تشخیص عنبیه : چکيده – یکی از مشکلات موجود در سیستمهای تشخیص هویت به کمک الگوهای عنبیه، مسدود شدن عنبیهی چشم بوسیلهی مژههاست. با توجه به ماهیت مژهها که بصورت خطوطی عمودی با اختلاف رنگ زیاد نسبت به عنبیه هستند، میتوان با استفاده از فیلتر میانه با قاب افقی آنها را حذف نمود. به منظور تطابق دو تصویر ما از شبکههای عصبی استفاده مینماییم. در روش مورد استفاده ما تصویر نرمال شدهی عنبیه را بلاک بندی میکنیم و به شبکه عصبی میدهیم. به دلیل اینکه از بلاکهای افقی به منظور بلاک بندی تصویر استفاده مینماییم، استفاده از قابهای افقی در فیلتر میانه به منظور حذف مژهها نتیجهی خوبی را به همراه خواهد داشت.
كليد واژه- تشخیص عنبیه ، حذف مژه ، شبکه عصبی ، فیلتر میانه با قاب افقی
۱- مقدمه
شکلگیری ساختار منحصربهفرد عنبیه به صورت تصادفی رخ میدهد و به عوامل ژنتیکی بستگی ندارد و فقط رنگدانههای عنبیه به عوامل ژنتیکی بستگی دارند و در طول زمان تغییر میکنند، که همین امر عنبیه را به عنوان یک عنصر مهم در تعیین هویت تبدیل کرده است.
مراحل انجام عمل تشخیص هویت به کمک عنبیه شامل موارد زیر است: (شکل ۱)
تصویربرداری
قطعهبندی
نرمال سازی
استخراج ویژگی
تطابق
یکی از نویزهای شایع در تصاویر عنبیه، که از دقت تشخیص عنبیه میکاهد، نویز ناشی از مژهها میباشد. در پارهای از تصویر عنبیهها که توسط پلکها مسدود شدهاند ، نویز ناشی از مژهها نیز مشاهده میگردد که با تکنیکهایی میتوان پلکها را شناسایی کرده و اثر آنها را در سیستم تشخیص عنبیه خنثی نمود. ابعاد،تعداد و پراکندگی متفاوتی که مژهها دارند، از دشواریهای شناسایی آنها است.
جزئیات مراحل تشخیص عنبیه بیانشده توسط دکتر جان داگمن
نویسندگان : محمد مهدی ابراهیمی، ناصر قاسم آقایی و حسین ابراهیم پور
این روش در مقاله ی ارائه شده است. این روش به این صورت است که پس از این که سیستم با چند عکس تمرین داده شد, عکسها بر اساس میزان نزدیکی به تصویر ورودی مرتب می شوند. تعدادی از شبیه ترین عکس ها به عکس ورودی انتخاب می شوند و سیستم دوباره و با این تعداد عکس انتخاب شده تمرین داده می شود. این روند می تواند چند مرحله ی دیگر تکرار شود. با توجه به اینکه در هر مرحله دامنه ی جستجو محدود تر می شود, انتظار می رود که نتایج دقیق تری بدست آید. هر مرحله از این الگوریتم را یک لایه می نامند, به همین دلیل این روش, pca چند لایه نامیده شده است. کد پیاده سازی شده مربوط به این الگوریتم را می توانید از اینجا دریافت کنید. برای آزمایش نرخ تشخیص چهره با این روش,آزمایشی مشابه آزمایش اول, انجام شد و حدود ۵۵ درصد از تصاویر ورودی به درستی شناسایی شدند که نشانگر بهبود ۵ درصدی نسبت به الگوریتم pca معمولی می باشد.
روش Modular PCA
این روش در مقاله ی [۹] ارائه شده است. روش PCA معمولی در مقابل تغییرات حالت قرار گرفتن چهره در تصویر و تغییرات میزان نور در تصویر, بازده خوبی ندارد. چون در این روش مشخصات عمومی چهره, در قالب مجموعه ای از وزن ها (بردار وزن ها) توصیف می شود. تک تک این وزن ها وابسته به تمام نواحی چهره می باشند. بنابراین با تغییر حالت چهره و نورپردازی, حتی در قسمتی از تصویر, تمام وزن های این بردار دچار تغییر می شوند. روش MudularPca سعی در رفع این مشکل دارد. در این روش یک عکس به چند قسمت کوچکتر تقسیم می شود و الگوریتم PCA روی این عکس ها اعمال می شود و بردار وزن ها برای هر قطعه به صورت جداگانه محاسبه می شود. با این عمل(تقسیم تصویر به چند تکه), تغییر در قسمتی از تصویر تنها بردار ویژگی آن قسمت از تصویر را تغییر می دهد و بردارهای مربوط به سایر قطعات بدون تغییر باقی می مانند. هنگام تشخیص چهره, هر قطعه از عکس ورودی با قطعه ی متناظر در تصاویری که سیستم با آنها تمرین داده شده است مقایسه می شود و به تعداد قطعات, فاصله محاسبه می شود. تصویری که مجموع فواصل قطعات آن با قطعات عکس ورودی کمتر از سایر تصاویر باشد, به عنوان تصویر مشابه با تصویر ورودی در نظر گرفته می شود.
کد پیاده سازی شده ی این الگوریتم را می توانید از اینجا دریافت کنید. برای آزمایش این روش, آزمایشی مشابه آزمایش اول انجام شد, اما تغییر محسوسی در نتایج بدست نیامد.
نحوه ی استفاده از کدها در گیت هاب قرار داده شده است.
کارهای آینده
برای بهبود نتایج حاصل از PCA معمولی که در بخش کارهای مرتبط شرح داده شد, کارهای زیادی انجام شده است و مقالات زیاد به چاپ رسیده است. تعدادی از این روش ها در بخش آزمایش ها شرح داده شد و کد مربوط به آنها پیاده سازی شد. در این بخش چند نمونه از کارهای انجام شده ی دیگر را بدون پیاده سازی به طور مختصر شرح می دهیم :
برای مثال در مقاله ی [۱۰] فرمولهای مختلف فاصله, برای بدست آوردن فاصله ی تصویر ورودی و تصاویر موجود در سیستم استفاده شده است و نرخ تشخیص چهره ی آن ها با هم مقایسه شده است. در این مقاله از فاصله های euclidian distance, city block distance, angle distance, mahalanobis distance و یک بار هم از مجموع این چهار فاصله استفاده شده است و این نتیجه بدست آمده است که استفاده از مجموع این چهار فاصله نتیجه ی بهتری می دهد.
همچنین در برخی از مقاله ها قبل از اعمال الگوریتم PCA روی تصاویر, پیش پردازش هایی روی تصاویر انجام می شود. برای مثال ابتدا الگوریتم های کاهش نویز روی تصاویر اعمال می شود و سپس الگوریتم PCA روی تصاویر حاصل اعمال می شود. همانطور که در بخش های مختلف گفته شد, پس از ارائه ی الگوریتم PCA کارهای زیادی برای بهبود عملکرد این الگوریتم انجام شده است که بررسی همه ی آنها در این پست نمی گنجد.
وقتی با کسی صحبت می کنیم ، معمولا به چهره و یا به عبارت دقیقتر به چشم های او نگاه می کنیم. این واقعیت نه تنها با تجربه ، بلکه با آزمایش های روانشناسی هم تأیید شده است. حالت صورت اشخاص نقش مهمی را در روابط اجتماعی بازی می کند. علاوه بر این ، خاصیت یکتایی صورت در بین اشخاص (به جز مواردی بسیار نادر) باعث شده است که چهره هر شخص به عنوان شاخص بسیار خوبی برای شناسایی اش بحساب آید. در مقایسه با اثر انگشت و یا قرنیه ، برداشتن تصویر از صورت به آسانی انجام می گیرد ، زیرا برای این کار احتیاجی به تماس با فرد مورد نظر نیست در حالیکه برای تهیه اثر انگشت ، تماس کامل و برای تهیه تصویر از قرنیه تماس نزدیک با فرد لازم است. به همین دلیل شناسایی چهره توسط ماشین گام بسیار مهمی در ارتباط بین ماشین و انسان خواهد بود و همچنین یکی از متداولترین کاربردهای بینایی کامپوتر است. شناسایی چهره یک موضوع مهم و فعال تحقیقاتی در زمینه علوم بینایی ماشین ، شناسایی الگو و هوش محاسباتی است که همواره محققین این علوم را به مبارزه دعوت می کند.
بطور کلی سیستم شناسایی انسان با استفاده از طیف وسیعی از اطلاعاتی که حواس پنجگانه اش (بینایی ، شنوایی ، بویایی ، چشایی و لامسه ) در اختیارش قرار می دهند ، کار می کند. این اطلاعات بصورت جداگانه و یا در کنار هم ، هم برای به خاطر سپردن و هم برای بازشناسی به کار می روند. علاوه بر این موارد اطلاعات محیطی نیز در شناسایی انسانی نقش مهمی دارند. برای مثال شناسایی مجری یک برنامه ی تلویزیونی در همان برنامه بسیار راحت تر از شناسایی او در خیابان و یا هر محل دیگری است.
تکنولوژی تشخیص چهره VeriLook برای توسعه دهندگان و مجتمع سازان سیستم های بیومتریکی در نظر گرفته شده است. این تکنولوژی بواسطه تشخیص چهره زنده ، تشخیص چندین چهره بصورت همزمان و همچنین تطبیق سریع چهره در حالت های یک به یک و یک به چند ، میزان کارایی ، عملکرد و قابلیت اطمینان سیستم را تضمین می نماید.
VeriLook به عنوان SDK های زیر در دسترس است :
SDK استاندارد برای توسعه کاربردهای بیومتریکی مبتنی بر PC در نظر گرفته شده است و شامل کامپوننت های استخراج کننده و تطبیق دهنده ، خودآموزها و نمونه های برنامه نویسی ، کتابخانه مدیریت دوربین و مستندات نرم افزار می باشد. SDK امکان توسعه کاربردهای بیومتریک را برای سیستم عامل های Linux ، Microsof Windows و Mac OS X فراهم می کند.
SDK توسعه یافته برای توسعه کاربردهای بیومتریکی تحت وب و شبکه در نظر گرفته شده است. این SDK علاوه بر تمام ویژگی های SDK استاندارد ، شامل نمونه برنامه های client ، خودآموزها و سرور تطبیق آماده برای استفاده نیز می باشد.
اولین قدم در فرایند پردازش چهره، تشخیص چهره است. هدف از تشخیص چهره پاسخ به این سوال خواهد بود که آیا در یک عکس چهره -و یا چهرههایی- وجود دارد یا نه؟ و اگر بله مکان هر کدام از چهره -و یا چهرهها- کجاست؟
از موارد زیر میتوان به عنوان چالشهای پیشرو در زمینهی تشخیص چهره نام برد:
زاویه چهره. اینکه دوربین از کدام زاویه (تمامرخ، نیمرخ و …) از چهره عکس گرفته باشد میتوان فاکتور مهمی در درجهی سختی تشخیص چهره محسوب گردد.
وجود یا عدم وجود اجزای مختلف صورت. اجزای مختلف صورت از جمله محاسن، سبیل و … میتوانند در چهرهی فرد موجود باشند یا نباشند. از طرفی دیگر تفاوتهای زیادی بین شکلهای مختلف این اجزا وجود دارد.
حالات چهره. نمای صورت در حالات مختلف چهره (لبخند، خنده، گریه و …) متفاوت خواهد بود.
پوشش. ممکن است قسمتی از چهره بخاطر زاویه چهره و یا قرارگیری پشت اشیاء دیگر قابل مشاهده نباشد.
زاویه عکس. اشیاء مختلف با قرارگیری در زاویههای مختلف نسبت به صفحه مماس اشکال خاصی به خود میگیرند.
شرایط عکاسی. فاکتورهای مختلف محیطی نظیر شرایط نوری و مشخصات دوربین عکاسی از جمله لنز میتوانند تاثیر زیادی در پروسه تشخیص چهره داشته باشند.
