بایگانی برچسب برای: ردیابی

 

مرحله 3: ردیابی در امتداد لبه ها

گام بعدی در واقع این است که در امتداد لبه ها بر اساس نقاط قوت و جهت های لبه که قبلا محاسبه شده است ردیابی شود. هر پیکسل از طریق استفاده از دو تودرتو برای حلقه ها چرخه می زند. اگر پیکسل فعلی دارای قدرت شیب بیشتر از مقدار upperThreshold تعریف شده باشد، یک سوئیچ اجرا می شود. این سوئیچ توسط جهت لبه پیکسل فعلی تعیین می شود. این ردیف و ستون، پیکسل ممکن بعدی را در این جهت ذخیره می کند و سپس جهت لبه و استحکام شیب آن پیکسل را آزمایش می کند. اگر آن همان جهت لبه و  قدرت گرادیان بزرگتر از lowerThreshold را دارد، آن پیکسل به سفید و پیکسل بعدی در امتداد آن لبه آزمایش می شود. به این ترتیب هر لبه قابل توجه تیز تشخیص داده شده و به سفید تنظیم می شود در حالیکه تمام پیکسل های دیگر به سیاه تنظیم می شود.

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
#include "stdafx.h"
#include "tripod.h"
#include "tripodDlg.h"
 
#include "LVServerDefs.h"
#include "math.h"
#include <fstream>
#include <string>
#include <iostream>
#include <stdlib.h>
#include <stdio.h>
 
 
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif
 
using namespace std;
 
/////////////////////////////////////////////////////////////////////////////
// CAboutDlg dialog used for App About
 
class CAboutDlg : public CDialog
{
public:
    CAboutDlg();
 
// Dialog Data
    //{{AFX_DATA(CAboutDlg)
    enum { IDD = IDD_ABOUTBOX };
    //}}AFX_DATA
 
    // ClassWizard generated virtual function overrides
    //{{AFX_VIRTUAL(CAboutDlg)
    protected:
    virtual void DoDataExchange(CDataExchange* pDX);    // DDX/DDV support
    //}}AFX_VIRTUAL
 
// Implementation
protected:
    //{{AFX_MSG(CAboutDlg)
    //}}AFX_MSG
    DECLARE_MESSAGE_MAP()
};
 
CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
{
    //{{AFX_DATA_INIT(CAboutDlg)
    //}}AFX_DATA_INIT
}
 
void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
    CDialog::DoDataExchange(pDX);
    //{{AFX_DATA_MAP(CAboutDlg)
    //}}AFX_DATA_MAP
}
 
BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
    //{{AFX_MSG_MAP(CAboutDlg)
        // No message handlers
    //}}AFX_MSG_MAP
END_MESSAGE_MAP()
 
/////////////////////////////////////////////////////////////////////////////
// CTripodDlg dialog
 
CTripodDlg::CTripodDlg(CWnd* pParent /*=NULL*/)
    : CDialog(CTripodDlg::IDD, pParent)
{
    //{{AFX_DATA_INIT(CTripodDlg)
        // NOTE: the ClassWizard will add member initialization here
    //}}AFX_DATA_INIT
    // Note that LoadIcon does not require a subsequent DestroyIcon in Win32
    m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);
 
    //////////////// Set destination BMP to NULL first
    m_destinationBitmapInfoHeader = NULL;
 
}
 
////////////////////// Additional generic functions
 
static unsigned PixelBytes(int w, int bpp)
{
    return (w * bpp + 7) / 8;
}
 
static unsigned DibRowSize(int w, int bpp)
{
    return (w * bpp + 31) / 32 * 4;
}
 
static unsigned DibRowSize(LPBITMAPINFOHEADER pbi)
{
    return DibRowSize(pbi->biWidth, pbi->biBitCount);
}
 
static unsigned DibRowPadding(int w, int bpp)
{
    return DibRowSize(w, bpp) - PixelBytes(w, bpp);
}
 
static unsigned DibRowPadding(LPBITMAPINFOHEADER pbi)
{
    return DibRowPadding(pbi->biWidth, pbi->biBitCount);
}
 
static unsigned DibImageSize(int w, int h, int bpp)
{
    return h * DibRowSize(w, bpp);
}
 
static size_t DibSize(int w, int h, int bpp)
{
    return sizeof (BITMAPINFOHEADER) + DibImageSize(w, h, bpp);
}
 
/////////////////////// end of generic functions
 
 
void CTripodDlg::DoDataExchange(CDataExchange* pDX)
{
    CDialog::DoDataExchange(pDX);
    //{{AFX_DATA_MAP(CTripodDlg)
    DDX_Control(pDX, IDC_PROCESSEDVIEW, m_cVideoProcessedView);
    DDX_Control(pDX, IDC_UNPROCESSEDVIEW, m_cVideoUnprocessedView);
    //}}AFX_DATA_MAP
}
 
BEGIN_MESSAGE_MAP(CTripodDlg, CDialog)
    //{{AFX_MSG_MAP(CTripodDlg)
    ON_WM_SYSCOMMAND()
    ON_WM_PAINT()
    ON_WM_QUERYDRAGICON()
    ON_BN_CLICKED(IDEXIT, OnExit)
    //}}AFX_MSG_MAP
END_MESSAGE_MAP()
 
/////////////////////////////////////////////////////////////////////////////
// CTripodDlg message handlers
 
BOOL CTripodDlg::OnInitDialog()
{
    CDialog::OnInitDialog();
 
    // Add "About..." menu item to system menu.
 
