مقالات پیرامون تشخیص اعداد و حروف دست نویس فارسی

 

1. ارائه یک روش ساختاری جدید مبتنی بر قطعه بندی تصویر نازک شده برای شناسایی اعداد دست نویس فارسی/عربی

چکیده- در این مقاله، یک روش ساختاری جدید برای استخراج ویژگی از اعداد فارسی/عربی دست نوشته، ارائه شده است. پس از پیش پردازش اولیه و تبدیل تصویر به تصویر باینری، ابتدا رقم دست نوشته، نازک شده و اسکلت آن از تصویر استخراج می شود. سپس نقاط مهم تصویر به دست آمده مشخص می شوند. رقم نازک شده به قطعه خط هایی تقسیم می شود و از هر قطعه، کدهای اولیه استخراج می شود. در نهایت یک بردار ویژگی به دست می آید که طول آن به تعداد قطعه خط ها بستگی دارد. یک مقایسه بین روش ساختاری ارائه شده و روش های آماری دیگر مانند روش های مبتنی بر تبدیل موجک، فرکتال و زرنیک، از نظر زمانی و درصد تشخیص انجام شده است. نتایج نشان می دهند که عملکرد این ویژگیهای ساختاری بسیار بهتر از ویژگی های آماری است. درصد تشخیص با این ویژگی ها و با طبقه بندی کننده مبتنی بر نزدیکترین همسایه، 94/44% به دست آمد. این آزمایشات بر روی دادگانی شامل 480 نمونه برای هر رقم انجام شد که 280 نمونه برای آموزش و 200 نمونه برای آزمایش به کار گرفته شدند.

کلمات کلیدی- روش ساختاری جدید، تشخیص دست نوشته، اعداد فارسی

فایل PDF – در 7 صفحه- نویسندگان: مجید زیارت بان، کریم فائز، سعید مظفری، مهدی ازوجی

ارائه یک روش ساختاری جدید مبتنی بر قطعه بندی تصویر نازک شده برای شناسایی اعداد دست نویس فارسی یا عربی

پسورد فایل : behsanandish.com


2.  بازشناسی برخط حروف مجزای فارسی با شبکه عصبی

چکیده- در این مقاله روشی برای بازشناسی برخط حروف مجزای فارسی با شبکههای عصبی ارائه می شود. پس از بازشناسی علامت های بالا یا پایین حرف ناشناخته، بدنه ی حرف از نظر تعداد نقاط و اندازه نرمالیزه می شود و مختصات نقاط بدنه ی نرمالیزه شده به عنوان ورودی یک شبکه ی عصبی سه لایه در نظر گرفته می شود و بدنه ی حرف ناشناخته بازشناسی می شود. میزان بازشناسی درست برای 4144 حرف، 93/9% است.

واژه های کلیدی- بازشناسی برخط، حروف مجزا،شبکه ی عصبی

فایل PDF – در 7 صفحه- نویسندگان: سید محمد رضوی، احسان اله کبیر

بازشناسی برخط حروف مجزای فارسی با شبکه عصبی

پسورد فایل : behsanandish.com


3. کاربرد ترکیب طبقه ها در بازشناسی ارقام فارسی

چکیده- در این تحقیق، برای بهبود بازشناسی ارقام دستنویس از ترکیب طبقه بندی هایی استفاده می شود که از یک الگوریتم یادگیری دو مرحله ای بهره می گیرند. از تصویر هر رقم دستنویس، یک بردار ویژگی با 81 مؤلفه استخراج می شود. به روش تحلیل مؤلفه های اصلی، یک بردار ویژگی با پانزده مؤلفه برای هر رقم انتخاب شده و به سه شبکه عصبی پرسپترون با تعداد نرون های متفاوت در لایه مخفی و وزن های اولیه متفاوت اعمال شده و بازشناسی مستقل در هر طبقه بند صورت می گیرد. در مرحله بعد، نتایج بازشناسی این سه طبقه بند، به یک شبکه عصبی پرسپترون با یک لایه مخفی به عنوان ترکیب کننده اعمال می شود.

پایگاه داده استفاده شده شامل 2430 نمونه است. نرخ بازشناسی شبکه های عصبی پایه بر روی 530 نمونه آزمایشی 87% ، 85% و 83% و برای سیستم مرکب 91% است.

واژه های کلیدی- بازشناسی ارقام، ترکیب طبقه بندها، شبکه عصبی پرسپترون، مکان مشخصه، تحلیل مؤلفه های اصلی.

فایل PDF – در 5 صفحه- نویسندگان: سید حسن نبوی کریزی، رضا ابراهیم پور، احسان اله کبیر

کاربرد ترکیب طبقه ها در بازشناسی ارقام فارسی

پسورد فایل : behsanandish.com


4. بازشناسی حروف برخط فارسی با استفاده از مدل مخفی مارکوف

چکیده- در این مقاله، روشی برای بازشناسی حروف برخط فارسی که به صورت تنها نوشته شده اند، معرفی شده است. با توجه به شکل و ساختار بدنه اصلی، حروف فارسی به 17 گروه تقسیم می شوند. ابتدا، با استفاده از روش آماری مدل مخفی مارکوف به بازشناسی بدنه اصلی پرداخته شده است. در گام بعدی، بازشناسی نهایی در هر گروه با توجه به موقعیت علائم، نقاط و مدل مخفی مارکوف آن ها انجام شده است. روش پیشنهادی بر روی مجموعه داده “حروف برخط دانشگاه تربیت مدرس” اجرا شده و گروه بندی درست با دقت 96% و بازشناسی حروف با دقت 94% به دست آمده است.

کلمات کلیدی- دستنوشته برخط، فارسی، بازشناسی، مدل مخفی مارکوف.

فایل PDF – در 6 صفحه- نویسندگان: وحید قدس، احسان اله کبیر

بازشناسی حروف برخط فارسی با استفاده از مدل مخفی مارکوف

پسورد فایل : behsanandish.com


5.بازشناسی ارقام دستنویس فارسی مقاوم در برابر چرخش و تغییر مقیاس توسط طبقه بندی کننده SVM فازی مبتنی بر خوشه بند K-means

چکیده- در این مقاله روشی را برای تشخیص این ارقام معرفی کردیم که در برابر چرخش و تغییر مقیاس تا حد قابل قبولی مقاوم می باشد. در این مقاله هم برای استخراج ویژگی و هم برای طبقه بندی از دو روش مجزا استفاده کردیم. در مرحله اول برای استخراج ویژگی از آنالیز اجزای اصلی (PCA) استفاده کرده و در نوع دیگری از استخراج ویژگی از آنالیز تفکیک کننده ی خط (LDA) که برای کاهش ابعاد LDA، از تکنینک PCA استفاده کردیم. این ویژگی ها را با طبقه بندی کننده ی MLP و Fuzzy SVM به صورت جداگانه کلاسه بندی کردیم و نتایج را با هم مقایسه کردیم. برای نمایش اینکه روشمان در برابر چرخش و تغییر مقیاس مقاوم می باشد، 30 درصد کل ارقام پایگاه داده مان که متشکل از 860 رقم برای هر کدام از ارقام 0 تا 9 می باشد را با زاویه های مختلف به صورت تصادفی در جهت یا خلاف جهت عقربه ساعت چرخانه و نتایج به دست آمده را با حالت بدون چرخش مقایسه کردیم. نرخ بازشناسی روش پیشنهادی بر روی 7600 نمونه آزمایشی در حالت بدون چرخش، 97/3% به دست آمده که نسبت به نرخ بازشناسی همین پایگاه داده، در [1] و [2] به ترتیب 15/4% و 1/9% بهبود را نشان می دهد.

کلمات کلیدی- ارقام دستنویس، PCA-LDA، Fuzzy SVM، MLP، PCA

فایل PDF – در 6 صفحه- نویسنده: مهدی صالح پور

بازشناسی ارقام دستنویس فارسی مقاوم در برابر چرخش و تغییر مقیاس توسط طبقه بندی کننده SVM فازی مبتنی بر خوشه بند K-means

پسورد فایل : behsanandish.com


6. بررسی تأثیر ارتقاء تصویر و اصلاح شیب در بهبود نرخ بازشناسی ارقام جدا شده از اسناد دست نویس فارسی

چکیده- در این مقاله برای اولین بار میزان تأثیر ارتقاء تصویر و اصلاح شیب موجود در ارقام دست نویس فارسی، بر بهبود نرخ بازشناسی ارقام مورد بررسی قرار گرفته است. در ابتدا به دلیل اینکه جداسازی ارقام از تصاویر اسناد دست نویس منجر به ایجاد شکاف هایی در تصاویر ارقام جدا شده می شود، از عنصر ساختاری مناسبی برای ارتقاء تصاویر استفاده شده است. در گام بعدی، شیب موجود در ارقام، تخمین زده شده و اصلاح می گردد. بانک اطلاعاتی استفاده شده در این مقاله شامل ارقام جدا شده (4096 رقم در مجموعه آموزشی و 1532 رقم در مجموعه آزمایشی) از فرم هایی با پس زمینه ی رنگی است که توسط 500 نویسنده پر شده اند. آزمایشات انجام شده نشان می دهد که ارتقاء تصویر و اصلاح شیب در مرحله پیش پردازش، به طور میانگین نرخ بازشناسی را به میزان 3/3 درصد افزایش می دهد که نشان دهنده ی کارآمدی گام های پیشنهادی( ارتقاء تصویر و اصلاح شیب) در مرحله پیش پردازش است.

کلمات کلیدی- ارتقاء تصویر، عنصر ساختاری، اصلاح شیب، ماتریس شکاف، بازشناسی ارقام دست نویس فارسی.

فایل PDF – در 5 صفحه- نویسندگان: یونس اکبری، محمدجواد جلیلی، عاطفه فروزنده، جواد صدری

بررسی تأثیر ارتقاء تصویر و اصلاح شیب در بهبود نرخ بازشناسی ارقام جدا شده از اسناد دست نویس فارسی

پسورد فایل : behsanandish.com

بازشناخت الگو

تشخیص الگو شاخه‌ای از مبحث یادگیری ماشینی است. می‌توان گفت تشخیص الگو، دریافت داده‌های خام و تصمیم گیری بر اساس دسته‌بندی داده‌ها است. بیشتر تحقیقات در زمینه تشخیص الگو در رابطه با «یادگیری نظارت شده» یا «یادگیری بدون نظارت» است. روش‌های تشخیص الگو، الگوهای مورد نظر را از یک مجموعه داده‌ها با استفاده از دانش قبلی در مورد الگوها یا اطلاعات آماریداده‌ها، جداسازی می‌کند. الگوهایی که با این روش دسته‌بندی می‌شوند، گروه‌هایی از اندازه‌گیری‌ها یا مشاهدات هستند که نقاط معینی را در یک فضای چند بعدی تشکیل می‌دهند. این ویژگی اختلاف عمده تشخیص الگو با تطبیق الگو است، که در آنجا الگوها با استفاده از موارد کاملاً دقیق و معین و بر اساس یک الگوی مشخص، تشخیص داده می‌شوند. تشخیص الگو و تطبیق الگو از بخش‌های اصلی مبحث پردازش تصویر به خصوص در زمینه بینایی ماشین هستند.

تشخیص خودکار چهره شخص با استفاده از الگوریتم‌های تشخیص الگو

تشخیص خودکار چهره شخص با استفاده از الگوریتم‌های تشخیص الگو

انواع تشخیص الگو

نیاز به سیستم‌های اطلاعاتی بهبود یافته بیشتر از قبل مورد توجه قرار گرفته است چرا که اطلاعات عنصری اساسی در تصمیم سازی است و جهان در حال افزایش دادن مقدار اطلاعات در فرم‌های مختلف با درجه‌هایی از پیچیدگی است. یکی از مسائل اصلی در طراحی سیستم‌های اطلاعاتی مدرن، تشخیص الگو به طور اتوماتیک است. تشخیص به عنوان یک صفت اصلی انسان بودن است. یک الگو، توصیفی از یک شیء است. یک انسان دارای یک سیستم اطلاعاتی سطح بالاست که یک دلیل آن داشتن قابلیت تشخیص الگوی پیشرفته است. بر طبق طبیعت الگوهای مورد تشخیص، عملیات تشخیص در دو گونهٔ اصلی تقسیم می‌شوند.

تشخیص آیتم‌های واقعی

این ممکن است به عنوان تشخیص سنسوری معرفی شود که تشخیص الگوهای سمعی و بصری را دربر می‌گیرد.

تشخیص الگوهای زمانی و فضایی

این فرایند تشخیص، شناسایی و دسته‌بندی الگوهای فضایی و الگوهای زمانی را در بر می‌گیرد. مثال‌هایی از الگوهای فضایی کارکترها، اثر انگشت‌ها، اشیاء فیزیکی و تصاویر هستند. الگوهای زمانی شامل فرم‌های موجی گفتار، سری‌های زمانی و … است.

الگوها و کلاس‌های الگوها

تشخیص الگو می‌تواند به عنوان دسته‌بندی داده‌ها ی ورودی در کلاس‌های شناخته شده به وسیلهٔ استخراج ویژگیهای مهم یا صفات داده تعریف شود. یک کلاس الگو، یک دستهٔ متمایز شده به وسیلهٔ برخی صفات و ویژگی‌های مشترک است. ویژگی‌های یک کلاس الگو، صفات نوعی هستند که بین همهٔ الگوهای متعلق به آن کلاس مشترک هستند. ویژگی‌هایی که تفاوت‌های بین کلاس‌های الگو را بیان می‌کنند اغلب به عنوان ویژگی‌های اینترست شناخته می‌شوند. یک الگو، توصیفی از یکی از اعضای دسته است که ارائه دهندهٔ کلاس الگو می‌باشد. برای راحتی، الگوها معمولاً به وسیلهٔ یک بردار نمایش داده می‌شوند. مانند:

مسائل اساسی در طراحی سیستم تشخیص الگو

به طور کلی طراحی یک سیستم تشخیص الگو چندین مسئلهٔ اصلی را در بر می‌گیرد: ۱)طریقه نمایش داده‌ها ۲)استخراج ویژگی ۳)تعیین رویه تصمیم بهینه

طریقه نمایش داده‌ها

اول از همه، ما بایستی در مورد نمایش داده‌های ورودی تصمیم بگیریم.

استخراج ویژگی

دومین مسئله در تشخیص الگو، استخراج ویژگیها یا صفات خاصی از دادهٔ ورودی دریافته شده و کاهش ابعاد بردارهای الگوست. این مورد اغلب به عنوان مسئلهٔ پیش پردازش و استخراج ویژگی معرفی می‌شود. عناصر ویژگیهای (اینتراست) برای همهٔ کلاس‌های الگو مشترک هستند می‌توانند حذف شوند. اگر یک مجموعهٔ کامل از ویژگیهای تشخیص برای هر کلاس از داده‌های اندازه‌گیری شده تعیین شود. تشخیص و دسته‌بندی الگوها، دشواری کمتری را در برخواهد داشت. تشخیص اتوماتیک ممکن است به یک فرایند تطبیق ساده یا یک جدول جستجو کاهش یابد. به هر حال در بسیاری از مسائل تشخیص الگو، در عمل ، تعیین یک مجموعه کامل از ویژگیهای تشخیص اگر غیرممکن نباشد دشوار است.

تعیین رویه تصمیم بهینه

مسئلهٔ سوم در طراحی سیستم تشخیص الگو تعیین رویه‌های تصمیم بهینه است که در فرایند شناسایی و دسته‌بندی مورد نیاز واقع می‌شود. پس از آنکه داده‌های مشاهده شده از الگوها جمع‌آوری شد و در فرم نقاط الگو یا بردارهای اندازه‌گیری در فضای الگو بیان شد، ما ماشینی را می‌خواهیم تا تصمیم بگیرد که این داده به کدام کلاس الگو تعلق دارد.

یادگیری و تمرین دادن

توابع تصمیم به روشهای متنوعی قابل تولید هستند. زمانی که دانش قبلی در مورد الگوهایی که بایستی تشخیص داده شوند، موجود باشد، تابع تصمیم براساس این اطلاعات ممکن است با دقت تعیین شود. زمانی که تنها دانشی کیفی در مورد الگوها موجود باشد، حدس‌هایی مستدل از فرم‌های تابع تصمیم می‌توان داشت. در این مورد محدوده‌های تصمیم ممکن است از پاسخ صحیح دور شود. وضعیت کلی تر آنست که دانش قبلی کمی در مورد الگوهای مورد تشخیص موجود باشد. در این شرایط ماشین‌های تشخیص الگو با استفاده از یک رویهٔ یادگیری یا تمرین دادن طراحی بهتری خواهند داشت.

به صورت ابتدائی، توابع تصمیم موقت فرض می‌شوند و از طریق دنباله‌ای از مراحل تمرینی تکراری، این توابع تصمیم به سمت فرم‌های بهینه و راضی کننده پیش می‌روند. این مهم است به ذهن بسپاریم که تمرین و یادگیری فقط در طول فاز طراحی سیستم تشخیص الگو انجام می‌شوند. هنگامی که نتایج قابل قبول با مجموعهٔ الگوهای تمرینی به دست آمد، سیستم برای وظیفهٔ اجرائی واقعی خود بر روی نمونه‌های محیطی به کار گرفته می‌شود. کیفیت کارآئی تشخیص به طور گسترده‌ای به وسیلهٔ تشابه الگوهای تمرینی و داده‌های واقعی که سیستم در طول عملیات مواجه خواهد شد، تعیین می‌شود.

تشخیص الگوی نظارت شده و بدون نظارت

در بسیاری موارد، الگوهای نماینده از هر کلاس موجود هستند. در این وضعیت‌ها، تکنیک‌های تشخیص الگوی نظارت شده، کاربردی هستند. پایه‌های این رویکرد، مجموعه‌ای از الگوهای تمرینیشناخته شده برای دسته‌بندی و پیاده‌سازی یک رویهٔ یادگیری مناسب هستند. در برخی کاربردها، فقط مجموعه‌ای از الگوهای تمرینی شناخته نشده برای دسته‌بندی ممکن است موجود باشند. در این موقعیت‌ها، تکنیک‌های تشخیص چهره ی بدون نظارت کاربرد دارند. همانطور که در بالا بیان شد، تشخیص الگوی نظارت یافته به وسیلهٔ این موضوع که دستهٔ صحیح هر الگوی تمرینی مشخص است، معرفی می‌شوند. در مورد بدون نظارت، به هر حال، با مسئلهٔ یادگیری در کلاس‌های الگوی ارائه شده در داده‌ها، مواجهیم. این مسئله با نام ” یادگیری بدون ناظر ” نیز شناخته می‌شود.

کلیات یک سیستم تشخیص الگو

در دیاگرام موجود کلیات یک سیستم تشخیص چهره تشخیص صحیح به میزان اطلاعات موجود در اندازه‌گیری‌ها و نحوهٔ استفاده از این اطلاعات وابسته خواهد بود. در برخی کاربردها، اطلاعات زمینه برای بدست آوردن تشخیص دقیق الزامی است. برای نمونه، در تشخیص کارکترهای دست‌نویس خمیده و دسته‌بندی اثر انگشت‌ها، اطلاعات زمینه با اهمیت هستند.

الگوریتم‌ها

الگوریتم انتخابی برای تشخیص الگو، به نوع خروجی، آموزش با ناظر یا بدون ناظر و پویا یا ایستا بودن طبیعت الگوریتم بستگی دارد. الگوریتم‌های ایستا به دو دسته generative وdiscriminative تقسیم می‌شوند.

الگوریتم‌های کلاس بندی (الگوریتم‌های با ناظر پیشگو)

  • درخت تصمیم و لیست تصمیم
  • ماشین‌های بردار پشتیبانی
  • شبکه‌های عصبی
  • پرسپترونن
  • k-نزدیکترین همسایگی

الگوریتم‌های خوشه ساری (الگوریتم‌های بدون ناظر پیشگو)

  • مدل‌های دسته‌بندی ترکیبی
  • خوشه سازی سلسله مراتبی
  • Kernel PCA

الگوریتم‌های مبتنی بر رگرسیون

با ناظر

  • رگرسیون خطی
  • شبکه‌های عصبی
  • Gaussian process regression

بدون ناظر

  • Principal Components Analysis= PCA
  • LCA

کاربردها

منبع

شناسایی حروف توسط شبکه های عصبی

تو این مطلب می خواهیم بصورت عملی از شبکه های عصبی استفاده کنیم! واقعا خیلی جالبه می خوایم به کامپیوتر سه تا حرف الفبای انگلیسی رو یاد بدیم.
نکته ی جالب تر این هست که حتی به کامپیوتر نمی گیم هر کدوم از حرف ها چی هستن! فقط بهش می گیم که این ها سه حرف مختلف هستند! و کامپیوتر خودش تشخیص می ده هر کدوم متعلق به کدوم گروه هست! به این نوع طبقه بندی اصطلاحا Unsupervised میگویند.