شکل شماره ۱
در ادبیات تشخیص چهره، مفهومی مرتبط وجود دارد که از آن به عنوان مکانیابی چهره یاد میکنیم. خواننده محترم باید این نکته را در نظر داشته باشد که هدف از مکانیابی چهره درست همانند تشخیص چهره هست اما تفاوت اندکی موجود خواهد بود و آن این که در مکانیابی چهره تصویر موجود فقط شامل یک چهره در نظر گرفته میشود. یکی از روشهای مرسوم در زمینه تشخیص اشیاء در نظر گرفتن قابی کوچک روی تصویر اصلی و تشخیص این خواهد بود که آیا شیء مورد نظر در آن پنجره وجود دارد یا نه؟ پس اگر از این روش استفاده شود باید در جستجوی الگوریتمی بود تا توانایی تشخیص وجود یا عدم وجود چهره در یک قاب کوچک، متشکل از چند صد پیکسل داشته باشد. در این دیدگاه تشخیص چهره را میتوان به صورت مسالهی دسته بندی نیز در نظر گرفت. به این صورت که عامل هوش مصنوعی باید قابهای مختلف موجود در تصویر را در دو گروه چهره و غیرچهره در نظر گرفت.
المانهای مختلفی را میتوان در ارزیابی یک سیستم تشخیص چهره مؤثر دانست مانند زمان یادگیری، زمان اجرا، تعداد مثالهای مورد نیاز برای یادگیری و نسبت بین میزان تشخیص و خطای منفی. میزان تشخیص را میتوان به نسبت تعداد چهرههای درست تشخیص داده شده توسط عامل هوش مصنوعی به تعداد چهرههای تشخیص داده شده توسط انسان تعریف کرد. در صورتی قابی توسط عامل تشخیص داده شده است به عنوان چهره در نظر گرفته میشود که قاب مورد نظر بیشتر از میزان خاصی از چهرهی فرد را پوشش دهد. از طرف دیگر خطای منفی زمانی رخ میدهد که عامل در تشخیص چهره ناموفق باشد که این خود ریشه در پایین بودن میزان تشخیص خواهد بود. در مقابل خطای منفی مفهوم دیگری به نام خطای مثبت۷ وجود دارد که وقتی قابی به عنوان چهره از طرف عامل هوش مصنوعی معرفی میشود اما عامل انسانی تایید نمیکند، رخ میدهد.
نکتهی مهم در رابطه با خطای منفی یا خطای مثبت این است که هر چه قوانین پیادهسازی شده سختتر و به واسطهی آن رفتار عامل سختگیرانه تر باشد خطای منفی بالاتر و خطای مثبت پایینتر خواهد بود و بالعکس.
روشهای موجود
روشهای موجود در تشخیص چهره را میتوان به چهار گروه مختلف تقسیم کرد:
روشهای دانش محور
روشهای جزئیات محور
روشهای الگو محور
روشهای ظاهر محور
روشهای دانش محور
مشکل اساسی در این روش پیادهسازی دانش انسانی خواهد بود. از طرف دیگر عملکرد این نوع عاملها در تشخیص چهره بسیار خوب بوده است.
یکی از استراتژیهای جالب توجه در این روش استفاده از الگوریتمهای ابتکاری خواهد بود. بدین صورت که ابتدا با اعمال بعضی قوانین سادهتر بر روی تصویر با کیفیت پایینتر به راحتی تعداد زیادی از قابها را حذف کرده و در مراحل بعدی با اعمال قوانین سختگیرانهتر قابهای باقیمانده را فیلتر کرد. در پایان هر کدام از قابها که همهی قوانین را پشت سر گذاشته است به عنوان چهره تشخیص داده میشود.
روشهای جزئیات محور
برعکس روش دانش محور محققان در این روش به دنبال یافتن اجزای مختلف صورت برای تشخیص چهره خواهند بود. فرض بنیادین در این روش این مشاهده بوده که انسان بدون دشواری در زوایای مختلف چهره و شرایط نوری متفاوت میتواند بهراحتی چهره را تشخیص دهد. اجزای مختلف چهره مانند ابروها، چشمها، بینی و دهان براحتی توسط آشکارساز لبه استخراج میشوند. بر اساس اجزای استخراج شده مدلی آماری از رابطهی اجزای صورت با هم ساخته میشود تا در تأیید وجود چهره مورد استفاده قرار گیرد.
یکی از مشکلات این نوع روشها این است که تصویر اجزای مختلف صورت بخاطر شرایط نوری نامناسب، نویز و یا پوشش خراب شود. وجود این مشکل احتمال بروز این مسأله که مرزهای اجزای صورت از دست برود و یا بخاطر ایجاد سایههای زیاد الگوریتم بیفایده گردد را نیز افزایش میدهد.
روشهای الگو محور
در روش الگو محور الگوی استانداردی از چهرهی انسان به صورت دستی و یا به صورت تابعی ریاضی از پیش تعیین گردد.با دریافت تصویر ورودی، همبستگی میان تصویر در مرزهای صورت، چشمها و.. با الگو بدست میآید. تصمیم نهایی در خصوص تشخیص تصویر بر اساس مقدار همبستگی خواهد بود.
اگر چه این روش به راحتی قابلیت پیاده سازی دارد اما از آنجایی که در مصاف با تصاویر با مقیاس مختلف، زاویه چهره و اشکال متفاوت باز میماند گزینهی خوبی برای استفاده در مسالههایی که تصاویر چهره در آن در شرایط مختلف وجود دارد نخواهد بود.
روشهای ظاهر محور
بر خلاف روش الگو محور که در آن الگوی مورد استفاده توسط گروهی متخصص تولید میگردد در روش ظاهر محور این الگو از آموزش عامل هوش مصنوعی بوسیلهی تعدادی مثال از تصاویر چهره حاصل میشود. به طور معمول روشهای ظاهر محور بر اساس آنالیز آماری و یادگیری ماشین استوار است. در همین حال از کاهش کیفیت تصاویر نیز در جهت بهبود عملکرد محاسباتی استفاده میشود.
کارهای مرتبط
وایولا و جونز در روشی برای حل مسأله تشخیص اشیاء مبتنی بر یادگیری ماشینی را معرفی کردهاند که قادر به پردازش سریع تصاویر با میزان تشخیص بالا خواهد بود.
روش معرفی شده که به نوعی نمایندهی روشهای ظاهرمحور محسوب میشود از سه عنصر کلیدی استفاده میکند:
انتگرال تصویر که توانایی محاسبه سریع مجموع مقادیر پیکسلهای موجود در یک قاب مستطیل شکل را به ما میدهد.
آدابوست که ما را قادر به تنظیم پارامترهای مختلف، نوع و تعداد مشخصههای هار مورد استفاده در الگوریتمهای کلاسبندی موجود در مدل آبشاری میکند تا بتوان با استفاده از کمترین تعداد از مشخصههای هار و در نتیجه محاسبهی کمتر به بیشترین میزان تشخیص رسید.
روش آبشاری در کلاسبندی اشیا.
انتگرال تصویر
ماتریس مجموع محیطی ساختمان داده و الگوریتمی برای محاسبهی سریع و دقیق زیرمجموعهای از یک ماتریس (برای مثال یک تصویر) که به شکل مستطیلی ظاهر میشود، است.
در ادبیات پردازش تصویر از این الگوریتم به عنوان انتگرال تصویر نیز یاد میشود. همانطور که از نام تکنیک پیداست مقدار درایهی (x, y)ماتریس مجموع محیطی برابرست با مجموع همهی مقادیر بالا و چپ درایهی (x, y) ماتریس اصلی.
تکنولوژی تشخیص چهره (Face detection) ، یکی از انواع سیستم Biometric محسوب می شود و از مهمترین تکنولوژی های تشخیص و شناسایی افراد است که در Access control نیز مورد استفاده قرار می گیرد و پس از موفقیت سیستم شناسایی از طریق اثر انگشت در چند سال اخیر جزء مهمترین تکنولوژی های تشخیص بیومتریک به شمار می آید.
این اهمیت و توسعه کاربرد به دو دلیل عمده زیر می باشد: الف- این سیستم شایستگی استفاده در کاربردهای مختلف امنیتی ، پردازش تصویر ، شناسایی اتوماتیک سریع و بدون دخالت شخص را دارد و سرعت پردازش را بالا و خطا را کاهش داده است . ب- با وجود سیستمهای بیومتریک قابل اعتمادی مانند تشخیص اثر انگشت و عنبیه چشم سیستم تشخیص چهره رابطه عاطفی تری با کاربر ایجاد کرده و بدون تماس کامل عضوی از بدن با سیستم عملیات تشخیص انجام میگیرد و القای اطمینان بیشتری در کاربر ایجاد میکند و البته توسعه کاربردهای دوربین های دیجیتالی پیشرفته عامل موثری در توسعه و بالا رفتن طرفداران این سیستم بوده است.
سیستم تشخیص چهره براساس الگوریتم های شناسایی و مقایسه تصاویر کارمی کند. که اساس و پایه این الگوریتم ها شناسایی و آنالیز ویژگی های مربوط به اندازه ، شکل و موقعیت چشم ، بینی ، گونه ها و اعضای چهره کاربر می باشد. نحوه کار این سیستم بدین گونه است که تصاویر رقمی در ورودی سیستم ارسال می شود و سیستم به طورخودکار عکس Biometric را از عکس نمونه دریافت می نماید تا داده Biometric را گرفته و آن رابا نمونه های دیگر مقایسه کند ومشخص می نماید که آیا شناسایی و تفاوت سازی آن انجام شده است و یا خیر.مرحله کدگذاری از مکانیسم خود ساخته بر پایه پردازش آماری تعداد تصاویر زیادی استفاده میکند و نتیجه این پردازش لیستی از تصاویر جداگانه است که مشابه نمونه ورودی است که در بردارهای مناسب رتبه بندی شده است.
بطورکلی یک سیستم بیومتریک تشخیص چهره، از چهار ماژول تشکیل یافته است:
۱-ماژول سنسور:
در حالی که تشخیص چهره دو بعدی با دوربین معمولی امکان پذیر میباشد در روش سه بعدی نیاز به یک سنسور پیچیده و سطح بالایی از لحاظ فنی میباشد چرا که بایستی قابلیت کسب اطلاعات عمیق تر را داشته باشد . ماژول سنسور وظیفه گرفتن تصویر اشخاص را بر عهده دارد و بسته به نیاز و کاربرد دستگاه گیرنده میتواند یک دوربین سیاه و سفید و یا رنگی و یا یک ماژول مخصوص با قابلیت استخراج اطلاعات عمیقتر و یا یک دوربین مادون قرمز با تصاویر مادون قرمز باشد.
۲-ماژول مخصوص تشخیص و استخراج اطلاعات:
تصاویر بدست آمده توسط این ماژول در ابتدا ارزیابی محتوایی شده و داده های نامربوط ازقبیل پس زمینه – موها و گردن و شانه و غیره حذف و تنها محتوای ناحیه چهره را شناسایی میکند . سپس تصویر بدست آمده تحت فرایندهای محاسباتی و عملیاتی پیچیده برای استخراج اطلاعات مربوط به ویژگیهای سطحی چهره و تجزیه اطلاعات کلی تصویر قرار میگیرد. در حقیقت در این مرحله تصویر خروجی که بایستی توسط ماژول طبقه بندی کننده برای تعیین هویت و تشخیص چهره مورد استفاده قرار گیرد در این مرحله با استفاده از روشهای پیچیده PCA, LDA و غیره آماده میگردد.
۳- ماژول طبقه بندی :
در این ماژول قالب تصویر استخراج شده از مرحله قبلی با قالبهای موجود در گالری تصاویر مقایسه میگردد و در نتیجه معلوم میشود که آیا چهره گرفته شده جزء قالبهای موجود میباشد و قابل شناسایی است یا خیر . و در صورت مثبت بودن جواب ماژول تصمیم گیری هویت شخص را که بر اساس نتیجه مقایسه ماژول طبقه بندی بوده است را تایید میکند . بر اساس امتیاز بدست آمده از مقایسه که همان درصد تطابق قالب گرفته شده با قالبهای موجود میباشد کاربر مورد نظر مورد تایید قرار گرفته و یا پذیرفته نمیشود .
۴- ماژول پایگاه داده ها:
این ماژول برای ثبت نام – نگهداری – واکشی قالب چهره کاربران را بر عهده دارد . در طول ثبت نام ماژول سنسور تصاویر را ثبت کرده و مجموعه این تصاویر همان گالری تصاویر را ایجاد میکند که در مرحله طبقه بندی مورد استفاده قرار میگیرد .در بیشتر روشهای تشخیص چهره چندین نمای متفاوت از یک شخص در حالتهای مختلف روحی خنده – اخم و عصبانیت – عادی و یا با عینک از کاربر گرفته میشود و این تعدد در بالابردن ضریب شناسایی اهمیت ویژه ایی دارد در خصوص اطلاعات سه بعدی که در جهت افزایش دقت در تشخیص مورد استفاده قرار میگیرد علاوه بر اطلاعات دو بعدی تصویر اطلاعات مربوط به ساختار داخلی اندام نظیر کاسه چشم.
