بایگانی برچسب برای: شناسایی الگو

بازشناخت الگو

تشخیص الگو شاخه‌ای از مبحث یادگیری ماشینی است. می‌توان گفت تشخیص الگو، دریافت داده‌های خام و تصمیم گیری بر اساس دسته‌بندی داده‌ها است. بیشتر تحقیقات در زمینه تشخیص الگو در رابطه با «یادگیری نظارت شده» یا «یادگیری بدون نظارت» است. روش‌های تشخیص الگو، الگوهای مورد نظر را از یک مجموعه داده‌ها با استفاده از دانش قبلی در مورد الگوها یا اطلاعات آماریداده‌ها، جداسازی می‌کند. الگوهایی که با این روش دسته‌بندی می‌شوند، گروه‌هایی از اندازه‌گیری‌ها یا مشاهدات هستند که نقاط معینی را در یک فضای چند بعدی تشکیل می‌دهند. این ویژگی اختلاف عمده تشخیص الگو با تطبیق الگو است، که در آنجا الگوها با استفاده از موارد کاملاً دقیق و معین و بر اساس یک الگوی مشخص، تشخیص داده می‌شوند. تشخیص الگو و تطبیق الگو از بخش‌های اصلی مبحث پردازش تصویر به خصوص در زمینه بینایی ماشین هستند.

تشخیص خودکار چهره شخص با استفاده از الگوریتم‌های تشخیص الگو

تشخیص خودکار چهره شخص با استفاده از الگوریتم‌های تشخیص الگو

انواع تشخیص الگو

نیاز به سیستم‌های اطلاعاتی بهبود یافته بیشتر از قبل مورد توجه قرار گرفته است چرا که اطلاعات عنصری اساسی در تصمیم سازی است و جهان در حال افزایش دادن مقدار اطلاعات در فرم‌های مختلف با درجه‌هایی از پیچیدگی است. یکی از مسائل اصلی در طراحی سیستم‌های اطلاعاتی مدرن، تشخیص الگو به طور اتوماتیک است. تشخیص به عنوان یک صفت اصلی انسان بودن است. یک الگو، توصیفی از یک شیء است. یک انسان دارای یک سیستم اطلاعاتی سطح بالاست که یک دلیل آن داشتن قابلیت تشخیص الگوی پیشرفته است. بر طبق طبیعت الگوهای مورد تشخیص، عملیات تشخیص در دو گونهٔ اصلی تقسیم می‌شوند.

تشخیص آیتم‌های واقعی

این ممکن است به عنوان تشخیص سنسوری معرفی شود که تشخیص الگوهای سمعی و بصری را دربر می‌گیرد.

تشخیص الگوهای زمانی و فضایی

این فرایند تشخیص، شناسایی و دسته‌بندی الگوهای فضایی و الگوهای زمانی را در بر می‌گیرد. مثال‌هایی از الگوهای فضایی کارکترها، اثر انگشت‌ها، اشیاء فیزیکی و تصاویر هستند. الگوهای زمانی شامل فرم‌های موجی گفتار، سری‌های زمانی و … است.

الگوها و کلاس‌های الگوها

تشخیص الگو می‌تواند به عنوان دسته‌بندی داده‌ها ی ورودی در کلاس‌های شناخته شده به وسیلهٔ استخراج ویژگیهای مهم یا صفات داده تعریف شود. یک کلاس الگو، یک دستهٔ متمایز شده به وسیلهٔ برخی صفات و ویژگی‌های مشترک است. ویژگی‌های یک کلاس الگو، صفات نوعی هستند که بین همهٔ الگوهای متعلق به آن کلاس مشترک هستند. ویژگی‌هایی که تفاوت‌های بین کلاس‌های الگو را بیان می‌کنند اغلب به عنوان ویژگی‌های اینترست شناخته می‌شوند. یک الگو، توصیفی از یکی از اعضای دسته است که ارائه دهندهٔ کلاس الگو می‌باشد. برای راحتی، الگوها معمولاً به وسیلهٔ یک بردار نمایش داده می‌شوند. مانند:

مسائل اساسی در طراحی سیستم تشخیص الگو

به طور کلی طراحی یک سیستم تشخیص الگو چندین مسئلهٔ اصلی را در بر می‌گیرد: ۱)طریقه نمایش داده‌ها ۲)استخراج ویژگی ۳)تعیین رویه تصمیم بهینه

طریقه نمایش داده‌ها

اول از همه، ما بایستی در مورد نمایش داده‌های ورودی تصمیم بگیریم.

استخراج ویژگی

دومین مسئله در تشخیص الگو، استخراج ویژگیها یا صفات خاصی از دادهٔ ورودی دریافته شده و کاهش ابعاد بردارهای الگوست. این مورد اغلب به عنوان مسئلهٔ پیش پردازش و استخراج ویژگی معرفی می‌شود. عناصر ویژگیهای (اینتراست) برای همهٔ کلاس‌های الگو مشترک هستند می‌توانند حذف شوند. اگر یک مجموعهٔ کامل از ویژگیهای تشخیص برای هر کلاس از داده‌های اندازه‌گیری شده تعیین شود. تشخیص و دسته‌بندی الگوها، دشواری کمتری را در برخواهد داشت. تشخیص اتوماتیک ممکن است به یک فرایند تطبیق ساده یا یک جدول جستجو کاهش یابد. به هر حال در بسیاری از مسائل تشخیص الگو، در عمل ، تعیین یک مجموعه کامل از ویژگیهای تشخیص اگر غیرممکن نباشد دشوار است.

تعیین رویه تصمیم بهینه

مسئلهٔ سوم در طراحی سیستم تشخیص الگو تعیین رویه‌های تصمیم بهینه است که در فرایند شناسایی و دسته‌بندی مورد نیاز واقع می‌شود. پس از آنکه داده‌های مشاهده شده از الگوها جمع‌آوری شد و در فرم نقاط الگو یا بردارهای اندازه‌گیری در فضای الگو بیان شد، ما ماشینی را می‌خواهیم تا تصمیم بگیرد که این داده به کدام کلاس الگو تعلق دارد.