سوال : به نظر میرسه باید توی مثال هامون به کامپیوتر بگیم مثلا این A هست و این B هست!
جواب : اون هم نوعی یادگیری هست که بهش اصطلاحا Supervised می گن. اما توی این مثال حالت جالب تر یعنی Unsupervised رو می خوایم بررسی کنیم. به این صورت که فقط به کامپیوتر می گیم ۳ دسته وجود داره و براش چندین مثال می زنیم و خودش مثال ها رو توی ۳ دسته قرار می ده! در نهایت ما مثلا می تونیم بگیم همه ی مثال هایی که در دسته ی دوم قرار گرفتن A هستند.
شاید جالب باشه بدونید گوگل هم برای دسته بندی اطلاعات از همچین روشی استفاده می کنه! البته کمی پیشرفته تر. مثلا ۱۰۰ متن اقتصادی و ۱۰۰ متن ورزشی به کامپیوتر میده و از کامپیوتر می خواد اونها رو به ۲ بخش تقسیم بندی بکنه! ورودی لغت های اون متن ها هستند. “

ابزار مورد نیاز
برای این که شروع کنیم به چند مورد نیاز داریم:

  1. در مورد هوش مصنوعی و شبکه های عصبی یکم اطلاعات داشته باشید.
  2. برنامه ای برای تولید الگو که ورودی شبکه ی عصبی ما خواهد بود. این برنامه رو میتونید از اینجا تهیه کنید.
  3. نرم افزار JOONE Editor. عبارت JOONE مخفف Java Object Oriented Neural Engine هست. که یک ابزار قدرت مند برای بوجود آوردن و آموزش انواع شبکه های عصبی در Java هست. توی این آموزش ما از ویرایشگر این ابزار استفاده می کنیم که محیطی گرافیکی برای تولید شبکه های عصبی داره و کار با اون بسیار ساده هست. این ابزار از اینجا قابل دریافت هست. بدیهیه که برای نصب این ابزار ابتدا باید جاوا روی کامپیوتر شما نصب باشه.
  4. کمی پشتکار و حوصله.

لینک جایگزین برای دانلود JOONE Editor:
https://sourceforge.net/projects/joone/files/

حالا می خوایم یک سری الگو تولید کنیم. الگو همون مثال هایی هست که گفتیم برای کامپیوتر می زنیم تا بتونه یاد بگیره.
برای این کار از برنامه ای که در شماره ی ۲ ابزارها معرفی کردم استفاده می کنیم. این برنامه خیلی ساده کار می کنه و فقط الگو ها رو از حالت تصویری به ۰ و ۱ تبدیل می کنه.
روش کار به این صورت هست که اول تصویر رو به یک ماتریس ۸ در ۸ تقسیم می کنه. یعنی ۶۴ قسمت. وقتی دکمه ی سمت چپ ماوس پایینه در صورتی که ماوس از هر کدوم از اون ۶۴ بخش رد بشه اون بخش رو داخل ماتریس علامت گذاری می کنه (مقدار اون قسمت رو True می کنه). وقتی دکمه ی Learn زده می شه برنامه مقدار تمام قسمت ها رو از بالا به پایین داخل یک فایل ذخیره می کنه. مقدار هر قسمت می تونه ۰ یا False و ۱ یا True باشه. ”
در صورتی که سورس این برنامرو خواستید کافیه توی بخش نظرات بگید تا براتون میل کنم.
کار با این برنامه خیلی آسون هست همونطور که توی شکل مشخصه.

کافیه الگویی که دوست دارید رو داخل فضای سفید بکشید و دکمه ی Learn رو بزنید. Textbox پایینی برای تغییر دادن آدرس فایلی هست که اطلاعات توی اون ذخیره میشه. و Textbox بالایی برای اینه که بگید این الگو چه حرفی هست که توی این مطلب نیازی به پر کردن اون نیست چون ما بحثمون یادگیری Unsupervised هست. توی مطالب بعدی برای یادگیری Supervised به این فیلد نیاز خواهیم داشت.
خوب من برای اینکه مثال پیچیده نشه ۳ حرف رو می خوام به کامپیوتر یاد بدم. A و C و Z!
برای این کار برای هر کدوم از حروف چهار مثال وارد می کنم و دکمه ی Learn رو می زنم. توی شکل زیر می تونید هر ۱۲ الگو رو ببینید.

فایل خروجی مربوط به این الگوهای مثال از اینجا قابل دریافت هست.همونطور که می بینید هر ردیف به نظر من و شما عین هم هستند. اما اگر کمی بیشتر دقت کنیم می بینیم جای مربع های مشکی با هم فرق دارن. به نظر شما کامپیوتر هم خواهد فهمید هر ردیف نشاندهنده ی یک حرف مجزا هست؟
تشکیل شبکه ی عصبیخوب! حالا می خواهیم ساختار شبکه ی عصبی رو طراحی کنیم. برای این کار از JOONE Editor کمک می گیریم.
صفحه ی اول این نرم افزار به این شکل هست:

توی این مثال ما از یک لایه ی ورودی خطی ۶۴ نورونی استفاده می کنیم که هر نورون یک قسمت از ماتریسی که در بخش قبل گفتیم رو به عنوان ورودی می گیره. به عنوان خروجی هم از یک لایه ی ۳ نورونی WinnerTakeAll استفاده می کنیم. در این نوع خروجی یکی از نورون ها ۱ و بقیه ۰ خواهند بود که برای تقسیم بندی بسیار مناسب هست.

برای شروع ابتدا یک لایه ی FileInput ایجاد می کنیم. توسط این ابزار می تونیم یک فایل رو به عنوان ورودی به شبکه بدیم.
روی FileInput کلیک راست کرده و در Properties اون فایل درست شده در مرحله ی قبلی رو به عنوان fileName انتخاب می کنیم و به عنوان Advanced Column Selector مقدار 1-64 رو وارد می کنیم تا برنامه متوجه بشه باید از ستون های ۱ تا ۶۴ به عنوان ورودی استفاده کنه.

ایجاد یک لایه ی خطی:

مرحله ی بعدی ایجاد یک Linear Layer یا لایه ی خطی هست. بعد از ایجاد این لایه Properties اون باید به شکل زیر باشه:

همونطور که می بینید تعداد ردیف ها ۶۴ مقداردهی شده که دلیلش این هست که ۶۴ ورودی داریم.
حالا با انتخاب FileInput و کشیدن نقطه ی آبی رنگ سمت راست اون روی Linear Layer خروجی FileInput یعنی اطلاعات فایل رو به عنوان ورودی Linear Layer انتخاب می کنیم.
تا این لحظه ما یک لایه ی ۶۴ نورونه داریم که ورودی اون مقادیر مثال های تولید شده در مرحله ی قبل هست.

ایجاد لایه ی WinnerTakeAll :

خوب توی این مرحله لایه ی خروجی که یک لایه ی WinnerTakeAll هست رو تولید می کنیم. Properties این لایه باید به شکل زیر تغییر پیدا کنه تا اطمینان پیدا کنیم الگوها به سه دسته تقسیم میشن:

حالا باید بین لایه ی خطی و لایه ی WinnerTakeAll ارتباط برقرار کنیم. برای این کار باید از Kohonen Synapse استفاده کنیم و Full Synapse جواب نخواهد داد. پس روی دکمه ی Kohonen Synapse کلیک کرده و بین لایه ی خطی و لایه ی WinnerTakeAll ارتباط ایجاد می کنیم.
در آموزش های بعدی فرق انواع سیناپس ها رو بررسی خواهیم کرد.آموزش شبکه

تا این لحظه شبکه باید به این شکل باشه. حالا می تونیم آموزش شبکرو شروع کنیم. برای این کار در منوی Tools بخش Control Panel رو انتخاب می کنیم. و در صفحه ی جدید learningRating و epochs و training pattern و learning رو به شکل زیر تغییر می دیم.

epochs تعداد دفعاتی که مرحله ی آموزش تکرار میشرو تعیین می کنه.
learningRate ضریبی هست که در یادگیری از اون استفاده می شه. بزرگ بودن اون باعث میشه میزان تغییر وزن نورون ها در هر مرحله بیشتر بشه و سرعت رسیدن به حالت مطلوب رو زیاد می کنه اما اگر مقدار اون خیلی زیاد شه شبکه واگرا خواهد شد.
training patterns هم تعداد الگو هایی که برای آموزش استفاده می شن رو نشون می ده که در این مثال ۱۲ عدد بود.
بعد از اینکه تمام تغییرات رو ایجاد کردیم دکمه ی Run رو می زنیم و منتظر می شیم تا ۱۰۰۰۰ بار عملیات یادگیری انجام بشه.

تبریک می گم! شما الان به کامپیوتر سه حرف A و C و Z رو یاد دادید!
اما خوب حالا باید ببینید کامپیوتر واقعا یاد گرفته یا نه.
برای این کار از یک لایه ی FileOutput استفاده می کنیم تا خروجی شبکرو داخل یک فایل ذخیره کنیم.
Properties لایه ی FileOutput باید بصورت زیر باشه:

همونطور که می بینید به عنوان fileName مقدار c:\output.txt رو دادیم. یعنی خروجی شبکه در این فایل ذخیره میشه.
حالا کافیه لایه ی WinnerTakeAll رو به لایه ی FileOutput متصل کنیم.
بعد از متصل کردن این دو لایه شکل کلی باید بصورت زیر باشه:

برای اینکه فایل خروجی ساخته بشه باید یک بار این شبکرو اجرا کنیم. برای این کار مجددا در منوی Tools بخش Control Panel رو انتخاب می کنیم و در اون learning رو False و epochs رو ۱ می کنیم تا شبکه فقط یک بار اجرا شه. پس از تغییرات این صفحه باید به شکل زیر باشه:

حالا با توجه به اینکه من اول چهار مثال A رو وارد کردم و بعد به ترتیب چهار مثال C و چهار مثال Z رو ببینیم خروجی این شبکه به چه شکل شده.
باور کردنی نیست! خروجی به این شکل در اومده:

1.0;0.0;0.0
1.0;0.0;0.0
1.0;0.0;0.0
1.0;0.0;0.0
0.0;1.0;0.0
0.0;1.0;0.0
0.0;1.0;0.0
0.0;1.0;0.0
0.0;0.0;1.0
0.0;0.0;1.0
0.0;0.0;1.0
0.0;0.0;1.0

همونطور که می بینید ۴ خط اول که مربوط به A هستن ستون اولشون ۱ هست و در چهار خط دوم ستون دوم و در چهار خط سوم ستون سوم!
این یعنی کامپیوتر بدون اینکه کسی به اون بگه کدوم مثال ها کدوم حرف هست خودش فهمیده و اون ها رو دسته بندی کرده.
سوال :  ممکنه چون پشت هم دادید مثال هر حرف رو اینطوری نشده؟
جواب : نه! کامپیوتر که نمی دونسته من می خوام مثال های هر حرف رو پشت سر هم بدم! من برای راحتی خودم این کار رو کردم. شما می تونی ورودی هاتو غیر مرتب بدی!
سوال : دلیل خاصی داره که در A ستون اول ۱ هست و …
جواب : نه! ممکن بود برای A ستون دوم ۱ بشه و یا هر حالت دیگه. شما اگر امتحان کنید ممکنه تفاوت پیدا کنه. اما مهم اینه در تمام A ها یک ستون خاص مقدارش ۱ و بقیه ی ستون ها مقدارشون صفر می شه. پس یعنی کامپیوتر تونسته به خوبی تقسیم بندی کنه.

حالا می خوایم شبکرو با سه مثال جدید تست کنیم که در مثال های آموزشی نبوده! برای این کار من با استفاده از برنامه ی تولید الگو ۳ مثال جدید درست می کنم و به عنوان فایل ورودی در شبکه فایل جدید رو انتخاب می کنم.
توی شکل زیر سه مثال جدید رو می تونید ببینید:

برای جذابیت علاوه بر این سه مثال ۲ مثال دیگه هم که حروف خاصی نیستند گذاشتم!

فایل خروجی این مثال ها از اینجا قابل دریافت هست.

خوب حالا بگذارید ببینیم کامپیوتر چه جوابی می ده. با توجه به اینکه اول مثال C بعد مثال Z و بعد مثال A رو وارد کردم. دو مثال بعدی هم به ترتیب مثال بد خط سمت چپ و مثال بد خط سمت راست هستند. و اما جواب:

0.0;1.0;0.0
0.0;0.0;1.0
1.0;0.0;0.0
0.0;0.0;1.0
0.0;1.0;0.0

کامپیوتر سه مورد اول رو به خوبی C و Z و A تشخیص داده. و دو مورد بد خط هم به ترتیب از چپ به راست Z و C تشخیص داده!
حتی برای انسان هم سخته فهمیدن اینکه مورد های چهارم و پنجم چی هستند اما اگر خوب دقت کنید می بینید به مواردی که کامپیوتر خروجی داده نزدیک تر هستند.
کامپیوتر شعور نداره! اما ما سعی کردیم طریقه ی عملکرد مغز رو به صورت خیلی ابتدایی و به ساده ترین نحو توش شبیه سازی کنیم! ”
تو  این مطلب دیدیم که کامپیوتر تونست بدون اینکه ما براش مثال هایی بزنیم و بگیم هر کدوم چه حرفی هستند و فقط با دادن تعداد دسته ها، مثال ها رو به سه دسته همونطوری که انسان ها تقسیم می کنند تقسیم کنه. همونطور که گفتیم به این نوع دسته بندی، دسته بندی Unsupervised میگن.
منبع

تشخیص پلاک خودرو

چکیده– شماره پلاک خودرو یکی از مناسب ترین اقلام اطلاعات جهت احراز هویت خودروها می باشد.سامانه تشخیص پلاک خودرو یک سیستم کاملاً مکانیزه است. در این مقاله به بررسی و نحوه کار یک سیستم اتوماتیک تشخیص پلاک میپردازیم که امروزه نمی توان کاربرد مفید و چشمگیر آن را نادیده گرفت. این سیستم با استفاده از پردازش تصویر خودروهای عبوری از یک مکان، شماره پلاک آنها را استخراج کرده و به صورت عددی مورد استفاده قرار می دهد.

کلمات کلیدی– تشخیص پلاک خودرو، تشخیص کاراکتر نوری، پردازش تصویر، OCR

فایل PDF – در 7 صفحه- نویسنده : مریم زارع

تشخیص پلاک خودرو

پسورد فایل : behsanandish.com


تشخیص اتوماتیک پلاک خودرو فارسی به کمک روش های پردازش تصویر و شبکه های عصبی

چکیده- شماره پلاک خودرو یکی از مناسب ترین اقلام اطلاعاتی جهت احراز هویت خودروها می باشد. سیستم تشخیص پلاک خودرو یک سیستم مکانیزه است که با عکس گرفتن از خودروها، شماره پلاک آنها را استخراج می کند.روشی که در این مقاله استفاده شده شامل دو قسمت می باشد. در قسمت اول با استفاده از لبه یابی و عملیات مورفولوژی محل پلاک شناسایی شده و در قسمت دوم با استفاده از شبکه عصبی هاپفیلد کاراکترها شناسایی می شوند. این روش بر روی 500 تصویر مختلف از نظر پس زمینه، فاصله و زاویه دید مورد آزمایش قرار گرفته است، که نرخ استخراج صحیح پلاک را 95% و همچنین نرخ خواندن صحیح پلاک را 90% بدست آوردیم.

کلمات کلیدی– تشخیص پلاک خودرو، شبکه عصبی هاپفیلد، عملیات مورفولوژی، لبه یابی، هیستوگرام.

فایل PDF – در 8 صفحه- نویسندگان : محمدصادق معمارزاده، همایون مهدوی نسب، پیمان معلم.

تشخیص اتوماتیک پلاک خودرو فارسی به کمک روش های پردازش تصویر و شبکه عصبی

پسورد فایل : behsanandish.com


روش ﺟﺪﯾﺪ ﻣﮑﺎنﯾﺎﺑﯽ ﭘﻼك ﺧﻮدرو در ﺗﺼﺎوﯾﺮ رﻧﮕﯽ

ﭼﮑﯿﺪه – اﯾﻦ ﻣﻘﺎﻟه روش ﺟدﯾﺪی ﺟﻬﺖ ﻣﮑﺎنﯾﺎﺑﯽ ﭘﻼك ﺧﻮدرو اراﺋﻪ میﮐﻨﺪ. روش پیشنهادی ﺑﻪ ﻋﻠﺖ ﻋﺪم اﺳﺘﻔﺎده از  عملیاتﻫﺎي ﭘﺮﻫﺰﯾﻨﻪ ﭘﺮدازش ﺗﺼﻮﯾﺮ، داراي ﺳﺮﻋﺖ پاسخگویی ﺑﺎلاتري نسبت ﺑﻪ روشﻫﺎی ﻣﺸﺎﺑﻪ اﺳﺖ. روش ﭘﯿﺸﻨﻬﺎدي در اﯾﻦ ﻣﻘﺎﻟﻪ، ﻣﺒﺘﻨﯽ ﺑﺮ ﺷﻨﺎﺳﺎﯾﯽ اﻟﮕﻮ و ﺑﻮده و ﺑﺎ اﺳﺘﻔﺎده از پیمایش ﺳﺘﻮﻧﯽ ﺑﺮاي ﯾﺎﻓﺘﻦ اﻟﮕﻮﯾﯽ اﺳﺘﺎﻧﺪارد در ﺗﺼﻮﯾﺮ رنگی، ﭘﻼك ﺧﻮدرو را ﻣﮑﺎن یابی و آن را از تصویر اﺳﺘﺨﺮاج می کند. از ﺧﺼﻮﺻﯿﺎت روش ﻣﺬﮐﻮر، ﺳﺮﻋﺖ ﺑﺎلای ﭘﺮدازش و ﭘﺎﺳﺦ گویی ﺳﺮﯾﻊ، قابلیت ﻧﺼﺐ و اﺟـﺮ در ریزپردازنده ها، ﻗﺎبلیت شناسایی چندین پلاک ﻣﻮﺟﻮد دریک تصویر و پردازش بر روی تصویر رنگی بدون تغییر اندازه ی آن، ﻣﯽﺑﺎﺷﺪ. روش اراﺋﻪ ﺷﺪه، دارای کاربردهای عملی از قبیل صدور برگ جریمه الکترونیکی، اﯾﺠﺎد ﺳﺎﻣﺎﻧﮥ ﻫﻮﺷﻤﻨﺪ ﭘﺮداﺧﺖ ﻋﻮارض، کنترل ﺗﻮﻧﻞ ﻫﺎ، بزرگراه ها، پارکینگ ها، ﻣﺤﺪوده ﻃﺮح ترافیک و ﻏﯿﺮه، ﻣﯽﺑﺎﺷﺪ. ﻧﺘﺎﯾﺞ آزﻣﺎﯾﺸﺎت ﺑﺮ روي ﯾﮏ ﻣﺠﻤﻮﻋﻪ داده دﻟﺨﻮاه از ﺗﺼﺎوﯾﺮ دورﺑﯿﻦﻫﺎي ﮐﻨﺘﺮل ﺳﺮﻋﺖ در ﺑﺰرﮔﺮاه ﻫﺎي ﮐﺸﻮر، ﮐﺎراﯾﯽ، دﻗﺖ، اﻃﻤﯿﻨﺎن و ﺳﺮﻋﺖ ﺳﯿﺴﺘﻢ ﭘﯿﺸﻨﻬﺎدي را ﺗﺎﯾﯿﺪ ﮐﺮد ﺑﻪ ﻃﻮري ﮐﻪ در آزﻣﺎﯾﺸﺎت  دﻗـﺖ تشخیص 96 درصد را به خود اختصاص داده است.

کلمات کلیدی– مکان یابی پلاک خودرو، تشخیص پلاک خودرو، شناسایی الگو.

فایل PDF – در 6 صفحه- نویسندگان : امیرحسین اشتری و محمود فتحی.

روش جدید مکانیابی پلاك خودرو در تصاویر رنگی

پسورد فایل : behsanandish.com


شرکت بهسان اندیش تولید کننده سامانه های هوشمند مفتخر به تولید یکی از دقیقترین و سریعترین سامانه های جامع کنترل تردد خودرو می باشد که می توانید جهت آشنایی با قابلیت ها و امکانات این محصول به لینک :سامانه جامع کنترل تردد خودرو بهسان(پلاک خوان) مراجعه فرمایید.