این دستگاه ها می توانند چندین گروه و تصاویررا ذخیره نمایند و حتی در محیط های با نور کم چهره را آنالیز نمایند. علاوه براین قابلیت اتصال به قفل های الکترونیکی ، زنگ در ، دکمه خروج وسنسوررا نیز داراهستند و می توانند چندین منطقه زمانی و گروه را تعریف نمایند.
فن آوري بازشناسي چهره يکي از معدود روشهاي بيومتريک مي باشد که با دارا بودن مزاياي دقت بالا و سطح پايين دخالت فرد، در مواردي مانند امنيت اطلاعات، اجرا و نظارت بر قانون، کنترل تردد و ثبت تردد در سیستم های حضور و غیاب مورد استفاده قرارميگيرد. به همين دليل اين فناوري درطي بيست سال گذشته در عرصه هاي صنعتي و علمي مورد توجه قرار گرفته است.
کاربردهای زیادی برای مبحث شناسایی چهره می توان متصور شد که محدوده وسیعی از تصاویر متحرک تا تصاویر ثابت و از کاربدهای امنیتی تا کاربردهای تجاری را شامل می شود: – معمول ترین کاربرد شناسایی چهره ، انطباق تصاویر ثابت می باشد. نمونه ای از این کاربرد را می توان در شناسایی مجرمین دید . حالت ساده تری از شناسایی مجرمین را می توان در کاربردهایی چون تائید هویت دارنده کارتهای شناسایی ، گواهینامه ، گذرنامه و کارتهای اعتباری دانست. – کنترل نامحسوس و ایجاد امنیت در بانکها، فروشگاه ها، فرودگاه ها و یا نظایر اینها یکی دیگر از کاربردهای ارزشمند شناسایی چهره است – علاوه بر کاربردهای فوق ، شناسایی و پردازش چهره کاربردهای دیگری هم دارند از جمله : دنبال کردن خط دید چشم و تعیین نژاد، جنس و حالت صورت
https://behsanandish.com/wp-content/uploads/a10-1.png256256توسعه دهندهhttps://behsanandish.com/wp-content/uploads/logo-farsi-englisi-300x195-1.pngتوسعه دهنده2020-01-10 10:00:162019-11-27 16:00:38تشخیص چهره انسان به کمک پردازش تصویر قسمت 2
در تشخیص چهره انسان شما با دیدن تصویر یک فرد باید بگویید که این تصویر مربوط به کدام یک از افرادی است که قبلا دیدهاید. این مسئله دو بخش دارد:
بخش آموزش: در این بخش شما افرادی را که میخواهید سیستم بشناسد با تصویر به سیستم میدهید.
بخش آزمایش: در این بخش اگر تصویری از یکی از افرادی که میشناسد را به سیستم بدهیم، سیستم باید او را به درستی به یاد بیاورد.
این مسئله کاربردهای زیادی دارد. برای مثال اگر تعداد افرادی که آموزش میدهیم یک فرد باشد، میتوان از این سیستم به عنوان جایگزین رمز عبور برای رایانه استفاده کرد.
اگر برای مثال تصویر چهره مجرمها را به سامانه آموزش دهیم، میتوان از دوربینهای سطح شهر برای پیدا کردن مجرمها استفاده کرد.
کارایی تشخیص چهره علاوه بر کاربردهای مرتبط با تعیین و مقایسه هویت نظیر کنترل دسترسی, امور قضایی, صدور مجوزها و مدارک هویتی و نظارت, در زمینه هایی نظیر تعامل انسان و کامپیوتر, واقعیت مجازی بازیابی اطلاعات از پایگاه های داده, مالتی مدیا و سرگرمی های کامپیوتری به اثبات رسیده است.
یک سیستم تشخیص چهره متداول شامل سه مرحله زیر است:
کشف چهره (Face Detection)
استخراج الگوها (Feature Extraction)
تشخیص چهره (Face Recognition)
چالش های پیش رو
شرایط ثبت تصویر نظیر وضعیت چهره نسبت به دوربین, نورپردازی, حالتهای چهره و تعداد پیکسلها در ناحیه چهره و همچنین روند پیر شدن انسان می تواند تغییرات زیادی را بر چهره انسان تحمیل کند. تغییرات دیگری هم ممکن است از طریق قیافه, پوشش هایی نظیر کلاه یا عینک آفتابی و موی صورت به وجود آید. همچنین افزایش سن, در برخی افراد باعث افزایش یا کاهش وزن می شود.
الگوریتم ها
الگوریتمهای مختلفی برای تشخیص چهره وجود دارند که معمول ترین آنها عبارتند از: PCA – ICA – LFDA – EBGM – SVM – …
الگوریتمی که در این پست مورد بررسی واقع می گردد برای هدف برنامه PCA خواهد بود.
کارهای مرتبط
تا قبل از ارائه ی PCA برای تشخیص چهره, بیشتر کارها روی شناسایی ویژگی های بخشهای صورت مانند چشمها, بینی, دهان و … و تعریف روابط بین این اعضا متمرکز بود. اما تحقیقات روی قدرت انسان در تشخیص چهره نشان داد که ویژگی های اعضای منفرد صورت و ارتباطات لحظه ای بین آنها برای شناخت مناسب چهره کافی نیست.
در سال ۱۹۶۶ Bledsoe اولین کسی بود که یک روش نیمه اتوماتیک برای تشخیص چهره ارائه کرد. در این روش چهره ها بر اساس ویژگی هایی که به وسیله ی انسان علامت زده شده بود دسته بندی می شدند. اندکی بعد با کارهای انجام شده در آزمایشگاههای Bell, یک بردار با بیش از ۲۱ ویژگی (مانند عرض دهان, ضخامت لبها و …) تو سعه داده شد. ویژگی های انتخاب شده عمدتاً حاصل ارزیابی های ذهن انسان بودند و پیاده سازی آنها کار مشکلی بود.
در سال ۱۹۸۹, Kirby و Sirovich یک روش جبری برای محاسبه ساده ی eigenface ها ارائه کردند.
در سال ۱۹۹۱ , Turk و Pentland اثبات کردند که خطای مانده هنگام کدینگ eigenface ها می تواند برای دو منظوراستفاده شود:
تشخیص وجود چهره در یک عکس
تعیین محل تقریبی چهره در عکس
این دو نفر نشان دادند که با ترکیب دو مورد بالا, تشخیص بلادرنگ چهره ممکن است. این مطلب جرقه ی یک انفجار در تحقیقات تشخیص چهره بود. بعد از ارائه ی این روش مقالات زیادی بر مبنای آن به رشته ی تحریر درآمده که در ادامه به برخی از آنها اشاره میکنیم :
در مقاله ای از Rajkiran Gottumukkal, Vijayan K.Asari روشی به نام Modular PCA ارائه شده است. با مقایسه ی این روش با روش PCA متداول, مشخص می شود که این روش با وجود تغییرات زیادی در جهت تابش نور وحالت چهره, نرخ بازشناسی بیشتری نسبت به PCA دارد. در این روش عکسها به چند قسمت کوچکتر تقسیم می شوند و PCA روی هرکدام از این قطعات به طور جداگانه اعمال می شود. این موضوع باعث می شود که تغییرات چهره از جمله تغییر در جهت تابش نور و حالت چهره, باعث تغییر ویژگی های موضعی چهره یک فرد نشود.
در مقاله ای از Trupti M. Kodinariya با ترکیب الگوریتم PCA با چند الگوریتم دیگر یک روش ترکیبی ارائه شده است.
در این مقاله سیستم تشخیص چهره در دو حالت کار می کند : تمرین و دسته بندی :
حالت تمرین شامل نرمال سازی و استخراج ویژگی از تصاویر با استفاده از الگوریتم PCA, ICA می باشد. . سپس ویژگی های استخراج شده, با استفاده از BPNN ها (back propagation neural network) تمرین داده می شوند تا فضای ویژگی ها به کلاسهای متفاوت دسته بندی شوند.
در حالت دسته بندی,عکسهای جدید به نتایج حاصل از حالت تمرین اضافه می شوند. یک روش ترکیب کننده, روی نتایج بخش تمرین اعمال می شوند تاعکسهای جدید برحسب کلاسهای ایجاد شده دسته بندی شوند.
در مقاله ای از احمد محمودی, روشی با نام PCA چند لایه ارائه شده است. در این روش برای محاسبه ی مولفه های اصلی از یک شبکه عصبی خطی استفاده شده است, که علاوه بر کاهش حجم مورد نیاز برای محاسبات, طراحی سخت افزار آن بسیارساده تر خواهد بود. همچنین با توجه به قابلیت های شبکه عصبی در پردازش موازی, سرعت انجام محاسبات افزایش چشم گیری داشته است.
منظور از واژه ی چند لایه در این پست این است که برای بازشناخت چهره ی یک فرد, ابتدا چند چهره که بیشترین شباهت به این چهره را دارند استخراج شده, آنگاه در مرحله ی بعد فرایند پیشنهادی در بین چهره هایی که بیشترین امتیاز شباهت را دارا میباشند ادامه داده شود. با توجه به این که دامنه ی جستجو محدودتر شده, انتظار می رود که نتایج بدست آمده دقیق تر باشد.
در مقاله ای از داود ساریخانی, روشی با استفاده از الگوریتم های PCA, LDA و شبکه های عصبی پیشنهاد شده است.روش ارایه شده دارای چهارقسمت پردازشی زیراست:
بخش پیش پردازش شامل یکنواخت سازی هیستوگرام و نرمالیزه کردن تصاویر
بخش کاهش بعد فضا به کمک PCA
استخراج ویژگیها با استفاده از LDA برای جداسازی کلاس ها و تفکیک پذیری چهره ها
استفاده از شبکه عصبی به منظور طبقه بندی چهره ها و اعلام هویت چهره
الگوریتم Principal Component Analysis) PCA):
این روش در سال ۱۹۹۱ توسط Turk و Pentland پیشنهاد شد که از تحلیل المانهای اصلی یا همان PCA برای کاهش بعد استفاده کرده تا بتواند زیرفضایی با بردارهای متعامد پیدا کند که در آن زیرفضا پراکندگی داده ها را به بهترین حالت نشان دهد. این زیرفضا را هنگامی که بر روی داده های چهره اعمال شوند، فضای چهره میگویند. پس از مشخص شدن بردارها تمامی تصاویر به این زیر فضا منتقل میشوند تا وزنهایی که بیانگر تصویر در آن زیرفضا هستند بدست آیند. با مقایسه شباهت وزنهای موجود با وزن تصویر جدیدی که به این زیر فضا منتقل شده میتوان تصویر ورودی را شناسایی کرد.
با نمایش بردار ی چهره ی انسان که توسط کنار هم قرار دادن سطرهای ماتریس تصو یر حاصل می شود می توان چهره ی انسان را برداری در فضایی با ابعاد بالا در نظر گرفت. با توجه به خصوصیات مشابه چهره ها، می توان نتیجه گرفت که بردار چهره ها در ز یرفضایی با ابعاد پایین تر واقع شده اند. با نگاشت چهره به این زیر فضا می توان تصاو یر پایه ی جدیدی به دست آورد که هر چهره با کمک این بر دارهای پایه توصیف می شود. در واقع هر چهره ترکیب خطی این تصاو یر پایه می باشد .ضرایب این ترکیب خطی به عنوان بردار خصیصه مورد استفاده قرار می گیرند.
در این روش یک تصویر با ابعاد n*m به یک بردار با nm مولفه تبدیل می شود. یعنی می توان عکس را به صورت نقطه ای در فضای nm بعدی تصور کرد. هدف PCA یافتن بردارهایی است که به بهتر ین نحو ممکن کار شناسایی ز یر فضا را انجام دهند. این بردارها فضای چهره را تعریف می کنند. از آن جایی که این بردارها، بردار ویژه ی ماتر یس همبستگی مربوط به تصاویر چهره می باشند و همچنین به دلیل شباهت به چهره یانسان، آن ها را eigenface می نامند.
محاسبه ی eigenface ها
اگر مجموعه ی عکس های ورودی را ماتریسهای
در نظر بگیریم, میانگین چهره ها به صورت زیر محاسبه می شود:
البته همان طور که در بخش قبل گفته شد در این روش یک تصویر با ابعاد n*m به یک بردار با nm مولفه تبدیل می شود. یعنی ما یک عکس را به صورت یک بردار سطری یا ستونی با nm مولفه در نظر می گیریم. تمامی فرمول های ذکر شده در این الگوریتم با این فرض است که ماتریس تصویر را به صورت یک بردار ستونی درنظر گرفته ایم.