یادگیری و تمرین دادن

توابع تصمیم به روشهای متنوعی قابل تولید هستند. زمانی که دانش قبلی در مورد الگوهایی که بایستی تشخیص داده شوند، موجود باشد، تابع تصمیم براساس این اطلاعات ممکن است با دقت تعیین شود. زمانی که تنها دانشی کیفی در مورد الگوها موجود باشد، حدس‌هایی مستدل از فرم‌های تابع تصمیم می‌توان داشت. در این مورد محدوده‌های تصمیم ممکن است از پاسخ صحیح دور شود. وضعیت کلی تر آنست که دانش قبلی کمی در مورد الگوهای مورد تشخیص موجود باشد. در این شرایط ماشین‌های تشخیص الگو با استفاده از یک رویهٔ یادگیری یا تمرین دادن طراحی بهتری خواهند داشت.

به صورت ابتدائی، توابع تصمیم موقت فرض می‌شوند و از طریق دنباله‌ای از مراحل تمرینی تکراری، این توابع تصمیم به سمت فرم‌های بهینه و راضی کننده پیش می‌روند. این مهم است به ذهن بسپاریم که تمرین و یادگیری فقط در طول فاز طراحی سیستم تشخیص الگو انجام می‌شوند. هنگامی که نتایج قابل قبول با مجموعهٔ الگوهای تمرینی به دست آمد، سیستم برای وظیفهٔ اجرائی واقعی خود بر روی نمونه‌های محیطی به کار گرفته می‌شود. کیفیت کارآئی تشخیص به طور گسترده‌ای به وسیلهٔ تشابه الگوهای تمرینی و داده‌های واقعی که سیستم در طول عملیات مواجه خواهد شد، تعیین می‌شود.

تشخیص الگوی نظارت شده و بدون نظارت

در بسیاری موارد، الگوهای نماینده از هر کلاس موجود هستند. در این وضعیت‌ها، تکنیک‌های تشخیص الگوی نظارت شده، کاربردی هستند. پایه‌های این رویکرد، مجموعه‌ای از الگوهای تمرینیشناخته شده برای دسته‌بندی و پیاده‌سازی یک رویهٔ یادگیری مناسب هستند. در برخی کاربردها، فقط مجموعه‌ای از الگوهای تمرینی شناخته نشده برای دسته‌بندی ممکن است موجود باشند. در این موقعیت‌ها، تکنیک‌های تشخیص چهره ی بدون نظارت کاربرد دارند. همانطور که در بالا بیان شد، تشخیص الگوی نظارت یافته به وسیلهٔ این موضوع که دستهٔ صحیح هر الگوی تمرینی مشخص است، معرفی می‌شوند. در مورد بدون نظارت، به هر حال، با مسئلهٔ یادگیری در کلاس‌های الگوی ارائه شده در داده‌ها، مواجهیم. این مسئله با نام ” یادگیری بدون ناظر ” نیز شناخته می‌شود.

کلیات یک سیستم تشخیص الگو

در دیاگرام موجود کلیات یک سیستم تشخیص چهره تشخیص صحیح به میزان اطلاعات موجود در اندازه‌گیری‌ها و نحوهٔ استفاده از این اطلاعات وابسته خواهد بود. در برخی کاربردها، اطلاعات زمینه برای بدست آوردن تشخیص دقیق الزامی است. برای نمونه، در تشخیص کارکترهای دست‌نویس خمیده و دسته‌بندی اثر انگشت‌ها، اطلاعات زمینه با اهمیت هستند.

الگوریتم‌ها

الگوریتم انتخابی برای تشخیص الگو، به نوع خروجی، آموزش با ناظر یا بدون ناظر و پویا یا ایستا بودن طبیعت الگوریتم بستگی دارد. الگوریتم‌های ایستا به دو دسته generative وdiscriminative تقسیم می‌شوند.

الگوریتم‌های کلاس بندی (الگوریتم‌های با ناظر پیشگو)

  • درخت تصمیم و لیست تصمیم
  • ماشین‌های بردار پشتیبانی
  • شبکه‌های عصبی
  • پرسپترونن
  • k-نزدیکترین همسایگی

الگوریتم‌های خوشه ساری (الگوریتم‌های بدون ناظر پیشگو)

  • مدل‌های دسته‌بندی ترکیبی
  • خوشه سازی سلسله مراتبی
  • Kernel PCA

الگوریتم‌های مبتنی بر رگرسیون

با ناظر

  • رگرسیون خطی
  • شبکه‌های عصبی
  • Gaussian process regression

بدون ناظر

  • Principal Components Analysis= PCA
  • LCA

کاربردها

منبع

تشخیص پلاک خودرو

چکیده– شماره پلاک خودرو یکی از مناسب ترین اقلام اطلاعات جهت احراز هویت خودروها می باشد.سامانه تشخیص پلاک خودرو یک سیستم کاملاً مکانیزه است. در این مقاله به بررسی و نحوه کار یک سیستم اتوماتیک تشخیص پلاک میپردازیم که امروزه نمی توان کاربرد مفید و چشمگیر آن را نادیده گرفت. این سیستم با استفاده از پردازش تصویر خودروهای عبوری از یک مکان، شماره پلاک آنها را استخراج کرده و به صورت عددی مورد استفاده قرار می دهد.

کلمات کلیدی– تشخیص پلاک خودرو، تشخیص کاراکتر نوری، پردازش تصویر، OCR

فایل PDF – در 7 صفحه- نویسنده : مریم زارع

تشخیص پلاک خودرو

پسورد فایل : behsanandish.com


تشخیص اتوماتیک پلاک خودرو فارسی به کمک روش های پردازش تصویر و شبکه های عصبی

چکیده- شماره پلاک خودرو یکی از مناسب ترین اقلام اطلاعاتی جهت احراز هویت خودروها می باشد. سیستم تشخیص پلاک خودرو یک سیستم مکانیزه است که با عکس گرفتن از خودروها، شماره پلاک آنها را استخراج می کند.روشی که در این مقاله استفاده شده شامل دو قسمت می باشد. در قسمت اول با استفاده از لبه یابی و عملیات مورفولوژی محل پلاک شناسایی شده و در قسمت دوم با استفاده از شبکه عصبی هاپفیلد کاراکترها شناسایی می شوند. این روش بر روی 500 تصویر مختلف از نظر پس زمینه، فاصله و زاویه دید مورد آزمایش قرار گرفته است، که نرخ استخراج صحیح پلاک را 95% و همچنین نرخ خواندن صحیح پلاک را 90% بدست آوردیم.

کلمات کلیدی– تشخیص پلاک خودرو، شبکه عصبی هاپفیلد، عملیات مورفولوژی، لبه یابی، هیستوگرام.

فایل PDF – در 8 صفحه- نویسندگان : محمدصادق معمارزاده، همایون مهدوی نسب، پیمان معلم.