ﺭﻭﺷﯽ ﺟﺪﻳﺪ ﻭ ﺳﺮﻳﻊ ﺑﺮﺍﯼ ﺗﺸﺨﻴﺺ ﻣﺤﻞ ﭘﻼﮎ ﺧﻮﺩﺭﻭ ﺍﺯ ﺗﺼﺎﻭﻳﺮ ﭘﻴﭽﻴﺪﻩ ﺑﺮ ﺍﺳﺎﺱ ﻋﻤﻠﻴﺎﺕ ﻣﻮﺭﻓﻮﻟﻮﮊﻳﮑﯽ

 ﭼﮑﻴﺪﻩ – ﺗﺸﺨﻴﺺ ﻣﺤﻞ ﭘﻼﮎ ﺧﻮﺩﺭو ﻣﻬﻤﺘﺮﻳﻦ ﻣﺮﺣﻠﻪ ﺷﻨﺎﺳﺎﻳﯽ ﭘﻼک ﺧﻮﺩﺭو ﺩﺭ ﺳﻴﺴﺘﻤﻬﺎﯼ حمل ﻭ ﻧﻘﻞ هوشمند ﺍﺳﺖ . ﺩﺭ ﺍﻳﻦ ﻣﻘﺎﻟﻪ روشی  بلادرنگ ﻭ ﺳﺮﻳﻊ ﺑﺮﺍﯼ ﭘﻴﺪﺍ ﮐﺮﺩﻥ ﭘﻼﮎ ﺧﻮﺩﺭﻭﻫﺎ ﺩﺭ ﺗﺼﺎﻭﻳﺮ ﭘﻴﭽﻴﺪﻩ ﻣﻌﺮﻓﯽ ﻣﯽ شود. ﺩﺭ ﺍﻟﮕﻮﺭﻳﺘﻢ ﭘﻴﺸﻨﻬﺎﺩﯼ ﺍﺑﺘﺪﺍ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻋﻤﻠﮕﺮ ﺳﻮﺑﻞ ﺍﻗﺪﺍﻡ ﺑﻪ ﻳﺎﻓﺘﻦ لبه ﻫﺎﯼ ﻋﻤﻮﺩﯼ ﺗﺼﻮﻳﺮ می ﮐﻨﻴﻢ، ﺳﭙﺲ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ تحلیل ﻫﻴﺴﺘﻮﮔﺮﺍﻡ ﻭ ﺗﺮﮐﻴﺒﯽ ﺍﺯ ﻋﻤﻠﮕﺮﻫﺎﯼ ﻣﻮﺭﻓﻮﻟﻮﮊیکی ﭘﻼک ﺧﻮﺩﺭﻭ ﺭﺍ ﺍﺯ ﺗﺼﻮﻳﺮ ﺍﺳﺘﺨﺮﺍﺝ می کنیم.ﺭﻭﺵ ﭘﻴﺸﻨﻬﺎﺩﯼ را ﺭﻭﯼ پاﻳﮕﺎﻩ ﺩﺍﺩﻩ ﺍﯼ ﺷﺎﻣﻞ 300 ﺗﺼﻮﻳﺮ ﻣﺨﺘﻠﻒ ﺍﺯ نظر ﭘﺲ ﺯﻣﻴﻨﻪ، ﺍﻧﺪﺍﺯﻩ، ﻓﺎﺻﻠﻪ، ﺯﺍﻭﻳﻪ ﺩﻳﺪ ﻭ ﺷﺮﺍﻳﻂ ﻧﻮﺭی ﻣﻮﺭﺩ ﺁﺯﻣﺎﻳﺶ ﻗﺮﺍﺭ ﺩﺍﺩﻩ ﻭ ﻧﺮﺥ ﺍﺳﺘﺨﺮﺍﺝ ﺻﺤﻴﺢ ﭘﻼﮎ  را 81/3% بدست آوردیم.
کلمات کلیدی– تشخیص محل، پلاک خودرو، ﻫﻴﺴﺘﻮﮔﺮﺍﻡ، ﻋﻤﻠﻴﺎﺕ ﻣﻮﺭﻓﻮﻟﻮﮊﻳﮑﯽ.
فایل PDF – در 7 صفحه- نویسندگان : فرهاد فرجی و رضا صفابخش

ﺭﻭﺷﯽ ﺟﺪﻳﺪ ﻭ ﺳﺮﻳﻊ ﺑﺮﺍﯼ ﺗﺸﺨﻴﺺ ﻣﺤﻞ ﭘﻼﮎ ﺧﻮﺩﺭﻭ ﺍﺯ ﺗﺼﺎﻭﻳﺮ ﭘﻴﭽﻴﺪﻩ ﺑﺮ ﺍﺳﺎﺱ ﻋﻤﻠﻴﺎﺕ ﻣﻮﺭﻓﻮﻟﻮﮊﻳﮑﯽ

پسورد فایل : behsanandish.com


شناسایی پلاک خودروهای ایرانی با روش جایابی فازی پلاک

چکیده– یکی از مهم ترین زیرسامانه های حمل و نقل هوشمند، سامانه ی تشخیص و شناسایی پلاک خودرو است. دشواری تشخیص و شناسایی صحیح پلاک خودرو در شرایط مختلف محیطی موجب شده تا پژوهش در این زمینه ی پژوهشی هم چنان ادامه داشته باشد. مسئله ی تشخیص پلاک خودرو را می توان به سه زیر مسئله ی “جایابی پلاک”، “استخراج نویسه های پلاک” و “شناسایی نویسه ها” تقسیم کرد. در این مقاله تلاش شده به کمک قواعد فازی، الگوریتم های جایابی پلاک خودروهای ایرانی و شناسایی نویسه های آن بهبود یابد. جایابی پلاک با لبه یابی، تحلیل ریخت شناسانه و استفاده از قواعد فازی و شناسایی نویسه ها با استفاده از ماشین بردار پشتیبانی فازی انجام شده است. با آزمایش الگوریتم یاد شده بر روی پنجاه تصویر صحت جایابی پلاک خودرو 90 درصد و صحت شناسایی نویسه ها 94 درصد به دست آمد که در مقایسه با روش های مرسوم توانمندی چشمگیری دارد.

کلمات کلیدی– پلاک خودروف شناسایی الگو، ماشین بردار پشتیبانی، نظریه ی فازی.

فایل PDF – در 10 صفحه- نویسندگان : غلامعلی منتظر و محمد شایسته فر

شناسایی پلاک خودروهای ایرانی با روش جایابی فازی پلاک

پسورد فایل : behsanandish.com


Vehicle License Plate Identification & Recognition

شناسایی و به رسمیت شناختن شماره پلاک خودرو

Abstract- Existing vehicle license plate identification and recognition systems are potent for either their accuracy
or speed but not a combination of both. The algorithm proposed in this dissertation attempts to achieve
this fine balance between the accuracy and speed that such a system must posses. The mathematical
morphology operators of dilation and erosion are utilized to identify the region within an image which
contains the license plate. Using the concept of color coherence vectors, an image recognition algorithm
is presented which utilizes this extracted region and compares it as a whole to other images of license
plates, in the database. The application developed for the testing of this algorithm works with an
accuracy of eighty eight percent and an average processing time of two seconds per image.
Key Words and Phrases: Vehicle license plate recognition, color coherence vectors, mathematical
morphology

فایل PDF – در 10 صفحه- نویسندگان : SANJAY GOEL, PRIYANK SINGH

Vehicle License Plate Identification & Recognition

پسورد فایل : behsanandish.com


Sensor network based vehicle classification and license plate identification system

طبقه بندی وسایل نقلیه بر اساس شبکه حسگر و سیستم شناسایی پلاک وسایل نقلیه

Abstract—Typically, for energy efficiency and scalability purposes, sensor networks have been used in the context of environmental and traffic monitoring applications in which operations at the sensor level are not computationally intensive. But increasingly, sensor network applications require data and compute intensive sensors such video cameras and microphones. In this paper, we describe the design and implementation of two such systems: a vehicle classifier based on acoustic signals and a license plate identification system using a camera. The systems are implemented in an energy-efficient manner to the extent possible using commercially available hardware, the Mica motes and the Stargate platform. Our experience in designing these systems leads us to consider an alternate more flexible, modular, low-power mote architecture that uses a combination of FPGAs, specialized embedded processing units and sensor data acquisition systems.
Keywords: wireless sensor networks, seismic, acoustic vehicle classification, license plate detection

فایل PDF – در 4 صفحه- نویسندگان :Jan Frigo, Vinod Kulathumani, Sean Brennan∗, Ed Rosten, Eric Raby

Sensor network based vehicle classification and

پسورد فایل : behsanandish.com


Real Time Automatic License Plate Recognition in Video Streams

تشخیص خودکار زمان واقعی شماره پلاک وسایل نقلیه در جریان های ویدیویی

Abstract
In recent years there has been an increased commercial interest in systems for automatic license plate recognition. Some of the existing systems process single images only, some even requiring vehicles to stop in front of a gate so that a still image of good quality can be taken. This thesis presents an approach that makes it possible to process 25 images per second on a standard PC from 2004, allowing identication decisions to be based on information from several images instead of just a single one. Thus, the impact of a single bad image is reduced, and vehicles can be allowed to drive past the camera without hindrance. In order to reach the necessary processing speed, a simplied StauerGrimson background estimation algorithm has been used, enabling the system to only search for license plates on objects that are in motion. The main method for nding license plates has been a computational-wise economical connected component labeling algorithm. A basic pixel-by-pixel comparison OCR algorithm %has also been implemented. A real life test running for twelve days has shown the complete system to have a rate of successful identification at 80 .

فایل PDF – در 28 صفحه- نویسنده : Fredrik Trobro

Real Time Automatic License Plate Recognition

پسورد فایل : behsanandish.com


Proposal for Automatic License and Number Plate Recognition System for Vehicle Identification

طرح پیشنهادی برای سیستم شناسایی خودکار شماره پلاک و مجوز برای شناسایی خودرو

Abstract— In this paper, we propose an automatic and mechanized license and number plate recognition (LNPR) system which can extract the license plate number of the vehicles passing through a given location using image processing algorithms. No additional devices such as GPS or radio frequency identification (RFID) need to be installed for implementing the proposed system. Using special cameras, the system takes pictures from each passing vehicle and forwards the image to the computer for being processed by the LPR software. Plate recognition software uses different algorithms such as localization, orientation, normalization, segmentation and finally optical character recognition (OCR). The resulting data is applied to compare with the records on a database. Experimental results reveal that the presented system successfully detects and recognizes the vehicle number plate on real images. This system can also be used for security and traffic control.

(Keywords— License and number plate recognition (LNPR) system, image processing, orientation, normalization, segmentation, identification, optical character recognition (OCR

فایل PDF – در 5 صفحه- نویسنده : Hamed Saghaei

Proposal for Automatic License and Number Plate

پسورد فایل : behsanandish.com


LICENSE PLATE MATCHING TECHNIQUES

تکنیک های انطباق پلاک وسیله نقلیه

فایل PDF – در 42 صفحه- نویسنده : U.S.Department of Transportation-Federal Highway Administration(وزارت راه و ترابری آمریکا-مدیریت بزرگراه فدرال)

LICENSE PLATE MATCHING TECHNIQUES

پسورد فایل : behsanandish.com


Development of a New Automatic License Plate Recognition (LPR) System

توسعه یک سیستم تشخیص پلاک خودکار جدید

ABSTRACT In Japan, automatic license plate recognition systems have been used for more than ten years for the purposes of measuring the travel time of vehicles and for some applications which need detailed plate information identification. Due to their efficacy, they are now being utilized throughout the country. Ordinarily, compared to when used for travel time measurements, considering the types of uses for the number information, higher recognition accuracy is often desired when used for some applications which need detailed plate information identification. We have advanced the development of number plate reading for the purpose of travel time measurement applications, refining these technologies for their application to other various applications. In order to fulfill the requirements expected to be met for various applications, we have implemented a variety of innovations in both software and hardware and developed a new LPR system that has many features such as high recognition rate, low false rate, compact design and high reliability by image processing algorithms and an advanced camera unit. We will seek to expand abroad by applying these technologies.

KEYWORDS: Automatic license plate recognition, Automatic number plate recognition, Automatic vehicle identification, Image processing, Vehicle detection, Plate extraction, Character recognition

فایل PDF – در 10 صفحه- نویسنده : Takehiko Kato ,Masatoshi Asada , Kayo Tanaka , Yusuke Yasuhara, Toshihiro Asai , Yasuo Ogiuchi

Development of a New Automatic License Plate Recognition (LPR) System

پسورد فایل : behsanandish.com


Development of a License Plate Number Recognition System Incorporating LowResolution Cameras

توسعه یک سیستم شناسایی شماره پلاک شامل دوربین های با رزولوشن پایین

A multi-lane free flow (MLFF) toll collection system installed on a simplified gantry requires compact cameras for supervising enforcement. Because these compact cameras have low image resolution, it is also necessary to develop vehicle license plate recognition technology that uses dynamic image processing. Mitsubishi Heavy Industries, Ltd. (MHI) has developed three technologies based on the conventional license plate recognition system using still images; these technologies improve image quality, process plural images of a single vehicle, and utilize a reference database. Laboratory evaluation tests have verified that even a lowresolution camera system can successfully recognize license plate numbers at a rate of 95% or better, comparable to results from the conventional still image system. MHI is enhancing system robustness to enable application of these technologies to actual products.

فایل PDF – در 5 صفحه- نویسنده : KENTA NAKAO, KIICHI SUGIMOTO, MAYUMI SAITOH, TAKUMA OKAZAKI

Development of a License

پسورد فایل : behsanandish.com


Automatic Number Plate Recognition System

سیستم شناسایی شماره پلاک خودکار

Abstract. Automatic recognition of car license plate number became a very important in our daily life because of the unlimited increase of cars and transportation systems which make it impossible to be fully managed and monitored by humans, examples are so many like traffic monitoring, tracking stolen cars, managing parking toll, red-light violation enforcement, border and customs checkpoints. Yet it’s a very challenging problem, due to the diversity of plate formats, different scales, rotations and non-uniform illumination conditions during image acquisition. This paper mainly introduces an Automatic Number Plate Recognition System (ANPR) using Morphological operations, Histogram manipulation and Edge detection Techniques for plate localization and characters segmentation. Artificial Neural Networks are used for character classification and recognition.
2010 Mathematics Subject Classification. Primary 68T10; Secondary 68T45.

Key words and phrases. license plate recognition, plate region extraction, segmentation, neural networks, optical character recognition, Hough transform, ANPR.

فایل PDF – در 10 صفحه- نویسنده :Amr Badr, Mohamed M. Abdelwahab, Ahmed M. Thabet, and Ahmed M. Abdelsadek

Automatic Number Plate Recognition System

پسورد فایل : behsanandish.com


Automatic License Plate Recognition

شناسایی شماره پلاک خودکار

فایل PDF – در 5 صفحه- نویسنده :Jason Grant

Automatic License Plate Recognition

پسورد فایل : behsanandish.com


A Real-Time Mobile Vehicle License Plate Detection and Recognition

یک تشخیص و ردیابی شماره پلاک وسایل نقلیه موبایل زمان واقعی

Abstract
In this paper we present a instant and real-time mobile vehicle license plate recognition system in an open environment. Using a nonfixed video camera installed in the car, the system tries to capture the image of the car in front and to process instant vehicle license plate detection and recognition. We utilize the color characteristics of the barking lights to carry out license plate detection. We first detect the location of the two barking lights in the captured image. Then set license plate detection region using the probability distribution of the license plate between the two lights. This method can eliminate any environmental interference during the license plate detection and improve the rate of accuracy of license plate detection and recognition. Moreover, we use the morphology method Black Top-Hat to enhance the level of separation of the license plate characters. Experiments show that the system can effectively and quickly capture the vehicle image,detect and recognize the license plate whether it is in daytime, nighttime, clear day, raining day or under complicated environment.
Key Words: Real-Time, Wavelet, License Plate, Black Top-Hat

فایل PDF – در 10 صفحه- نویسنده :Kuo-Ming Hung and Ching-Tang Hsieh

A Real-Time Mobile Vehicle License Plate

پسورد فایل : behsanandish.com

ﺑﺎﺯﻧﻤﺎیی و ﺍﺳﺘﺨﺮﺍﺝ ﻭﻳﮋﮔﻴﻬﺎ-سومین و آخرین بخش OCR

باﺯﻧﻤﺎیی و ﺍﺳﺘﺨﺮﺍﺝ ﻭﻳﮋﮔﻴﻬﺎ :