تفاوت هر تصویر از میانگین به صورت زیر محاسبه می شود:
بردار Uk به نحوی انتخاب می شود که مقدار λk ماکزیمم شود:
البته با فرض زیر:
بردارهای Uk و λk به ترتیب بردارهای ویژه و مقادیر ویژه ی ماتریس همبستگی می باشند.ماتریس همبستگی از رابطه ی زیر محاسبه می شود :
یعنی می توان با استفاده از ماتریس کوواریانس نیز به بردار و مقدار ویژه رسید.
بردار U همان بردار eigenface میباشد. نمونه ای از آنرا در تصویر زیر مشاهده می کنید :
همان طور که مشاهده می کنید, بردار ویژه در واقع شامل عکسهایی با همان ابعاد عکس های ورودی می باشد که شبیه به شبح هستند.
بخش تشخیص چهره
برای تشخیص اینکه یک عکس جدید مربوط به کدام یک از عکسهایی که سیستم با آن تمرین داده شده است, می باشد باید تمام عکسهایی که سیستم با آن تمرین داده شده است و همچنین عکس جدید را به فضای چهره نگاشت کنیم. اگر هر یک از این عکسها را Γ بنامیم آنگاه طبق فرمول زیر می توان عکس را به فضای چهره نگاشت کرد:
سپس بردار وزنها را تشکیل می دهیم:
حالا می توانیم تعیین کنیم که عکس ورودی متعلق به کدام کلاس است. یکی از راههایی که برای این کار وجود دارد این است که بردار وزنهای عکس ورودی را با بردار وزنهای عکسهایی که قبلاً به سیستم آموزش داده شده بودند مقایسه کنیم. برای این کار می توانیم از فاصله ی اقلیدسی مانند زیر استفاده کنیم :
یعنی ما به تعداد عکسهایی که سیستم با آن تمرین داده شده اند, ϵ داریم. اگر مقدار ϵ از یک مقدار از پیش تعیین شده کمتر بود, آنگاه تصویر ورودی یک تصویر شناخته شده است.اگر بیشتر بود و از یک مقدار دوم کمتر بود آنگاه تصویر ورودی یک شخص ناشناس است. اما اگر از هر دو مقدار بزرگتر بود تصویر ورودی چهره نیست! اما پس از تشخیص اینکه تصویر ورودی یک تصویر شناخته شده است, برای اینکه تشخیص بدهیم که این عکس مربوط به چه کسی است باید مقدار ϵ ها را با هم مقایسه کنیم. بدیهی است که عکس ورودی مربوط به عکسی است که فاصله ی آنها (ϵ) کمتر از سایر عکسها باشد.
بهبود محاسبه ی بردارهای ویژه ی ماتریس کوواریانس
فرض کنید n عکس با اندازه ی x∗y داریم. پس از تغییر شکل عکسها به یک بردار, اندازه ی ماتریس شامل بردارها, n∗xy خواهد بود. پس از بدست آوردن اختلاف هر عکس با میانگین عکس ها, بردار A با اندازه یn∗xy به وجود می آید. طبق رابطه ی کوواریانس, اندازه ی ماتریس کوواریانس xy∗xy خواهد بود. برای درک این اندازه, فرض کنید که ابعاد عکس ورودی, ۱۰۰×۱۰۰ پیکسل باشد. طبق محاسبات بالا اندازه ی ماتریس کوواریانس ۱۰۰۰۰×۱۰۰۰۰ خواهد بود. یعنی باید ۱۰۰ میلیون نقطه را ذخیره کرد که این کار به حدود ۰٫۸ گیگا بایت حافظه نیاز دارد! درضمن محاسبه ی یک ماتریس با این حجم به زمان زیادی نیز نیاز دارد.
برای حل این مشکل از یک قضیه ی ریاضی استفاده می کنیم. این قضیه بیان می کند که بردارهای ویژه ی ماتریس A∗AT با بردارهای ویژه ی ماتریس AT∗A یکسان است. یعنی ما می توانیم از ماتریسAT∗A استفاده کنیم که یک ماتریس n∗n (n تعداد عکسهای ورودی است) می باشد و حجم محاسبات آن به شدت کمتر از یک ماتریس xy∗xy می باشد.
آزمایشها
برای آزمایش این سیستم نیاز به یک مجموعه عکس استاندارد داریم. برای این کار از مجموعه داده یAT&T متعلق به دانشگاه کمبریج استفاده می کنیم. این مجموعه عکس شامل عکسهای ۴۰ فرد و از هر فرد ۱۰ عکس مختلف می باشد. یعنی در مجموع شامل ۴۰۰ عکس می باشد.
آزمایش اول: کد مربوط به این بخش را می توانید از اینجا دریافت کنید. برای آزمایش ۲۵ عکس از این مجموعه انتخاب می کنیم:
همانطور که توضیح داده شد یکی از مراحل الگوریتم محاسبه ی میانگین تصاویر وروری است. میانگین ۲۵ تصویر بالا را در عکس زیر می بینید:
بردارهای ویژه (eigenface) ی بدست آمده از عکسهای بالا را در تصویر زیر می بینید:
برای آزمایش نرخ تشخیص چهره, ۲۵ عکس جدید که مربوط به همان افرادی می شدند که در بالا مشاهده کردید به سیستم داده شد. که حدود ۵۰ درصد از آنها به درستی شناسایی شدند که با توجه به اینکه از هر فرد تنها یک عکس برای تمرین به سیستم داده شده بود, قابل قبول به نظر می رسد.
اما یکی از کارهایی که باعث می شود نرخ تشخیص چهره افزایش پیدا کند, مطمئناً تمرین دادن سیستم با عکس های بیشتر است. به این معنی که ما از هر فرد, چند عکس مختلف به سیستم بدهیم و سیستم فضای چهره را با استفاده از این عکس ها ایجاد کند. کد پیاده سازی شده برای این بخش را می توانید از اینجا دریافت نمایید. برای آزمایش نرخ تشخیص چهره با این روش, ۶ عکس از ۲۵ مجموعه عکس (هر مجموعه متعلق به چهره ی یک فرد) از مجموعه داده ی AT&T, یعنی در مجموع ۱۵۰ عکس, به سیستم داده شد, تا سیستم با آنها تمرین داده شود. سپس ۲۵ عکس مربوط به همان افرادی که سیستم با عکس آنها تمرین داده شده بود, برای تشخیص به سیستم داده شد که ۸۴ درصد از آنها به درستی شناسایی شدند. مشاهده می شود که نرخ تشخیص چهره نسبت به زمانی که از هر فرد فقط یک عکس برای تمرین به سیستم داده شده بود, بیش از ۳۰ درصد افزایش یافته است.
https://behsanandish.com/wp-content/uploads/a10.png256256م. دلیریhttps://behsanandish.com/wp-content/uploads/logo-farsi-englisi-300x195-1.pngم. دلیری2020-01-09 10:00:502019-11-27 16:00:25تشخیص چهره انسان به کمک پردازش تصویر قسمت 1
اثر انگشت در انسان، اثری از سایش شیارهای پایانهٔ انگشت است. با توجه به اینکه هیچ دو انسانی اثر انگشت مشابه ندارند، میتوان از این اثر برای شناسایی افراد بهرهبرد.
اثر انگشت برجستگیهای بسیار ریز (قابل رؤیت با چشم غیره مسلح) است که در لایه اپیدرم پوست کف دستها و پاها وجود دارد. به علت ترشحات چربی زیر پوست این آثار انگشت بر اجسام صاف قرار میگیرد که همچنین برای و ضوح آن میتوان از پودری استفاده کرد که جذب این چربیها شده و آنها را به صورت واضح نمایان سازد. اثر انگشت افراد منحصربهفرد است و در طول عمر فرد تغییر نمیکند، بنابراین میتوان از آن به عنوان یک امضا یا ابزار تشخیص هویت استفاده کرد.
امروزه در بسیاری از کشورها برای خواندن و ثبت اثر انگشت، از دستگاههای پیشرفته استفاده میشود.
این روش در تعیین هویت از دقت ۱۰۰٪ برخوردار بوده و حتی در دوقلوهای یکسان (تکتخمکی) نیز اثر انگشت متفاوت است. بهگونهای که امکان شباهت اثر انگشت دو نفر انسان، یک شصت و چهار میلیاردم میباشد.
ایجاد اثر انگشت یک صفت ارثی- محیطی است که هر عامل قبل از تولد میتواند بر آن اثر گذارد مانند فشارهای روحی و روانی بر مادر و حتی فشاری که نوزاد وقت تولد متحمل میشود و حتی کمی تفاوت در درازای بند ناف باعث تغییر خطوط سرانگشت میشود. اثر انگشت کمی پس از تولد کاملاً تثبیت شده و غیرقابل تغییر است.
در انگشت نگاری مشخصات نقاطی که در آنها خطوط ریز انگشت با هم تلاقی داشتهاند، انشعاب داشتهاند یا پایان یافتهاند بررسی میشود. اثر انگشتان یک دست یا دو دست هیچ شباهت یا رابطهای با هم ندارند به همین دلیل در تشخیص هویت و انگشت نگاری از همه انگشتان دو دست نمونه برداری میشود.
تاریخچه
هفتهزار سال پیشاز میلاد مسیح، کوزه گران چینی از اثر انگشت شصت خود جهت مشخص نمودن کوزهها و آثارشان استفاده میکردند. تاریخنگار و پزشک ایرانیرشیدالدین فضلالله همدانی در کتاب جامع التواریخ بیان کرده است که چینیها از اثر انگشت برای تشخیص هویت هم استفاده میکردهاند. وی در ادامه ذکر میکند که تجربه نشان داده است که اثر انگشت دو نفر کاملاً شبیه هم نیست. کتابها و متون یافته شده در کاوشهای باستانی چین، عمدتاً دارای مهری سفالینه منقش به اثر انگشت پدیدآورنده کتاب بودهاست. در هزاره دوم پیشاز میلاد نیز در کاوشهای بابل، به لوحهای گلی مربوط به ثبت اثر انگشت افراد اشاره شدهاست. با ابداع کاغذ و ابریشم در چین، قراردادهای رسمی با فشردن دست بر روی اسناد مهر میگردید.
۸۵۰ سال قبل از میلاد یک بازرگان عرب با نام ابو زید حسن شاهد رسمیت یافتن اسناد وامها در چین بودهاست. تا سال ۷۰۲ قبل از میلاد، ژاپنیها نیز از روش چینیها برای رسمیت بخشیدن به اسناد استفاده میکردند. گرچه احتمالاً مردم در دوران باستان نمییدانستند که اثر انگشت میتواند افراد را به صورت منحصربهفرد شناسایی نماید، اما در زمان حمورابی، کسانی که دستگیر میشدند انگشت نگاری میشدند. رشید الدین همدانی، طبیب برجسته ایرانی در کتاب جامع التواریخ به رسم چینیها در شناسایی افراد از طریق اثر انگشت اشاره کرده و توضیح دادهاست که «شواهد و تجربیات نشان میدهد که هیچ دو نفری اثر انگشت کاملاً یکسان ندارند». در این زمان در ایران نیز از اثر انگشت شصت برای مهر نمودن اسناد استفاده میکردند. همچنین بر دیوار مقبرههای باستانی مصر و یونان نیز آثار انگشت یافت شدهاست.
اثر انگشت سبابه
در اوایل قرن بیستم استفاده از تکنیکهای تشخیص اثر انگشت برای تحقیقات جنایی در غرب با الهام از تمدن شرق متداول گشت. در آن زمان لازم بود تصویر هر ۱۰ انگشت با جوهر خاصی ثبت گردد. اما در اواخر دهه ۱۹۶۰، ابداع سیستمهای ثبت اثر انگشت زنده (به صورت الکترونیکی) Live-Scan Systems انقلابی در صنعت تشخیص اثر انگشت به وجود آورد. به سرعت پایگاههای داده از اثر انگشت افراد ایجاد شد و محققان هر روز فناوری تازهای معرفی میکردند که با دقت و سرعت بیشتری فرد مور نظر را از بین انبوهی از افراد شناسایی میکرد.
با پیشرفت تکنولوژی، تبهکاران نیز دست به کار شده و روشهای پیچیدهای از تقلب Fake Fingerprint را ابداع نمودند. سادهترین روش تقلب، ثبت اثر انگشت فرد بر روی کاغذ (۲ بعدی) است. فناوری با ترکیب روشهای امنیتی (الکترواستاتیک، ترمودینامیک و…) مختلف به جنگ تقلب در سیستمهای امنیتی رفتهاست.