تشخیص اتوماتیک پلاک خودرو فارسی به کمک روش های پردازش تصویر و شبکه عصبی

پسورد فایل : behsanandish.com


روش ﺟﺪﯾﺪ ﻣﮑﺎنﯾﺎﺑﯽ ﭘﻼك ﺧﻮدرو در ﺗﺼﺎوﯾﺮ رﻧﮕﯽ

ﭼﮑﯿﺪه – اﯾﻦ ﻣﻘﺎﻟه روش ﺟدﯾﺪی ﺟﻬﺖ ﻣﮑﺎنﯾﺎﺑﯽ ﭘﻼك ﺧﻮدرو اراﺋﻪ میﮐﻨﺪ. روش پیشنهادی ﺑﻪ ﻋﻠﺖ ﻋﺪم اﺳﺘﻔﺎده از  عملیاتﻫﺎي ﭘﺮﻫﺰﯾﻨﻪ ﭘﺮدازش ﺗﺼﻮﯾﺮ، داراي ﺳﺮﻋﺖ پاسخگویی ﺑﺎلاتري نسبت ﺑﻪ روشﻫﺎی ﻣﺸﺎﺑﻪ اﺳﺖ. روش ﭘﯿﺸﻨﻬﺎدي در اﯾﻦ ﻣﻘﺎﻟﻪ، ﻣﺒﺘﻨﯽ ﺑﺮ ﺷﻨﺎﺳﺎﯾﯽ اﻟﮕﻮ و ﺑﻮده و ﺑﺎ اﺳﺘﻔﺎده از پیمایش ﺳﺘﻮﻧﯽ ﺑﺮاي ﯾﺎﻓﺘﻦ اﻟﮕﻮﯾﯽ اﺳﺘﺎﻧﺪارد در ﺗﺼﻮﯾﺮ رنگی، ﭘﻼك ﺧﻮدرو را ﻣﮑﺎن یابی و آن را از تصویر اﺳﺘﺨﺮاج می کند. از ﺧﺼﻮﺻﯿﺎت روش ﻣﺬﮐﻮر، ﺳﺮﻋﺖ ﺑﺎلای ﭘﺮدازش و ﭘﺎﺳﺦ گویی ﺳﺮﯾﻊ، قابلیت ﻧﺼﺐ و اﺟـﺮ در ریزپردازنده ها، ﻗﺎبلیت شناسایی چندین پلاک ﻣﻮﺟﻮد دریک تصویر و پردازش بر روی تصویر رنگی بدون تغییر اندازه ی آن، ﻣﯽﺑﺎﺷﺪ. روش اراﺋﻪ ﺷﺪه، دارای کاربردهای عملی از قبیل صدور برگ جریمه الکترونیکی، اﯾﺠﺎد ﺳﺎﻣﺎﻧﮥ ﻫﻮﺷﻤﻨﺪ ﭘﺮداﺧﺖ ﻋﻮارض، کنترل ﺗﻮﻧﻞ ﻫﺎ، بزرگراه ها، پارکینگ ها، ﻣﺤﺪوده ﻃﺮح ترافیک و ﻏﯿﺮه، ﻣﯽﺑﺎﺷﺪ. ﻧﺘﺎﯾﺞ آزﻣﺎﯾﺸﺎت ﺑﺮ روي ﯾﮏ ﻣﺠﻤﻮﻋﻪ داده دﻟﺨﻮاه از ﺗﺼﺎوﯾﺮ دورﺑﯿﻦﻫﺎي ﮐﻨﺘﺮل ﺳﺮﻋﺖ در ﺑﺰرﮔﺮاه ﻫﺎي ﮐﺸﻮر، ﮐﺎراﯾﯽ، دﻗﺖ، اﻃﻤﯿﻨﺎن و ﺳﺮﻋﺖ ﺳﯿﺴﺘﻢ ﭘﯿﺸﻨﻬﺎدي را ﺗﺎﯾﯿﺪ ﮐﺮد ﺑﻪ ﻃﻮري ﮐﻪ در آزﻣﺎﯾﺸﺎت  دﻗـﺖ تشخیص 96 درصد را به خود اختصاص داده است.

کلمات کلیدی– مکان یابی پلاک خودرو، تشخیص پلاک خودرو، شناسایی الگو.

فایل PDF – در 6 صفحه- نویسندگان : امیرحسین اشتری و محمود فتحی.

روش جدید مکانیابی پلاك خودرو در تصاویر رنگی

پسورد فایل : behsanandish.com


شرکت بهسان اندیش تولید کننده سامانه های هوشمند مفتخر به تولید یکی از دقیقترین و سریعترین سامانه های جامع کنترل تردد خودرو می باشد که می توانید جهت آشنایی با قابلیت ها و امکانات این محصول به لینک :سامانه جامع کنترل تردد خودرو بهسان(پلاک خوان) مراجعه فرمایید.


ﺭﻭﺷﯽ ﺟﺪﻳﺪ ﻭ ﺳﺮﻳﻊ ﺑﺮﺍﯼ ﺗﺸﺨﻴﺺ ﻣﺤﻞ ﭘﻼﮎ ﺧﻮﺩﺭﻭ ﺍﺯ ﺗﺼﺎﻭﻳﺮ ﭘﻴﭽﻴﺪﻩ ﺑﺮ ﺍﺳﺎﺱ ﻋﻤﻠﻴﺎﺕ ﻣﻮﺭﻓﻮﻟﻮﮊﻳﮑﯽ