ﺑﺎﺯﻧﻤﺎیی ﺗﺼﺎﻭﻳﺮ ﻣﻬﻤﺘﺮﻳﻦ ﻧﻘﺶ ﺭﺍ ﺩﺭ ﺳﻴﺴﺘﻤﻬﺎﻱ ﺑﺎﺯﺷﻨﺎﺳﻲ ﺣﺮﻭﻑ ﺍﻳﻔﺎ ﻣﻲكند. در ﺳﺎﺩﻩﺗﺮﻳﻦ ﺣﺎﻟﺖ، ﺗﺼﺎﻭﻳﺮ ﺳﻄﺢ ﺧﺎﻛﺴﺘﺮﻱ ﻳﺎ ﺑﺎﻳﻨﺮﻱ ﺑﻪ ﻳﻚ ﺑﺎﺯﺷﻨﺎﺳﻲ ﻛﻨﻨﺪﻩ ﺩﺍﺩﻩ ﻣﻲ ﺷﻮﻧﺪ. ﻟﻴﻜﻦ ﺩﺭ ﺑﻴﺸﺘﺮ ﺳﻴﺴﺘﻤﻬﺎﻱ ﺑﺎﺯﺷﻨﺎﺳﻲ ﺑﻤﻨﻈﻮﺭ ﺍﺟﺘﻨﺎﺏ ﺍﺯ ﭘﻴﭽﻴﺪﮔﻲ ﺍﺿﺎﻓﻲ ﻭ ﺍﻓﺰﺍﻳﺶ ﺩﻗﺖ ﺍﻟﮕﻮﺭﻳﺘﻤﻬﺎ، ﻳﻚ ﺭﻭﺵ ﺑﺎﺯﻧﻤﺎیی ﻓﺸﺮﺩﻩ ﺗﺮ ﻭ ﺑﺎ ﻗﺪﺭﺕ ﺗﻤﺎﻳﺰ ﺑﻴﺸﺘﺮ ﻣﻮﺭﺩ ﻧﻴﺎﺯ است. ﺑﺮﺍﻱ ﺍﻳﻦ ﻣﻨﻈﻮﺭ ﻣﺠﻤﻮﻋﻪ ﺍﻱ ﺍﺯ ﻭﻳﮋﮔﻴﻬﺎ ﻫﺮ ﻛﻼﺱ ﺍﺳﺘﺨﺮﺍﺝ ﻣﻲشوند ﻛﻪ ﺑﻪ ﺗﺸﺨﻴﺺ ﺁﻥ ﺍﺯ ﺳﺎﻳﺮ ﻛﻼﺳﻬﺎ ﻛﻤﻚ ﻣﻲ گیرد. ﺩﺭ ﻋﻴﻦ ﺣﺎﻟﻲ ﻛﻪ ﻧﺴﺒﺖ ﺑﻪ ﺗﻐﻴﻴﺮﺍﺕ ﻣﺸﺨﺼﺎﺕ ﺍﻋﻀﺎﻱ ﻳﻚ ﻛﻼﺱ ﻣﺴﺘﻘﻞ ﺑﺎﻗﻲ ﻣﻲ ﻣﺎﻧﺪ. ﻭﻳﮋﮔﻴﻬﺎﻱ ﺍﻧﺘﺨﺎﺏ ﺷﺪﻩ ﺑﺎﻳﺴﺘﻲ ﻧﺴﺒﺖ ﺑﻪ ﺍﻋﻮﺟﺎﺟﻬﺎ ﻭ ﺗﻐﻴﻴﺮﺍﺕ ﺍﺣﺘﻤﺎﻟﻲ ﻛﻪ ﻛﺎﺭﺍﻛﺘﺮﻫﺎ ﺩﺭ ﻳﻚ ﻛﺎﺭﺑﺮﺩ ﺧﺎﺹ پیدا كنند، ﺗﻐﻴﻴﺮﻧﺎﭘﺬﻳﺮ ﺑﺎﺷﻨﺪ. ﻫﻤﭽﻨﻴﻦ ﭘﺪﻳﺪﻩﺍﻱ ﺗﺤﺖ ﻋﻨﻮﺍﻥ « ﻧﻔﺮﻳﻦ ابعادی » (Curse of Dimensionality) به ما ﻫﺸﺪﺍﺭ ﻣﻲ ﺩﻫﺪ ﻛﻪ ﺑﺎ ﻳﻚ ﻣﺠﻤﻮﻋﺔ ﺁﻣﻮﺯﺷﻲ ﻣﺤﺪﻭﺩ ﭼﻨﺎﻧﭽﻪ ﺑﺨﻮﺍﻫﻴﻢ ﺍﺯ ﻳﻚ ﻃﺒﻘﻪ ﺑﻨﺪﻱ ﻛﻨﻨﺪﺓ ﺁﻣﺎﺭﻱ ﺍﺳﺘﻔﺎﺩﻩ ﻛﻨﻴﻢ، ﺗﻌﺪﺍﺩ ﻭﻳﮋﮔﻴﻬﺎ ﺑﻄﻮﺭ ﻣﻨﻄﻘﻲ ﺑﺎﻳﺴﺘﻲ ﻛﻮﭼﻚ ﺑﺎﺷﺪ. ﺑﺮﻃﺒﻖ ﻳﻚ ﻗﺎﻧﻮﻥ ﺗﺠﺮﺑﻲ، ﺗﻌﺪﺍﺩ ﺍﻟﮕﻮﻫﺎﻱ ﺁﻣﻮﺯﺷﻲ ﻫﺮ ﻛﻼﺱ ﺑﺎﻳﺴﺘﻲ 5 تا 10 برابر ابعاد بردار ویژگی انتخابی باشد. در عمل مقتضیات ﺭﻭﺷﻬﺎﻱ ﺑﺎﺯﻧﻤﺎیی، ﺍﻧﺘﺨﺎﺏ ﺑﻬﺘﺮﻳﻦ ﺭﻭﺵ ﺑﺮﺍﻱ ﻳﻚ ﻛﺎﺭﺑﺮﺩ ﺧﺎﺹ ﺭﺍ ﺑﺎ ﻣﺸﻜﻞ ﻣﻮﺍﺟﻪ ﻣﻲﻛﻨﺪ. ﻫﻤﭽﻨﻴﻦ ﺍﻳﻦ ﻣﺴﺌﻠﻪ ﺭﺍ ﻧﻴﺰ ﺑﺎﻳﺪ ﻣﺪ ﻧﻈﺮ ﻗﺮﺍﺭ ﺩﺍﺩ ﻛﻪ ﺁﻳﺎ ﺣﺮﻭﻑ ﻳﺎ ﻛﻠﻤﺎﺗﻲ ﻛﻪ ﻣﻲ ﺑﺎﻳﺴﺖ ﺗﺸﺨﻴﺺ ﺩﺍﺩﻩ ﺷﻮﻧﺪ  ﺟﻬﺖ ﻭ ﺍﻧﺪﺍﺯﺓ ﻣﺸﺨﺼﻲ ﺩﺍﺭﻧﺪ ﻳﺎ ﺧﻴﺮ، ﺩﺳﺘﻨﻮﻳﺲ ﻳﺎ ﭼﺎﭘﻲ ﻫﺴﺘﻨﺪ، ﻭ ﻳﺎ ﻣﻤﻜﻦ ﺍﺳﺖ ﺗﺎ ﭼﻪ ﺣﺪ ﺑﻮﺳﻴﻠﺔ ﻧﻮﻳﺰ ﻣﻐﺸﻮﺵ ﺷﺪﻩ ﺑﺎﺷﻨﺪ. ﺍﺯ ﻃﺮﻑ ﺩﻳﮕﺮ ﺩﺭ ﻣﻮﺭﺩ ﺣﺮﻭﻓﻲ ﻛﻪ ﺑﻪ ﭼﻨﺪﻳﻦ ﺷﻜﻞ ﻧﻮﺷﺘﻪ ﻣﻲ ﺷﻮﻧﺪ. (ﻣﺎﻧﻨﺪ ’a‘ ﻭ ’A‘) ﻣﻤﻜﻦ ﺍﺳﺖ ﻻﺯﻡ ﺑﺎﺷﺪ ﻛﻪ ﺑﻴﺶ ﺍﺯ ﻳﻚ ﻛﻼﺱ ﺍﻟﮕﻮ ﺑﻪ ﻳﻚ ﻛﺎﺭﺍﻛﺘﺮ ﺧﺎﺹ ﺗﻌﻠﻖ ﻳﺎﺑﺪ.
ﻫﻤﺎﻧﻄﻮﺭ ﻛﻪ ﻋﻨﻮﺍﻥ ﺷﺪ، ﺑﺎﺯﻧﻤﺎیی ﻳﻚ ﻣﺮﺣﻠﺔ ﺑﺴﻴﺎﺭ ﻣﻬﻢ ﺩﺭ ﺣﺼﻮﻝ ﺭﺍﻧﺪﻣﺎﻥ ﻣﻨﺎﺳﺐ ﺑﺮﺍﻱ ﺳﻴﺴﺘﻤﻬﺎﻱ ﺑﺎﺯﺷﻨﺎﺳﻲ ﺣﺮﻭﻑ ﺍﺳﺖ؛ ﻟﻴﻜﻦ ﺟﻬﺖ ﺩﺳﺘﻴﺎﺑﻲ ﺑﻪ ﻋﻤﻠﻜﺮﺩ ﺑﻬﻴﻨﻪ ﻻﺯﻡ ﺍﺳﺖ ﻛﻪ ﺳﺎﻳﺮ ﻣﺮﺍﺣﻞ ﻧﻴﺰ ﺑﻬﻴﻨﻪ ﮔﺮﺩﻧﺪ ﻭ ﺑﺎﻳﺴﺘﻲ ﺗﻮﺟﻪ ﻧﻤﻮﺩ ﻛﻪ ﺍﻳﻦ ﻣﺮﺍﺣﻞ ﻣﺴﺘﻘﻞ ﻧﻤﻲ ﺑﺎﺷﻨﺪ. ﺍﺳﺘﺨﺮﺍﺝ ﻳﻚ ﺭﻭﺵ ﺧﺎﺹ ﺍﺳﺘﺨﺮﺍﺝ ﻭﻳﮋﮔﻴﻬﺎ، ﻃﺒﻴﻌﺖ ﺧﺮﻭﺟﻲ ﻣﺮﺣﻠﺔ ﭘﻴﺶ ﭘﺮﺩﺍﺯﺵ ﺭﺍ ﺑﻪ ﻣﺎ ﺩﻳﻜﺘﻪ ﻣﻲ ﻛﻨﺪ ﻭ ﻳﺎ ﺣﺪﺍﻗﻞ ﻣﺎ ﺭﺍ ﺩﺭ ﺍﻧﺘﺨﺎﺑﻤﺎﻥ ﻣﺤﺪﻭﺩ ﻣﻲ ﺳﺎﺯﺩ. ﺑﻌﻀﻲ ﺍﺯ ﺭﻭﺷﻬﺎﻱ ﺍﺳﺘﺨﺮﺍﺝ ﻭﻳﮋﮔﻴﻬﺎ ﺑﺮ ﺭﻭﻱ ﺗﺼﺎﻭﻳﺮ ﺳﻄﺢ ﺧﺎﻛﺴﺘﺮﻱ ﺣﺮﻭﻑ ﻣﻨﻔﺮﺩ ﻋﻤﻞ ﻣﻲ ﻧﻤﺎﻳﻨﺪ. ﺩﺭﺣﺎﻟﻴﻜﻪ ﺳﺎﻳﺮ ﺭﻭﺷﻬﺎ ﺑﺮ ﺭﻭﻱ ﺳﻤﺒﻠﻬﺎﻱ ﺑﺎ ﭘﻴﻮﺳﺘﮕﻲ ﻣﺮﺗﺒﺔ 4 یا 8 كه از ﺗﺼﻮﻳﺮ ﺑﺎﻳﻨﺮﻱ ﺍﺻﻠﻲ ﺟﺪﺍ ﮔﺮﺩﻳﺪﻩ ﻳﺎ ﺑﺮ ﺭﻭﻱ ﺳﻤﺒﻠﻬﺎﻱ ﻧﺎﺯﻙ ﺷﺪﻩ ﻳﺎ ﺑﺮ ﺭﻭﻱ ﻛﺎﻧﺘﻮﺭ ﺳﻤﺒﻠﻬﺎ ﺍﻋﻤﺎﻝ ﻣﻲ ﮔﺮﺩﻧﺪ.
ﻋﻼﻭﻩ ﺑﺮ ﺍﻳﻦ، ﻧﻮﻉ ﻓﺮﻣﺖ ﻭﻳﮋﮔﻴﻬﺎﻱ ﺍﺳﺘﺨﺮﺍﺝ ﺷﺪﻩ ﺑﺎﻳﺴﺘﻲ ﺑﺎ ﻧﻴﺎﺯﻣﻨﺪﻳﻬﺎﻱ ﻃﺒﻘﻪ ﺑﻨﺪﻱ ﻛﻨﻨﺪﺓ ﻣﻨﺘﺨﺐ ﻣﻄﺎﺑﻘﺖ ﺩﺍﺷﺘﻪ ﺑﺎﺷﺪ. ﻭﻳﮋﮔﻴﻬﺎﻱ ﻧﻮﻉ ﮔﺮﺍﻓﻲ ﻳﺎ ﮔﺮﺍﻣﺮﻱ ﺑﺮﺍﻱ ﻃﺒﻘﻪ ﺑﻨﺪﻱ ﻛﻨﻨﺪﻩ ﻫﺎﻱ ﺳﺎﺧﺘﺎﺭﻱ ﻳﺎ ﻧﺤﻮﻱ ﻣﻨﺎﺳﺐ ﻣﻲ ﺑﺎﺷﻨﺪ.
ﻭﻳﮋﮔﻴﻬﺎﻱ ﮔﺴﺴﺘﻪ ﻛﻪ ﻓﺮﺿﺎﹰ ﺗﻨﻬﺎ ﺩﻭ ﻳﺎ ﺳﻪ ﻣﻘﺪﺍﺭ ﻣﺠﺰﺍ ﺩﺍﺭﻧﺪ، ﺑﺮﺍﻱ ﺩﺭﺧﺘﻬﺎﻱ ﺗﺼﻤﻴﻢ ﮔﻴﺮﻱ ﺍﻳﺪﻩ ﺁﻝ ﻣﻲ ﺑﺎﺷﻨﺪ. ﺑﺮﺩﺍﺭﻫﺎﻱ ﻭﻳﮋﮔﻲ ﺑﺎ ﻣﻘﺎﺩﻳﺮ ﺣﻘﻴﻘﻲ، ﻣﻨﺎﺳﺐ ﻃﺒﻘﻪ ﺑﻨﺪﻱ ﻛﻨﻨﺪﻩ ﻫﺎﻱ ﺁﻣﺎﺭﻱ ﻫﺴﺘﻨﺪ.
ﻫﻤﭽﻨﻴﻦ ﭼﻨﺪﻳﻦ ﻃﺒﻘﻪ ﺑﻨﺪﻱ ﻛﻨﻨﺪﻩ ﻧﻴﺰ ﻣﻤﻜﻦ ﺍﺳﺖ ﺑﻪ ﻋﻨﻮﺍﻥ ﻳﻚ ﺭﻭﺵ ﻃﺒﻘﻪ ﺑﻨﺪﻱ ﭼﻨﺪ ﻃﺒﻘﻪ ﻳﺎ ﺑﻪ ﻋﻨﻮﺍﻥ ﻃﺒﻘﻪ ﺑﻨﺪﻱ ﻛﻨﻨﺪﻩ ﻫﺎﻱ ﻣﻮﺍﺯﻱ (ﻛﻪ ﺩﺭ ﺁﻥ ﺗﺮﻛﻴﺒﻲ ﺍﺯ ﻧﺘﺎﻳﺞ ﻃﺒﻘﻪ ﺑﻨﺪﻱ ﻛﻨﻨﺪﻩ های ﻣﺠﺰﺍ ﺩﺭ ﺣﺼﻮﻝ ﻧﺘﻴﺠﺔ ﻧﻬﺎﻳﻲ ﺩﺧﺎﻟﺖ ﺩﺍﺭﻧﺪ) ﻣﻮﺭﺩ ﺍﺳﺘﻔﺎﺩﻩ ﻗﺮﺍﺭ ﮔﻴﺮﻧﺪ. ﺩﺭ ﺍﻳﻦ ﺣﺎﻟﺖ ﻣﻤﻜﻦ ﺍﺳﺖ ﻭﻳﮋﮔﻴﻬﺎﻱ ﺩﺍﺭﺍﻱ ﭼﻨﺪ ﻓﺮﻣﺖ ﻣﺨﺘﻠﻒ ﺍﺯ ﺣﺮﻭﻑ ﻭﺭﻭﺩﻱ ﺍﺳﺘﺨﺮﺍﺝ ﮔﺮﺩﻧﺪ.

قطعه بندی قسمت دوم OCR

 ﻗﻄﻌﻪ ﺑﻨﺪی :

ﻣﺮﺣﻠﺔ ﭘﻴﺶ ﭘﺮﺩﺍﺯﺵ ﻳﻚ ﺗﺼﻮﻳﺮ ﺍﺻﻼﺡ ﺷﺪﻩ ﺍﺯ ﺳﻨﺪ ﺭﺍ ﻧﺘﻴﺠﻪ ﻣﻲ ﺩﻫﺪ ﺑﮕﻮﻧﻪ ﺍﻱ ﻛﻪ ﻣﻘﺪﺍﺭ ﻛﺎﻓﻲ ﺍﺯ اطلاعات ﺷﻜﻠﻲ، ﻓﺸﺮﺩﻩ ﺳﺎﺯﻱ ﺑﺎﻻ ﻭ ﻧﻮﻳﺰ ﭘﺎﻳﻴﻦ، ﺍﺯ ﺗﺼﻮﻳﺮ ﻧﺮﻣﺎﻟﻴﺰﻩ ﺷﺪﺓ ﺳﻨﺪ ﻗﺎﺑﻞ ﺣﺼﻮﻝ است. ﻗﻄﻌﻪ ﺑﻨﺪی ﻳﻚ ﻣﺮﺣﻠﺔ ﺑﺴﻴﺎﺭ ﺑﺎ ﺍﻫﻤﻴﺖ ﺩﺭ ﺑﺎﺯﺷﻨﺎﺳﻲ ﺣﺮﻭﻑ ﻣﺨﺼﻮﺻﺎﹰ ﺣﺮﻭﻑ ﻓﺎﺭﺳﻲ ﻭ ﻋﺮﺑﻲ ﻛﻪ ﺑﺼﻮﺭﺕ ﭘﻴﻮﺳﺘﻪ ﻧﻮﺷﺘﻪ ﻣﻲ ﺑﺎﺷﺪ؛ ﭼﺮﺍ ﻛﻪ ﻧﺘﻴﺠﺔ ﺑﺪﺳﺖ ﺁﻣﺪﻩ ﺍﺯ ﺟﺪﺍﺳﺎﺯﻱ ﻛﻠﻤﺎﺕ، ﺧﻄﻮﻁ ﻳﺎ ﻛﺎﺭﺍﻛﺘﺮﻫﺎ ﻣﺴﺘﻘﻴﻤﺎً ﺑﺮ ﺭﻭﻱ ﻧﺮﺥ ﺑﺎﺯﺷﻨﺎﺳﻲ ﺳﻴﺴﺘﻢ ﺗﺄﺛﻴﺮ ﻣﻲ ﮔﺬﺍﺭﺩ. ﻗﻄﻌﻪ ﺑﻨﺪی ﻏﻠﻂ ﻛﺎﺭﺍﻛﺘﺮﻫﺎ، ﻋﺎﻣﻞ ﺑﺴﻴﺎﺭﻱ ﺍﺯ ﺧﻄﺎﻫﺎﻱ OCR است.
مانند : nr →  mیا m →  nr
ﻣﻴﺰﺍﻥ ﺩﻗﺖ ﻳﻚ ﺍﻟﮕﻮﺭﻳﺘﻢ ﻗﻄﻌﻪ ﺑﻨﺪی ﺑﻪ ﺳﺒﻚ ﻧﮕﺎﺭﺵ ﺣﺮﻭﻑ، ﻛﻴﻔﻴﺖ ﺩﺳﺘﮕﺎﻩ ﭘﺮﻳﻨﺖ، ﻛﺎﺭﺍﻛﺘﺮﻫﺎﻱ ﺍﻳﺘﺎﻟﻴﻚ ﻟﻜﻪ ﺷﺪﻩ و ﻧﻴﺰ ﻧﺴﺒﺖ ﺍﻧﺪﺍﺯﺓ ﻓﻮﻧﺖ ﺑﻪ ﺭﺯﻭﻟﻮﺷﻦ ﺩﺳﺘﮕﺎﻩ ﺍﺳﻜﻨﺮ ﺑﺴﺘﮕﻲ ﺩﺍﺭﺩ.


ﺩﻭ ﻧﻮﻉ ﻗﻄﻌﻪ ﺑﻨﺪی ﻭﺟﻮﺩ ﺩﺍﺭﺩ :

الف ) ﻗﻄﻌﻪ ﺑﻨﺪی ﺑﻴﺮﻭﻧﻲ، ﻛﻪ ﻋﺒﺎﺭﺕ ﺍﺳﺖ ﺍﺯ ﺟﺪﺍﺳﺎﺯﻱ ﺑﺨﺸﻬﺎﻱ ﻣﺨﺘﻠﻒ ﻧﮕﺎﺭﺵ ﻣﺎﻧﻨﺪ ﭘﺎﺭﺍﮔﺮﺍﻓﻬﺎ، ﺟﻤﻼﺕ ﻳﺎ ﻛﻠﻤﺎﺕ
ب ) ﻗﻄﻌﻪ ﺑﻨﺪی درونی، ﻛﻪ ﻣﻨﻈﻮﺭ ﺍﺯ ﺁﻥ، ﺟﺪﺍﺳﺎﺯﻱ ﺣﺮﻭﻑ ﻛﻠﻤﺎﺕ ﻣﺨﺼﻮﺻﺎً ﺩﺭ ﻣﻮﺭﺩ ﻛﻠﻤﺎﺕ ﺳﺮ ﻫﻢ ﻧﻮﺷﺘﻪ ﺷﺪﻩ ﺩﺭ ﻣﺘﻮﻥ لاتین ﻭ ﻳﺎ ﺭﺳﻢﺍﻟﺨﻄﻬﺎﻱ ﭘﻴﻮﺳﺘﻪ ﻧﻈﻴﺮ ﻓﺎﺭﺳﻲ ﻭ ﻋﺮﺑﻲ می باشد.

ﻗﻄﻌﻪ ﺑﻨﺪی ﺑﻴﺮﻭﻧﻲ :

ﺩﺭ ﻣﻮﺍﺭﺩﻱ ﻫﻤﭽﻮﻥ ﻣﺘﻮﻥ ﻓﺎﺭﺳﻲ ﻛﻪ ﺣﺮﻭﻑ ﺑﺼﻮﺭﺕ ﺳﺮﻫﻢ ﻧﻮﺷﺘﻪ ﻣﻲ ﺷﻮﻧﺪ، ﺳﻪ ﺭﻭﻳﻜﺮﺩ ﻣﺨﺘﻠﻒ ﺩﺭ ﺑﺎﺯﺷﻨﺎﺳﻲ ﺑﺮﻭﻥ ﺧﻂ ﻣﺘﻮﻥ ﻛﻠﻤﺎﺕ ﻳﺎ ﺯﻳﺮكلمات ﻭﺟﻮﺩ ﺩﺍﺭﺩ.
الف ) ﺭﻭﻳﻜﺮﺩ ﻣﺒﺘﻨﻲ ﺑﺮ ﻗﻄﻌﻪ ﺑﻨﺪی ﻛﻠﻤﺎﺕ
ب ) ﺭﻭﻳﻜﺮﺩ ﻣﺒﺘﻨﻲ ﺑﺮ ﺑﺎﺯﺷﻨﺎﺳﻲ ﻛﻠﻤﻪ ﺑﻪ ﻋﻨﻮﺍﻥ ﻳﻚ ﺍﻟﮕﻮﻱ ﻭﺍحد
ج ) ﺭﻭﻳﻜﺮﺩ ﺗﺮﻛﻴﺒﻲ

ﻗﻄﻌﻪ ﺑﻨﺪی درﻭﻧﻲ :