    // IDM_ABOUTBOX must be in the system command range.
    ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);
    ASSERT(IDM_ABOUTBOX < 0xF000);
 
    CMenu* pSysMenu = GetSystemMenu(FALSE);
    if (pSysMenu != NULL)
    {
        CString strAboutMenu;
        strAboutMenu.LoadString(IDS_ABOUTBOX);
        if (!strAboutMenu.IsEmpty())
        {
            pSysMenu->AppendMenu(MF_SEPARATOR);
            pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);
        }
    }
 
    // Set the icon for this dialog.  The framework does this automatically
    //  when the application's main window is not a dialog
    SetIcon(m_hIcon, TRUE);         // Set big icon
    SetIcon(m_hIcon, FALSE);        // Set small icon
     
    // TODO: Add extra initialization here
 
    // For Unprocessed view videoportal (top one)
    char sRegUnprocessedView[] = "HKEY_LOCAL_MACHINE\\Software\\UnprocessedView";
    m_cVideoUnprocessedView.PrepareControl("UnprocessedView", sRegUnprocessedView, 0 );
    m_cVideoUnprocessedView.EnableUIElements(UIELEMENT_STATUSBAR,0,TRUE);
    m_cVideoUnprocessedView.ConnectCamera2();
    m_cVideoUnprocessedView.SetEnablePreview(TRUE);
 
    // For binary view videoportal (bottom one)
    char sRegProcessedView[] = "HKEY_LOCAL_MACHINE\\Software\\ProcessedView";
    m_cVideoProcessedView.PrepareControl("ProcessedView", sRegProcessedView, 0 );  
    m_cVideoProcessedView.EnableUIElements(UIELEMENT_STATUSBAR,0,TRUE);
    m_cVideoProcessedView.ConnectCamera2();
    m_cVideoProcessedView.SetEnablePreview(TRUE);
 
    // Initialize the size of binary videoportal
    m_cVideoProcessedView.SetPreviewMaxHeight(240);
    m_cVideoProcessedView.SetPreviewMaxWidth(320);
 
    // Uncomment if you wish to fix the live videoportal's size
    // m_cVideoUnprocessedView.SetPreviewMaxHeight(240);
    // m_cVideoUnprocessedView.SetPreviewMaxWidth(320);
 
    // Find the screen coodinates of the binary videoportal
    m_cVideoProcessedView.GetWindowRect(m_rectForProcessedView);
    ScreenToClient(m_rectForProcessedView);
    allocateDib(CSize(320, 240));
 
    // Start grabbing frame data for Procssed videoportal (bottom one)
    m_cVideoProcessedView.StartVideoHook(0);
 
    return TRUE;  // return TRUE  unless you set the focus to a control
}
 
void CTripodDlg::OnSysCommand(UINT nID, LPARAM lParam)
{
    if ((nID & 0xFFF0) == IDM_ABOUTBOX)
    {
        CAboutDlg dlgAbout;
        dlgAbout.DoModal();
    }
    else
    {
        CDialog::OnSysCommand(nID, lParam);
    }
}
 
// If you add a minimize button to your dialog, you will need the code below
//  to draw the icon.  For MFC applications using the document/view model,
//  this is automatically done for you by the framework.
 
void CTripodDlg::OnPaint()
{
    if (IsIconic())
    {
        CPaintDC dc(this); // device context for painting
 
        SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);
 
        // Center icon in client rectangle
        int cxIcon = GetSystemMetrics(SM_CXICON);
        int cyIcon = GetSystemMetrics(SM_CYICON);
        CRect rect;
        GetClientRect(&rect);
        int x = (rect.Width() - cxIcon + 1) / 2;
        int y = (rect.Height() - cyIcon + 1) / 2;
 
        // Draw the icon
        dc.DrawIcon(x, y, m_hIcon);
    }
    else
    {
        CDialog::OnPaint();
    }
}
 
// The system calls this to obtain the cursor to display while the user drags
//  the minimized window.
HCURSOR CTripodDlg::OnQueryDragIcon()
{
    return (HCURSOR) m_hIcon;
}
 
void CTripodDlg::OnExit()
{
    // TODO: Add your control notification handler code here
 
    // Kill live view videoportal (top one)
    m_cVideoUnprocessedView.StopVideoHook(0);
    m_cVideoUnprocessedView.DisconnectCamera();
     
    // Kill binary view videoportal (bottom one)
    m_cVideoProcessedView.StopVideoHook(0);
    m_cVideoProcessedView.DisconnectCamera();  
 
    // Kill program
    DestroyWindow();   
 
     
 
}
 
BEGIN_EVENTSINK_MAP(CTripodDlg, CDialog)
    //{{AFX_EVENTSINK_MAP(CTripodDlg)
    ON_EVENT(CTripodDlg, IDC_PROCESSEDVIEW, 1 /* PortalNotification */, OnPortalNotificationProcessedview, VTS_I4 VTS_I4 VTS_I4 VTS_I4)
    //}}AFX_EVENTSINK_MAP
END_EVENTSINK_MAP()
 
void CTripodDlg::OnPortalNotificationProcessedview(long lMsg, long lParam1, long lParam2, long lParam3)
{
    // TODO: Add your control notification handler code here
     
    // This function is called at the camera's frame rate
     
#define NOTIFICATIONMSG_VIDEOHOOK   10
 
    // Declare some useful variables
    // QCSDKMFC.pdf (Quickcam MFC documentation) p. 103 explains the variables lParam1, lParam2, lParam3 too
     
