﺎ ﻫﺮ ﺍﻟﮕﻮ ﺗﻌﻴﻴﻦ گردد.

د ) ﺑﺎﺯﺷﻨﺎﺳﻲ ﺑﺎ ﻳﻚ ﻳﺎ ﭼﻨﺪ ﻃﺒﻘﻪ بندی كننده (Classification & Recognition):
ﺷﺎﻣﻞ ﺭﻭﺷﻬﺎﻳﻲ ﺑﺮﺍﻱ ﻣﺘﻨﺎﻇﺮ ﺳﺎﺧﺘﻦ ﻫﺮ ﻳﻚ ﺍﺯ ﺍﻟﮕﻮﻫﺎﻱ ﺑﺪﺳﺖ ﺁﻣﺪﻩ ﺍﺯ ﻣﺮﺣﻠﺔ ﺍﺳﺘﺨﺮﺍﺝ ﻭﻳﮋﮔﻴﻬﺎ ﺑﺎ ﻳﻜﻲ ﺍﺯ ﻛﻼﺳﻬﺎﻱ ﻓﻀﺎﻱ ﺍﻟﮕﻮﻫﺎﻱ ﻣﻮﺭﺩ ﺑﺤﺚ ﺍﺳﺖ ﻛﻪ ﺍﺯ ﻃﺮﻳﻖ ﻛﻤﻴﻨﻪ ﺳﺎﺧﺘﻦ ﻓﺎصله ﺑﺮﺩﺍﺭ ﻭﻳﮋﮔﻴﻬﺎی ﻫﺮ ﺍﻟﮕﻮ ﻧﺴﺒﺖ ﺑﻪ ﻳﻜﻲ ﺍﺯ ﺑﺮﺩﺍﺭﻫﺎﻱ ﻣﺮﺟﻊ ﻣﻮﺟﻮﺩ ﺩﺭ ﭘﺎﻳﮕﺎﻩ ﺩﺍﺩﻩ های ﺳﻴﺴﺘﻢ ﺍﻧﺠﺎﻡ ﻣﻲ ﮔﻴﺮﺩ.

هـ ) ﺑﻜﺎﺭﮔﻴﺮﻱ اطلاعات ﺟﺎﻧﺒﻲ (ﭘﺲ ﭘﺮﺩﺍﺯﺵ) :
ﻣﺎﻧﻨﺪ ﻣﺠﻤﻮﻋﻪ اطلاعات ﺁﻣﺎﺭﻱ ﻣﺮﺑﻮﻁ به رخداد حروف ، اطلاعات ﺩﺳﺘﻮﺭﻱ ﻭ ﻣﻌﻨﺎﻳﻲ.

منبع