 ﭼﮑﻴﺪﻩ – ﺗﺸﺨﻴﺺ ﻣﺤﻞ ﭘﻼﮎ ﺧﻮﺩﺭو ﻣﻬﻤﺘﺮﻳﻦ ﻣﺮﺣﻠﻪ ﺷﻨﺎﺳﺎﻳﯽ ﭘﻼک ﺧﻮﺩﺭو ﺩﺭ ﺳﻴﺴﺘﻤﻬﺎﯼ حمل ﻭ ﻧﻘﻞ هوشمند ﺍﺳﺖ . ﺩﺭ ﺍﻳﻦ ﻣﻘﺎﻟﻪ روشی  بلادرنگ ﻭ ﺳﺮﻳﻊ ﺑﺮﺍﯼ ﭘﻴﺪﺍ ﮐﺮﺩﻥ ﭘﻼﮎ ﺧﻮﺩﺭﻭﻫﺎ ﺩﺭ ﺗﺼﺎﻭﻳﺮ ﭘﻴﭽﻴﺪﻩ ﻣﻌﺮﻓﯽ ﻣﯽ شود. ﺩﺭ ﺍﻟﮕﻮﺭﻳﺘﻢ ﭘﻴﺸﻨﻬﺎﺩﯼ ﺍﺑﺘﺪﺍ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻋﻤﻠﮕﺮ ﺳﻮﺑﻞ ﺍﻗﺪﺍﻡ ﺑﻪ ﻳﺎﻓﺘﻦ لبه ﻫﺎﯼ ﻋﻤﻮﺩﯼ ﺗﺼﻮﻳﺮ می ﮐﻨﻴﻢ، ﺳﭙﺲ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ تحلیل ﻫﻴﺴﺘﻮﮔﺮﺍﻡ ﻭ ﺗﺮﮐﻴﺒﯽ ﺍﺯ ﻋﻤﻠﮕﺮﻫﺎﯼ ﻣﻮﺭﻓﻮﻟﻮﮊیکی ﭘﻼک ﺧﻮﺩﺭﻭ ﺭﺍ ﺍﺯ ﺗﺼﻮﻳﺮ ﺍﺳﺘﺨﺮﺍﺝ می کنیم.ﺭﻭﺵ ﭘﻴﺸﻨﻬﺎﺩﯼ را ﺭﻭﯼ پاﻳﮕﺎﻩ ﺩﺍﺩﻩ ﺍﯼ ﺷﺎﻣﻞ 300 ﺗﺼﻮﻳﺮ ﻣﺨﺘﻠﻒ ﺍﺯ نظر ﭘﺲ ﺯﻣﻴﻨﻪ، ﺍﻧﺪﺍﺯﻩ، ﻓﺎﺻﻠﻪ، ﺯﺍﻭﻳﻪ ﺩﻳﺪ ﻭ ﺷﺮﺍﻳﻂ ﻧﻮﺭی ﻣﻮﺭﺩ ﺁﺯﻣﺎﻳﺶ ﻗﺮﺍﺭ ﺩﺍﺩﻩ ﻭ ﻧﺮﺥ ﺍﺳﺘﺨﺮﺍﺝ ﺻﺤﻴﺢ ﭘﻼﮎ  را 81/3% بدست آوردیم.
کلمات کلیدی– تشخیص محل، پلاک خودرو، ﻫﻴﺴﺘﻮﮔﺮﺍﻡ، ﻋﻤﻠﻴﺎﺕ ﻣﻮﺭﻓﻮﻟﻮﮊﻳﮑﯽ.
فایل PDF – در 7 صفحه- نویسندگان : فرهاد فرجی و رضا صفابخش

ﺭﻭﺷﯽ ﺟﺪﻳﺪ ﻭ ﺳﺮﻳﻊ ﺑﺮﺍﯼ ﺗﺸﺨﻴﺺ ﻣﺤﻞ ﭘﻼﮎ ﺧﻮﺩﺭﻭ ﺍﺯ ﺗﺼﺎﻭﻳﺮ ﭘﻴﭽﻴﺪﻩ ﺑﺮ ﺍﺳﺎﺱ ﻋﻤﻠﻴﺎﺕ ﻣﻮﺭﻓﻮﻟﻮﮊﻳﮑﯽ

پسورد فایل : behsanandish.com


شناسایی پلاک خودروهای ایرانی با روش جایابی فازی پلاک

چکیده– یکی از مهم ترین زیرسامانه های حمل و نقل هوشمند، سامانه ی تشخیص و شناسایی پلاک خودرو است. دشواری تشخیص و شناسایی صحیح پلاک خودرو در شرایط مختلف محیطی موجب شده تا پژوهش در این زمینه ی پژوهشی هم چنان ادامه داشته باشد. مسئله ی تشخیص پلاک خودرو را می توان به سه زیر مسئله ی “جایابی پلاک”، “استخراج نویسه های پلاک” و “شناسایی نویسه ها” تقسیم کرد. در این مقاله تلاش شده به کمک قواعد فازی، الگوریتم های جایابی پلاک خودروهای ایرانی و شناسایی نویسه های آن بهبود یابد. جایابی پلاک با لبه یابی، تحلیل ریخت شناسانه و استفاده از قواعد فازی و شناسایی نویسه ها با استفاده از ماشین بردار پشتیبانی فازی انجام شده است. با آزمایش الگوریتم یاد شده بر روی پنجاه تصویر صحت جایابی پلاک خودرو 90 درصد و صحت شناسایی نویسه ها 94 درصد به دست آمد که در مقایسه با روش های مرسوم توانمندی چشمگیری دارد.

کلمات کلیدی– پلاک خودروف شناسایی الگو، ماشین بردار پشتیبانی، نظریه ی فازی.

فایل PDF – در 10 صفحه- نویسندگان : غلامعلی منتظر و محمد شایسته فر

شناسایی پلاک خودروهای ایرانی با روش جایابی فازی پلاک

پسورد فایل : behsanandish.com


Vehicle License Plate Identification & Recognition

شناسایی و به رسمیت شناختن شماره پلاک خودرو

Abstract- Existing vehicle license plate identification and recognition systems are potent for either their accuracy
or speed but not a combination of both. The algorithm proposed in this dissertation attempts to achieve
this fine balance between the accuracy and speed that such a system must posses. The mathematical
morphology operators of dilation and erosion are utilized to identify the region within an image which
contains the license plate. Using the concept of color coherence vectors, an image recognition algorithm
is presented which utilizes this extracted region and compares it as a whole to other images of license
plates, in the database. The application developed for the testing of this algorithm works with an
accuracy of eighty eight percent and an average processing time of two seconds per image.
Key Words and Phrases: Vehicle license plate recognition, color coherence vectors, mathematical
morphology

فایل PDF – در 10 صفحه- نویسندگان : SANJAY GOEL, PRIYANK SINGH

Vehicle License Plate Identification & Recognition

پسورد فایل : behsanandish.com


Sensor network based vehicle classification and license plate identification system

طبقه بندی وسایل نقلیه بر اساس شبکه حسگر و سیستم شناسایی پلاک وسایل نقلیه

Abstract—Typically, for energy efficiency and scalability purposes, sensor networks have been used in the context of environmental and traffic monitoring applications in which operations at the sensor level are not computationally intensive. But increasingly, sensor network applications require data and compute intensive sensors such video cameras and microphones. In this paper, we describe the design and implementation of two such systems: a vehicle classifier based on acoustic signals and a license plate identification system using a camera. The systems are implemented in an energy-efficient manner to the extent possible using commercially available hardware, the Mica motes and the Stargate platform. Our experience in designing these systems leads us to consider an alternate more flexible, modular, low-power mote architecture that uses a combination of FPGAs, specialized embedded processing units and sensor data acquisition systems.
Keywords: wireless sensor networks, seismic, acoustic vehicle classification, license plate detection