    LPBITMAPINFOHEADER lpBitmapInfoHeader; // Frame's info header contains info like width and height
    LPBYTE lpBitmapPixelData; // This pointer-to-long will point to the start of the frame's pixel data
    unsigned long lTimeStamp; // Time when frame was grabbed
 
    switch(lMsg) {
        case NOTIFICATIONMSG_VIDEOHOOK:
            {
                lpBitmapInfoHeader = (LPBITMAPINFOHEADER) lParam1;
                lpBitmapPixelData = (LPBYTE) lParam2;
                lTimeStamp = (unsigned long) lParam3;
 
                grayScaleTheFrameData(lpBitmapInfoHeader, lpBitmapPixelData);
                doMyImageProcessing(lpBitmapInfoHeader); // Place where you'd add your image processing code
                displayMyResults(lpBitmapInfoHeader);
 
            }
            break;
 
        default:
            break;
    }  
}
 
void CTripodDlg::allocateDib(CSize sz)
{
    // Purpose: allocate information for a device independent bitmap (DIB)
    // Called from OnInitVideo
 
    if(m_destinationBitmapInfoHeader) {
        free(m_destinationBitmapInfoHeader);
        m_destinationBitmapInfoHeader = NULL;
    }
 
    if(sz.cx | sz.cy) {
        m_destinationBitmapInfoHeader = (LPBITMAPINFOHEADER)malloc(DibSize(sz.cx, sz.cy, 24));
        ASSERT(m_destinationBitmapInfoHeader);
        m_destinationBitmapInfoHeader->biSize = sizeof(BITMAPINFOHEADER);
        m_destinationBitmapInfoHeader->biWidth = sz.cx;
        m_destinationBitmapInfoHeader->biHeight = sz.cy;
        m_destinationBitmapInfoHeader->biPlanes = 1;
        m_destinationBitmapInfoHeader->biBitCount = 24;
        m_destinationBitmapInfoHeader->biCompression = 0;
        m_destinationBitmapInfoHeader->biSizeImage = DibImageSize(sz.cx, sz.cy, 24);
        m_destinationBitmapInfoHeader->biXPelsPerMeter = 0;
        m_destinationBitmapInfoHeader->biYPelsPerMeter = 0;
        m_destinationBitmapInfoHeader->biClrImportant = 0;
        m_destinationBitmapInfoHeader->biClrUsed = 0;
    }
}
 
void CTripodDlg::displayMyResults(LPBITMAPINFOHEADER lpThisBitmapInfoHeader)
{
    // displayMyResults: Displays results of doMyImageProcessing() in the videoport
    // Notes: StretchDIBits stretches a device-independent bitmap to the appropriate size
 
    CDC             *pDC;   // Device context to display bitmap data
     
    pDC = GetDC(); 
    int nOldMode = SetStretchBltMode(pDC->GetSafeHdc(),COLORONCOLOR);
 
    StretchDIBits(
        pDC->GetSafeHdc(),
        m_rectForProcessedView.left,                // videoportal left-most coordinate
        m_rectForProcessedView.top,                 // videoportal top-most coordinate
        m_rectForProcessedView.Width(),             // videoportal width
        m_rectForProcessedView.Height(),            // videoportal height
        0,                                          // Row position to display bitmap in videoportal
        0,                                          // Col position to display bitmap in videoportal
        lpThisBitmapInfoHeader->biWidth,         // m_destinationBmp's number of columns
        lpThisBitmapInfoHeader->biHeight,            // m_destinationBmp's number of rows
        m_destinationBmp,                           // The bitmap to display; use the one resulting from doMyImageProcessing
        (BITMAPINFO*)m_destinationBitmapInfoHeader, // The bitmap's header info e.g. width, height, number of bits etc
        DIB_RGB_COLORS,                             // Use default 24-bit color table
        SRCCOPY                                     // Just display
    );
  
    SetStretchBltMode(pDC->GetSafeHdc(),nOldMode);
 
    ReleaseDC(pDC);
 
    // Note: 04/24/02 - Added the following:
    // Christopher Wagner cwagner@fas.harvard.edu noticed that memory wasn't being freed
 
    // Recall OnPortalNotificationProcessedview, which gets called everytime
    // a frame of data arrives, performs 3 steps:
    // (1) grayScaleTheFrameData - which mallocs m_destinationBmp
    // (2) doMyImageProcesing
    // (3) displayMyResults - which we're in now
    // Since we're finished with the memory we malloc'ed for m_destinationBmp
    // we should free it:
     
    free(m_destinationBmp);
 
    // End of adds
}
 
void CTripodDlg::grayScaleTheFrameData(LPBITMAPINFOHEADER lpThisBitmapInfoHeader, LPBYTE lpThisBitmapPixelData)
{
 
    // grayScaleTheFrameData: Called by CTripodDlg::OnPortalNotificationBinaryview
    // Task: Read current frame pixel data and computes a grayscale version
 
    unsigned int    W, H;             // Width and Height of current frame [pixels]
    BYTE            *sourceBmp;       // Pointer to current frame of data
    unsigned int    row, col;
    unsigned long   i;
    BYTE            grayValue;
 
    BYTE            redValue;
    BYTE            greenValue;
    BYTE            blueValue;
 
    W = lpThisBitmapInfoHeader->biWidth;  // biWidth: number of columns
    H = lpThisBitmapInfoHeader->biHeight; // biHeight: number of rows
 
    // Store pixel data in row-column vector format
    // Recall that each pixel requires 3 bytes (red, blue and green bytes)
    // m_destinationBmp is a protected member and declared in binarizeDlg.h
 
    m_destinationBmp = (BYTE*)malloc(H*3*W*sizeof(BYTE));
 
    // Point to the current frame's pixel data
    sourceBmp = lpThisBitmapPixelData;
 
    for (row = 0; row < H; row++) {
        for (col = 0; col < W; col++) {
 
            // Recall each pixel is composed of 3 bytes
            i = (unsigned long)(row*3*W + 3*col);
         