امروزه تشخیص اثر انگشت به عنوان دقیقترین و سریعترین روش بیومتریک در جهان نظیر کاربردهای امنیتی در سیستمهای کنترل دسترسی و کاربردهای تجاری نظیر ساعتهای حضور و غیاب کاربرد بسیاری دارد.
تحقیقات علمی
زمانی که برای اولین بار انگشتنگاری برای تشخیص هویت به کار رفت، بعضی از وکلای دادگستری ایراد گرفتند که ممکن است آثار انگشتانی پیدا کرد که یکسان باشند ولی فرانسیس گالتون،انسانشناس معروف انگلیسی در جست و جوهای خود راجع به اثرانگشت و موضوع وراثتی بودن آن به این نتیجه رسید که نقوش سرانگشت توارثی نیست و در کتاب آثار انگشتان از طریق علوم ریاضی ثابت کرد که ممکن نیست بتوانید اثرات انگشت مشابه بیابید. پس از گالتون نیز دانشمند دیگری به نام فورژ و در سال ۱۷۹۲ مطالعهای را روی خانوادههایی که ازدواج فامیلی در آنها رسم بود، آغاز کرد و تا سه نسل پیش رفت اما در نهایت به این نتیجه رسید که اثرات انگشت مشابه وجود ندارد.
کاربرد
گذرنامه بیومتریک اروپایی، اثرانگشت دیجیتال دارنده، ثبتشده در جلد پاسپورت.
طی سالهای اخیر وبا توجه به ارزانی و دردسترس بودن وسایل و تجهیزات مربوط به خوانش و ثبت اثر انگشت، تقریباً در همه گروههای کاری ازآن استفاده میشود. از اثر انگشت برای تشخیص هویت افراد در موارد مختلف استفاده میشود و به عنوان مثال تشکیل پروندههای قضایی افراد یا دستگاههای حضور غیاب پرسنل یا ورود به سیستم بعضی از رایانهها یا تلفن همراه از اثر انگشت برای تشخیص هویت یا صاحب دستگاه استفاده میشود.
از کاربردهای مهم انگشتنگاری، میتوان به کنترل روند اقامتهای طولانیمدت در کشورهای دیگر، توسط اداره مهاجرت کشور میزبان اشاره نمود. برطبق قوانین مهاجرتی، هرگاه تبعه خارجی قصد اقامت بلندمدت را در کشوری میزبان داشتهباشد، موظف به انگشتنگاری و ثبت اطلاعات فردی در سیستم رایانهای است. هرچند جمهوری اسلامی ایران، این مورد را توهین به شهروندان خود میانگارد اما برطبق قوانین تازه بینالمللی، برای سفر به برخی کشورها، انگشتنگاری یک امر بدیهی و طبیعی است. امروزه بسیاری کشورهای عضو پیمان کنترل مهاجرت غیرقانونی و نیز ضد تروریسم، برای متقاضیان گذرنامه در همان کشور مطبوع، اطلاعات فردی و اثر انگشت درون چیپهای درون جلد گذرنامه، ثبت و ذخیره شده تا مسافران در هنگام ورود به کشورهای مقصد، درگیر بروکراسی کنترل اثر انگشت نباشند.
كلمه بيومتريك از كلمه يونانی bios به معنای زندگی و كلمه metrikos به معنای اندازه گيری تشكيل شده است. همه ما می دانيم كه ما برای شناسايی همديگر از يك سری ويژگی هايی استفاده می كنيم كه برای هر شخص به طور انحصاری است و از شخصی به شخص ديگر فرق می كند كه از آن جمله می توان به صورت و گفتار و طرز راه رفتن اشاره كرد. امروزه در زمينه های فراوانی ما به وسايلی نياز داريم كه هويت اشخاص را شناسایی كند و بر اساس ويژگيهای بدن اشخاص آن ها را بازشناسی كند و اين زمينه هر روز بيشتر و بيشتر رشد پيدا می كند و علاقه مندان فراوانی را پيدا كرده است. علاوه بر اين ها امروزه password و ID كارتهايی كه بكار برده می شوند دسترسی را محدود می كنند، اما اين روشها به راحتی می توانند شكسته شوند و لذا غير قابل اطمينان هستند. بيومتری را نمی توان امانت داد يا گرفت، نمی توان خريد يا فراموش كرد و جعل آن هم عملا غير ممكن است.
يك سيستم بيویمتری اساساً يك سيستم تشخيص الگو است كه يك شخص را بر اساس بردار ويژگی های خاص فيزيولوژيك خاص يا رفتاری كه دارد باز شناسی می كند. بردار ويژگی ها پس از استخراج معمولا در پايگاه داده ذخيره می گردد. يك سيستم بيومتری بر اساس ويژگی های فيزيولوژيك اصولا دارای ضريب اطمينان بالایی است. سيستم های بيومتری می توانند در دو مد تاييد و شناسایی كار كنند. در حالی كه شناسايی شامل مقايسه اطلاعات كسب شده در قالب خاصی با تمام كاربران در پايگاه داده است، تاييد فقط شامل مقايسه با يك قالب خاص می شود كه ادعا شده است. بنابراين لازم است كه به اين دو مسئله به صورت جدا پرداخته شود.
يك سيستم بيومتری ساده دارای چهار بخش اساسی است :
۱) بلوك سنسور: كه كار دريافت اطلاعات بيومتری را بر عهده دارد. ۲) بلوك استخراج ويژگيها: كه اطلاعات گرفته شده را می گيرد و بردار ويژگی هاي آن را استخراج می كند. ۳) بلوك مقايسه: كه كار مقايسه بردار حاصل شده با قالبها را بر عهده دارد. ۴) بلوك تصميم: كه اين قسمت هويت را شنااسايي مي كند يا هويت را قبول كرده يا رد مي كند.
هر خصيصه اي از انسان مي تواند به عنوان يك ويژگي در بيو متري بكار برده شود به شرطي كه شروط زير ر ا بر آورده كند : ۱) عمومي بودن : هر شخصي آن خصيصه را داشته باشد. ۲) متفاوت بودن : در اشخاص ، متفاوت باشد و دو تا شبيه هم نباشد. ۳) دوام داشتن : در يك بازه زماني ثابت باشد. ۴) قابل بدست آوردن باشد. در كاربردهاي زندگي روزمره سه فاكتور ديگر نيز بايد رعايت شود: كارايي (دقت، سرعت)، دسترسي (براي كاربران بي ضرر باشد) امنيت بالا. در اين مقاله ما به معرفي تعدادي از عواملي كه دربيو متري مورد استفاده قرار مي گيرند مي پردازيم.
باز شناسي هويت از طريق اثر انگشت
اين روش قديمي ترين روش آزمايش تشخيص هويت از راه دور است. اگرچه قبلاً اثر انگشت تنها در زمينه جرم قابل بحث بود، تحقيقات در بسياري كشورها سطحي از پذيرش را نشان ميدهد كه به اين روش اجازه استفاده در برنامه هاي عمومي را مي دهد. سيستمها ميتوانند جزئياتي از اثر انگشت (نقاطي مانند تقاطعها يا كناره هاي برجستگيها) يا كل تصوير را بگيرند. الگوهاي مرجع كه براي حفظ اين جزئيات بكار ميرود در حدود ۱۰۰ بايت هستند كه در مقايسه با تصوير كاملي كه از اثر انگشت با حجم ۵۰۰ تا ۱۵۰۰ بايت ميباشد، بسيار كوچكتر هستند.
در برنامه هاي عمومي مشكلاتي در ثبات وجود دارد. بعضي كارگران و معتادان شديد به سيگار, اغلب انگشتاني دارند كه تحليل اثرانگشت آنان مشكل است. با اين وجود، طرحهاي بلند مدت و موفق زيادي در استفاده از اثر انگشت وجود داشته است. در حال حاضر اثر انگشت خوانهاي زيادي در دامنه وسيعي وجود دارند كه به همراه بعضي كارتخوانها استفاده ميشوند. اگرچه در حال حاضر قيمت آنها چندان پايين نيست اما ميزان عرضه آنان در فروشگاههاي كامپيوتر عادي باعث افت سريع قيمت آنان خواهد شد. به طور مثال شركت هواپيمايي آلماني لوفتانزا، آزمايش بليت هاي بيومتريك را آغاز كرده است. اين بليت ها با اطلاعات مربوط به اثر انگشت شصت مسافران رمزگذاري شده اند و انتظار ميرود سرعت كنترل را بدون پيچيدگي هاي امنيتي افزايش دهند.
نكته قابل توجه ديگر در سيستم هاي توليد توليد شده با استفاده از فناوري بيومتريك (اثر انگشت) قابل ملاحظه است، استقبال رو به گسترش مردم از خريد اين محصولات است. به طور مثال، شركت لنوو (Lenovo) با فروش بيش از يك ميليون كامپيوترهاي كيفي بيومتريكي كه اثر انگشت فرد صاحب آن را اسكن مي كند، به يكي از بزرگترين فروشندگان كامپيوترهاي بيومتريكي در جهان تبديل شده است. در اين بخش سعي بر آن شده است كه اصول كلي، موانع و محدوديت هاي سيستمهاي تشخيص اثر انگشت بررسي شوند.
اصول كلي در سيستمهاي تشخيص اثر انگشت:
همانگونه كه اشاره شد، اثر انگشت يكي از روشهاي مطمئن براي شناسايي افراد مي باشد و در زمينه هايي نظير رسيدگي به جرم، سيستم هاي كنترل حوادث، كنترل مرزهاي ملي و … به كار مي رود. دليل اصلي انتخاب اثر انگشت براي شناسايي افراد اين است كه اثر انگشت هر فرد منحصر به فرد بوده و بعضي از ويژگي هاي آن تا آخر عمر ثابت باقي مي ماند و از همين ويژگي ها در تطبيق اثر انگشت استفاده مي شود. براي تطبيق دستي اثر انگشت روشهاي استانداردي وجود دارد، اما روش دستي تطبيق اثر انگشت كاري مشكل و بسيار وقت گير بوده و كارايي لازم را ندارد.البته از آنجا كه بانكهاي اطلاعاتي داراي ميليونها اثر انگشت مي باشد، عملاً تطبيق دستي اثر انگشت امري محال مي شود.
به منظور اتوماتيك كردن تطبيق بايد روشي براي تصوير و يا كد كردن اثر انگشت تعريف گردد. اين بيان تصوير بايستي شرايط زير را داشته باشد: ۱) توانايي تمايز هر اثر انگشت در سطوح مختلف رزولوشن، ۲) محاسبات ساده ۳) قابليت بكارگيري در الگوريتم هاي تطبيق اتوماتيك، ۴) پايداري و عدم تغيير با نويز و خرابي ها ۵) كارا بودن و نشان دادن تصاوير به صورت فشرده
اگر تصوير به صورت خام ذخيره شود، حافظه زيادي مورد نياز است و سيستم كارايي لازم را نخواهد داشت. در روشهاي ساختاري ويژگي ها از تصوير استخراج و تصوير با اين ويژگي ها شناخته شده و همچنين با استفاده از همين ويژگيها عمل تطبيق صورت مي گيرد.
اثر انگشت از برآمدگي ها و فرو رفتگي اي فلو مانندي تشكيل شده است كه بسته به وضعيت قرار گرفتن آنها ويژگي هاي مختلفي به وجود مي آيد. تا كنون ۱۸ ويژگي براي اثر انگشت شناخته شده است كه دو ويژگي مهم آن، انتهاي برآمدگي و دوشاخه شدن برآمدگي مي باشدكه اصطلاحاً به آنها مينوتيا مي گويند. در شكل زير اين دو ويژگي نشان داده شده است:
اطلاعات مينوتيا در مولفه هاي x , y و زاويه برآمدگي ها آنها قرار دارد. ساختار توپولوژيكي مينوتاي يك اثر انگشت منحصر به فرد بوده و با گذشت زمان تغيير نمي كند. در نتيجه مي توان تشخيص اثر انگشت را بر مبناي تطبيق ساختار توپولوژيكي مينوتيا استوار ساخت. در يك تصوير انگشت با كيفيت نسبتاً خوب در حدود ۷۰ تا ۸۰ مينوتا وجود دارد كه البته اين تعداد در تصويرهاي جزئي به حدود ۲۰ تا ۳۰ ويژگي كاهش مي يابد، اما باز هم بااين تعداد مي توان عمل تطبيق اثر انگشت را انجام داد.