فایل PDF – در 4 صفحه- نویسندگان :Jan Frigo, Vinod Kulathumani, Sean Brennan∗, Ed Rosten, Eric Raby

Sensor network based vehicle classification and

پسورد فایل : behsanandish.com


Real Time Automatic License Plate Recognition in Video Streams

تشخیص خودکار زمان واقعی شماره پلاک وسایل نقلیه در جریان های ویدیویی

Abstract
In recent years there has been an increased commercial interest in systems for automatic license plate recognition. Some of the existing systems process single images only, some even requiring vehicles to stop in front of a gate so that a still image of good quality can be taken. This thesis presents an approach that makes it possible to process 25 images per second on a standard PC from 2004, allowing identication decisions to be based on information from several images instead of just a single one. Thus, the impact of a single bad image is reduced, and vehicles can be allowed to drive past the camera without hindrance. In order to reach the necessary processing speed, a simplied StauerGrimson background estimation algorithm has been used, enabling the system to only search for license plates on objects that are in motion. The main method for nding license plates has been a computational-wise economical connected component labeling algorithm. A basic pixel-by-pixel comparison OCR algorithm %has also been implemented. A real life test running for twelve days has shown the complete system to have a rate of successful identification at 80 .

فایل PDF – در 28 صفحه- نویسنده : Fredrik Trobro

Real Time Automatic License Plate Recognition

پسورد فایل : behsanandish.com


Proposal for Automatic License and Number Plate Recognition System for Vehicle Identification

طرح پیشنهادی برای سیستم شناسایی خودکار شماره پلاک و مجوز برای شناسایی خودرو

Abstract— In this paper, we propose an automatic and mechanized license and number plate recognition (LNPR) system which can extract the license plate number of the vehicles passing through a given location using image processing algorithms. No additional devices such as GPS or radio frequency identification (RFID) need to be installed for implementing the proposed system. Using special cameras, the system takes pictures from each passing vehicle and forwards the image to the computer for being processed by the LPR software. Plate recognition software uses different algorithms such as localization, orientation, normalization, segmentation and finally optical character recognition (OCR). The resulting data is applied to compare with the records on a database. Experimental results reveal that the presented system successfully detects and recognizes the vehicle number plate on real images. This system can also be used for security and traffic control.

(Keywords— License and number plate recognition (LNPR) system, image processing, orientation, normalization, segmentation, identification, optical character recognition (OCR

فایل PDF – در 5 صفحه- نویسنده : Hamed Saghaei

Proposal for Automatic License and Number Plate

پسورد فایل : behsanandish.com


LICENSE PLATE MATCHING TECHNIQUES

تکنیک های انطباق پلاک وسیله نقلیه

فایل PDF – در 42 صفحه- نویسنده : U.S.Department of Transportation-Federal Highway Administration(وزارت راه و ترابری آمریکا-مدیریت بزرگراه فدرال)

LICENSE PLATE MATCHING TECHNIQUES

پسورد فایل : behsanandish.com


Development of a New Automatic License Plate Recognition (LPR) System

توسعه یک سیستم تشخیص پلاک خودکار جدید

ABSTRACT In Japan, automatic license plate recognition systems have been used for more than ten years for the purposes of measuring the travel time of vehicles and for some applications which need detailed plate information identification. Due to their efficacy, they are now being utilized throughout the country. Ordinarily, compared to when used for travel time measurements, considering the types of uses for the number information, higher recognition accuracy is often desired when used for some applications which need detailed plate information identification. We have advanced the development of number plate reading for the purpose of travel time measurement applications, refining these technologies for their application to other various applications. In order to fulfill the requirements expected to be met for various applications, we have implemented a variety of innovations in both software and hardware and developed a new LPR system that has many features such as high recognition rate, low false rate, compact design and high reliability by image processing algorithms and an advanced camera unit. We will seek to expand abroad by applying these technologies.

KEYWORDS: Automatic license plate recognition, Automatic number plate recognition, Automatic vehicle identification, Image processing, Vehicle detection, Plate extraction, Character recognition

فایل PDF – در 10 صفحه- نویسنده : Takehiko Kato ,Masatoshi Asada , Kayo Tanaka , Yusuke Yasuhara, Toshihiro Asai , Yasuo Ogiuchi

Development of a New Automatic License Plate Recognition (LPR) System

پسورد فایل : behsanandish.com


Development of a License Plate Number Recognition System Incorporating LowResolution Cameras

توسعه یک سیستم شناسایی شماره پلاک شامل دوربین های با رزولوشن پایین

A multi-lane free flow (MLFF) toll collection system installed on a simplified gantry requires compact cameras for supervising enforcement. Because these compact cameras have low image resolution, it is also necessary to develop vehicle license plate recognition technology that uses dynamic image processing. Mitsubishi Heavy Industries, Ltd. (MHI) has developed three technologies based on the conventional license plate recognition system using still images; these technologies improve image quality, process plural images of a single vehicle, and utilize a reference database. Laboratory evaluation tests have verified that even a lowresolution camera system can successfully recognize license plate numbers at a rate of 95% or better, comparable to results from the conventional still image system. MHI is enhancing system robustness to enable application of these technologies to actual products.

فایل PDF – در 5 صفحه- نویسنده : KENTA NAKAO, KIICHI SUGIMOTO, MAYUMI SAITOH, TAKUMA OKAZAKI

Development of a License

پسورد فایل : behsanandish.com


Automatic Number Plate Recognition System

سیستم شناسایی شماره پلاک خودکار

Abstract. Automatic recognition of car license plate number became a very important in our daily life because of the unlimited increase of cars and transportation systems which make it impossible to be fully managed and monitored by humans, examples are so many like traffic monitoring, tracking stolen cars, managing parking toll, red-light violation enforcement, border and customs checkpoints. Yet it’s a very challenging problem, due to the diversity of plate formats, different scales, rotations and non-uniform illumination conditions during image acquisition. This paper mainly introduces an Automatic Number Plate Recognition System (ANPR) using Morphological operations, Histogram manipulation and Edge detection Techniques for plate localization and characters segmentation. Artificial Neural Networks are used for character classification and recognition.
2010 Mathematics Subject Classification. Primary 68T10; Secondary 68T45.