            // The source pixel has a blue, green andred value:
            blueValue  = *(sourceBmp + i);
            greenValue = *(sourceBmp + i + 1);
            redValue   = *(sourceBmp + i + 2);
 
            // A standard equation for computing a grayscale value based on RGB values
            grayValue = (BYTE)(0.299*redValue + 0.587*greenValue + 0.114*blueValue);
 
            // The destination BMP will be a grayscale version of the source BMP
            *(m_destinationBmp + i)     = grayValue;
            *(m_destinationBmp + i + 1) = grayValue;
            *(m_destinationBmp + i + 2) = grayValue;
             
        }
    }
}
 
 
void CTripodDlg::doMyImageProcessing(LPBITMAPINFOHEADER lpThisBitmapInfoHeader)
{
    // doMyImageProcessing:  This is where you'd write your own image processing code
    // Task: Read a pixel's grayscale value and process accordingly
 
    unsigned int    W, H;           // Width and Height of current frame [pixels]
    unsigned int    row, col;       // Pixel's row and col positions
    unsigned long   i;              // Dummy variable for row-column vector
    int     upperThreshold = 60;    // Gradient strength nessicary to start edge
    int     lowerThreshold = 30;    // Minimum gradient strength to continue edge
    unsigned long iOffset;          // Variable to offset row-column vector during sobel mask
    int rowOffset;                  // Row offset from the current pixel
    int colOffset;                  // Col offset from the current pixel
    int rowTotal = 0;               // Row position of offset pixel
    int colTotal = 0;               // Col position of offset pixel
    int Gx;                         // Sum of Sobel mask products values in the x direction
    int Gy;                         // Sum of Sobel mask products values in the y direction
    float thisAngle;                // Gradient direction based on Gx and Gy
    int newAngle;                   // Approximation of the gradient direction
    bool edgeEnd;                   // Stores whether or not the edge is at the edge of the possible image
    int GxMask[3][3];               // Sobel mask in the x direction
    int GyMask[3][3];               // Sobel mask in the y direction
    int newPixel;                   // Sum pixel values for gaussian
    int gaussianMask[5][5];         // Gaussian mask
 
    W = lpThisBitmapInfoHeader->biWidth;  // biWidth: number of columns
    H = lpThisBitmapInfoHeader->biHeight; // biHeight: number of rows
     
    for (row = 0; row < H; row++) {
        for (col = 0; col < W; col++) {
            edgeDir[row][col] = 0;
        }
    }
 
    /* Declare Sobel masks */
    GxMask[0][0] = -1; GxMask[0][1] = 0; GxMask[0][2] = 1;
    GxMask[1][0] = -2; GxMask[1][1] = 0; GxMask[1][2] = 2;
    GxMask[2][0] = -1; GxMask[2][1] = 0; GxMask[2][2] = 1;
     
    GyMask[0][0] =  1; GyMask[0][1] =  2; GyMask[0][2] =  1;
    GyMask[1][0] =  0; GyMask[1][1] =  0; GyMask[1][2] =  0;
    GyMask[2][0] = -1; GyMask[2][1] = -2; GyMask[2][2] = -1;
 
    /* Declare Gaussian mask */
    gaussianMask[0][0] = 2;     gaussianMask[0][1] = 4;     gaussianMask[0][2] = 5;     gaussianMask[0][3] = 4;     gaussianMask[0][4] = 2;
    gaussianMask[1][0] = 4;     gaussianMask[1][1] = 9;     gaussianMask[1][2] = 12;    gaussianMask[1][3] = 9;     gaussianMask[1][4] = 4;
    gaussianMask[2][0] = 5;     gaussianMask[2][1] = 12;    gaussianMask[2][2] = 15;    gaussianMask[2][3] = 12;    gaussianMask[2][4] = 2;
    gaussianMask[3][0] = 4;     gaussianMask[3][1] = 9;     gaussianMask[3][2] = 12;    gaussianMask[3][3] = 9;     gaussianMask[3][4] = 4;
    gaussianMask[4][0] = 2;     gaussianMask[4][1] = 4;     gaussianMask[4][2] = 5;     gaussianMask[4][3] = 4;     gaussianMask[4][4] = 2;
     
 
    /* Gaussian Blur */
    for (row = 2; row < H-2; row++) {
        for (col = 2; col < W-2; col++) {
            newPixel = 0;
            for (rowOffset=-2; rowOffset<=2; rowOffset++) {
                for (colOffset=-2; colOffset<=2; colOffset++) {
                    rowTotal = row + rowOffset;
                    colTotal = col + colOffset;
                    iOffset = (unsigned long)(rowTotal*3*W + colTotal*3);
                    newPixel += (*(m_destinationBmp + iOffset)) * gaussianMask[2 + rowOffset][2 + colOffset];
                }
            }
            i = (unsigned long)(row*3*W + col*3);
            *(m_destinationBmp + i) = newPixel / 159;
        }
    }
 
    /* Determine edge directions and gradient strengths */
    for (row = 1; row < H-1; row++) {
        for (col = 1; col < W-1; col++) {
            i = (unsigned long)(row*3*W + 3*col);
            Gx = 0;
            Gy = 0;
            /* Calculate the sum of the Sobel mask times the nine surrounding pixels in the x and y direction */
            for (rowOffset=-1; rowOffset<=1; rowOffset++) {
                for (colOffset=-1; colOffset<=1; colOffset++) {
                    rowTotal = row + rowOffset;
                    colTotal = col + colOffset;
                    iOffset = (unsigned long)(rowTotal*3*W + colTotal*3);
                    Gx = Gx + (*(m_destinationBmp + iOffset) * GxMask[rowOffset + 1][colOffset + 1]);
                    Gy = Gy + (*(m_destinationBmp + iOffset) * GyMask[rowOffset + 1][colOffset + 1]);
                }
            }
 
            gradient[row][col] = sqrt(pow(Gx,2.0) + pow(Gy,2.0));   // Calculate gradient strength         
            thisAngle = (atan2(Gx,Gy)/3.14159) * 180.0;     // Calculate actual direction of edge
             
