بایگانی برچسب برای: هیبریداسیون

منبع


منابع:

fa.wikipedia.org

http://mediasoft.ir

 

انواع سامانه‌های توصیه‌گر

سامانه‌های توصیه‌گر به طور کلی به سه دسته تقسیم می‌شوند؛ در رایج‌ترین تقسیم‌بندی، آنها را به سه گروه ۱. محتوا محور ۲. دانش محور و ۳. صافی سازی تجمعی، تقسیم می‌کنند، که البته گونه چهارمی تحت عنوان Hybrid RS هم برای آنها قائل می‌شوند.

یک رویکرد به سیستم‌های توصیه‌گر، استفاده از الگوریتم‌های CF یا صافی سازی تجمعی است. در این رویکرد به جای استفاده از محتوای (Content) اقلام، از نظرات و رتبه‌بندی‌های انجام شده توسط کاربران برای ارائه پیشنهاد، استفاده می‌شود. مشکل اصلی استفاده از این رویکرد، مشکل شروع سرد (Cold Start problem)[۲] می‌باشد که برای کاربران جدید بروز می‌کند که در سیستم ثبت نام می‌کنند و سیستم هیچ اطلاعاتی از نظرات یا علایق کاربر ندارد (New User problem). در چنین شرایطی، سیستم‌ها معمولاً از یادگیری فعال (Active Learning)[۳] یا استفاده از ویژگی‌های شخصیتی کاربر،[۴] برای حل مشکل استفاده می‌کنند.

در روش محتوا محور، اقلام پیشنهادی، به این دلیل که با اقلامی که کاربر فعال (کاربری که قرار است به او توصیه کنیم) نسبت به آنها ابراز علاقه کرده‌است شباهت‌هایی دارند، به کاربر توصیه می‌شوند ولی در CF، لیست اقلام پیشنهادی، بر اساس این اصل که، کاربرانی، مشابه کاربر فعال، از آنها رضایت داشته‌اند تهیه می‌شود. از این رو واضح است که در روش محتوامحور، تمرکز بر روی یافتن شباهت بین اقلام بوده، در حالی که در CF، تمرکز روی یافتن شباهت بین کاربران است؛ بدین ترتیب که پیشنهادات در CF، بر اساس تشابه رفتاری کاربرفعال با کاربران دیگر صورت می‌گیرد و نه بر اساس تشابه ویژگی کالاهای پیشنهادی با ویژگی‌های کالاهای مورد علاقه وی (کاربر فعال). رویکرد محتوا محور یکی از روشهای مؤثر برای حلی نوعی از مشکل شروع سرد می‌باشد که برای کالاهای (آیتم‌های) جدید رخ می‌دهد (New Item problem)[۵] که به تازگی به لیست سیستم اضافه شده‌اند و هیچ کاربری در مورد آنها نظری نداده است. در چنین حالتی رویکرد صافی سازی تجمعی نمی‌تواند این کالاها را به کاربران توصیه کند.

اما گونه سوم این سیستم‌ها را با نام سیستم‌های دانش محور می‌شناسند. این سیستم‌ها براساس ادراکی که از نیازهای مشتری و ویژگی‌های کالاها پیدا کرده‌اند، توصیه‌هایی را ارائه می‌دهند. به عبارتی در این گونه از سیستم‌های توصیه‌گر مواد اولیه مورد استفاده برای تولید لیستی از پیشنهادها، دانش سیستم در مورد مشتری و کالا است. سیستم‌های دانش محور از متدهای مختلفی که برای تحلیل دانش، قابل استفاده هستند بهره می‌برند که متدهای رایج در الگوریتم‌های ژنتیک، فازی، شبکه‌های عصبی و … از جمله آنهاست. همچنین، در این گونه سیستم‌ها از درخت‌های تصمیم، استدلال نمونه‌محور و … نیز می‌توان استفاده کرد. یکی از رایج‌ترین متدهای تحلیل دانش درسیستم‌های توصیه‌گر دانش محور ،CBR یا روش استدلال نمونه‌محور است.

گونه چهارم سیستم‌های ترکیبی هستند. طراحان این نوع سیستم‌ها دو یا چند گونه از انواع سه‌گانه مذکور را غالباً به دو منظور با هم ترکیب می‌کنند؛ ۱- افزایش عملکرد سیستم ۲- کاهش اثر نقاط ضعفی که آن سیستم‌ها وقتی به تنهایی به کار گرفته شوند، دارند. از میان سه روش موجود (CF و CB و KB)، غالباً روش CF یک پای ثابت این ترکیبات است.

منبع


سیستم توصیه گر (Recommender Systems) چیست ؟

 

سیستم توصیه گر

 

 

سیستم توصیه گر

 

سیستم توصیه گر (Recommender System) قسمت 1
سیستم توصیه گر (Recommender System) قسمت 2
سیستم توصیه گر (Recommender System) قسمت 3