Key words and phrases. license plate recognition, plate region extraction, segmentation, neural networks, optical character recognition, Hough transform, ANPR.

فایل PDF – در 10 صفحه- نویسنده :Amr Badr, Mohamed M. Abdelwahab, Ahmed M. Thabet, and Ahmed M. Abdelsadek

Automatic Number Plate Recognition System

پسورد فایل : behsanandish.com


Automatic License Plate Recognition

شناسایی شماره پلاک خودکار

فایل PDF – در 5 صفحه- نویسنده :Jason Grant

Automatic License Plate Recognition

پسورد فایل : behsanandish.com


A Real-Time Mobile Vehicle License Plate Detection and Recognition

یک تشخیص و ردیابی شماره پلاک وسایل نقلیه موبایل زمان واقعی

Abstract
In this paper we present a instant and real-time mobile vehicle license plate recognition system in an open environment. Using a nonfixed video camera installed in the car, the system tries to capture the image of the car in front and to process instant vehicle license plate detection and recognition. We utilize the color characteristics of the barking lights to carry out license plate detection. We first detect the location of the two barking lights in the captured image. Then set license plate detection region using the probability distribution of the license plate between the two lights. This method can eliminate any environmental interference during the license plate detection and improve the rate of accuracy of license plate detection and recognition. Moreover, we use the morphology method Black Top-Hat to enhance the level of separation of the license plate characters. Experiments show that the system can effectively and quickly capture the vehicle image,detect and recognize the license plate whether it is in daytime, nighttime, clear day, raining day or under complicated environment.
Key Words: Real-Time, Wavelet, License Plate, Black Top-Hat

فایل PDF – در 10 صفحه- نویسنده :Kuo-Ming Hung and Ching-Tang Hsieh

A Real-Time Mobile Vehicle License Plate

پسورد فایل : behsanandish.com

OCR چیست

OCR سرنام اصطلاحی است كه صورت كامل آن در واژه‌نامه انگلیسی Optical Character Recognition و به معنی بازشناسایی كاراكتر نوری است.
فرض كنید كه ما متنی را روی كاغذ داریم و می‌خواهیم آن را وارد رایانه كنیم. اولین روشی كه به ذهن می‌رسد این است كه متن را به تایپیست بدهیم تا با كامپیوتر تایپ كند. اما آیا می‌شود عین همان متن را وارد رایانه بكنیم تا نیازی به تایپ نباشد؟ البته دستگاه «اسكنر» می‌تواند تصویری از آن متن را وارد رایانه كند، تا اینجا بخشی از مشكل ما حل شده است. اما رایانه كه نه عقلی دارد و نه «زبان» می‌فهمد، نمی‌تواند حروف و كلمات را از هم تشخیص دهد. مثلاً اگر از كامپیوتر بخواهیم به ما بگوید كه در متن اسكن‌شده كلمة «علی» چند بار آمده است، بی‌آنكه شرمنده شود، می‌گوید: «error»، یعنی: «نمی‌توانم تشخیص بدهم!» در واقع این «تصویر دیجیتال‌شده» باید به «تصویر قابل پردازش» تبدیل شود. موضوع اصلی OCR همین است.

فرض كنید كه مثلاً می‌خواهیم متن مقالات روزنامه اطلاعات سال 1340 شمسی را (كه اكنون نه تنها فایل تایپی‌اش موجود نیست ــ چون آن زمان اصلاً تایپ كامپیوتری در كار نبود! ــ بلكه خود نسخه‌های روزنامه را هم به زحمت می‌توان پیدا كرد) تایپ دیجیتالی كنیم، و این متن‌ها را داخل بسته‌های نرم‌افزاری یا اینترنت قرار دهیم. اگر هر شماره از روزنامه را 24 صفحه فرض كنیم، و هر تایپیست بتواند در هر روز حداكثر یك صفحه از آن صفحات كاهی و كهنه شدة قدیمی را دوباره تایپ كند، مجموعاً 24 روز لازم است تا تنها مقالات یك شماره از روزنامه تایپ شود. بنابراین در عرض یك سال یك نفر می‌تواند تنها 15 شماره از روزنامه را تایپ كند.

حال اگر نرم‌افزاری باشد كه بتواند با اسكن كردن هر صفحة روزنامه، به طور خودكار مقالات آن را تایپ كند، تحولی عظیم رخ می‌دهد، یعنی مطالب و مقالات هزاران شماره از روزنامه‌های قدیمی به سرعت وارد فایل‌های رایانه‌ای می‌شود. حال این امكان را تعمیم بدهید به هزاران كتاب و دست نویس‌های قدیمی یا جدید، كه هر كس بخواهد تنها یك صفحه از آنها را تایپ كند، باید كلی وقت صرف كند. می‌بینید كه نرم‌افزار OCR به راستی می‌تواند هزاران هزار روز در وقت ما صرفه‌جویی كند، و البته هزینه‌ها را هم كاهش دهد. البته فقط یك مشكل كوچك به وجود می‌آید و آن بیكار شدن تایپیست‌هاست! قبل از اینکه وارد مبحث  «OCR» شویم، لازم است اشاره مختصری به حوزه های بازشناسی الگو داشته باشیم .

 ﺷﻨﺎﺳﺎﻳﻲ ﺍﻟﮕﻮ 

ﺷﻨﺎﺳﺎﻳﻲ ﺍﻟﮕﻮ ﺷﺎﺧﻪ ای اﺯ ﻫﻮﺵ ﻣﺼﻨﻮﻋﻲ است كه با ﻃﺒﻘﻪ بندی (ﻛﻼﺳﻪ ﺑﻨﺪﻱ) ﻭ ﺗﻮﺻﻴﻒ ﻣﺸﺎﻫﺪﺍﺕ ﺳﺮﻭﻛﺎﺭ ﺩﺍﺭﺩ.  ﺷﻨﺎﺳﺎﻳﻲ ﺍﻟﮕﻮ ﺑﻪ ﻣﺎ ﻛﻤﻚ ﻣﻲ ﻛﻨﺪ ﺗﺎ ﺩﺍﺩﻩ ها ( ﺍﻟﮕﻮﻫﺎ ) ﺭﺍ ﺑﺎ ﺗﻜﻴﻪ ﺑﺮ ﺩﺍﻧﺶ ﻗﺒﻠﻲ ﻳﺎ اطلاعات ﺁﻣﺎﺭﻱ ﺍﺳﺘﺨﺮﺍﺝ ﺷﺪﻩ ﺍﺯ ﺍﻟﮕﻮﻫﺎ، ﻃﺒﻘﻪ ﺑﻨﺪﻱ ﻧﻤﺎﻳﻴﻢ. ﺍﻟﮕﻮﻫﺎﻳﻲ ﻛﻪ ﻣﻲ ﺑﺎﻳﺴﺖ ﻛﻼﺳﻪ ﺑﻨﺪﻱ شوند،  ﻣﻌﻤﻮﻻً گروهی ﺍﺯ ﺳﻨﺠﺸﻬﺎ ﻳﺎ ﻣﺸﺎﻫﺪﺍﺕ ﻫﺴﺘﻨﺪ ﻛﻪ ﻣﺠﻤﻮﻋﻪ ﻧﻘﺎﻃﻲ ﺭﺍ ﺩﺭ ﻳﻚ ﻓﻀﺎﻱ ﭼﻨﺪ ﺑﻌﺪﻱ ﻣﻨﺎﺳﺐ ﺗﻌﺮﻳﻒ ﻣﻲ ﻧﻤﺎﻳﻨﺪ.