            /* Convert actual edge direction to approximate value */
            if ( ( (thisAngle < 22.5) && (thisAngle > -22.5) ) || (thisAngle > 157.5) || (thisAngle < -157.5) )
                newAngle = 0;
            if ( ( (thisAngle > 22.5) && (thisAngle < 67.5) ) || ( (thisAngle < -112.5) && (thisAngle > -157.5) ) )
                newAngle = 45;
            if ( ( (thisAngle > 67.5) && (thisAngle < 112.5) ) || ( (thisAngle < -67.5) && (thisAngle > -112.5) ) )
                newAngle = 90;
            if ( ( (thisAngle > 112.5) && (thisAngle < 157.5) ) || ( (thisAngle < -22.5) && (thisAngle > -67.5) ) )
                newAngle = 135;
                 
            edgeDir[row][col] = newAngle;       // Store the approximate edge direction of each pixel in one array
        }
    }
 
    /* Trace along all the edges in the image */
    for (row = 1; row < H - 1; row++) {
        for (col = 1; col < W - 1; col++) {
            edgeEnd = false;
            if (gradient[row][col] > upperThreshold) {       // Check to see if current pixel has a high enough gradient strength to be part of an edge
                /* Switch based on current pixel's edge direction */
                switch (edgeDir[row][col]){    
                    case 0:
                        findEdge(0, 1, row, col, 0, lowerThreshold);
                        break;
                    case 45:
                        findEdge(1, 1, row, col, 45, lowerThreshold);
                        break;
                    case 90:
                        findEdge(1, 0, row, col, 90, lowerThreshold);
                        break;
                    case 135:
                        findEdge(1, -1, row, col, 135, lowerThreshold);
                        break;
                    default :
                        i = (unsigned long)(row*3*W + 3*col);
                        *(m_destinationBmp + i) =
                        *(m_destinationBmp + i + 1) =
                        *(m_destinationBmp + i + 2) = 0;
                        break;
                    }
                }
            else {
                i = (unsigned long)(row*3*W + 3*col);
                    *(m_destinationBmp + i) =
                    *(m_destinationBmp + i + 1) =
                    *(m_destinationBmp + i + 2) = 0;
            }  
        }
    }
     
    /* Suppress any pixels not changed by the edge tracing */
    for (row = 0; row < H; row++) {
        for (col = 0; col < W; col++) { 
            // Recall each pixel is composed of 3 bytes
            i = (unsigned long)(row*3*W + 3*col);
            // If a pixel's grayValue is not black or white make it black
            if( ((*(m_destinationBmp + i) != 255) && (*(m_destinationBmp + i) != 0)) || ((*(m_destinationBmp + i + 1) != 255) && (*(m_destinationBmp + i + 1) != 0)) || ((*(m_destinationBmp + i + 2) != 255) && (*(m_destinationBmp + i + 2) != 0)) )
                *(m_destinationBmp + i) =
                *(m_destinationBmp + i + 1) =
                *(m_destinationBmp + i + 2) = 0; // Make pixel black
        }
    }
 
    /* Non-maximum Suppression */
    for (row = 1; row < H - 1; row++) {
        for (col = 1; col < W - 1; col++) {
            i = (unsigned long)(row*3*W + 3*col);
            if (*(m_destinationBmp + i) == 255) {       // Check to see if current pixel is an edge
                /* Switch based on current pixel's edge direction */
                switch (edgeDir[row][col]) {       
                    case 0:
                        suppressNonMax( 1, 0, row, col, 0, lowerThreshold);
                        break;
                    case 45:
                        suppressNonMax( 1, -1, row, col, 45, lowerThreshold);
                        break;
                    case 90:
                        suppressNonMax( 0, 1, row, col, 90, lowerThreshold);
                        break;
                    case 135:
                        suppressNonMax( 1, 1, row, col, 135, lowerThreshold);
                        break;
                    default :
                        break;
                }
            }  
        }
    }
     
}
 
void CTripodDlg::findEdge(int rowShift, int colShift, int row, int col, int dir, int lowerThreshold)
{
    int W = 320;
    int H = 240;
    int newRow;
    int newCol;
    unsigned long i;
    bool edgeEnd = false;
 
    /* Find the row and column values for the next possible pixel on the edge */
    if (colShift < 0) {
        if (col > 0)
            newCol = col + colShift;
        else
            edgeEnd = true;
    } else if (col < W - 1) {
        newCol = col + colShift;
    } else
        edgeEnd = true;     // If the next pixel would be off image, don't do the while loop
    if (rowShift < 0) {
        if (row > 0)
            newRow = row + rowShift;
        else
            edgeEnd = true;
    } else if (row < H - 1) {
        newRow = row + rowShift;
    } else
        edgeEnd = true;
         