اكثر سيستمهاي تشخيص اثر انگشت، ساختاري بر مبناي مينوتيا دارند. در اين سيستمها سه مرحله اساسي براي تشخيص وجود دارد كه عبارتند از: ۱) پيش پردازش ۲) استخراج مينوتيا ۳) تطبيق مينوتيا مرحله اول براي افزايش كيفيت تصوير انجام مي گيرد، مرحله دوم براي استخراج ويژگي هاي تصوير و مرحله آخر براي مقايسه مورد استفاده قرار مي گيرد.
در مورد تطبيق، روشهاي گوناگوني وجود دارد كه از جمله مي توان به موارد ذيل اشاره كرد: ۱) تطبيق مجموعه نقاط ۲) تطبيق گراف ۳) همشكلي دو زير گراف البته عمل تطبيق بنا به دلايل زير نياز به محاسبات پيچيده دارد: ۱) معمولاً كيفيت اثر انگشت پايين است. ۲) بانك اطلاعاتي اثر انگشت ها بزرگ است. ۳) تصوير هايي كه به صورت ساختاري آسيب ديده اند، به الگوريتم هاي نيرومندي جهت تطبيق نياز دارند.
در سيستمهاي تشخيص اثر انگشت موجود دربازار كه از اين دو ويژگي (انتهاي برآمدگي و دوشاخه شدن برآمدگي) استفاده مي شود، به علت بزرگ بودن بانك اطلاعاتي و نويز دار بودن تصاوير، يك تطبيق يك به يك عملاً مشكل بوده و از اين رو يكسري از تصوير هاي تطبيق يافته تهيه و سپس تطبيق نهايي توسط افراد متخصص انجام مي گيرد.
استخراج ساير ويژگي ها:
علاوه بر ويژگي هاي بيان شده، در بسياري از سيستمهاي تشخيص اثر انگشت، از ويژگي هاي سطح بالا نيز استفاده مي شود. اين امر باعث افزايش صحت عمل تطبيق مي گردد. يكي از اين ويژگي هاي مهم كلاس الگوي اثر انگشت مي باشد.
اثر انگشت به پنج كلاس اصلي تقسيم مي شود كه عبارت است از: ۱) كمان ۲) كمان مايل ۳) حلقه چپ ۴) حلقه راست ۵) مارپيچ
در تصاوير نويز دار و جزئي ممكن است كلاس الگو نامشخص باشد، كه در اينصورت از يك ويژگي سطح بالاتري به نام چگالي برآمدگي ها به جاي كلاس الگو استفاده مي شود كه بيانگر تعداد برآمدگي ها در واحد طول تعريف مي شود. به منظور مستقل كردن چگالي برآمدي ها از جهت تصوير، تعداد برآمدگي ها بين دو نقطه منفرد محاسبه مي شود. نقاط منفرد در اثر انگشت هسته و دلتا مي باشند. هسته بالاترين نقطه در داخلي ترين برآمدگي و دلتا يك نقطه سه شاخه است كه سه برآمدگي از كنار آن عبور مي كند. در شكل زير اين نقاط نمايش داده شده است:
کد کردن اطلاعات
در ادامه به بررسي مختصري از مراحل كد كردن اطلاعات اثر انگشت مي پردازيم:
۱) نحوه به دست آمدن تصوير اثر انگشت:
۱-۱) كاغذ و مركب : در سالهاي گذشته بيشتر از روش كاغذ و مركب استفاده مي شد به اين ترتيب كه در ابتدا اثر انگشت فرد با استفاده از مركب بروي كاغذ ثبت و سپس تصوير اثر انگشت اسكن شده و فايل تصويري آن آماده مي شد، كه اين روش اكنون به علت مشكلات خاص خود و البته پيشرفت تكنولوژي كم كم منسوخ مي شود. معمولا چون كيفيت تصوير به دست آمده پايين است با استفاده از تكنيك هاي پردازش تصوير اين نقيصه تا حدي مرتفع مي گردد.
۱-۲) روش اسكن مستقيم نوري:
روشهاي گوناگوني براي انجام اين نوع تصوير گيري وجود دارد. نمونه اي از آن در شكل زير آمده است:
۱-۳) با استفاده از سنسور LE
در اين روش از تكنولوژي نيمه هادي ها استفاده مي گردد. به اين ترتيب كه انگشت شخص بر روي سنسور LE كه از جنس نيمه هادي مي باشد، قرار گرفته و در نتيجه در محل هاي برآمدگي پوست انگشت كه در تماس با سنسور مي باشند، فوتون آزاد شده و به اين ترتيب اثر انگشت ثبت مي گردد. امروزه اسكنر هايي كه براي ارتباط با كامپيوتر طراحي شده اند، به راحتي اطلاعات تصويراثر انگشت را تهيه و از طريق درگاه هاي كامپيوتر در اختيار نرم افزارهاي مربوطه قرار مي دهند.
نحوه استخراج ويژگي ها:
در اكثر سيستم ها از روشهاي ساختاري كه بر مبناي مينوتا هستند براي استخراج ويژگي ها استفاده مي شود. در اين سيستم ها در ابتداپيش پردازشهاي اوليه اي مانند يكنواخت كردن هيستوگرام، تشخيص برآمدگي ها و نازك كردن آنها روي تصوير اعمال ميگردد. سپس با استفاده از روشهاي زير به استخراج ويژگي ها و شناسايي اثر انگشت مبادرت مي ورزند: ۱) روش فازي ۲) روش شبكه هاي عصبي ۳) ساختن گراف مربوطه به هر تصوير با استفاده از ميدان جهت دار و الگوريتم راتا پياده سازي اين روشها يا با استفاده از كامپيوتر انجام گرفته و يا از مدارات مجتمعي كه به همين منظور ساخته شده است، انجام مي گيرد.
https://behsanandish.com/wp-content/uploads/220px-Fingerprint_scanner_identification.jpg256256م. دلیریhttps://behsanandish.com/wp-content/uploads/logo-farsi-englisi-300x195-1.pngم. دلیری2019-10-26 11:00:002019-10-09 12:17:13تشخیص و شناسایی اثر انگشت
زيست سنجی عبارت است از دانش و فنآوري اندازهگيري و تحليل آماري دادههاي زيستي. در فنآوري اطلاعات واژة زيست سنجی به مجموعه فنآوريهايي اطلاق ميگردد كه در آنها از اندازهگيري و تحليل ويژگيهايي از بدن انسان همچون اثر انگشت، اثر كف دست، شبكيه و عنبية چشم، الگوهاي صوتي، الگوهاي مربوط به رخسار ، دمانگاري صورت، شكل دست يا گوش، دادههاي به دست آمده از گام، الگوهاي وريدي، دي.ان.اي و يا ويژگيهايي همچون دستخط(امضا) و ديناميك ضربه زدن به صفحهكليد براي تأييد هويت اشخاص استفاده ميشود. اين فنآوريها در تلاشند تا اندازه گيري و مقايسة ويژگيهاي برشمرده شده را به منظور بازشناسي افراد به صورت خودكار درآورند.
فنآوريهاي زيستي در ابتدا براي كاربردهاي تخصصي نيازمند امنيت بالا پيشنهاد شدند اما اينك به عنوان عناصر كليدي در توسعة تجارت الكترونيك و سيستمهاي برخط و به همان صورت براي سيستمهاي امنيتي نابرخط و سيستمهاي امنيتي منفرد مطرح ميباشند.
اين فنآوريها اجزاء مهمي را براي تنظيم و نظارت بر نحوة دسترسي و حضور در سيستم فراهم ميآورند. محدودههاي عمدة كاربرد اين فنآوريها عبارتند از : تجارت الكترونيك، نظارت امنيتي، دسترسي به پايگاه دادهها، كنترل مرزها و مهاجرت، تحقيقات قضايي و پزشكي از راه دور.
توسعة فنآوريهاي زيست سنجی فراتر از كاربردهاي سنتي نيازمند امنيت بالا، يك اجبار نشأت گرفته از انگيزههاي مالي است. امنيت معاملات براي آيندة توسعة تجارت الكترونيك يك مسألة حياتي است و نگرانيهاي فراواني دربارة راه حلهاي فعلي وجود دارد. مشكل شمارههاي شناسايي شخصي و شناسههاي هويتي – مانند كارتها- اين است كه آنها صحت هويت شخصي را كه از آنها استفاده ميكند تأييد نميكنند. آمارها ميزان زيان ناشي از تقلب را به طور ساليانه براي كارتهاي اعتباري بالغ بر چهارصد و پنجاه ميليون دلار و براي خودپردازها حدود سهميليارد دلار برآورد ميكنند. برتري سيستمهاي مبتني بر زيست سنجی آن است كه به شدت به ويژگيهاي فردي اشخاص وابستهاند و به راحتي نميتوانند مورد سوء استفاده قرار گيرند.
۲-بررسي عملكرد سيستمهاي موجود
فعاليتهاي انجام شده تا به حال منجر به ظهور ماشينهاي گران قيمت زيست- سنجي شده است كه علاوه بر قيمت زياد معمولاً از لحاظ سرعت و عملكرد مناسب نيستند يا حداقل براي دستيابي به عملكرد مناسب بايد محيط استفادة آنها شرايط خاصي را داشته باشد و يا كاربران آنها آموزشهاي گستردهاي را گذرانده باشند.
در حالي كه بعضي از فنآوريهاي زيست سنجی در قالب توليدات تجاري به بازار عرضه شدهاند بسياري از اين دسته فنآوريها در مرحلة تحقيق و آزمايش قرار دارند. فنآوريهاي مزبور نيازمند كارهاي مطالعاتي بيشتر براي افزايش پايداري و بهبود عملكردشان براي استفاده در كاربردهاي ويژه هستند.
پايداري در برابر تقلب ،دقت عملكرد، سرعت و تجهيزات مورد نياز، همخواني با سختافزار و نرمافزار موجود، هزينه ،سادگي استفاده و پذيرش از سوي كاربر از جمله عوامل تعيينكننده در موفقيت هر يك از فنآوريهاي به كار گرفته شده ميباشند.
جدول زیر مقايسهاي از معمولترين سيستمهاي زيست سنجی موجود را ارائه ميدهد.
ميزان پذيرش كاربر
سادگي استفاده
دقت عملكرد
نوع سيستم
پايين
متوسط
بالا
اثر انگشت
متوسط
بالا
متوسط
هندسه دست
بالا
بالا
متوسط
صوت
پايين
پايين
بالا
شبكيه چشم
متوسط
متوسط
متوسط
عنبيه چشم
بالا
متوسط
متوسط
امضا
بالا
بالا
پايين
چهره
مقايسة سيستمهاي زيست سنجی معمول
۳- اجزاي سيستمهاي زيست سنجی
عمليات سيستمهاي زيست سنجی در بر دارندة دو مرحلة مجزا ميباشد: ثبت كاربرو بازشناسي كاربر. در مرحلة اول اطلاعات مربوط به كاربر به سيستم وارد ميشوند و در مرحلة دوم اطلاعات ورودي حاضر با اطلاعات ذخيره شده مقايسه ميگردند.
مراحل لازم عملياتي در يك سيستم امنيتي مبتني بر زيست سنجی
مرحلة تأييد هويت عبارت است از تطبيق ويژگيهاي مورد ادعاي يك شخص بر ويژگيهاي موجود او در پايگاه دادهها كه يك فرايند يك به يك است.
سيستمهاي امنيتي مبتني بر زيست سنجی بنا به انتخاب به وجود آورنده، به جاي مرحلة تأييد هويت ميتوانند مرحلة ديگري را كه بازشناسي ناميده ميشود جايگزين كنند. در اين روش نياز نيست كه درخواست كننده ادعاي هويت شخص خاصي را بنمايد بلكه سيستم ويژگيهاي او را با تمامي ركوردهاي موجود مقايسه ميكند و در صورت تطابق با يكي از آنها او را به عنوان شخص داراي ويژگيهاي موجود در ركورد يافت شده بازشناسي ميكند كه اين فرايند يك پردازش يك به چند را شكل ميدهد.
سيستمهاي تشخيص هويت زيستي معمول غالباً شامل اجزاي زير ميباشند:
الف)گيرندة اطلاعات: زيرسيستمي است كه گرفتن نمونههاي زيستسنجی (صوتي، تصويري و…) را بر عهده دارد. ويژگيهاي خاص استخراج شده از نمونهها قالبهايي را براي مقايسة بعدي تشكيل ميدهند. اين فرايند بايد سريع و ساده بوده در عين حال قالبهايي با كيفيت خوب را توليد كند.