ﻳﻚ ﺳﻴﺴﺘﻢ ﺷﻨﺎﺳﺎﻳﻲ ﺍﻟﮕﻮﻱ ﻛﺎﻣﻞ ﻣﺘﺸﻜﻞ ﺍﺳﺖ ﺍﺯ ﻳﻚ ﺣﺴﮕﺮ ﻛﻪ ﻣﺸﺎﻫﺪﺍﺗﻲ ﺭﺍ ﻛﻪ ﻣﻲبایست ﺗﻮﺻﻴﻒ ﻳﺎ ﻛﻼﺳﻪ بندی گردند جمع آوری می نماید، ﻳﻚ ﻣﻜﺎﻧﻴﺰﻡ ﺍﺳﺘﺨﺮﺍﺝ ﻭﻳﮋﮔﻴﻬﺎ كه اطلاعات عددی ﻳﺎ ﻧﻤﺎﺩﻳﻦ ( ﺳﻤﺒﻮﻟﻴﻚ ) ﺭﺍ ﺍﺯ ﻣﺸﺎﻫﺪﺍﺕ ﻣﺤﺎﺳﺒﻪ می كند و  ﻳﻚ ﻧﻈﺎﻡ ﻛﻼﺳﻪ بندی یا ﺗﻮﺻﻴﻒ ﺍﻟﮕﻮﻫﺎ ﺭﺍ ﺑﺎ ﺗﻜﻴﻪ ﺑﺮ ﻭﻳﮋﮔﻴﻬﺎﻱ ﺍﺳﺘﺨﺮﺍﺝ ﺷﺪﻩ ﻋﻬﺪﻩ دار است. شكل زیر ﺑﻠﻮﻙ ﺩﻳﺎﮔﺮﺍﻡ ﻳﻚ ﺳﻴﺴﺘﻢ ﺷﻨﺎﺳﺎﻳﻲ ﺍﻟﮕﻮ ﺭﺍ ﻧﺸﺎﻥ می دهد همانطور كه از ﭘﻴﻜﺎﻧﻬﺎﻱ ﺑﺮﮔﺸﺘﻲ ﻣﺸﺨﺺ ﺍﺳﺖ، ﺍﻳﻦ ﺑﻠﻮﻛﻬﺎ ﻟﺰﻭﻣﺎً ﻣﺴﺘﻘﻞ ﻧﻴﺴﺘﻨﺪ ﻭ ﺑﺴﺘﻪ ﺑﻪ ﻧﺘﺎﻳﺞ ﺣﺎﺻﻠﻪ ﻣﻤﻜﻦ ﺍﺳﺖ ﻻﺯﻡ ﺑﺎﺷﺪ ﻛﻪ ﺑﻠﻮكﻫﺎﻱ ﺍﻭﻟﻴﻪ ﻣﺠﺪﺩﺍً ﻃﺮﺍﺣﻲ ﮔﺮﺩﻧﺪ ﺗﺎ ﺭﺍﻧﺪﻣﺎﻥ ﻛﻠﻲ ﺳﻴﺴﺘﻢ ﺑﻬﺒﻮﺩ ﻳﺎﺑﺪ.
ﺑﺎﺯﺷﻨﺎﺳﻲ ﺍﻟﮕﻮ ﺩﺭ ﺑﺴﻴﺎﺭﻱ ﺍﺯ ﺯﻣﻴﻨﻪها ﻧﻘﺶ ﻛﺎﺭبردی دارد. ﺑﺎﺯﺷﻨﺎﺳﻲ ﺣﺮﻭﻑ، ﺑﺎﺯﺷﻨﺎﺳﻲ  ﻧﻮﻳﺴﻨﺪﻩ ﺗﺼﺪﻳﻖ ﺍﻣﻀﺎﺀ ، ﻃﺒﻘﻪ ﺑﻨﺪﻱ ﺍﺛﺮ ﺍﻧﮕﺸﺖ ﻭ ﺑﺎﺯﺷﻨﺎﺳﻲ ﮔﻔﺘﺎﺭ ﻧﻤﻮﻧﻪ ﻫﺎﻳﻲ ﺍﺯ ﺍﻳﻦ ﻛﺎﺭﺑﺮﺩﻫﺎ ﻫﺴﺘﻨﺪ.