    /* Determine edge directions and gradient strengths */
    while ( (edgeDir[newRow][newCol]==dir) && !edgeEnd && (gradient[newRow][newCol] > lowerThreshold) ) {
        /* Set the new pixel as white to show it is an edge */
        i = (unsigned long)(newRow*3*W + 3*newCol);
        *(m_destinationBmp + i) =
        *(m_destinationBmp + i + 1) =
        *(m_destinationBmp + i + 2) = 255;
        if (colShift < 0) {
            if (newCol > 0)
                newCol = newCol + colShift;
            else
                edgeEnd = true;
        } else if (newCol < W - 1) {
            newCol = newCol + colShift;
        } else
            edgeEnd = true;
        if (rowShift < 0) {
            if (newRow > 0)
                newRow = newRow + rowShift;
            else
                edgeEnd = true;
        } else if (newRow < H - 1) {
            newRow = newRow + rowShift;
        } else
            edgeEnd = true;
    }  
}
 
void CTripodDlg::suppressNonMax(int rowShift, int colShift, int row, int col, int dir, int lowerThreshold)
{
    int W = 320;
    int H = 240;
    int newRow = 0;
    int newCol = 0;
    unsigned long i;
    bool edgeEnd = false;
    float nonMax[320][3];           // Temporarily stores gradients and positions of pixels in parallel edges
    int pixelCount = 0;                 // Stores the number of pixels in parallel edges
    int count;                      // A for loop counter
    int max[3];                     // Maximum point in a wide edge
     
    if (colShift < 0) {
        if (col > 0)
            newCol = col + colShift;
        else
            edgeEnd = true;
    } else if (col < W - 1) {
        newCol = col + colShift;
    } else
        edgeEnd = true;     // If the next pixel would be off image, don't do the while loop
    if (rowShift < 0) {
        if (row > 0)
            newRow = row + rowShift;
        else
            edgeEnd = true;
    } else if (row < H - 1) {
        newRow = row + rowShift;
    } else
        edgeEnd = true;
    i = (unsigned long)(newRow*3*W + 3*newCol);
    /* Find non-maximum parallel edges tracing up */
    while ((edgeDir[newRow][newCol] == dir) && !edgeEnd && (*(m_destinationBmp + i) == 255)) {
        if (colShift < 0) {
            if (newCol > 0)
                newCol = newCol + colShift;
            else
                edgeEnd = true;
        } else if (newCol < W - 1) {
            newCol = newCol + colShift;
        } else
            edgeEnd = true;
        if (rowShift < 0) {
            if (newRow > 0)
                newRow = newRow + rowShift;
            else
                edgeEnd = true;
        } else if (newRow < H - 1) {
            newRow = newRow + rowShift;
        } else
            edgeEnd = true;
        nonMax[pixelCount][0] = newRow;
        nonMax[pixelCount][1] = newCol;
        nonMax[pixelCount][2] = gradient[newRow][newCol];
        pixelCount++;
        i = (unsigned long)(newRow*3*W + 3*newCol);
    }
 
    /* Find non-maximum parallel edges tracing down */
    edgeEnd = false;
    colShift *= -1;
    rowShift *= -1;
    if (colShift < 0) {
        if (col > 0)
            newCol = col + colShift;
        else
            edgeEnd = true;
    } else if (col < W - 1) {
        newCol = col + colShift;
    } else
        edgeEnd = true;
    if (rowShift < 0) {
        if (row > 0)
            newRow = row + rowShift;
        else
            edgeEnd = true;
    } else if (row < H - 1) {
        newRow = row + rowShift;
    } else
        edgeEnd = true;
    i = (unsigned long)(newRow*3*W + 3*newCol);
    while ((edgeDir[newRow][newCol] == dir) && !edgeEnd && (*(m_destinationBmp + i) == 255)) {
        if (colShift < 0) {
            if (newCol > 0)
                newCol = newCol + colShift;
            else
                edgeEnd = true;
        } else if (newCol < W - 1) {
            newCol = newCol + colShift;
        } else
            edgeEnd = true;
        if (rowShift < 0) {
            if (newRow > 0)
                newRow = newRow + rowShift;
            else
                edgeEnd = true;
        } else if (newRow < H - 1) {
            newRow = newRow + rowShift;
        } else
            edgeEnd = true;
        nonMax[pixelCount][0] = newRow;
        nonMax[pixelCount][1] = newCol;
        nonMax[pixelCount][2] = gradient[newRow][newCol];
        pixelCount++;
        i = (unsigned long)(newRow*3*W + 3*newCol);
    }
 
    /* Suppress non-maximum edges */
    max[0] = 0;
    max[1] = 0;
    max[2] = 0;
    for (count = 0; count < pixelCount; count++) {
        if (nonMax[count][2] > max[2]) {
            max[0] = nonMax[count][0];
            max[1] = nonMax[count][1];
            max[2] = nonMax[count][2];
        }
    }
    for (count = 0; count < pixelCount; count++) {
        i = (unsigned long)(nonMax[count][0]*3*W + 3*nonMax[count][1]);
        *(m_destinationBmp + i) =
        *(m_destinationBmp + i + 1) =
        *(m_destinationBmp + i + 2) = 0;
    }
}

الگوریتم Canny در سی پلاس پلاس قسمت 1
الگوریتم Canny در سی پلاس پلاس قسمت 2
الگوریتم Canny در سی پلاس پلاس قسمت 3
الگوریتم Canny در سی پلاس پلاس قسمت 4