ﺩﺭ ﺭﻭﻳﻜﺮﺩ ﺑﺎﺯﺷﻨﺎﺳﻲ ﻣﺒﺘﻨﻲ ﺑﺮ ﺟﺪﺍﺳﺎﺯﻱ، ﺍﺑﺘﺪﺍ ﻛﻠﻤﻪ ﺩﺭ ﻣﺮﺣﻠﺔ ﺟﺪﺍﺳﺎﺯﻱ ﺑﻪ ﺣﺮﻭﻑ ﻳﺎ ﺯﻳﺮ ﺣﺮﻭﻑ ﺷﻜﺴﺘﻪ ﻣﻲ ﺷﻮﻧﺪ.
ﺁﻧﮕﺎﻩ ﻗﻄﻌﺎﺕ ﺟﺪﺍ ﺷﺪﻩ ﺑﺎﺯﺷﻨﺎﺳﻲ ﻣﻲ شوند و ﺍﺯ ﻛﻨﺎﺭ ﻫﻢ ﻗﺮﺍﺭ ﮔﺮﻓﺘﻦ ﺁﻧﻬﺎ ﻛﻠﻤﻪ خواهد ﺷﺩ؛ ﺭﻭﺷﻬﺎﻱ ﺑﻜﺎﺭﮔﺮﻓﺘﻪ ﺷﺪﻩ ﺩﺭ ﺍﻳﻦ ﺭﻭﻳﻜﺮﺩ ﺑﻪ ﺩﻭ ﮔﺮﻭﻩ ﻣﺨﺘﻠﻒ ﺗﻘﺴﻴﻢ ﻣﻲ ﺷﻮﻧﺪ :
–    ﺗﻘﻄﻴﻊ ﻛﻠﻤﻪ ﺑﻪ ﺣﺮﻭﻑ
–    ﺗﻘﻄﻴﻊ ﻛﻠﻤﻪ ﺑﻪ ﺯﻳﺮﺣﺮﻭﻑ
ﺩﺭ ﮔﺮﻭﻩ ﺍﻭﻝ ﻛﻠﻤﻪ ﺑﻪ ﺣﺮﻭﻑ ﺟﺪﺍﺳﺎﺯﻱ می ﺷﻮﺩ ﻭ ﺑﺎ ﺷﻨﺎﺳﺎﻳﻲ ﺣﺮﻭﻑ ﺟﺪﺍ ﺷﺪﻩ، ﻛﻠﻤﻪ ﺑﺎﺯﺷﻨﺎﺳﻲ ﻣﻲ ﮔﺮﺩﺩ. ﺭﻭﻳﻜﺮﺩ ﺑﻜﺎﺭ ﮔﺮﻓﺘﻪ ﺷﺪﻩ ﺩﺭ ﺍﻳﻦ ﮔﺮﻭﻩ ﺭﺍ ﺭﻭﻳﻜﺮﺩ ﻣﺒﺘﻨﻲ ﺑﺮ ﺟﺪﺍﺳﺎﺯﻱ ﻭ ﺑﺎﺯﺷﻨﺎﺳﻲ ﺣﺮﻭﻑ ﻣﻲ ﻧﺎﻣﻨﺪ.
ﺩﺭ ﮔﺮﻭﻩ ﺩﻭ، ﻛﻠﻤﻪ ﺑﻪ ﺯﻳﺮﺣﺮﻭﻑ ﻣﺜﻞ ﭘﺎﺭﻩ ﻣﻨﺤﻨﻲ ﻫﺎ ﻭ ﺳﺎﺧﺘﺎﺭﻫﺎﻱ ﭘﺎﻳﺔ ﺩﻳﮕﺮ ﺟﺪﺍﺳﺎﺯﻱ ﻣﻲ شود و ﺑﺎ ﺷﻨﺎﺳﺎﻳﻲ ﺯﻳﺮﺣﺮﻭﻑ ﻭ ﺗﺮﻛﻴﺐ ﺁﻧﻬﺎ ﻛﻠﻤﻪ ﺑﺎﺯﺷﻨﺎﺳﻲ ﻣﻲ ﮔﺮﺩﺩ. ﺩﺭ ﺭﻭﻳﻜﺮﺩ ﺑﻜﺎﺭ گرفته شده در ﮔﺮﻭﻩ ﺩﻭﻡ ﻛﻪ ﺍﺻﻄﻼﺣﺎﹲ ﺟﺪﺍﺳﺎﺯﻱ ﻭ ﺑﺎﺯﺷﻨﺎﺳﻲ ﺗﻮﺃﻡ ﻧﺎﻣﻴﺪﻩ ﻣﻲ شود. نمیﺗﻮﺍﻥ ﺩﺭ ﺍﺑﺘﺪﺍ ﻣﺮﺯ ﺣﺮﻭﻑ ﺭﺍ ﺑﻄﻮﺭ ﻛﺎﻣﻞ ﻣﺸﺨﺺ ﻛﺮﺩ. ﺑﻠﻜﻪ ﺣﺮﻭﻑ ﺍﺯ ﺍﺑﺘﺪﺍ ﺑﻪ ﺍﻧﺘﻬﺎﻱ ﻛﻠﻤﻪ ﺑﻪ ﺗﺮﺗﻴﺐ ﺑﺎﺯﺷﻨﺎﺳﻲ ﻭ  ﺟﺪﺍﺳﺎﺯﻱ ﻣﻲ ﺷﻮﻧﺪ. ﺩﺭ ﻫﻴﭽﻜﺪﺍﻡ ﺍﺯ ﺩﻭ ﺷﻜﻞ ﺭﻭﻳﻜﺮﺩ ﻣﺒﺘﻨﻲ ﺑﺮ ﺟﺪﺍﺳﺎﺯﻱ، ﺑﻪ ﺷﻜﻞ ﻛﻠﻲ ﻛﻠﻤﻪ ﺗﻮﺟﻬﻲ نمی ﺷﻮﺩ ﻭ ﺳﻌﻲ ﺑﺮ ﺁﻥ ﺍﺳﺖ ﻛﻪ ﺑﺎ ﺑﺎﺯﺷﻨﺎﺳﻲ ﺣﺮﻭﻑ ﻳﻚ ﻛﻠﻤﻪ، ﺁﻥ ﻛﻠﻤﻪ ﺷﻨﺎﺧﺘﻪ ﺷﻮﺩ.
ﺩﺭ ﺭﻭﻳﻜﺮﺩ ﺑﺎﺯﺷﻨﺎﺳﻲ ﻛﻠﻤﻪ ﺑﻪ ﻋﻨﻮﺍﻥ ﻳﻚ ﺍﻟﮕﻮﻱ ﻭﺍﺣﺪ، ﺗﻼﺷﻲ ﺑﺮﺍﻱ ﺗﻘﻄﻴﻊ ﻛﻠﻤﻪ ﺑﻪ ﺣﺮﻭﻑ ﻭ ﺑﺎﺯﺷﻨﺎﺳﻲ ﺣﺮﻭﻑ ﻣﻮﺟﻮﺩ ﺩﺭ ﻛﻠﻤﻪ ﺻﻮﺭﺕ ﻧﻤﻲ ﮔﻴﺮﺩ ﻭ ﻛﻠﻤﻪ ﺩﺭ ﻗﺎﻟﺐ ﻳﻚ ﺍﻟﮕﻮ ﺑﺮﺭﺳﻲ ﻣﻲ گردد.
ﺭﻭﺷﻬﺎﻱ ﺑﻜﺎﺭ ﮔﺮﻓﺘﻪ ﺷﺪﻩ ﺩﺭ ﺍﻳﻦ ﺭﻭﻳﻜﺮﺩ ﺭﺍ ﻣﻲ ﺗﻮﺍﻥ ﺑﻪ ﺩﻭ ﮔﺮﻭﻩ ﺗﻘﺴﻴﻢ ﻛﺮﺩ :
ﮔﺮﻭﻩ ﺍﻭﻝ ﺭﻭﺷﻬﺎﻳﻲ ﻫﺴﺘﻨﺪ ﻛﻪ ﺗﺼﻮﻳﺮ ﻛﻠﻤﻪ ﺭﺍ ﺑﺼﻮﺭﺕ ﻳﻚ ﺍﻟﮕﻮﻱ ﺩﻭ ﺳﻄﺤﻲ ( ﺑﺎﻳﻨﺮﻱ ) ﻳﺎ ﺑﺎ ﺳﻄﻮﺡ ﺧﺎﻛﺴﺘﺮﻱ ﺩﺭ    ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﻭ ﺍﺯ ﺭﻭﺷﻬﺎﻱ ﻣﻌﻤﻮﻝ ﺩﺭ ﺷﻨﺎﺳﺎﻳﻲ ﺗﺼﺎﻭﻳﺮ ﻛﻪ ﻣﻌﻤﻮﻻً ﻣﺒﺘﻨﻲ ﺑﺮ ﺗﻮﺍﺑﻊ ﻓﺎﺻﻠﻪ ﻣﻲ ﺑﺎﺷﻨﺪ ﻭ ﻳﺎ ﺭﻭﺷﻬﺎﻳﻲ ﻫﻤﭽﻮﻥ ﺷﺒﻜﻪ ﻋﺼﺒﻲ ﻭ ﻏﻴﺮﻩ ﺍﺳﺘﻔﺎﺩﻩ ﻣﻲ ﻧﻤﺎﻳﻨﺪ.
ﮔﺮﻭﻩ ﺩﻭﻡ ﺭﻭﺷﻬﺎﻱ ﻣﺒﺘﻨﻲ ﺑﺮ ﭘﺮﺩﺍﺯﺵ ﺳﻴﮕﻨﺎﻟﻬﺎﻱ ﺗﺼﺎﺩﻓﻲ ﻫﺴﺘﻨﺪ. ﺍﻳﻦ ﺭﻭﺷﻬﺎ ﺍﺑﺘﺪﺍ ﺩﺭ ﺑﺎﺯﺷﻨﺎﺳﻲ ﮔﻔﺘﺎﺭ ﺑﻜﺎﺭ ﮔﺮﻓﺘﻪ ﺷﺪﻩ ﻭ ﺳﭙﺲ ﺩﺭ ﺯﻣﻴﻨﺔ ﺑﺎﺯﺷﻨﺎﺳﻲ ﻛﻠﻤﺎﺕ ﻣﺨﺼﻮﺻﺎً ﻛﻠﻤﺎﺕ ﺩﺳﺘﻨﻮﻳﺲ لاتین ﻣﻮﺭﺩ ﺍﺳﺘﻔﺎﺩﻩ ﻗﺮﺍﺭ ﮔﺮﻓﺘﻪ اند.

ﭘﻴﺶ ﭘﺮﺩﺍﺯﺵ-اولین بخش از کار OCR

پیش پردازش در تشخص نوری کاراکترها

ﺍﻳﻦ ﻣﺮﺣﻠﻪ ﺷﺎﻣﻞ ﻛﻠﻴﺔ ﭘﺮﺩﺍﺯﺷﻬﺎﻳﻲ ﺍﺳﺖ ﻛﻪ ﺑﺮ ﺭﻭﻱ ﺳﻴﮕﻨﺎﻟﻬﺎﻱ ﺗﺼﻮﻳﺮﻱ ﺧﺎﻡ ﺍﻧﺠﺎﻡ ﻣﻲ ﺷﻮﻧﺪ. ﺗﺎ ﻣﻮﺟﺐ ﺗﺴﻬﻴﻞ ﻳﺎ ﺍﻓﺰﺍﻳﺶ ﺩﻗﺖ ﺭﻭﻧﺪ ﺍﺟﺮﺍﻱ ﻓﺎﺯﻫﺎﻱ ﺑﻌﺪﻱ ﮔﺮﺩﻧﺪ. ﺍﺯ ﻣﺠﻤﻮﻋﺔ ﺍﻳﻦ ﭘﺮﺩﺍﺯﺷﻬﺎ، ﻫﺪﻓﻬﺎﻱ ﺯﻳﺮ ﺩﻧﺒﺎﻝ ﻣﻲ ﺷﻮﺩ :
1-    ﻛﺎﻫﺶ ﻧﻮﻳﺰ
2-    ﻧﺮﻣﺎﻟﻴﺰﻩ ﻧﻤﻮﺩﻥ ﺩﺍﺩهﻫﺎ
3-    ﻓﺸﺮﺩﻩ ﺳﺎﺯﻱ ﻣﻴﺰﺍﻥ ﺍﻃﻼﻋﺎﺗﻲ ﻛﻪ ﻣﻲ ﺑﺎﻳﺴﺖ ﻣﺤﻔﻮﻅ ﺑﻤﺎﻧﺪ.
4-    ﺑﺎﺯﺷﻨﺎﺳﻲ ﺧﻂ ، ﺯﺑﺎﻥ ﻭ ﻓﻮﻧﺖ

1-كاهش نویز

ﻧﻮﻳﺰ ﺍﻳﺠﺎﺩ ﺷﺪﻩ ﺑﻮﺍﺳﻄﺔ ﺩﺳﺘﮕﺎﻫﻬﺎﻱ ﺍﺳﻜﻨﺮ ﻧﻮﺭﻱ ﻳﺎ ﺍﺑﺰﺍﺭﻫﺎﻱ ﻧﮕﺎﺭﺷﻲ ﻣﻨﺠﺮ ﺑﻪ ﺍﻳﺠﺎﺩ ﻗﻄﻌﻪ ﺧﻄﻬﺎﻱ ﮔﺴﺴﺘﻪ ، ﺍﺗﺼﺎﻝ ﺑﻴﻦ ﺧﻄﻮﻁ، ﻓﻀﺎﻫﺎﻱ ﺧﺎﻟﻲ ﺩﺭ ﺧﻄﻮﻁ ﻣﺘﻦ، ﭘﺮ ﺷﺪﻥ ﺣﻔﺮه‌های ﻣﻮﺟﻮﺩ ﺩﺭ ﺗﺼﻮﻳﺮ ﺑﺮﺧﻲ ﺣﺮﻭﻑ ﻭ ﻏﻴﺮﻩ ﻣﻲ ﮔﺮﺩﺩ. ﻫﻤﭽﻨﻴﻦ ﺍﻋﻮﺟﺎﺟﻬﺎﻱ ﻣﺨﺘﻠﻒ ﺷﺎﻣﻞ ﺗﻐﻴﻴﺮﺍﺕ ﻣﺤﻠﻲ، ﻣﻨﺤﻨﻲ ﺷﺪﻥ ﮔﻮﺷﻪ ﺣﺮﻭﻑ، ﺗﻐﻴﻴﺮ ﺷﻜﻞ ﻭ ﻳﺎ ﺧﻮﺭﺩﮔﻲ ﺣﺮﻭﻑ ﺭﺍ ﻧﻴﺰ ﺑﺎﻳﺴﺘﻲ ﻣﺪ ﻧﻈﺮ ﻗﺮﺍﺭ ﺩﺍﺩ. ﻗﺒﻞ ﺍﺯ. ﻣﺮﺣﻠﺔ ﺑﺎﺯﺷﻨﺎﺳﻲ ﺣﺮﻭﻑ ﻻﺯﻡ ﺍﺳﺖ ﻛﻪ ﺍﻳﻦ ﻧﻘﺎﻳﺺ ﺑﺮﻃﺮﻑ ﺷﻮﻧﺪ. یكی از ﺗﻜﻨﻴﻜﻬﺎﻱ ﻣﺨﺘﻠﻒ ﻛﺎﻫﺶ ﻧﻮﻳﺰ فیلتر كردن می‌باشد :

1-1-فیلتر كردن

ﺍﻳﻦ ﺭﻭﺵ ﺑﻪ ﺣﺬﻑ ﻧﻮﻳﺰ ﻛﻤﻚ ﻣﻲ ﻛﻨﺪ ﻭ ﻧﺎﺻﺎﻓﻴﻬﺎﻱ ﺑﺪﻧﺔ ﺣﺮﻭﻑ ﺭﺍ ﻛﻪ ﻣﻌﻤﻮﻻً ﺑﻮﺳﻴﻠﺔ ﺳﻄﻮﺡ ﻧﮕﺎﺭﺵ ﻧﺎﻫﻤﻮﺍﺭ ( ﺩﺭ ﻣﻮﺭﺩ ﻣﺘﻮﻥ ﺩﺳﺘﻨﻮﻳﺲ ) ﻭ ﻳﺎ ﻧﺮﺥ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﺿﻌﻴﻒ ﺩﺳﺘﮕﺎﻫﻬﺎﻱ ﺍﺧﺬ ﺩﺍﺩﻩ ﺍﻳﺠﺎﺩ می‌شوند،  در مرحله پیش پردازش كاهش می‌دهد. ﻓﻴﻠﺘﺮﻫﺎﻱ ﺣﻮﺯﺓ ﻣﻜﺎﻧﻲ ﻳﺎ ﻓﺮﻛﺎﻧﺴﻲ ﻣﺘﻌﺪﺩﻱ ﺭﺍ ﻣﻲ ﺗﻮﺍﻥ ﺑﺮﺍﻱ ﺍﻳﻦ ﻣﻨﻈﻮﺭ ﻃﺮﺍﺣﻲ ﻛﺮﺩ. ﺍﻳﺪﺓ ﺍﺻﻠﻲ ﺩﺭ ﺍﻳﻦ ﺭﻭﺵ، ﻛﺎﻧﻮﻭﻟﻮ ﻛﺮﺩﻥ (Convolute) (به معنی پیچاپیچ كردن) یك ماسك از پیش تعریف شده با تصویر ﺟﻬﺖ ﺗﺨﺼﻴﺺ ﻳﻚ ﻣﻘﺪﺍﺭ ﺟﺪﻳﺪ ﺑﻪ ﭘﻴﻜﺴﻞ ﺑﺮﺣﺴﺐ ﺗﺎﺑﻌﻲ ﺍﺯ ﻣﻘﺎﺩﻳﺮ ﭘﻴﻜﺴﻠﻬﺎﻱ مجاور است. فیلترها ﺭﺍ ﻣﻲ ﺗﻮﺍﻥ ﺑﺮﺍﻱ ﻣﻘﺎﺻﺪ ﻣﺨﺘﻠﻔﻲ ﭼﻮﻥ ﻫﻤﻮﺍﺭﺳﺎﺯﻱ، ﺷﺎﺭﭖ ﻛﺮﺩﻥ ، ﺍﻋﻤﺎﻝ ﺳﻄﻮﺡ ﺁﺳﺘﺎﻧﻪ، ﺣﺬﻑ ﭘﺲ ﺯﻣﻴﻨﺔ ﺑﺎﻓﺖ ﮔﻮﻧﻪ ﻳﺎ ﺭﻧﮕﻲ ﺧﻔﻴﻒ ﻭ ﺗﻨﻈﻴﻢ ﻛﻨﺘﺮﺍﺳﺖ (ﭘﺎﺩﻧﻤﺎﻳﻲ) طراحی کرد.

2-ﻧﺮﻣﺎﻟﻴﺰﻩ ﻧﻤﻮﺩﻥ ﺩﺍﺩهﻫﺎ

ﺭﻭﺷﻬﺎﻱ ﻧﺮﻣﺎﻟﻴﺰﻩ ﻛﺮﺩﻥ ﺩﺍﺩﻩ ﻫﺎ در پیش پردازش ﺑﻪ ﺣﺬﻑ ﺗﻐﻴﻴﺮﺍﺕ ﻧﮕﺎﺭﺷﻲ ﻛﻤﻚ ﻧﻤﻮﺩﻩ و ﺩﺍﺩﻩهای ﺍﺳﺘﺎﻧﺪﺍﺭﺩ ﺷﺪﻩﺍﻱ ﺭﺍ ﻧﺘﻴﺠﻪ ﻣﻲﺩﻫﺪ.
ﺭﻭﺷﻬﺎﻱ ﭘﺎﻳﺔ ﻧﺮﻣﺎﻟﻴﺰﻩ ﻛﺮﺩﻥ ﻋﺒﺎﺭﺗﻨﺪ ﺍﺯ :

2-1-ﻧﺮﻣﺎﻟﻴﺰﻩ ﻛﺮﺩﻥ ﻛﺠﻲ ﻣﺘﻦ ﻭ ﺍﺳﺘﺨﺮﺍﺝ ﺧﻄﻮﻁ ﺯﻣﻴﻨﻪ

ﺑﺪﻳﻞ ﻋﺪﻡ ﺩﻗﺖ ﺩﺭ ﻣﺮﺣﻠﺔ ﺍﺳﻜﻦ ﻭ ﻳﺎ ﺑﻲ ﺩﻗﺘﻲ ﻧﻮﻳﺴﻨﺪﻩ ﺩﺭ ﻫﻨﮕﺎﻡ ﻧﮕﺎﺭﺵ ﻣﺘﻦ ﺩﺳﺘﻨﻮﻳﺲ، ﻣﻤﻜﻦ است ﺧﻄﻮﻁ ﻣﺘﻦ ﻧﺴﺒﺖ ﺑﻪ ﺗﺼﻮﻳﺮ ﺍﻧﺪﻛﻲ ﺍﻧﺤﺮﺍﻑ ﻳﺎ ﭼﺮﺧﺶ ﺩﺍﺷﺘﻪ ﺑﺎﺷﻨﺪ، ﺍﻳﻦ ﻣﺴﺌﻠﻪ ﻣﻲ ﺗﻮﺍﻧﺪ ﻛﺎﺭﺍﻳﻲ ﺍﻟﮕﻮﺭﻳﺘﻤﻬﺎﻱ ﺑﻜﺎﺭ ﺭﻓﺘﻪ ﺩﺭ ﻃﺒﻘﺎﺕ ﺑﻌﺪﻱ ﺳﻴﺴﺘﻢ OCR ﺭﺍ ﺗﺄﺛﻴﺮ ﻗﺮﺍﺭ ﺩﻫﺪ؛ ﭼﺮﺍ ﻛﻪ ﻳﻜﻲ ﺍﺯ ﻣﻔﺮﻭﺿﺎﺕ ﺑﻴﺸﺘﺮ ﺭﻭﺷﻬﺎﻱ ﻗﻄﻌﻪ ﺑﻨﺪﻱ، ﻋﺪﻡ ﻛﺞ ﺑﻮﺩﻥ ﺗﺼﻮﻳﺮ ﻣﺘﻦ ﻭﺭﻭﺩﻱ ﺍﺳﺖ ﻭ ﺩﺭ ﻧﺘﻴﺠﻪ ﻻﺯﻡ ﺍﺳﺖ ﻛﻪ ﺍﻳﻦ ﻧﻘﻴﺼﻪ ﺁﺷﻜﺎﺭ ﻭ ﺗﺼﺤﻴﺢ ﮔﺮﺩﺩ. ﺁﺷﻜﺎﺭﺳﺎﺯﻱ ﺧﻂ ﺯﻣﻴﻨﻪ ﺩﺭ ﺑﺴﻴﺎﺭﻱ ﺍﺯ ﺗﻜﻨﻴﻜﻬﺎﻱ ﻗﻄﻌﻪ ﺑﻨﺪﻱ ﻭ ﺑﺎﺯﺷﻨﺎﺳﻲ ﻣﺘﻮﻥ ﻓﺎﺭﺳﻲ، ﻋﺮﺑﻲ ﻭ لاتین ﻧﻘﺶ ﺍﺳﺎﺳﻲ ﺩﺍﺭﺩ. ﻋﻼﻭﻩ ﺑﺮ ﺍﻳﻦ، ﺑﺮﺧﻲ ﺍﺯ ﻛﺎﺭﺍﻛﺘﺮﻫﺎ ﻣﺎﻧﻨﺪ « g » ﻭ « 9 » ﺭﺍ ﻣﻲ ﺗﻮﺍﻥ ﺑﻮﺍﺳﻄﺔ ﻣﻮﻗﻌﻴﺖ ﻧﺴﺒﻲ ﺷﺎﻥ ﻧﺴﺒﺖ ﺑﻪ ﺧﻂ ﺯﻣﻴﻨﻪ ﺁﺷﻜﺎﺭ ﺳﺎﺧﺖ

2-2-ﻧﺮﻣﺎﻟﻴﺰﻩ ﻛﺮﺩﻥ ﺍﺭﻳﺐ ﺷﺪﮔﻲ

ﺩﺭ ﻣﺘﻮﻥ ﭼﺎﭘﻲ فارسی ﻭ ﻻﺗﻴﻦ، ﻛﺎﺭﺍﻛﺘﺮﻫﺎﻱ ﺩﺍﺭﺍﻱ ﻓﺮﻣﺖ ﺍﻳﺘﺎﻟﻴﻚ ﺍﺯ ﺭﺍﺳﺘﺎﻱ ﻋﻤﻮﺩ ﺍﻧﺤﺮﺍﻑ دارند. ﻫﻤﭽﻨﻴﻦ ﺩﺭ ﻣﺘﻮﻥ ﺩﺳﺘﻨﻮﻳﺲ ﺑﺮﺧﻲ ﺍﺯ ﻧﻮﻳﺴﻨﺪﻩ ها ﺍﻳﻦ ﭘﺪﻳﺪﻩ ﺗﺤﺖ ﻋﻨﻮﺍﻥ « ﺷﺪﮔﻲ ﺍﺭﻳﺐ » ﺷﻨﺎﺧﺘﻪ ﻣﻲشود و می‌تواند ﺩﻗﺖ ﺑﺮﺧﻲ ﺍﺯ ﺍﻟﮕﻮﺭﻳﺘﻤﻬﺎﻱ ﻗﻄﻌﻪ بندی ﻳﺎ ﺑﺎﺯﺷﻨﺎﺳﻲ ﺭﺍ ﺗﺤﺖ ﺗﺄﺛﻴﺮ ﻗﺮﺍﺭ ﺩﻫﺪ ﻭ ﻟﺬﺍ ﺩﺭ ﺍﻳﻦ ﺳﻴﺴﺘﻤﻬﺎ ﻻﺯﻡ ﺍﺳﺖ ﻛﻪ ﺩﺭ ﻣﺮﺣﻠﺔ پیش پردازش ﻣﻴﺰﺍﻥ ﺍﺭﻳﺐ ﺑﻮﺩﻥ ﻛﺎﺭﺍﻛﺘﺮﻫﺎ ﺷﻨﺎﺳﺎﻳﻲ ﻭ ﺗﺼﺤﻴﺢ ﮔﺮﺩﺩ. اریب ﺷﺪﮔﻲ ﺑﺼﻮﺭﺕ ﺯﺍﻭﻳﺔ ﺷﻴﺐ ﺑﻴﻦ ﻃﻮﻳﻠﺘﺮﻳﻦ ﺯﻳﺮﺣﺮﻑ ﺩﺭ ﻳﻚ ﻛﻠﻤﻪ ﻭ ﺟﻬﺖ ﻋﻤﻮﺩﻱ ﺗﻌﺮﻳﻒ ﻣﻲ ﺷﻮﺩ. ﻧﺮﻣﺎﻟﻴﺰﻩ ﻛﺮﺩﻥ ﺍﺭﻳﺐ، ﺑﻨﻈﻮﺭ ﻧﺮﻣﺎﻟﻴﺰﻩ ﻧﻤﻮﺩﻥ ﻛﻠﻴﺔ ﻛﺎﺭﺍﻛﺘﺮﻫﺎ ﺑﻪ ﻳﻚ ﻓﺮﻡ ﺍﺳﺘﺎﻧﺪﺍﺭﺩ ﺑﻜﺎﺭ می‌رود. ﻣﻌﻤﻮﻟﺘﺮﻳﻦ ﺭﻭﺵ ﺩﺭ ﺗﺨﻤﻴﻦ ﻣﻴﺰﺍﻥ ﺍﺭﻳﺐ ﺷﺪﮔﻲ، ﻣﺤﺎﺳﺒﺔ ﺯﺍﻭﻳﺔ ﻣﺘﻮﺳﻂ ﺍﺟﺰﺍﺀ ﻧﺰﺩﻳﻚ ﺑﻪ ﺧﻂ ﻋﻤﻮﺩ ﺍﺳﺖ. در ﺍﺳﺘﺨﺮﺍﺝ ﺧﻄﻮﻁ ﻋﻤﻮﺩﻱ ﺍﺯ ﻛﺎﺭﺍﻛﺘﺮﻫﺎ ﺑﻮﺳﻴﻠﺔ ﺩﻧﺒﺎﻝ ﻛﺮﺩﻥ ﻣﺆﻟﻔﻪ های ﻛﺪ ﺯﻧﺠﻴﺮﻩای ﺗﻮﺳﻂ ﻳﻚ ﺟﻔﺖ ﻓﻴﻠﺘﺮ ﻳﻚ ﺑﻌﺪﻱ ﺍﻧﺠﺎﻡ ﻣﻲﭘﺬﻳﺮﺩ. ﻣﺨﺘﺼﺎﺕ ﺷﺮﻭﻉ ﻭ ﭘﺎﻳﺎﻥ ﻫﺮ ﺧﻂ، ﺯﺍﻭﻳﺔ ﺍﺭﻳﺐ ﺭﺍ ﺑﺪﺳﺖ ﻣﻲ دهد.