 ﺑﺎﺯﺷﻨﺎﺳﻲ ﻧﻮﺭﻱ ﺣﺮﻭﻑ OCR

ﺩﺭ ﭼﻨﺪ ﺩﻫﺔ ﮔﺬﺷﺘﻪ مسئله ﺑﺎﺯﺷﻨﺎﺳﻲ ﺍﻟﮕﻮﻫﺎﻱ ﻧﻮﺷﺘﺎﺭﻱ ﺷﺎﻣﻞ ﺣﺮﻭﻑ، ﺍﺭﻗﺎﻡ ﻭ ﺳﺎﻳﺮ ﻧﻤﺎﺩﻫﺎﻱ ﻣﺘﺪﺍﻭﻝ ﺩﺭ ﺍﺳﻨﺎﺩ ﻣﻜﺘﻮﺏ ﺷﺪﻩ ﺑﻪ ﺯﺑﺎﻧﻬﺎﻱ ﻣﺨﺘﻠﻒ، ﺗﻮﺳﻂ ﮔﺮﻭﻫﻬﺎﻱ ﻣﺨﺘﻠﻔﻲ ﺍﺯ ﻣﺤﻘﻘﻴﻦ ﻣﻮﺭﺩ ﻣﻄﺎلعه و ﺑﺮﺭﺳﻲ ﻗﺮﺍﺭ ﮔﺮﻓﺘﻪ ﺍﺳﺖ ﻧﺘﻴﺠه ﺍﻳﻦ ﺗﺤﻘﻴﻘﺎﺕ ﻣﻨﺠﺮ ﺑﻪ ﭘﻴﺪﺍﻳﺶ ﻣﺠﻤﻮﻋﻪ ﺍﻱ ﺍﺯ ﺭﻭﺷﻬﺎﻱ ﺳﺮﻳﻊ ﻭ ﺗﺎ ﺣﺪ ﺯﻳﺎﺩﻱ ﻣﻄﻤﺌﻦ ﻣﻮﺳﻮﻡ ﺑﻪ OCR یا « ﺑﺎﺯﺷﻨﺎﺳﻲ ﻧﻮﺭﻱ ﺣﺮﻭﻑ » ﺑﻤﻨﻈﻮﺭ ﻭﺍﺭﺩ ﻧﻤﻮﺩﻥ اطلاعات ﻣﻮﺟﻮﺩ ﺩﺭ  ﺍﺳﻨﺎﺩ، ﻣﺪﺍﺭﻙ، ﻛﺘﺎﺑﻬﺎ ﻭ ﺳﺎﻳﺮ ﻣﻜﺘﻮﺑﺎﺕ ﭼﺎﭘﻲ ﻳﺎ ﺗﺎﻳﭗ ﺷﺪﻩ ﻭ ﺣﺘﻲ ﺩﺳﺘﻨﻮﻳﺲ ﺑﻪ ﺩﺍﺧﻞ ﻛﺎﻣﭙﻴﻮﺗﺮ ﺷﺪﻩ ﺍﺳﺖ  ﻫﻨﮕﺎﻣﻲ ﻛﻪ ﻳﻚ ﺳﻨﺪ ﻣﺘﻨﻲ ﺍﺳﻜﻦ ﻣﻲ ﺷﻮﺩ، ﻛﺎﻣﭙﻴﻮﺗﺮ ﺍﻳﻦ ﻣﺘﻦ ﺭﺍ ﺑﺼﻮﺭﺕ ﻳﻚ ﺗﺼﻮﻳﺮ ﮔﺮﺍﻓﻴﻜﻲ ﺗﺸﺨﻴﺺ ﻣﻲ ﺩﻫﺪ ﺩﺭ ﻧﺘﻴﺠﻪ ﻛﺎﺭﺑﺮﺍﻥ ﻗﺎﺩﺭ ﻧﺨﻮﺍﻫﻨﺪ ﺑﻮﺩ ﻛﻪ ﻣﺘﻦ ﻣﻮﺟﻮﺩ ﺩﺭ ﺗﺼﻮﻳﺮ ﺳﻨﺪ ﺭﺍ ﻭﻳﺮﺍﻳﺶ ﻧﻤﺎﻳﻨﺪ ﻭ ﻳﺎ ﺁﻥ ﺭﺍ ﻣﻮﺭﺩ ﺟﺴﺘﺠﻮ ﻗﺮﺍﺭ ﺩﻫﻨﺪ.   ﻳﻚ ﻧﺮﻡ ﺍﻓﺰﺍﺭ OCR ﺍﻳﻦ ﻣﺘﻦ ﺍﺳﻜﻦ ﺷﺪﻩ ﺭا ﺧﻮﺍﻧﺪﻩ و ﻣﺤﺘﻮﻳﺎﺕ ﺁﻧﺮﺍ  ﺷﻨﺎﺳﺎﻳﻲ ﻧﻤﻮﺩﻩ ﻭ ﺑﺼﻮﺭﺕ ﻳﻚ ﻓﺎﻳﻞ ﺩﺭ ﻛﺎﻣﭙﻴﻮﺗﺮ ﺫﺧﻴﺮﻩ ﻣﻲ ﺳﺎﺯﺩ.

مزیت های سیستم های OCR

استفاده از سیستم های  OCR دو مزیت عمده دارد:
الف) افزایش چشمگیر سرعت دسترسی به اطلاعات؛ زیرا در متن برخلاف تصویر، امکان جستجو و ویرایش وجود دارد.
ب) کاهش فضای ذخیره سازی؛ زیرا حجم فایل متنی استخراج شده از یک تصویر، معمولا بسیار کمتر از حجم خود فایل تصویری است.

ﭼﻨﻴﻦ ﻗﺎﺑﻠﻴﺘﻲ ﺍﻣﻜﺎﻥ ﺍﺳﺘﻔﺎﺩه ﮔﺴﺘﺮﺩﻩ ﺍﺯ ﻛﺎﻣﭙﻴﻮﺗﺮ ﺭﺍ ﺩﺭ ﭘﺮﺩﺍﺯﺵ ﺳﺮﻳﻊ ﺣﺠﻢ ﻭﺳﻴﻌﻲ ﺍﺯ ﺩﺍﺩﻩ ﻫﺎی ﻣﻜﺘﻮﺏ ﺗﻮﻟﻴﺪ ﺷﺪﻩ ﺗﻮﺳﻂ ﺍﺩﺍﺭه ﭘﺴﺖ ﻭ ﺷﺮﻛﺘﻬﺎ ﻭ ﻣﺆﺳﺴﺎﺕ ﻣﺨﺘﻠﻒ ﻧﻈﻴﺮ ﺑﺎﻧﻜﻬﺎ، ﺷﺮﻛﺘﻬﺎی ﺑﻴﻤﻪ و ﻣﺆﺳﺴﺎﺕ ﺧﺪﻣﺎﺕ ﻋﻤﻮﻣﻲ و ﺳﺎﻳﺮ ﻧﻬﺎﺩﻫﺎﻳﻲ ﻛﻪ ﺳﺎﻟﻴﺎﻧﻪ ﺑﺎ ﻣﻴﻠﻴﻮﻧﻬﺎ ﻣﻮﺭﺩ ﭘﺮﺩﺍﺧﺖ، ﺩﺭﻳﺎﻓﺖ ﻭ ﺣﺴﺎﺑﺮﺳﻲ ﺍﻣﻮﺭ ﻣﺸﺘﺮﻳﺎﻥ ﺧﻮﺩ ﻣﻮﺍﺟﻬﻨﺪ، ﻓﺮﺍﻫﻢ ﻣﻲ ﺁﻭﺭﺩ .

منبع