ردیابی دقیق اشیاء بر اساس اطلاعات حرکت و الگوریتم k-means اتوماتیک

ﭼﮑﯿﺪه

ردﯾﺎﺑﯽ اﺷﯿﺎء ﻣﺘﺤﺮك ﯾﮑﯽ از ﭘﺮﮐﺎرﺑﺮدﺗﺮﯾﻦ ﻣﻘﻮﻟﻪﻫﺎ در ﺣﻮزه ﺑﯿﻨﺎﯾﯽ ﻣﺎﺷﯿﻦ ﻣﯽﺑﺎﺷﺪ ﮐﻪ در ﻃﻮل دﻫﻪﻫﺎي اﺧﯿﺮ ﺗﻮﺟﻪ ﻣﺤﻘﻘﺎن زﯾﺎدي را ﺑﻪ ﺧﻮد ﺟﻠﺐ ﮐﺮده اﺳﺖ .در اﯾﻦ ﻣﻘﺎﻟﻪ روﺷﯽ ﺟﺪﯾﺪ ﺑﺮاي ردﯾﺎﺑﯽ ﭼﻨﺪﯾﻦ ﺷﯽ ﻣﺘﺤﺮك ﺑﺼﻮرت ﻫﻤﺰﻣﺎن اراﺋﻪ ﻣﯽﮐﻨﯿﻢ. ﺑﺮاي اﯾﻦ ﮐﺎر اﺑﺘﺪا از اﻃﻼﻋﺎت ﺣﺮﮐﺖ ﻣﺮﺑﻮط ﺑﻪ “ﻧﻘﺎط وﯾﮋﮔﯽ ﺧﻮب ﺑﺮاي ردﯾﺎﺑﯽ” ﺑﺮاي ﺑﺪﺳﺖ آوردن ﻧﻘﺎط وﯾﮋﮔﯽ ﻣﺮﺗﺒﻂ ﺑﻪ اﺷـﯿﺎء ﻣﺘﺤـﺮك اﺳـﺘﻔﺎده ﺧﻮاﻫﯿﻢ ﮐﺮد. ﭘﺲ از اﯾﻨﮑﻪ ﻧﻘﺎط وﯾﮋﮔﯽ ﻣﺮﺗﺒﻂ ﺑﻪ اﺷﯿﺎء ﻣﺘﺤﺮك را ﻣﺸﺨﺺ ﮐﺮدﯾﻢ ﺑﺎ اﺳﺘﻔﺎده از اﻟﮕﻮرﯾﺘﻢ ﺧﻮﺷﻪﺑﻨﺪي k-means ﮐـﻪ در آن ﺗﻌﺪاد ﮐﻼﺳﺘﺮﻫﺎ ﺑﺪون داﺷﺘﻦ اﻃﻼﻋﺎت ﻗﺒﻠﯽ در ﻣﻮرد ﺗﻌﺪاد و ﻧﻮع اﺷﯿﺎء ﺑﺼﻮرت اﺗﻮﻣﺎﺗﯿﮏ ﺗﺨﻤﯿﻦ زده ﻣﯽﺷﻮد ﺑﻪ ﺧﻮﺷﻪﺑﻨﺪي ﻧﻘـﺎط وﯾﮋﮔﯽ ﺑﻌﻨﻮان اﺷﯿﺎء ﻣﺘﺤﺮك ﻣﺠﺰا بررسی خواهیم کرد .در اﯾﻦ ﻣﻘﺎﻟﻪ از ﺑﺮدار وﯾﮋﮔﯽ ﺷﺎﻣﻞ اﻧﺪازه ﺣﺮﮐﺖ، ﺟﻬﺖ ﺣﺮﮐﺖ، ﺷﺪت روﺷﻨﺎﯾﯽ و ﻣﻮﻗﻌﯿﺖ ﻧﻘﺎط وﯾﮋﮔﯽ اﺳﺘﻔﺎده ﮐﺮدﯾﻢ .ﻧﺘﺎﯾﺞ روش ﭘﯿﺸﻨﻬﺎدي ﻧﺸﺎن دﻫﻨﺪه دﻗﺖ ﺑﺎﻻ ﺑﺮاي ﺗﺨﻤﯿﻦ ﺗﻌﺪاد اﺷﯿﺎء ﻣﺘﺤﺮك ﻣﻮﺟﻮد در ﺻﺤﻨﻪ و ردﯾﺎﺑﯽ ﺳﺮﯾﻊ آنﻫﺎ دارد.

ﮐﻠﻤﺎت ﮐﻠﯿﺪي

اﺷﯿﺎء ﻣﺘﺤﺮك، ردﯾﺎﺑﯽ، ﻧﻘﺎط وﯾﮋﮔﯽ ﺧﻮب ﺑﺮای ردیابی، KLT

فایل PDF – در 6 صفحه- نویسندگان : عزیز کزمیانی، ناصر فرج زاده، حامد خانی

ردیابی دقیق اشیا بر اساس اطلاعات حرکت و الگوریتم k-means اتوماتیک

پسورد فایل : behsanandish.com


آشکارسازی افتادن با استفاده از روش نوین ردیابی بر پایه الگوریتم اصلاح شده کانتور

چکیده

 

 

 

 

 

 

 

 

فایل PDF – در 15 صفحه- نویسندگان : حمید رجبی، منوچهر نحوی

آشکارسازی افتادن با استفاده از روش نوین ردیابی بر پایه الگوریتم اصلاح شده کانتور

پسورد فایل : behsanandish.com

 


Image Processing Algorithms for Real-Time Tracking and Control of an Active Catheter

الگوریتم پردازش تصویر برای ردیابی زمان واقعی و کنترل کاتتر فعال

Abstract—In this paper, we investigate vision-based robotassisted active catheter insertion. A map of the vessels is extracted using image processing techniques and the locations of the junctions of the blood vessels are detected. The desired path of the catheter and the target is selected by the user/clinician. The tip of the catheter is tracked in real-time and the robot and the active catheter are controlled based on the position of the catheter inside the vessels. The active catheter is commanded by an autonomous guidance algorithm to bend in the appropriate direction at the branches. The stroke length for the robotic insertion is controlled by the autonomous guidance algorithm to ensure smooth motion of the catheter inside arteries. A PI controller has been implemented to overcome flexing in the catheter and maintain smooth motion. The catheter is autonomously guided from the point of entry to the target via appropriate commands, thereby shielding the surgeon from radiation exposure due to the X-rays in X-ray fluoroscopy and relieving him/her of stress and fatigue. Experimental results for the insertion algorithms are shown using a laboratory testbed. Index terms — Real-time catheter tracking, angioplasty, catheter insertion, tip position control, active catheter, image processing, hybrid impedance control.