ب) ذخيره كننده: قالبهاي به دست آمده بايد براي مقايسة بعدي ذخيره شوند. اين زير سيستم ميتواند جزئي از وسيلة گيرندة اطلاعات سيستم باشد و يا در يك سرور مركزي قابل دستيابي توسط يك شبكه جاي گيرد. جايگزين ديگر، يك شناسة قابل حمل نظير يك كارت هوشمند است. هر كدام از انتخابهاي فوق مزايا و مشكلات خاص خود را دارد.
ج) مقايسه گر: اگر سيستم زيست سنجی در مقام بازشناسي افراد به كار گرفته شود بايد هويت شخص با قالب ذخيره شدة مورد ادعاي او مقايسه شود. در بعضي سيستمها ممكن است امكان بروزآوري خودكار قالب مورد مراجعه پس از هر تطبيق درست وجود داشته باشد. اين امر به سيستم توانايي سازگاري با تغييرات تدريجي كوچك در ويژگيهاي كاربر را ميدهد.
د) اتصالات: غالباً براي ايجاد ارتباط بين گيرندة اطلاعات، ذخيره كننده و مقايسهگر نياز به اتصالات لازم وجود دارد. غالباً سيستمهاي زيست سنجی نيازمند شبكه و رابطهاي برنامهنويسي مورد نياز براي ايجاد اتصال بين اجزاء ميباشند. امنيت و كارايي، عناصر كليدي براي اين جزء ميباشند.
۴-ارزيابي كارايي سيستمهاي امنيتي مبتني بر زيست سنجی
موضوع مهمي كه در پذيرش سيستمهاي زيست سنجی از اهميت شايان توجهي برخوردار است تعيين كارايي هر يك از اجزاء و كل سيستم زيست سنجی به روشي قابل اعتماد و هدفمند است.
براي تعيين كارايي سيستمهاي امنيتي مبتني بر زيست سنجی معيارهاي ويژهاي به كار گرفته ميشوند. در اين كاربردها تعدادي كاربر (سرويسگيرنده) به سيستم وارد ميشوند و متقلب به عنوان شخصي تعريف ميشود كه مدعي هويت شخص ديگري است. متقلب ممكن است به عنوان كاربر در سيستم وجود داشته باشد و عمل وي ممكن است عمدي يا غيرعمدي باشد. عمل تأييد هويت بايد كاربران را بپذيرد و متقلبان را رد كند.
نرخ پذيرش نادرست(اف. اي. آر) به عنوان نسبت تعداد متقلباني كه به اشتباه توسط سيستم پذيرفته شدهاند به تعداد كل متقلبان آزمايش شده تعريف گرديده، به صورت درصد بيان ميشود. اين نرخ، احتمال پذيرش متقلبان را توسط سيستم بيان ميكند و بايد در سيستمهاي نيازمند امنيت بالا كمينه شود.
نرخ عدم پذيرش نادرست (اف. آر. آر) به عنوان نسبت تعداد كاربران سيستم كه به اشتباه توسط سيستم پذيرفته نشدهاند به تعداد كل كاربران مورد آزمايش قرار گرفته تعريف گرديده، به صورت درصد بيان ميشود. اين نرخ، احتمال عدم پذيرش كاربران مجاز را توسط سيستم بيان ميكند و بايد به صورت ايدهآل مخصوصاً در سيستمهايي كه در آنها كاربر در صورت عدم پذيرش از دسترسي به سيستم محروم ميشود كمينه گردد.
روند تشخيص هويت مبتني بر زيست سنجی دربردارندة محاسبة فاصلة قالب ذخيره شده و نمونة حاضر است. تصميم براي پذيرش يا رد نمونة حاضر بر اساس يكآستانة از پيش تعريف شده اتخاذ ميگردد. بنابراين واضح است كه كارايي سيستم به شدت وابسته به انتخاب اين آستانه است و اين امر موجب ايجاد يك بدهبستان بين نرخ پذيرش نادرست و نرخ عدم پذيرش نادرست ميگردد. نرخ خطاي برابر(اي.اي.آر) به صورت آستانة برابري اين دو نرخ تعريف ميشود و غالباً به عنوان يك ويژگي نشان دهندة كارايي سيستم مطرح ميگردد. شكل زیر نشان دهندة رابطة سه پارامتر تعريف شده براي يك سيستم نمونه است.
FAR،FRRوERRبراي يك سيستم نمونه
پارامتر مهم ديگر كارايي، زمان تشخيص هويتاست كه به صورت زمان متوسط صرف شده براي فرايند تشخيص هويت تعريف ميشود. اين زمان شامل زمان لازم براي گرفتن نمونة حاضر نيز ميباشد.
در حالي كه بعضي از عرضهكنندگان سيستمهاي امنيتي مبتني بر زيست سنجی براي محصولاتشان پارامترهاي كارايي فوق را در شرايط آزمايشگاهي بيان ميكنند پارامترهاي كارايي قابل طرح در جهان واقعي براي سنجش كارايي واقعي اين گونه سيستمها به ندرت وجود دارند. علت اين امر اين واقعيت است كه به حساب آوردن همة پيچيدگيهاي ممكن جهان واقعي تأثير گذار بر سيستمهاي زيست سنجی تقريباً غير ممكن است. به عنوان نمونه زمان واقعي تشخيص هويت به شدت وابسته به ميزان آموزش كاربر، محيط عملياتي و شرايط رواني كاربر همچون ميزان فشار روحي اوست. مشخصات ارائه شده توسط عرضهكننده را بايد به ديد راهنماهاي نه چندان متناسب با دنياي واقعي نگريست.
امروزه امنيت فناوري اطلاعات و قابليت ذخيره، انتقال و پردازش اطلاعات بدون هرگونه تغيير توسط كاربران غيرمجاز، بزرگترين چالش در عصر اطلاعات و ارتباطات به شمار مي رود. اين مسئله در مواردي همچون انتخابات، آزمون و بانكداري الكترونيك از اهميت به سزايي برخوردار است. استفاده از راهكاري كه ضمن فراهم نمودن كنترل هاي امنيتي مناسب بتواند از مداخله ساير عوامل خارجي، در دستكاري داده ها و دستبردهاي غيرمجاز به اطلاعات جلوگيري نمايد همواره به عنوان موضوعي مهم، مورد نظر كارشناسان امنيت اطلاعات است. به همين منظور، استفاده از فناوري هايي همچون زيست سنجی به طور جدي مد نظر قرار گرفته اند. در اين مقاله سعي مي شود تا با بررسي ويژگي هاي مورد استفاده در فناوري زيست سنجی، ضمن بيان ضعف هايي كه ويژگي هاي زيست سنجشي فعلي با آن روبرو هستند، راهكاري اثربخش و كاربردي براي جلوگيري از نفوذ به سيستم ها از طريق فناوري زيست سنجی ارايه گردد.
۱- مقدمه
يكي از اساسي ترين مسايل در خدمات الكترونيك و تأمين امنيت در فرآيندهاي الكترونيكي، جلوگيري از دسترسي غيرمجاز به داده ها و اطلاعات است كه اين دسترسي نامجاز معمولاً با اهدافي همچون نفوذ به سيستم ها، شنود غيرقانوني، وقفه در انتقال اطلاعات، تخريب، تغيير و حذف داده ها به منظور بي اعتبارسازي اطلاعات يا ايجاد خلل در ارايه خدمات الكترونيك صورت مي گيرد. بنابراين از آن جا كه چالش اصلي در خدمات الكترونيك و تأمين امنيت اطلاعات در شبكه هاي رايانه اي، اطمينان كافي از دسترسي فرد مجاز و در زمان هاي مجاز به اطلاعات است فرآيند تصديق هويت امن و روش هاي احراز آن از مهم ترين مسايل در برقراري امنيت به حساب مي آيد. تاكنون روش ها و تجهيزات بسيار مختلفي براي بررسي و شناسايي هويت كاربران، پيشنهاد گرديده است كه در مراكز زيادي نيز مورد استفاده قرار گرفته اند اما متأسفانه هر كدام از اين روش ها داراي معايبي هستند كه موجب كاركرد نادرست آن ها شده است. از اين رو، انتخاب شيوه مناسبي كه علاوه بر احراز هويت كاربران در كوتاهترين زمان ممكن، بتواند امنيت لازم را در سيستم هاي الكترونيكي تضمين نمايد همواره به عنوان يك مسئله اساسي مطرح بوده است. يكي از روش هايي كه با استفاده از آن سعي مي شود تا با احراز هويت كاربران و جلوگيري از دسترسي افراد نامجاز به داده ها، قابليت اطمينان به اطلاعات همچنان حفظ گردد، بهره گيري از فناوري زيست سنجی براي شناسايي كاربران در هنگام دسترسي به سيستم هاي اطلاعاتي مي باشد.
۲- فناوري زيست سنجی
استفاده از خصوصيات فيزيولوژيكي يا رفتاري فرد و تحليل آن به منظور شناسايي آن فرد كه تحت عنوان فناوري زيست سنجی شناخته مي شود به نوع خاصي از روش هاي امنيتي گفته مي شود كه در آن براي كنترل دسترسي و برقراري امنيت، از خواص قابل اندازه گيري بدن انسان يا هر موجود زنده ديگري استفاده مي شود. همان گونه كه از كلمه زيست سنجی برمي آيد در اين روش با استفاده از الگوريتم هاي رياضي، برداشت هاي ثابت و يكتايي از اندام هاي بدن مي شود كه مي توان از آن به عنوان يك كلمه عبور يكسان و غيرقابل تغيير استفاده كرد. بنابراين در روش زيست سنجی، از ويژگي هاي فيزيولوژيكي يا رفتاري يك شخص براي شناسايي و تأييد خودكار هويت او در سيستم استفاده مي شود كه يا نيازمند تماس فيزيكي مستقيم شخص با يك پويشگر زيست سنجشي است (مانند اثر انگشت) و يا به تماس فيزيكي فرد با پويشگر نيازي نيست (مانند شكل صورت، اجزاي چهره، تن صدا و …). معمولاً ويژگي هاي انسان ها براي آن كه بتواند در فناوري زيست سنجی مورد استفاده قرار گيرد، با ۹ پارامتر مورد ارزيابي قرار مي گيرد كه عبارتند از:
* عموميت: هر شخص داراي آن ويژگي باشد.
* يكتايي: چه تعداد نمونه متفاوت را مي توان تفكيك كرد.
* دوام: معياري براي سنجش آن كه يك ويژگي، چه مدت عمر مي كند.
* قابليت ارزيابي: سهولت استفاده براي ارزيابي نمونه هاي متفاوت؛
* كارايي: دقت، سرعت و پايداري روش مورد استفاده؛
* مقبوليت: ميزان پذيرش تكنولوژي؛
* جايگزيني: سهولت در استفاده از جايگزيني؛
* تصديق هويت: در تصديق هويت، مشخصه يك فرد به پايگاه اطلاعات ارسال مي شود و هدف، بررسي آن به منظور تصديق هويت آن فرد مي باشد كه پاسخ سيستم، الزاماً مثبت يا منفي است.
* تشخيص هويت: در سيستم هاي تشخيص هويت، مشخصه زيست سنجی فرد به سيستم ارايه مي شود و سيستم با جستجوي پايگاه اطلاعات، مشخصات فرد را در صورت موجود بودن استخراج مي كند.
براي اين كه يك ويژگي بدن بتواند به عنوان يك وسيله اندازه گيري مطرح شود بايد شرايط خاصي داشته باشد، به عنوان مثال، بايد ثابت باشد. به همين خاطر نمي توان رنگ مو يا وزن را به عنوان يك خاصيت زيست سنجی در نظر گرفت زيرا به طور دايم در حال تغيير و تبديل هستند. در ضمن، خواص انتخاب شده مي بايست نشان دهنده يك انسان خاص بوده و همچنين به سهولت قابل دسترسي باشد يعني بررسي آن نياز به زحمت زيادي نداشته باشد. به طور كلي، ويژگي هاي زيست سنجی را مي توان به ۲ دسته تقسيم نمود:
۱٫ خصوصيات وابسته به فيزيك انسان ها: اين دسته از ويژگي ها به مجموعه اي از خصوصيات همراه انسان اعم از اثر انگشت، عنبيه چشم، چهره، DNA و … اشاره دارد. اين ويژگي ها از بدو تولد انسان و گاهي قبل از تولد، شروع به شكل گيري نموده و تا آخر عمر، به طور ثابت و غيرقابل تغيير در بدن انسان باقي مي مانند.
۲٫ خصوصيات رفتاري انسان ها: اين دسته از ويژگي ها در حقيقت، خصوصيات ناشي از رفتارهاي انسان هاست، همانند چگونگي راه رفتن، نحوه فشردن دكمه ها (مثلاً تلفن همراه) و … كه مي تواند بيانگر مشخصات يك انسان خاص باشد، مانند راه رفتن يك انسان كه گاهي با نگاه كردن آن از پشت سر مي توان تشخيص داد كه وي كدام شخص است.