2-3-ﻧﺮﻣﺎﻟﻴﺰﻩ ﻛﺮﺩﻥ ﺍﻧﺪﺍﺯﻩ (ﺗﻐﻴﻴﺮ ﻣﻘﻴﺎﺱ ﺩﺍﺩﻥ)

ﺩﺭ ﺳﻴﺴﺘﻤﻬﺎﻱ OCR ﺍﻏﻠﺐ ﺗﺼﺎﻭﻳﺮ ﻛﻠﻤﺎﺕ ﺧﻴﻠﻲ ﻛﻮﭼﻚ ﻳﺎ ﺧﻴﻠﻲ ﺑﺰﺭﮒ ، ﺑﻪ ﻳﻚ ﺍﻧﺪﺍﺯﺓ ﺍﺳﺘﺎﻧﺪﺍﺭﺩ ﻧﺮﻣﺎﻟﻴﺰﻩ ﻣﻲﺷﻮﻧﺪ. ﺍﻳﻦ ﻋﻤﻞ ﻣﻌﻤﻮﻻﹰ ﺑﺎ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﻣﺠﺪﺩ ﺗﺼﻮﻳﺮ ﺍﻧﺠﺎﻡ ﻣﻲ ﮔﻴﺮﺩ.
روشهای بازشناسی حروف ممكن است نرمالیزه كردن اندازه را در هر دو جهت افقی و عمودی انجام دهند. هر كاراكتر به تعدادی ناحیه تقسیم می‌شود و هر یك از این نواحی بصورت جداگانه تغییر مقیاس داده می‌شوند.

3-ﻓﺸﺮﺩﻩ ﺳﺎﺯﻱ ﻣﻴﺰﺍﻥ ﺍﻃﻼﻋﺎﺗﻲ ﻛﻪ ﻣﻲ ﺑﺎﻳﺴﺖ ﻣﺤﻔﻮﻅ ﺑﻤﺎﻧﺪ

ﺍﻳﻦ ﻣﺴﺌﻠﻪ ﭘﺬﻳﺮﻓﺘﻪ ﺷﺪﻩ ﺍﺳﺖ ﻛﻪ ﺗﻜﻨﻴﻜﻬﺎﻱ ﻛﻼﺳﻴﻚ ﻓﺸﺮﺩﻩ ﺳﺎﺯﻱ ﺗﺼﺎﻭﻳﺮ ﻛﻪ ﺗﺼﻮﻳﺮ ﺭﺍ ﺍﺯ ﺣﻮﺯﺓ ﻣﻜﺎﻧﻲ ﺑﻪ ﺣﻮﺯﻩ ﺩﻳﮕﺮ ﻣﻨﺘﻘﻞ ﻣﻲ ﻛﻨﻨﺪ، ﺑﺮﺍﻱ ﺑﺎﺯﺷﻨﺎﺳﻲ ﺣﺮﻭﻑ ﻣﻨﺎﺳﺐ ﻧﻤﻲ ﺑﺎﺷﻨﺪ. در ﺑﺎﺯﺷﻨﺎﺳﻲ ﺣﺮﻭﻑ در پیش پردازش، ﻋﻤﻞ ﻓﺸﺮﺩﻩ سازی ﻧﻴﺎﺯﻣﻨﺪ ﺁﻥ ﺩﺳﺘﻪ ﺍﺯ ﺗﻜﻨﻴﻜﻬﺎﻱ ﺣﻮﺯﺓ ﻣﻜﺎﻧﻲ ﺍﺳﺖ ﻛﻪ اطلاعات ﺷﻜﻠﻲ ﺭﺍ ﺣﻔﻆ ﻣﻲ ﻧﻤﺎﻳﻨﺪ.
ﺩﻭ ﺗﻜﻨﻴﻚ ﻣﺘﻌﺎﺭﻑ ﻓﺸﺮﺩﻩ ﺳﺎﺯﻱ، ﻳﻜﻲ ﺗﻜﻨﻴﻚ ﺍﻋﻤﺎﻝ ﺳﻄﺢ ﺁﺳﺘﺎﻧﻪ (ﺑﻤﻨﻈﻮﺭ ﺑﺎﻳﻨﺮﻱ ﻛﺮﺩﻥ ﺗﺼﺎﻭﻳﺮ ﺳﻄﺢ ﺧﺎﻛﺴﺘﺮﻱ ﻣﺘﻮﻥ) و دیگری ﺩﻳﮕﺮﻱ ﻧﺎﺯﻙ سازی می‌باشد.

3-1-ﺑﺎﻳﻨﺮﻱ ( ﺩﻭﺳﻄﺤﻲ ) ﻛﺮﺩﻥ ﺗﺼﻮﻳﺮ ﻣﺘﻦ

ﺑﻤﻨﻈﻮﺭ ﻛﺎﻫﺶ ﺣﺠﻢ ﺫﺧﻴﺮﻩ ﺳﺎﺯﻱ ﻣﻮﺭﺩ ﻧﻴﺎﺯ ﻭ ﺍﻓﺰﺍﻳﺶ ﺳﺮﻋﺖ ﭘﺮﺩﺍﺯﺵ، ﺍﻏﻠﺐ ﻣﻄﻠﻮﺏ ﺍﺳﺖ ﻛﻪ ﺑﺎ ﺍﻧﺘﺨﺎﺏ ﻳﻚ ﺳﻄﺢ ﺁﺳﺘﺎﻧﻪ، ﺗﺼﺎﻭﻳﺮ ﺳﻄﺢ ﺧﺎﻛﺴﺘﺮﻱ ﻳﺎ ﺭﻧﮕﻲ ﺭﺍ ﺑﻪ ﺗﺼﺎﻭﻳﺮ ﺑﺎﻳﻨﺮﻱ ﺗﺒﺪﻳﻞ ﻧﻤﻮﺩ. دو ﺭﻭﺵ ﺍﻋﻤﺎﻝ ﺳﻄﺢ ﺁﺳﺘﺎﻧﻪ ﻋﺒﺎﺭﺗﻨﺪ ﺍﺯ سراسری (Global) و محلی (Local). ﺩﺭ ﺭﻭﺵ ﺍﻋﻤﺎﻝ ﺳﻄﺢ ﺁﺳﺘﺎﻧﺔ ﺳﺮﺍﺳﺮﻱ، ﻣﻘﺪﺍﺭ ﺳﻄﺢ ﺁﺳﺘﺎﻧﻪ ﺑﺮﺍﻱ ﻛﻞ ﺗﺼﻮﻳﺮ ﺳﻨﺪ ﺍﻧﺘﺨﺎﺏ ﻣﻲ شود. ﺍﻳﻦ ﻣﻘﺪﺍﺭ ﺍﻏﻠﺐ ﺑﺮ ﻣﺒﻨﺎﻱ ﺗﺨﻤﻴﻨﻲ ﺍﺯ سطح ﭘﺲ ﺯﻣﻴﻨﻪ ﻛﻪ ﺍﺯ ﻫﻴﺴﺘﻮﮔﺮﺍﻡ ﺳﻄﺢ ﺭﻭﺷﻨﺎﻳﻲ ﺗﺼﻮﻳﺮ ﻣﺤﺎﺳﺒﻪ ﻣﻲگردد، ﺳﻨﺠﻴﺪﻩ ﻣﻲ ﺷﻮﺩ. روش اعمال ﺳﻄﺢ ﺁﺳﺘﺎﻧﺔ ﻣﺤﻠﻲ ( ﺗﻄﺒﻴﻘﻲ ) ﺑﺮﺍﺳﺎﺱ اطلاعات ﻧﻮﺍﺣﻲ ﻣﺤﻠﻲ، ﺍﺯ ﻣﻘﺎﺩﻳﺮ ﻣﺘﻔﺎﻭﺗﻲ ﺑﺮﺍﻱ ﻫﺮ ﭘﻴﻜﺴﻞ ﺍﺳﺘﻔﺎﺩﻩ ﻣﻲ ﻛﻨﺪ. ﻣﻘﺎﻳﺴﻪ ﺍﻱ ﺑﻴﻦ ﺗﻜﻨﻴﻜﻬﺎﻱ ﻣﻌﻤﻮﻝ ﺍﻋﻤﺎﻝ ﺳﻄﺢ ﺁﺳﺘﺎﻧﻪ ﺑﺼﻮﺭﺕ ﺳﺮﺍﺳﺮﻱ ﻭ ﻣﺤﻠﻲ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻳﻚ ﻣﻌﻴﺎﺭ ﺍﺭﺯﻳﺎﺑﻲ ﺍﻧﺠﺎﻡ ﭘﺬﻳﺮﻓﺘﻪ ﺍﺳﺖ. ﺍﻳﻦ ﻣﻌﻴﺎﺭ ﺍﺭﺯﻳﺎﺑﻲ ﻋﺒﺎﺭﺕ ﺍﺳﺖ ﺍﺯ ﻣﻘﺎﻳﺴﺔ ﺩﻗﺖ ﺑﺎﺯﺷﻨﺎﺳﻲ ﺻﺤﻴﺢ ﻳﻚ ﺳﻴﺴﺘﻢ ﺑﺎﺯﺷﻨﺎﺳﻲ ﺣﺮﻭﻑ ﺑﺎ ﺍﻋﻤﺎﻝ ﺗﻜﻨﻴﻜﻬﺎﻱ ﻣﺨﺘﻠﻒ ﺳﻄﺢ ﺁﺳﺘﺎﻧﻪ ﮔﺬﺍﺭﻱ.

3-2-ﻧﺎﺯﻙ ﺳﺎﺯﻱ

ﺍﻳﻦ ﻋﻤﻞ ﺩﺭﺣﺎﻟﻴﻜﻪ ﻛﺎﻫﺶ ﻗﺎﺑﻞ ﻣﻼﺣﻈﻪای ﺩﺭ ﺣﺠﻢ ﺩﺍﺩﻩ ایجاد میﻛﻨﺪ، اطلاعات ﺷﻜﻠﻲ ﻛﺎﺭﺍﻛﺘﺮ ﺭﺍ ﻧﻴﺰ ﺍﺳﺘﺨﺮﺍﺝ می ﻧﻤﺎﻳﺪ. ﺩﻭ ﺭﻭﺵ ﭘﺎﻳﻪ ﺑﺮﺍﻱ ﻧﺎﺯﻙ ﺳﺎﺯﻱ ﻋﺒﺎﺭﺗﻨﺪ ﺍﺯ :
–    ﻧﺎﺯﻙ ﺳﺎﺯﻱ ﺍﺯ ﻃﺮﻳﻖ ﭘﻴﻜﺴﻞ
–    ﻧﺎﺯﻙ ﺳﺎﺯﻱ ﻏﻴﺮ ﺍﺯ ﻃﺮﻳﻖ ﭘﻴﻜﺴﻞ
ﻧﺎﺯﻙ ﺳﺎﺯﻱ ﺍﺯ ﻃﺮﻳﻖ ﭘﻴﻜﺴﻞ ﺑﺼﻮﺭﺕ ﻣﺤﻠﻲ ﻭ ﺗﻜﺮﺍﺭﻱ ﺗﺼﻮﻳﺮ ﺭﺍ ﻣﻮﺭﺩ ﭘﺮﺩﺍﺯﺵ ﻗﺮﺍﺭ ﻣﻲ ﺩﻫﺪ ﺗﺎ ﻭﻗﺘﻲ ﻛﻪ ﺍﺯ ﺗﺼﻮﻳﺮ ﻛﺎﺭﺍﻛﺘﺮ ﺗﻨﻬﺎ ﺍﺳﻜﻠﺖ ﺁﻥ ﺑﻪ ﻋﺮﺽ ﻳﻚ ﭘﻴﻜﺴﻞ ﺑﺎﻗﻲ ﺑﻤﺎﻧﺪ. ﺍﻳﻦ ﺭﻭﺵ ﻧﺴﺒﺖ ﺑﻪ ﻧﻮﻳﺰ ﺑﺴﻴﺎﺭ ﺣﺴﺎﺱ ﺑﻮﺩﻩ، ﻣﻤﻜﻦ ﺍﺳﺖ ﺗﺼﻮﻳﺮ ﻛﺎﺭﺍﻛﺘﺮ ﺭﺍ ﻣﺨﺪﻭﺵ ﺳﺎﺯﺩ. ﺍﺯ ﺳﻮﻱ ﺩﻳﮕﺮ، ﺭﻭﺷﻬﺎﻱ ﻧﺎﺯﻙ ﺳﺎﺯﻱ ﻏﻴﺮ ﺍﺯ ﻃﺮﻳﻖ ﭘﻴﻜﺴﻞ، ﻃﻲ ﻓﺮﺍﻳﻨﺪ ﻧﺎﺯﻙ سازی ﻣﻘﺪﺍﺭﻱ ﺍﺯ اطلاعات ﺳﺮﺍﺳﺮﻱ ﺩﺭﺑﺎﺭﺓ ﻛﺎﺭﺍﻛﺘﺮ ﺭﺍ ﻣﻮﺭﺩ ﺍﺳﺘﻔﺎﺩﻩ ﻗﺮﺍﺭ ﻣﻲ ﺩﻫﻨﺪ. ﺍﻳﻦ ﺭﻭﺷﻬﺎ ﻳﻚ ﺧﻂ ﻣﺮﻛﺰﻱ ﻳﺎ ﻣﻴﺎﻧﺔ ﺑﺨﺼﻮﺹ ﺍﺯ ﺗﺼﻮﻳﺮ ﭘرتر ﺭﺍ ﺑﺪﻭﻥ ﺁﺯﻣﺎﻳﺶ ﻫﻤﺔ ﭘﻴﻜﺴﻠﻬﺎ ﺗﻮﻟﻴﺪ ﻣﻲ نمایند.

4-ﺑﺎﺯﺷﻨﺎﺳﻲ ﺧﻂ ، ﺯﺑﺎﻥ ﻭ ﻓﻮﻧﺖ 

ﺑﺎﺯﺷﻨﺎﺳﻲ ﺧﻂ، ﺗﻌﺪﺍﺩ ﻛﻼﺳﻬﺎﻱ ﻣﺨﺘﻠﻒ ﺳﻤﺒﻞ ﻛﻪ ﺑﺎﻳﺴﺘﻲ ﻣﻮﺭﺩ ملاحظه ﻗﺮﺍﺭ ﮔﻴﺮﻧﺪ ﺭﺍ ﻛﺎﻫﺶ ﻣﻲ ﺩﻫﺪ. ﺷﻨﺎﺳﺎﻳﻲ ﺯﺑﺎﻥ ﻣﺘﻦ در پیش پردازش، ﺑﻤﻨﻈﻮﺭ ﺑﻜﺎﺭﮔﻴﺮﻱ ﻣﺪﻟﻬﺎﻱ ﻣﺘﻨﻲ ﺧﺎﺹ ﺿﺮﻭﺭت دارد. ﻃﺒﻘﻪ ﺑﻨﺪﻱ ﻓﻮﻧﺘﻬﺎ، ﺗﻌﺪﺩ ﺷﻜﻠﻬﺎﻱ ﻣﺨﺘﻠﻒ ﺣﺮﻭﻑ ﺩﺭ ﻫﺮ ﻛﻼﺱ كه می‌بایست ﺩﺭ ﻓﺮﺍﻳﻨﺪ ﺑﺎﺯﺷﻨﺎﺳﻲ ﻟﺤﺎﻅ ﮔﺮﺩﺩ ﺭﺍ ﻛﺎﻫﺶ می‌دهد و سبب می‌شود كه امر شناسایی، تنها به یك كلاس فونت محدود گردد. ﺑﺎﺯﺷﻨﺎﺳﻲ خط و ﺯﺑﺎﻥ ﻭ ﻓﻮﻧﺖ ﺩﺭ ﻛﺎﺭﺑﺮﺩﻫﺎﻳﻲ ﻣﺎﻧﻨﺪ ﻧﻤﺎﻳﻪ سازی و ﺩﺳﺘﻜﺎﺭﻱ ﺍﺳﻨﺎﺩ نیز مطلوب می باشد.