فایل PDF – در 8 صفحه- نویسنده : M. Azizian , J. Jayender , R.V. Patel

Image Processing Algorithms for Real-Time Tracking and Control of an Active Catheter

پسورد فایل : behsanandish.com


BraMBLe: A Bayesian Multiple-Blob Tracker

ردیاب چندگانه بیزی

Abstract

Blob trackers have become increasingly powerful in recent years largely due to the adoption of statistical appearance models which allow effective background subtraction and robust tracking of deforming foreground objects. It has been standard, however, to treat background and foreground modelling as separate processes – background subtraction is followed by blob detection and tracking – which prevents a principled computation of image likelihoods. This paper presents two theoretical advances which address this limitation and lead to a robust multiple-person tracking system suitable for single-camera real-time surveillance applications.

The first innovation is a multi-blob likelihood function which assigns directly comparable likelihoods to hypotheses containing different numbers of objects. This likelihood function has a rigorous mathematical basis: it is adapted from the theory of Bayesian correlation, but uses the assumption of a static camera to create a more specific back- ground model while retaining a unified approach to back- ground and foreground modelling. Second we introduce a Bayesian filter for tracking multiple objects when the number of objects present is unknown and varies over time. We show how a particle filter can be used to perform joint inference on both the number of objects present and their configurations. Finally we demonstrate that our system runs comfortably in real time on a modest workstation when the number of blobs in the scene is small.

فایل PDF – در 8 صفحه- نویسنده :M. hard , J. MacCormick

BraMBLe A Bayesian Multiple-Blob Tracker

پسورد فایل : behsanandish.com

 


Identification Of F117 Fighter With Image Processing By Using Labview

شناسایی جنگنده F117 با پردازش تصویر با استفاده از Labview

بعضی از جنگنده هایی از جمله F117 به دلیل موادی که در ساخت آنها استفاده شده و به دلیل طراحی منحصر به فردشان قابل شناسایی توسط رادارها نیستند. در این مقاله به کمک نرم افزار LabView روشی را پیاده سازی نموده که به کمک آن و با استفاده از علم پردازش تصویر اقدام به شناسایی و رهگیری این نوع هواپیماها خواهد نمود.

Abstract – In this paper, a method for tracking (identifying) the fighter F117 is introduced. Because of its individual design and also the material that is used to build the fighter body, it cannot be identified and tracked with the conventional radars. In this work, an operational method based on image processing and by using LabView software is presented. By extraction the special geometrical properties of this fighter, an accurate and high speed tracking system is introduced.

Keywords – Boundary conditions, Cameras, Data acquisition , Entropy

فایل PDF – در 4 صفحه- نویسنده :H. Ghayoumi zadeh , H. Goodarzi dehrizi , J. Haddadnia

Identification Of F117 Fighter With Image Processing By Using Labview

پسورد فایل : behsanandish.com


Multi-Camera Multi-Person Tracking for EasyLiving

ردیابی چند نفره چند دوربین برای زندگی بهتر

Abstract : While intelligent environments are often cited as a reason for doing work on visual person-tracking, really making an intelligent environment exposes many realworld problems in visual tracking that must be solved to make the technology practical. In the context of our EasyLiving project in intelligent environments, we created a practical person-tracking system that solves most of the real-world problems. It uses two sets of color stereo cameras for tracking multiple people during live demonstrations in a living room. The stereo images are used for locating people, and the color images are used for maintaining their identities. The system runs quickly enough to make the room feel responsive, and it tracks multiple people standing, walking, sitting, occluding, and entering and leaving the space.
Keywords: multi- person tracking, multiple stereo/color cameras, intelligent environment

فایل PDF – در 8 صفحه- نویسنده :John Krumm, Steve Harris, Brian Meyers, Barry Brumitt, Michael Hale, Steve Shafer

Multi-Camera Multi-Person Tracking for EasyLiving

پسورد فایل : behsanandish.com


Real-Time Multitarget Tracking by a Cooperative Distributed Vision System

پیگیری چند هدفه در زمان واقعی توسط سیستم بینایی توزیع شده تعاونی

Target detection and tracking is one of the most important and fundamental technologies to develop real-world computer vision systems such as security and traffic monitoring systems. This paper first categorizes target tracking systems based on characteristics of scenes, tasks, and system architectures. Then we present a real-time cooperative multitarget tracking system. The system consists of a group of active vision agents (AVAs), where an AVA is a logical model of a network-connected computer with an active camera. All AVAs cooperatively track their target objects by dynamically exchanging object information with each other. With this cooperative tracking capability,the system as a whole can trackmultiple moving objects persistently even under complicated dynamic environments in the real world. In this paper, we address the technologies employed in the system and demonstrate their effectiveness.
Keywords—Cooperative distributed vision, cooperative tracking, fixed-viewpoint camera, multi-camera sensing, multitarget tracking, real-time cooperation by multiple agents, real-time tracking.

فایل PDF – در 15 صفحه- نویسنده :TAKASHI MATSUYAMA AND NORIMICHI UKITA

Real-Time Multitarget Tracking by a Cooperative Distributed Vision System

پسورد فایل : behsanandish.com


Machine Vision: Tracking I

بینایی ماشین: ردیابی-بخش 1

فایل PDF از یک فایل Power Point – در 31 صفحه- نویسنده :ناشناس

MachineVision_4

پسورد فایل : behsanandish.com