منبع

تاریخچه OCRدر ایران

 ocr در ایران چگونه آغاز شد؟ 

ماجرا از ثبت‌نام داوطلبان آزمون «سازمان ملی پرورش استعدادهای درخشان (تیزهوشان)» در سال 1380 ‎آغاز شد. ثبت‌نام از روی فرم‌هایی كه توسط دانش‌آموزان تكمیل می‌شد انجام می‌گرفت. دانش‌آموزان شركت‌كننده در آزمون ــ مانند آزمون‌های سراسری ــ باید نام، نام خانوادگی، نام پدر، نام شهرستان محل تولد و سكونت، نام مدرسه و دین خود را در داخل كادرهای مربعی شكل و به صورت حروف مقطع (یعنی هر حرف داخل یك كادر) می‌نوشتند. وقتی كه همة فرم‌ها از طریق پست به سازمان مركزی برگزاركننده آزمون می‌رسید، عدة زیادی تایپیست متن آنها را دوباره وارد رایانه می‌كردند. در واقع همان حرف‌های داخل كادر را دوباره تایپ می‌كردند تا اطلاعات شناسنامه‌ای هر دانش‌آموز به صورت دیجیتالی درآید. این روش هم بسیار زمان‌بُر بود و هم نیاز به تعداد زیادی تایپیست داشت. احتمال داشت كه تایپیست‌ها هم هنگام تایپ اشتباه كنند و با ثبت نادرست یك نام، مشخصات فردی در رایانه مركزی وارد شود كه اصلاً متولد نشده است! مثلاً فرض كنید تایپیست محترم نام «جواد» را، كه داخل كادرها به صورت «ج.و.ا.د» نوشته شده بود،« فؤاد» تایپ می‌كرد؛ در آن صورت در كارت شناسایی جواد سابق، فؤاد فعلی ثبت می‌شد! (جوادِ موجود حذف می‌شد و فؤاد ناموجود وارد فهرست داوطلبان می‌شد!) افزون بر این، هزینة كار نیز بسیار زیاد بود.
به علت همین مشكلات، در بهمن‌ماه 1380، نخستین طرح OCR برای بازشناسی حروف فارسی توسط كامپیوتر ارائه شد و در سال‌های 1381 و 1382 نیز ثبت‌نام آزمون تیزهوشان به یاری این نرم‌افزار انجام شد.
در زبان‌های دیگر، به ویژه زبان‌هایی كه با حروف لاتینی نوشته می‌شوند، سال‌هاست كه از OCR استفاده می‌شود. اما در ایران تازه دو سه سالی است كه به فكر استفاده از OCR در زبان فارسی افتاده‌ایم.
و اما OCR چند نوع است: یا تایپی است یا دست‌نویس. یعنی یا باید یك متن قبلاً تایپ شده را (مثل كتاب‌ها و روزنامه‌های چندین سال قبل، یا حتی متنی را كه فایل تایپی آن موجود نیست و فقط پرینت آن را داریم) وارد رایانه كنیم، یا متن دست‌نویس را. متن‌های دست‌نویس هم به دو صورت «گسسته» و «پیوسته» وجود دارند: متن «دست‌نویس پیوسته» مثل همان چیزهایی است كه ما هر از گاهی كه دلمان تنگ می‌شود روی كاغذ می‌نویسیم، یا یك نامه، یا یك قطعه شعر و … اما متن «دست‌نویس گسسته» همان نوشته‌‌هایی است كه حروف آن جدا از هم و به صورت گسسته نوشته شده‌اند، مثل نام و نام‌خانوادگی كه در فرم‌های آزمون ثبت‌نام، به صورت هر حرف داخل یك كادر، نوشته می‌شوند. طراحی OCR گسستة فارسی تقریباً در مراحل پایانی كار قرار دارد ولی، OCR پیوسته ظاهراً سال‌های زیادی كار می‌برد. «رضا صدیق» و «پرویز رزازی»، كه در رشتة مخابرات تحصیل كرده‌اند و مسئولان یك شركت كامپیوتری به نام «اندیشه نرم‌افزار پایا» هستند، برای اولین بار به طور جدی پروژة OCR فارسی را دنبال كرده‌اند. رزازی كه دانشجوی مخابرات و مسئول بخش پردازش سیگنال شركت «پایا» و مدیر پروژة OCR در این شركت است، می‌گوید : « OCR در دنیا موضوعی ناشناخته نیست، و بر روی آن زیاد كار شده است، ولی در ایران با آنكه مدت‌هاست روی آن كار شده، اما بسیاری از این كارها در حد كارهای دانشگاهی و مقاله‌های علمی باقی‌مانده بود و تبدیل به یك محصول كاربردی در ابعاد وسیع (مثل ثبت‌نام آزمون‌های بزرگ) نشده بود. ما بر روی این طرح كار كردیم و هدفمان هم این بود كه محصول را به شكل صنعتی آن تولید كنیم. البته غیر از شركت «پایا»، دو شركت دیگر نیز با حمایت دبیرخانه طرح «تكفا» (توسعه كاربرد فناوری اطلاعات و ارتباطات) مشغول پژوهش و آزمایش بر روی OCR فارسی هستند. یكی از این شركت‌ها «داده‌پردازان دوران نوین» نام دارد كه مدیریت آن را دكتر «حسام فیلی» بر عهده دارد. دكتر فیلی متخصص در رشتة هوش مصنوعی، از دانشگاه صنعتی شریف، است و شركت «دوران نوین» را از سال 1381، با هدف كار تخصصی بر روی پروژه‌های هوش مصنوعی تأسیس كرده است. او دربارة چگونگی پیوستن شركتش به این طرح می‌گوید: «از تیرماه سال 82 با شروع فعالیت طرح «تكفا» و حمایت‌های مالی آنها، این شركت تصمیم گرفت كه در زمینة طراحی OCR فارسی پژوهش و فعالیت كند. این پروژه در شركت «دوران نوین» با همكاری آقای دكتر «ابراهیمی مقدم» كه او هم از دانشجویان دورة دكتری هوش مصنوعی دانشگاه صنعتی شریف است، انجام می‌گیرد.
ﭘﻴﺪﺍﻳﺶ ﻋﻠﻮﻡ ﻭ ﻓﻨﻮﻥ ﺟﺪﻳﺪ، ﺟﻮﺍﻣﻊ ﺑﺸﺮﻱ ﺭﺍ ﺑﺎ ﺷﻜﻠﻬﺎﻱ ﻣﺨﺘﻠﻔﻲ ﺍﺯ اطلاعات ﺭﻭﺑﺮﻭ ﻧﻤﻮﺩﻩ است ﺳﻄﺢ ﺗﻮﺳﻌﺔ ﻳﻚ ﺟﺎﻣﻌﻪ ﺭﺍ ﻣﻲ ﺗﻮﺍﻥ ﺑﺎ ﻣﻘﺪﺍﺭ اطلاعات ﻭ ﺩﺍﻧﺶ ﺗﻮﻟﻴﺪ ﺷﺪﻩ ﺩﺭ ﺁﻥ ﺍﺭﺯﻳﺎﺑﻲ ﻛﺮﺩ. ﺗﻮﻟﻴﺪ ﻓﺰﺍﻳﻨﺪﺓ اطلاعات ﺑﻪ ﺷﻜﻠﻬﺎﻱ ﻣﺨﺘﻠﻒ ﺻﻮﺭﺕ ﻣﻲ گیرد و با درجات متفاوتی ﺍﺯ ﭘﻴﭽﻴﺪﮔﻲ ﻫﻤﺮﺍﻩ می باشد. ﺩﺭ ﻧﺘﻴﺠﻪ ﻧﻴﺎﺯ ﺑﻪ ﺳﻴﺴﺘﻤﻬﺎﻱ ﭘﺮﺩﺍﺯﺵ اطلاعات ﺑﺼﻮﺭﺕ ﺭﻭﺯﺍﻓﺰﻭﻥ ﺍﻓﺰﺍﻳﺶ ﻣﻲ یابد یكی از ﻣﺴﺎﺋﻞ ﻣﻬﻢ ﺩﺭ ﻃﺮﺍﺣﻲ ﺳﻴﺴﺘﻤﻬﺎﻱ ﻣﺪﺭﻥ ﺍﻃﻼﻋﺎﺗﻲ ﺑﺎﺯﺷﻨﺎﺳﻲ ﺧﻮﺩﻛﺎﺭ ﺍﻟﮕﻮﻫﺎ می باشد.

ﺑﺮخی ﻭﻳﮋﮔﻴﻬﺎی ﻣﺘﻮﻥ ﭼﺎپی ﻓﺎﺭسی

ﻧﮕﺎﺭﺵ ﻓﺎﺭﺳﻲ ﻭﻳﮋﮔﻴﻬﺎﻱ ﻣﻨﺤﺼﺮ ﺑﻪ ﻓﺮﺩﻱ ﺩﺍﺭﺩ ﻛﻪ ﺁﻥ ﺭﺍ ﻛﺎﻣﻼً ﺍﺯ ﻧﮕﺎﺭﺵ لاتین ﻣﺘﻤﺎﻳﺰ ﻣﻲسازد.
ﺑﻤﻨﻈﻮﺭ ﻓﻌﺎﻟﻴﺖ ﺩﺭ ﺯﻣﻴﻨﺔ OCR فارسی ﺁﮔﺎﻫﻲ ﺍﺯ ﻗﻮﺍﻧﻴﻦ ﻧﮕﺎﺭﺷﻲ ﻭ ﻧﺤﻮﺓ ﭼﺎﭖ ﺣﺮﻭﻑ ﺩﺭ ﺍﻳﻦ ﺯﺑﺎﻥ ﺍﻣﺮﻱ ﺿﺮﻭﺭﻱ ﺍﺳﺖ. ﺩﺭ ﺍﻳﻨﺠﺎ ﺑﻪ ﻭﻳﮋﮔﻴﻬﺎﻱ ﻛﻠﻲ ﻧﮕﺎﺭﺵ ﻓﺎﺭﺳﻲ ﺍﺷﺎﺭﻩ ﻣﻲ ﺷﻮﺩ :

1-    ﻣﺘﻮﻥ ﻓﺎﺭﺳﻲ ﺑﺮﺧﻼﻑ متون لاتین ﺍﺯ ﭼﭗ ﺑﻪ ﺭﺍﺳﺖ ﻧﻮﺷﺘﻪ ﻣﻲشود.
2-     ﺩﺭ ﻛﻠﻤﺎﺕ ﻓﺎﺭﺳﻲ ﺑﺮﺧﻲ ﺍﺯ ﺣﺮﻭﻑ ﺍﺯ ﻳﻚ ﻳﺎ ﺩﻭ ﻃﺮﻑ ﺑﻪ ﺣﺮﻭﻑ ﻣﺠﺎﻭﺭ ﺧﻮﺩ ﺍﺗﺼﺎﻝ ﺩﺍﺷﺘﻪ ﻭ ﺑﺮﺧﻲ ﻧﻴﺰ ﺑﺼﻮﺭﺕ ﻣﺠﺰﺍ ﻧﻮﺷﺘﻪ ﻣﻲ ﺷﻮﻧﺪ. ﺩﺭ ﻧﺘﻴﺠﻪ ﻫﺮ ﻛﻠﻤﻪ ﻣﻤﻜﻦ ﺍﺳﺖ ﺷﺎﻣﻞ ﻳﻚ ﻳﺎ ﭼﻨﺪ ﺑﺨﺶ ﻣﺘﺼﻞ ﺑﺎﺷﺪ ﻛﻪ « ﺯﻳﺮﻛﻠﻤﻪ » ﻧﺎﻣﻴﺪﻩ ﻣﻲ ﺷﻮﻧﺪ. (الف)
3-    ﺣﺮﻭﻑ ﻓﺎﺭﺳﻲ ﻣﻲﺗﻮﺍﻧﻨﺪ ﭼﻬﺎﺭ ﻣﻮﻗﻌﻴﺖ ﻣﺠﺰﺍ ﻭ ﺩﺭ ﻧﺘﻴﺠﻪ ﭼﻬﺎﺭ ﺷﻜﻞ ﻣﺘﻔﺎﻭﺕ ﻧﮕﺎﺭﺵ ﺩﺍﺷﺘﻪ باشند. ﺣﺮﻭﻑ ﺍﺑﺘﺪﺍﻳﻲ، ﻣﻴﺎﻧﻲ، ﺍﻧﺘﻬﺎﻳﻲ ﻭ ﻣﺠﺰﺍ. (ب)
4-     ﺣﺮﻭﻑ ﻭﺍﻗﻊ ﺩﺭ ﻳﻚ ﻛﻠﻤﻪ ﻣﻤﻜﻦ ﺍﺳﺖ ﻫﻤﭙﻮﺷﺎﻧﻲ ﺩﺍﺷﺘﻪ ﺑﺎﺷﻨﺪ، ﺑﺪﻳﻦ ﻣﻌﻨﻲ ﻛﻪ ﻧﺘﻮﺍﻥ ﺑﺎ ﺭﺳﻢ ﺧﻄﻮﻁ ﻋﻤﻮﺩﻱ، ﺣﺮﻭﻑ ﺭﺍ ﺑﻄﻮﺭ ﻛﺎﻣﻞ ﺍﺯ ﻳﻜﺪﻳﮕﺮ ﻣﺠﺰﺍ ﻧﻤﻮﺩ. (ج)
5-    ﺑﺮﺧﻲ ﺍﺯ ﻓﻮﻧﺘﻬﺎ ﺑﻌﻀﻲ ﺍﺯ ﺣﺮﻭﻑ ﺩﺭ ﺩﻭ ﻣﺤﻞ ﺑﻪ ﻳﻜﺪﻳﮕﺮ ﺍﺗﺼﺎﻝ ﺩﺍﺭﻧﺪ (د)
6-    ﺑﺮﺧﻲ ﺍﺯ ﺣﺮﻭﻑ ﺑﻴﻦ ﻳﻚ ﺗﺎ ﺳﻪ ﻋﺪﺩ ﻧﻘﻄﻪ ﺩﺍﺭﻧﺪ ﻛﻪ ﻣﻤﻜﻦ ﺍﺳﺖ ﺩﺭ ﺑﺎﻻ ﻳﺎ ﭘﺎﻳﻴﻦ ﺑﺪﻧﺔ ﺣﺮﻑ ﻭﺍﻗﻊ ﺑﺎﺷﻨﺪ.
7-    ﺩﺭ ﺑﻌﻀﻲ ﺍﺯ ﺣﺮﻭﻑ ﺑﺪﻧﺔ ﻣﺸﺎﺑﻪ ﺩﺍﺭﻧﺪ ﻭ ﺗﻔﺎﻭﺕ ﺁﻧﻬﺎ ﺗﻨﻬﺎ ﺩﺭ ﺗﻌﺪﺍﺩ ﻭ ﻣﺤﻞ ﻗﺮﺍﺭﮔﻴﺮﻱ ﻧﻘﺎﻁ ﺁﻧﻬﺎﺳﺖ (ﻩ)
8-    ﺣﺮﻭﻑ ﻓﺎﺭﺳﻲ ﻣﻲ ﺗﻮﺍﻧﻨﺪ ﺩﺭ ﺑﺎﻻ ﻳﺎ ﭘﺎﻳﻴﻦ ﺑﺪﻧﺔ ﺧﻮﺩ ﺩﺍﺭﺍﻱ ﺍﻋﺮﺍﺏ ﺑﺎﺷﻨﺪ. سه اعراب ﺩﺭ ﺯﺑﺎﻥ ُ  ِ  َ در زبان فارسی ﺍﻋﺮﺍﺑﻬﺎﻱ ﺍﺻﻠﻲ ﺑﻮﺩﻩ و ﺍﻋﺮﺍﺏ ً ﺩﺭ ﺑﺮﺧﻲ ﻛﻠﻤﺎﺕ ﻋﺮﺑﻲ ﺭﺍﻳﺞ ﺩﺭ ﺯﺑﺎﻥ ﻓﺎﺭﺳﻲ ﺩﻳﺪﻩ ﻣﻲ ﺷﻮﺩ. ﻛﻠﻤﺎﺕ ﻋﺮﺑﻲ ﺩﺍﺭﺍﻱ اعراب  ٍ   ٌ  ﺩﺭ ﺯﺑﺎﻥ ﻓﺎﺭﺳﻲ ﻋﻤﻮﻣﻴﺖ ندارد.
9-    ﺩﺭ ﺑﺎﻻﻱ ﺑﺪﻧﺔ ﻳﻚ ﺣﺮﻑ ﻣﻤﻜﻦ ﺍﺳﺖ ﻋﻼﻣﺖ ﺗﺸﺪﻳﺪ ﻭﺟﻮﺩ ﺩﺍﺷﺘﻪ ﺑﺎﺷﺪ.
10-ﺑﺮﺧﻲ ﺍﺯ ﺣﺮﻭﻑ ﺷﺎﻣﻞ ﻫﻤﺰﻩ ﻫﺴﺘﻨﺪ.
11-ﺣﺮﻭﻓﻲ ﻛﻪ ﺍﺯ ﻃﺮﻑ ﭼﭗ ﻗﺎﺑﻠﻴﺖ ﺍﺗﺼﺎﻝ ﺑﻪ ﺣﺮﻑ ﻣﺠﺎﻭﺭ ﺧﻮﺩ ﺭﺍ ﺩﺍﺭﻧﺪ، ﻣﻲ ﺗﻮﺍﻧﻨﺪ ﺑﺼﻮﺭﺕ ﻛﺸﻴﺪﻩ ﻧﻮﺷﺘﻪ ﺷﻮﻧﺪ.
ﺑﺎﺯﺷﻨﺎﺳﻲ ﺣﺮﻭﻑ ﺧﻮﺩ ﺯﻳﺮﻣﺠﻤﻮﻋﻪ ﺍﺯ ﺩﺳﺘﺔ بزرگی از ﺗﻜﻨﻴﻜﻬﺎ ﺑه نامﺁﻧﺎﻟﻴﺰ ﺍﺳﻨﺎﺩ ﺍﺳﺖ ﻛﻪ ﻣﺒﺤﺚ ﺍﺻﻠﻲ ﺍﻳﻦ ﻃﺮﺡ می باشد.
هدف از مبحث آنالیز اسناد، شناسایی اجزای متنی، گرافیكی و عكس در تصاویر اسناد و استخراج اطلاعات مورد نظر از آنها می باشد. آنایز اسناد مشتمل بر كلیه مراحل پردازشی است كه محتویات یك سند اسكن یا دورنگاری شده چند صفحه ای را به یك فرم الكترونیكی مناسب كد می كنند. این كد كردن می توان چندین شكل داشته باشد : یك توصیف قابل ویرایش، یك نمایش فشرده كه تصویر سند از ان قابل بازیابی باشد و یا یك توصیف معناشناختی سطح بالا كه به منظور پاسخگویی به پرس و جوها می توان بكار رود.
منبع

تاریخچه سیستمهای OCR

از جنبه تاریخی سیستم های OCR تا کنون سه مرحله تکاملی را پشت سر گذاشته اند:

ﺍﻟﻒ ) ﻣﺮحله ﺗﻜﻮﻳﻦ : (از سال 1900 تا 1980)

ﺭﺩ ﭘﺎﻱ ﺍﻭﻟﻴﺔ ﺍﻗﺪﺍﻣﺎﺕ ﺻﻮﺭﺕ ﮔﺮﻓﺘﻪ ﺩﺭ ﺯﻣﻴﻨﺔ ﺑﺎﺯﺷﻨﺎﺳﻲ حروف را ﺩﺭ ﺳﺎﻟﻬﺎﻱ ﺍﻭﻝ ﺩﻫﺔ 1900 می ﺗﻮﺍﻥ ﻳﺎﻓﺖ ﻭ ﺁﻥ ﺯﻣﺎﻧﻲ ﺍﺳﺖ ﻛﻪ Tyuring ﺩﺍﻧﺸﻤﻨﺪ ﺭوسی بر آن بود  ﻛﻪ ﺑﻪ ﺍﻓﺮﺍﺩ ﻣﺒﺘﻼ ﺑﻪ ﻧﺎﺭﺳﺎﻳﻴﻬﺎﻱ ﺑﻴﻨﺎﻳﻲ ﻛﻤﻚ ﻧﻤﺎﻳﺪ و ﺍﻭﻟﻴﻦ ﺍﺧﺘﺮﺍﻉ های ﺛﺒﺖ ﺷﺪﻩ ﺩﺭ ﺍﻳﻦ ﺯﻣﻴﻨﻪ مربوط به سالهای 1929 و 1933 هستند
ﺍﻳﻦ ﺳﻴﺴﺘﻢ ﻫﺎ ﺣﺮﻭﻑ ﭼﺎﭘﻲ ﺭﺍ ﺑﺎ ﺭﻭﺵ ﺗﻄﺎﺑﻖ ﻗﺎﻟﺒﻲ ﺷﻨﺎﺳﺎﻳﻲ ﻣﻲ كردند. ﻣﺎﺳﻜﻬﺎﻱ ﻣﻜﺎﻧﻴﻜﻲ ﻣﺨﺘﻠﻔﻲ ﺍﺯ ﻣﻘﺎﺑﻞ ﺗﺼﻮﻳﺮ ﺣﺮﻑ ﻋﺒﻮﺭ می ﻛﺮﺩﻧﺪ و نور از یك سو ﺑﻪ ﺁﻥ ﺗﺎﺑﺎﻧﺪﻩ ﺷﺪﻩ ﻭ ﺍﺯ ﺳﻮﻱ ﺩﻳﮕﺮ ﺗﻮﺳﻂ ﻳﻚ ﺁﺷﻜﺎﺭﺳﺎﺯ ﻧﻮﺭﻱ ﺩﺭﻳﺎﻓﺖ ﻣﻲ شد. وقتی یك انطباق كامل صورت می گرفت ﻧﻮﺭ ﺑﻪ ﺁﺷﻜﺎﺭﺳﺎﺯ ﻧﻤﻲ ﺭﺳﻴﺪ ﻭ ﺣﺮﻑ ﻭﺭﻭﺩﻱ ﺑﺎﺯﺷﻨﺎﺳﻲ ﻣﻲ شد. این ﺍﺧﺘﺮﺍﻉ ﺑﻪ ﺩﻟﻴﻞ ﺗﻜﻨﻮﻟﻮﮊﻱ ﺍﭘﺘﻮﻣﻜﺎﻧﻴﻜﻲ ﻣﻮﺭﺩ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺁﻧﻬﺎ ﻛﺎﺭﺑﺮﺩﻱ ﻧﺒﻮﺩ و ﺗﺼﻮﺭ ﺩﺳﺘﺮﺳﻲ ﺑﻪ ﺩﺳﺘﮕﺎﻫﻲ ﺑﺮﺍﻱ ﺑﺎﺯﺷﻨﺎﺳﻲ ﺣﺮﻭﻑ ﺗﺎ ﺩﻫﻪ 1940 ﻣﻴﻼﺩﻱ ﻭ ﻇﻬﻮﺭ ﻛﺎﻣﭙﻴﻮﺗﺮﻫﺎﻱ ﺩﻳﺠﻴﺘﺎﻝ ﺑﺼﻮﺭﺕ ﻳﻚ ﺭﺅﻳﺎ ﺑﺎﻗﻲ ﻣﺎﻧﺪ.
ﺍﻗﺪﺍﻣﺎﺕ ﺍﻭﻟﻴﻪ ﺩﺭ ﺯﻣﻴﻨﺔ ﺑﺎﺯﺷﻨﺎﺳﻲ ﺣﺮﻭﻑ، ﺑﺮ ﺭﻭﻱ ﻣﺘﻮﻥ ﭼﺎﭘﻲ ﻭ ﻳﺎ ﻣﺠﻤﻮﻋﺔ ﻛﻮﭼﻜﻲ ﺍﺯ ﺣﺮﻭﻑ ﻭ ﻧﻤﺎﺩﻫﺎﻱ ﺩﺳﺘﻨﻮﻳﺲ ﻛﻪ ﺑﺮﺍﺣﺘﻲ ﻗﺎﺑﻞ ﺗﺸﺨﻴﺺ ﺑﻮﺩﻧﺪ، ﻣﺘﻤﺮﻛﺰ ﮔﺮﺩﻳﺪﻩ ﺑﻮﺩ. ﺳﻴﺴﺘﻤﻬﺎﻱ ﺑﺎﺯﺷﻨﺎﺳﻲ ﺣﺮﻭﻑ ﭼﺎﭘﻲ ﻛﻪ ﺩﺭ ﺍﻳﻦ ﻣﻘﻄﻊ ﺯﻣﺎﻧﻲ ﻣﻌﺮﻓﻲ ﺷﺪﻧﺪ، ﻋﻤﺪﺗﺎً ﺍﺯ ﺭﻭﺵ ﺗﻄﺎﺑﻖ ﻗﺎﻟﺒﻲ ﺍﺳﺘﻔﺎﺩﻩ می نمودند ﻛﻪ ﺩﺭ ﺁﻥ ﺗﺼﻮﻳﺮ ﻭﺭﻭﺩﻱ ﺑﺎ ﻛﺘﺎﺑﺨﺎﻧﻪ ای از تصاویر ﺣﺮﻭﻑ ﻣﻮﺭﺩ ﻣﻘﺎﻳﺴﻪ ﻗﺮﺍﺭ ﻣﻲ گرفت. در ﻣﻮﺭﺩ ﻣﺘﻮﻥ ﺩﺳﺘﻨﻮﻳﺲ ﻧﻴز ﺍﻟﮕﻮﺭﻳﺘﻤﻬﺎﻱ ﭘﺮﺩﺍﺯﺵ ﺗﺼﻮﻳﺮ ﻛﻪ ﻭﻳﮋﮔﻴﻬﺎﻱ ﺳﻄﺢ ﭘﺎﻳﻴﻦ را از تصاویر ﺍﺳﺘﺨﺮﺍﺝ ﻣﻲ كنند، ﺑﻪ ﺗﺼﺎﻭﻳﺮ ﺩﻭﺩﻭﻳﻲ ﺍﻋﻤﺎﻝ ﻣﻲ ﺷﺪ ﺗﺎ ﺑﺮﺩﺍﺭﻫﺎﻱ ﻭﻳﮋﮔﻲ ﺍﺳﺘﺨﺮﺍﺝ ﮔﺮﺩﻧﺪ. ﺳﭙﺲ ﺍﻳﻦ ﺑﺮﺩﺍﺭﻫﺎﻱ ﻭﻳﮋﮔﻲ ﺑﻪ ﻃﺒﻘﻪ ﻛﻨﻨﺪﻩ ﺁﻣﺎﺭﻱ ﺳﭙﺮﺩﻩ ﻣﻲ ﺷﺪﻧﺪ.
ﺩﺭ ﺍﻳﻦ ﺩﻭﺭﻩ، ﺗﺤﻘﻴﻘﺎﺕ ﻣﻮﻓﻖ ﺍﻣﺎ ﻣﻘﻴﺪﻱ ﺑﻴﺸﺘﺮ ﺑﺮ ﺭﻭﻱ ﺣﺮﻭﻑ ﻭ ﺍﻋﺪﺍﺩ لاتین ﺍﻧﺠﺎﻡ ﮔﺮﻓﺖ با ﺍﻳﻦ ﻭﺟﻮﺩ ﻣﻄﺎﻟﻌﺎﺕ ﭼﻨﺪﻱ ﻧﻴﺰ ﺩﺭ ﺯﻣﻴﻨﺔ ﺣﺮﻭﻑ ﮊﺍﭘﻨﻲ، ﭼﻴﻨﻲ، ﻋﺒﺮﻱ، ﻫﻨﺪﻱ، ﺳﻴﺮﻳﻠﻴﻜﻲ، ﻳﻮﻧﺎﻧﻲ ﻭ ﻋﺮﺑﻲ ﺩﺭ ﻫﺮ ﺩﻭ ﺯﻣﻴﻨﺔ ﺣﺮﻭﻑ ﭼﺎﭘﻲ ﻭ ﺩﺳﺘﻨﻮﻳﺲ ﺁﻏﺎﺯ ﮔﺮﺩﻳﺪ ﺑﺎ ﻇﻬﻮﺭ ﺻﻔﺤﺎﺕ ﺭﻗﻮﻣﻲ كننده ( ﺩﻳﺠﻴﺘﺎﻳﺰﺭﻫﺎ ) در دهه 1950 كه ﻗﺎﺩﺭ ﺑﻪ ﺗﺸﺨﻴﺺ ﻣﺨﺘﺼﺎﺕ ﺣﺮﻛﺘﻲ ﻧﻮﻙ ﻳﻚ ﻗﻠﻢ ﻣﺨﺼﻮﺹ ﺑﻮﺩﻧﺪ، ﺳﻴﺴﺘﻤﻬﺎﻱ OCR ﺗﺠﺎﺭﻱ ﻧﻴﺰ ﺍﻣﻜﺎﻥ ﻋﺮﺿﻪ ﻳﺎﻓﺘﻨﺪ. ﺍﻳﻦ ﻧﻮﺁﻭﺭﻱ ﺳﺒﺐ ﺷﺪ ﻛﻪ ﻣﺤﻘﻘﺎﻥ ﺑﺘﻮﺍﻧﻨﺪ ﺩﺭ ﺯﻣﻴﻨﺔ بازشناسایی حروف دست نویس فعالیت خود را آغاز نمایند.

ب ) ﻣﺮحله توسعه: (از سال 1980 تا 1990) 

ﻣﻄﺎﻟﻌﺎﺕ ﺻﻮﺭﺕ ﮔﺮﻓﺘﻪ ﺗﺎ ﻗﺒﻞ ﺍﺯ ﺳﺎﻝ 1980 ﺍﺯ ﻓﻘﺪﺍﻥ سخت افزارهای ﻛﺎﻣﭙﻴﻮﺗﺮﻱ ﻗﺪﺭﺗﻤﻨﺪ ﻭ ﺩﺳﺘﮕﺎﻫﻬﺎﻱ ﺍﺧﺬ ﺩﺍﺩﻩها رنج می بردند. در ﺍﻳﻦ ﺩﻫﻪ ﺑﻮﺍﺳﻄﺔ ﺭﺷﺪ ﺍﻧﻔﺠﺎﺭﮔﻮﻧﺔ ﺗﻜﻨﻮﻟﻮﮊﻱ اطلاعات، ﻭﺿﻌﻴﺖ ﺑﺴﻴﺎﺭ ﻣﻨﺎﺳﺒﻲ ﺑﺮﺍﻱ ﺯﻣﻴﻨﻪ ﻫﺎﻱ ﺗﺤﻘﻴﻘﺎﺗﻲ ﻣﺨﺘﻠﻒ ﺍﺯ ﺟﻤﻠﻪ ﺑﺎﺯﺷﻨﺎﺳﻲ ﺣﺮﻭﻑ ﻓﺮﺍﻫﻢ ﮔﺮﺩﻳﺪ. ﺭﻭﺷﻬﺎﻱ ﺳﺎﺧﺘﺎﺭﻱ ﺑﻪ ﻫﻤﺮﺍﻩ ﺭﻭﺷﻬﺎﻱ ﺁﻣﺎﺭﻱ ﺩﺭ ﺑﺴﻴﺎﺭﻱ ﺍﺯ ﺳﻴﺴﺘﻤﻬﺎ ﻇﺎﻫﺮ ﮔﺮﺩﻳﺪﻧﺪ.  ﺗﺤﻘﻴﻘﺎﺕ ﺩﺭ ﺯﻣﻴﻨﺔ OCR ﺍﺳﺎﺳﺎً ﺗﻮﺟﻪ ﺧﻮﺩ ﺭﺍ ﺑﻪ ﺭﻭﺷﻬﺎﻱ ﺑﺎﺯﺷﻨﺎﺳﻲ ﺍﺷﻜﺎﻝ ﺑﺪﻭﻥ ﺗﻮﺟﻪ ﺑﻪ ﻫﺮﮔﻮﻧﻪ اطلاعات ﻣﻌﻨﺎﺷﻨﺎﺧﺘﻲ ﻣﻌﻄﻮﻑ ﻧﻤﻮﺩ. این مسئله سبب ﮔﺮﺩﻳﺪ ﻛﻪ ﻧﺮﺥ ﺑﺎﺯﺷﻨﺎﺳﻲ نتواند ﺍﺯ ﻳﻚ ﺣﺪ ﺧﺎﺹ ﻓﺮﺍﺗﺮ بروﺩ. ﻛﻪ ﺩﺭ ﺑﺴﻴﺎﺭﻱ ﺍﺯ ﻛﺎﺭﺑﺮﺩﻫﺎﻱ OCR ﻗﺎﺑﻞ ﻗﺒﻮﻝ ﻧﺒﻮﺩ.

ج ) ﻣﺮحله بهبود: (از سال 1990 به بعد) 

ﺩﺭ ﺍﻳﻦ ﻣﻘﻄﻊ ﺯﻣﺎﻧﻲ ﺑﻮﺩ ﻛﻪ ﺑﺎ ﺗﻜﻮﻳﻦ ﺍﺑﺰﺍﺭﻫﺎ ﻭ ﺗﻜﻨﻴﻜﻬﺎﻱ ﭘﺮﺩﺍﺯﺷﻲ ﺟﺪﻳﺪ، ﭘﻴﺸﺮﻓﺖ ﻭﺍﻗﻌﻲ ﺳﻴﺴﺘﻤﻬﺎﻱ OCR ﻣﺤﻘﻖ ﮔﺮﺩﻳﺪ. ﺩﺭ ﺍﻭﺍﻳﻞ ﺩﻫﺔ 1990 ﺭﻭﺷﻬﺎﻱ ﭘﺮﺩﺍﺯﺵ ﺗﺼﻮﻳﺮ ﻭ ﺑﺎﺯﺷﻨﺎﺳﻲ ﺍﻟﮕﻮ ﺑﺎ ﺗﻜﻨﻴﻜﻬﺎﻱ ﻛﺎﺭﺁﻣﺪ ﻫﻮﺵ ﻣﺼﻨﻮﻋﻲ (AI) ﺍﺩﻏﺎﻡ ﮔﺸﺘﻨﺪ. ﻣﺤﻘﻘﺎﻥ ﺍﻟﮕﻮﺭﻳﺘﻤﻬﺎﻱ ﺑﺎﺯﺷﻨﺎﺳﻲ ﺣﺮﻭﻑ ﭘﻴﭽﻴﺪﻩ ﺭﺍ ﺍﺑﺪﺍع ﻧﻤﻮﺩﻧﺪ ﻛﻪ ﻗﺎﺩﺭ بودند ﺩﺍﺩﻩ ﻫﺎﻱ ﻭﺭﻭﺩﻱ ﺑﺎ ﺗﻔﻜﻴﻚ پذیری ﺑﺎﻻ ﺭﺍ ﺩﺭﻳﺎﻓﺖ ﻛﻨﻨﺪ ﻭ ﺩﺭ ﻣﺮﺣﻠﺔ ﭘﻴﺎﺩﻩ سازی، ﻣﺤﺎﺳﺒﺎﺕ ﺑﺴﻴﺎﺭ ﺯﻳﺎﺩﻱ ﺭﺍ ﺑﺮ ﺭﻭﻱ ﺩﺍﺩﻩ ﺍﻧﺠﺎﻡ ﺩﻫﻨﺪ. كه عبارتند از شبكه های عصبی ، منطق فازی و پردازش زبانهای طبیعی و غیره.

منبع

ﺑﺨﺸﻬﺎی ﻣﺨﺘﻠﻒ ﻳک ﺳﻴﺴﺘﻢ OCRﻛﺎﻣﻞ و انواع آن

ﺍﻧﻮﺍﻉ ﺳﻴﺴﺘﻤﻬﺎی OCR

ﺩﺭ ﻳﻚ ﺗﻘﺴﻴﻢ كلی می توان سیستمهای OCR را به ﻟﺤﺎﻅ ﻧﻮﻉ ﺍﻟﮕﻮﻱ ﻭﺭﻭﺩﻱ ﺑﻪ ﺩﻭ ﮔﺮﻭﻩ ﺍﺻﻠﻲ ﺗﻘﺴﻴﻢ ﻛﺮﺩ :
الف ) ﺳﻴﺴﺘم های ﺑﺎﺯﺷﻨﺎﺳﻲ ﻣﺘﻮﻥ ﭼﺎﭘﻲ
ب ) ﺳﻴﺴﺘم های ﺑﺎﺯﺷﻨﺎﺳﻲ ﻣﺘﻮﻥ ﺩﺳﺘﻨﻮﻳﺲ
ﻫﺮ ﻳﻚ ﺍﺯ ﺍﻳﻦ ﮔﺮﻭﻫﻬﺎ ﺗﻜﻨﻴﻜﻬﺎﻱ ﺧﺎﺹ ﺧﻮﺩ ﺭﺍ ﺩﺍﺭﻧﺪ. همچنین ﺍﺯ ﺟﻨﺒﺔ ﻧﺤﻮﺓ ﻭﺭﻭﺩ اطلاعات، سیستمهای OCR به دو دسته زیر تقسیم میﺷﻮﻧﺪ :
الف ) ﺳﻴﺴﺘﻤﻬﺎﻱ ﺑﺮﺧﻂ (OnLine)
ﺩﺭ ﺑﺎﺯﺷﻨﺎﺳﻲ ﺑﺮﺧﻂ، حروف در همان زمان نگارش ﺗﻮﺳﻂ ﺳﻴﺴﺘﻢ ﺗﺸﺨﻴﺺ ﺩﺍﺩه می شوند. دستگاههای ورودی ﺍﻳﻦ ﺳﻴﺴﺘﻤﻬﺎ ﻳﻚ ﻗﻠﻢ ﻧﻮﺭﻱ ﺍﺳﺖ. ﺩﺭ ﺍﻳﻦ ﺭﻭﺵ ﻋﻼﻭﻩ ﺑﺮ اطلاعات ﻣﺮﺑﻮﻁ ﺑﻪ ﻣﻮﻗﻌﻴﺖ قلم، اطلاعات ﺯﻣﺎﻧﻲ ﻣﺮﺑﻮﻁ ﺑﻪ ﻣﺴﻴﺮ ﻗﻠﻢ ﻧﻴﺰ ﺩﺭ ﺍﺧﺘﻴﺎﺭ می باشد. ﺍﻳﻦ اطلاعات ﻣﻌﻤﻮﻻً ﺗﻮﺳﻂ ﻳﻚ صفحه Digitizer اخذ می شوند.
ﺩﺭ ﺍﻳﻦ ﺭﻭﺵ ﻣﻲ توان ﺍﺯ اطلاعات ﺯﻣﺎﻧﻲ، ﺳﺮﻋﺖ، شتاب، ﻓﺸﺎﺭ ﻭ ﺯﻣﺎﻥ برداشتن و گذاشتن قلم روی صفحه در بازشناسایی استفاده كرد.
ب ) ﺳﻴﺴﺘﻤﻬﺎﻱ ﺑﺮﻭﻥ ﺧﻂ (OutLine)
ﺩﺭ ﺑﺎﺯﺷﻨﺎﺳﻲ ﺑﺮﻭﻥ خط، ﺍﺯ ﺗﺼﻮﻳﺮ ﺩﻭ ﺑﻌﺪی ﻣﺘﻦ ﻭﺭﻭﺩی ﺍﺳﺘﻔﺎﺩﻩ ﻣﻲشود. ﺩﺭ ﺍﻳﻦ ﺭﻭﺵ ﺑﻪ ﻫﻴﭻ ﻧﻮﻉ ﻭﺳﻴﻠﻪ ﻧﮕﺎﺭﺵ ﺧﺎﺻﻲ ﻧﻴﺎﺯ ﻧﻴﺴﺖ ﻭ ﺗﻔﺴﻴﺮ ﺩﺍﺩﻩ ﻣﺴﺘﻘﻞ ﺍﺯ ﻓﺮﺁﻳﻨﺪ ﺗﻮﻟﻴﺪ ﺁﻧﻬﺎ ﺗﻨﻬﺎ ﺑﺮﺍﺳﺎﺱ ﺗﺼﻮﻳﺮ ﻣﺘﻦ ﺻﻮﺭﺕ ﻣﻲ’گیرد. ﺍﻳﻦ ﺭﻭﺵ ﺑﻪ ﻧﺤﻮﺓ ﺑﺎﺯﺷﻨﺎﺳﻲ ﺗﻮﺳﻂ انسان ﺷﺒﺎﻫﺖ ﺑﻴﺸﺘﺮﻱ ﺩﺍﺭﺩ.


ﺑﺨﺸﻬﺎی ﻣﺨﺘﻠﻒ ﻳﻚ ﺳﻴﺴﺘﻢ OCR ﻛﺎﻣﻞ 

ﻳﻚ ﺳﻴﺴﺘﻢ OCR ﻛﺎﻣﻞ مركب از 5 ﻗﺴﻤﺖ ﺍﺻﻠﻲ زیر می باشد :

الف ) ﭘﻴﺶ ﭘﺮﺩﺍﺯﺵ  (Preprocessing):
ﺷﺎﻣﻞ ﻛﻠﻴه ﺍﻋﻤﺎﻟﻲ ﻛﻪ ﺭﻭﻱ ﺳﻴﮕﻨﺎﻝ ﺗﺼﻮﻳﺮﻱ ﺧﺎﻡ ﺻﻮﺭﺕ ﻣﻲ ﮔﻴﺮﻧﺪ ﺗﺎ موجب ﺗﺴﻬﻴﻞ ﺭﻭﻧﺪ ﺍﺟﺮﺍﻱ ﻓﺎﺯﻫﺎﻱ ﺑﻌﺪﻱﮔﺮﺩﻧﺪ؛ ﻣﺎﻧﻨﺪ ﺑﺎﻳﻨﺮﻱ ﻛﺮﺩﻥ ﺗﺼﻮﻳﺮ ، ﺣﺬﻑ ﻧﻮﻳﺰ ، ﻫﻤﻮﺍﺭﺳﺎﺯﻱ، ﻧﺎﺯﻛﺴﺎﺯﻱ ، ﺗﺸﺨﻴﺺ ﺯﺑﺎﻥ ﻭ ﻓﻮﻧﺖ ﻛﻠﻤﺎﺕ و ﻧﻈﺎﻳﺮ ﺍﻳﻨﻬﺎ.

ب) قطعه بندی (Segmentation) :
ﻋﺒﺎﺭﺕ ﺍﺳﺖ ﺍﺯ ﺭﻭﺷﻬﺎﻳﻲ ﻛﻪ ﺑﺨﺸﻬﺎﻱ ﻣﺨﺘﻠﻔﻲ ﻫﻤﭽﻮﻥ ﭘﺎﺭﺍﮔﺮﺍﻓﻬﺎ، ﺟﻤﻼﺕ ﻳﺎ ﻛﻠﻤﺎﺕ ﻭ ﺣﺮﻭﻑ ﺭﺍ ﺍﺯ ﺗﺼﻮﻳﺮﺳﻨﺪ ﺍﺳﺘﺨﺮﺍﺝ ﻣﻲ کنند.

ج ) ﺍﺳﺘﺨﺮﺍﺝ ﻭﻳﮋﮔﻴﻬﺎ (Feature Extraction) :
ﻣﺠﻤﻮﻋﺔ از ﻛﻠیه ﻣﺤﺎﺳﺒﺎﺗﻲ است ﻛﻪ ﺭﻭﻱ ﺍﻟﮕﻮﻫﺎﻱ ﺑﺪﺳﺖ ﺁﻣﺪﻩ ﺍﺯ ﻣﺮحله ﭘﻴﺶ پردازش ﺍﻧﺠﺎﻡ ﻣﻲ شود ﺗﺎ ﺑﺮﺩﺍﺭ ﻭﻳﮋﮔﻴﻬﺎﻱ ﻣﺘﻨﺎﻇﺮ ﺑﺎ ﻫﺮ ﺍﻟﮕﻮ ﺗﻌﻴﻴﻦ گردد.

د ) ﺑﺎﺯﺷﻨﺎﺳﻲ ﺑﺎ ﻳﻚ ﻳﺎ ﭼﻨﺪ ﻃﺒﻘﻪ بندی كننده (Classification & Recognition):
ﺷﺎﻣﻞ ﺭﻭﺷﻬﺎﻳﻲ ﺑﺮﺍﻱ ﻣﺘﻨﺎﻇﺮ ﺳﺎﺧﺘﻦ ﻫﺮ ﻳﻚ ﺍﺯ ﺍﻟﮕﻮﻫﺎﻱ ﺑﺪﺳﺖ ﺁﻣﺪﻩ ﺍﺯ ﻣﺮﺣﻠﺔ ﺍﺳﺘﺨﺮﺍﺝ ﻭﻳﮋﮔﻴﻬﺎ ﺑﺎ ﻳﻜﻲ ﺍﺯ ﻛﻼﺳﻬﺎﻱ ﻓﻀﺎﻱ ﺍﻟﮕﻮﻫﺎﻱ ﻣﻮﺭﺩ ﺑﺤﺚ ﺍﺳﺖ ﻛﻪ ﺍﺯ ﻃﺮﻳﻖ ﻛﻤﻴﻨﻪ ﺳﺎﺧﺘﻦ ﻓﺎصله ﺑﺮﺩﺍﺭ ﻭﻳﮋﮔﻴﻬﺎی ﻫﺮ ﺍﻟﮕﻮ ﻧﺴﺒﺖ ﺑﻪ ﻳﻜﻲ ﺍﺯ ﺑﺮﺩﺍﺭﻫﺎﻱ ﻣﺮﺟﻊ ﻣﻮﺟﻮﺩ ﺩﺭ ﭘﺎﻳﮕﺎﻩ ﺩﺍﺩﻩ های ﺳﻴﺴﺘﻢ ﺍﻧﺠﺎﻡ ﻣﻲ ﮔﻴﺮﺩ.

هـ ) ﺑﻜﺎﺭﮔﻴﺮﻱ اطلاعات ﺟﺎﻧﺒﻲ (ﭘﺲ ﭘﺮﺩﺍﺯﺵ) :
ﻣﺎﻧﻨﺪ ﻣﺠﻤﻮﻋﻪ اطلاعات ﺁﻣﺎﺭﻱ ﻣﺮﺑﻮﻁ به رخداد حروف ، اطلاعات ﺩﺳﺘﻮﺭﻱ ﻭ ﻣﻌﻨﺎﻳﻲ.

منبع