۳- مزاياي استفاده از سيستم هاي امنيتي زيست سنجی
با استفاده از روش هاي زيست سنجی مي توان تقريباً مطمئن شد همان كسي كه انتظارش مي رود، به امكانات و منابع دسترسي دارد. براي مثال، اثر انگشت، همواره يكتا و يكسان است و مشكلاتي مانند فراموش كردن رمز عبور يا گم كردن آن در اين روش وجود ندارد، سرعت بسيار بالايي دارد و براي كاربران عادي نياز به آموزش نمي باشد، امكان سرقت دستگاه هاي زيست سنجی نيز بسيار كم است يا در پاره اي از مواقع، صفر مي باشد. تمام اين مزايا باعث شده است كه امروزه براي تأمين امنيت اكثر سيستم هاي رايانه اي و مبتني بر شبكه، به طور گسترده اي از روش هاي زيست سنجی استفاده شود. البته سيستم هاي زيست سنجی داراي معايب خاص خودشان هستند اما به دليل مزاياي بسيار زيادي كه نسبت به روش هاي سنتي شناسايي افراد دارند، استفاده از آن ها روز به روز در حال افزايش است.
۴- معايب استفاده از فناوري زيست سنجی
اگرچه فناوري زيست سنجی در طول ساليان متمادي به عنوان روشي براي احراز هويت كاربران توسط سازمان هاي مختلفي در سطح جهان، مورد استفاده قرار گرفته اما در سال هاي اخير، با افزايش دانش نفوذگران كه در پي رشد سريع فناوري اطلاعات توانسته اند با تحليل سازوكارهاي عملياتي سيستم هاي زيست سنجی، راه هاي نفوذي به درون آن ها پيدا كنند، دستخوش تغييرات بزرگي گرديده است. امروزه با نفوذهايي كه به سيستم هاي اطلاعاتي از طريق اين فناوري صورت مي گيرد، شايسته است روش هاي بهره گيري از آن مورد بازنگري جدي قرار گيرد تا علاوه بر كاهش خطرات و تهديدها، اعتماد عمومي كاربران و به خصوص سازمان هاي استفاده كننده از اين فناوري نيز همچنان حفظ گردد.
۵- روش هاي تعيين هويت در فناوري زيست سنجی و بررسي نقاط ضعف آنها
روش هاي متنوعي براي تعيين هويت زيست سنجی وجود دارد، مانند تعيين هويت از طريق اثر انگشت، بررسي دقيق كف دست، رگ هاي كف دست، كنترل شبكيه چشم، تعيين كنترل رگ هاي چشم، هندسه صورت، امضا، صدا، عنبيه چشم، راه رفتن، تعيين هويت از طريق چهره و … كه در زير به بيان مزايا و مشكلات هر يك از آن ها مي پردازيم.
يكي از ويژگي هاي زيست سنجشي كه معمولاً به صورت گسترده در هنگام شناسايي كاربران مورد استفاده قرار مي گيرد، اثر انگشت است كه از قديمي ترين و رايج ترين روش هاي تشخيص هويت نيز به شمار مي رود. پوست نوك انگشت ها داراي يكسري شيارها و خطوط برآمده اي است كه از يك طرف انگشت به طرف ديگر ادامه دارد و در مجموع به عنوان اثر انگشت شناخته مي شود. اين خطوط داراي يكسري نقاط مشخصي هستند كه به آن ها ويژگي يا مشخصه مي گويند. اين ويژگي ها شامل كمان ها، مارپيچ ها، حلقه ها، انتهاي لبه ها، انشعاب ها، نقطه ها (شيارهاي نزديك به لبه ها)، جزاير (دو انشعاب نزديك به هم)، تقاطع (نقطه تلاقي دو يا چند لبه) و منفذها مي باشند كه در نهايت، از الگوي ايجاد شده توسط آن ها براي تشخيص هويت افراد استفاده مي شود.
تعيين هويت افراد با استفاده از اثر انگشت، نسبت به ساير روش هاي زيست سنجی تعيين هويت به طور گسترده اي مورد استفاده قرار مي گيرد. امروزه از اثر انگشت در صنايع رايانه اي مانند كنترل لايسنس نرم افزارها، ورود به شبكه و سيستم ها و مواردي همچون بازكردن درب اتومبيل، روشن كردن خودرو، بازكردن قفل گاو صندوق و درب ها به طور گسترده اي استفاده مي شود. بزرگترين دليل استفاده گسترده و عمومي از اثر انگشت به عنوان ابزار تعيين هويت اين است كه اثر انگشت افراد، منحصر به فرد بوده و در طول عمر شخص تغيير نمي كند.
اولين استفاده از اثر انگشت در مسايل تشخيص هويت به حدود سال ۱۹۰۰ برمي گردد. در ابتدا براي تشخيص يك اثر انگشت از ديگري سعي در تطبيق خطوط آن بود كه به علت وجود خطاي انساني، معمولاً شامل خطاهايي در اين زمينه است. براي رفع اين مشكل، دستگاه هايي براي تشخيص اثر انگشت ايجاد شدند. از ابتدايي ترين اين دستگاه ها مي توان به دستگاه هاي حسگر اثر انگشت نوري اشاره كرد كه در حدود سال ۱۹۷۰ طراحي گرديدند كه بر اساس بازتابش داخلي كار مي كردند. به اين معني كه منبع نور، به سطح شيشه اي كه انگشت روي آن قرار داشت تابيده شده و بازتابش آن جذب مي شود. مقدار اين نور بازتابيده شده بستگي به عمق شيارهاي سطح پوست و بيشترين بازتابش، مربوط به سطح در تماس پوست با شيشه است. مزاياي اين طرح عبارتند از صرف زمان اندك براي شناسايي، مقاوم بودن در مقابل تداخل الكترواستاتيكي و قيمت ارزان علاوه بر وضوح خوب كه در مقابل معايبي همچون اندازه بزرگ دستگاه، امكان جعل بالا و پيچيدگي هاي به كار رفته، قرار دارند.
دستگاه هاي ديگري كه براي ثبت اثر انگشت طراحي گرديدند داراي حسگرهايي از نوع حالت جامد، مانند حسگر اثر انگشت گرمايي بودند. اين نوع حسگرها از تفاوت گرمايي بين شكاف ها و برآمدگي هاي اثر انگشت به عنوان پارامتري تعيين كننده استفاده مي كنند. بدين معني كه جاهايي از پوست دست (برآمدگي ها) كه در تماس با سطح حسگر مي باشند، تفاوت گرمايي را نسبت به نقاطي كه در تماس نيستند (شيارها) احساس مي كنند. مزاياي اين حسگر نيز حجم كم دستگاه، ارزان بودن و امكان يكپارچگي آن ها مي باشد كه البته معايبي چون توان مصرفي بالا، دقت پايين و تأثيرپذيري از دماي محيط را هم دارند. از حدود سال ۱۹۹۷، استفاده از دانش MEMSدر حسگرهاي اثر انگشت آغاز گرديد كه تاكنون چند نمونه از دستگاه هايي كه با اين نوع از حسگرها طراحي و ساخته شده اند روانه بازار گرديده اند كه آخرين نمونه آن ها در سال ۲۰۰۸ ارايه گرديد.در اين دستگاه ها از نوعي حسگر به نام حسگرهاي خازني استفاده شده است كه بر پايه تغييرات خازني كار مي كنند و شامل دو صفحه فلزي مي باشند كه نقش الكترودهاي خازن را دارند. براي ايجاد تغييرات خازني، يكي از صفحه ها بسته به نوع نياز، متحرك و ديگري ثابت است. صفحه متحرك كه ديافراگم ناميده مي شود بر اثر اعمال فشار خارجي جابه جا شده و باعث كم شدن فاصله هوايي بين الكترودهاي خازن گرديده و تغييرات خازني را موجب مي شود.
در حسگرهاي خازني مورد استفاده در حسگر اثر انگشت، صفحه بالايي به عنوان ديافراگم در نظر گرفته مي شود كه بر اثر فشار اعمالي بر اثر تماس با سطح پوست دست (برآمدگي هاي سطح پوست انگشت) جابه جا مي شود. از عوامل مؤثر در عملكرد حسگرهاي اثر انگشت MEMSمي توان مواردي همچون ابعاد ديافراگم، ساختار خازن، مواد تشكيل دهنده ديافراگم كه باعث حساسيت خيلي زياد حسگرها مي شود و همچنين اندازه، شكل و ضخامت ديافراگم را بيان نمود و از آن جا كه ساختار حسگر انگشت بر پايه ساختار اين خازن ها بنا نهاده شده است، با افزايش حساسيت مكانيكي و الكتريكي اين خازن ها، حساسيت حسگر اثر انگشت نيز بهبود پيدا مي كند.
هر چند كه استفاده از ويژگي اثر انگشت به عنوان يك روش مطلوب به حساب نمي آيد اما به علت كم هزينه تر بودن آن نسبت به ساير روش هاي زيست سنجشي، مورد اقبال بيشتري قرار گرفته است. تصديق هويتي كه به وسيله اثر انگشت صورت مي گيرد، سريع و قابل اطمينان بوده و چون به صورت مستقيم توسط ابزارهاي ديجيتالي تهيه مي گردد، داراي جزييات بيشتر، وضوح بهتر و دقت بالاتري مي باشد. همچنين اين روش نسبت به ساير روش هاي زيست سنجشي از خطاي كمتر و هزينه پايين تري هم برخوردار بوده و تجهيزات و دستگاه هاي ثبت اثر انگشت نيز كوچكتر مي باشند و فضاي كمتري را اشغال مي كنند.
از مهمترين مشكلاتي كه سيستم هاي ثبت اثر انگشت با آن مواجه هستند امكان جعل اثر انگشت توسط لايه هاي نازكي از ژلاتين يا خميرهاي سيليكن قابل جعل است. روشي كه مي توان اعتبار اين زيست سنجه را حفظ نمود، استفاده از چند اثر انگشت در هنگام احراز هويت يا اثر انگشت همراه با كارت شناسايي يا اثر انگشت به همراه رمز عبور مي باشد كه از آن ها به عنوان روش هاي شناسايي دو مرحله اي ياد مي شود. روش بهتر ديگري كه مي توان بدون استفاده از ساير تجهيزات جانبي با استفاده از زيست سنجه هاي اثر انگشت به احراز هويت كاربران پرداخت، بهره گيري از عرق و گرماي انگشت به عنوان نشانه هايي از حيات است كه امكان تقلب را كاهش مي دهد. همچنين با تعيين مدت زمان پويش اثر انگشت (مثلاً ۲ ثانيه) مي توان از جا زدن افراد به جاي ديگري در اين مدت زمان كم جلوگيري نمود.
استفاده از روش هاي زيست سنجی در فرآيند تصديق هويت از طريق اثر انگشت، داراي چندين نقطه ضعف عمده مي باشد كه در زير به برخي از آن ها اشاره مي شود:
* جعل ورودي: يكي از رايج ترين حملات موجود در سيستم هاي تصديق هويت زيست سنجی مانند اثر انگشت، جعل ورودي يا وارد كردن يك ورودي به جاي ورودي واقعي مي باشد. اين حمله ساده ترين راهكار براي يك مهاجم است تا بتواند با اثر انگشت مصنوعي و ساختگي، فرآيند تصديق هويت را انجام دهد.
تاكنون تحقيق ها و پژوهش هاي بسياري براي جلوگيري از ورود ويژگي هاي زيست سنجی غيرواقعي و ساختگي پيشنهاد شده است كه تا حد قابل قبولي توانسته اند اين سيستم ها را امن نمايند. يكي از راه هايي كه براي غلبه بر ورودي هاي نامعتبر و جعلي در سيستم هاي تشخيص هويت بر پايه اثر انگشت وجود دارد، روش تشخيص زنده نام دارد. بدين معني كه از تأييد اثر انگشت ساختگي و مصنوعي توسط عرق كردن يا حرارتي كه روي انگشتان وجود دارد از نشانه هايي براي تازگي و زنده بودن انگشت استفاده مي شود كه اين ويژگي ها در انگشت مصنوعي يا ساير روش هاي جعل وجود ندارد.
* كيفيت پايين ورودي: تكنيك هاي تطابق اثر انگشت به ۲ صورت ممكن است انجام گيرند: بر پايه جزييات يا بر اساس همبستگي. در تكنيك هاي ويژگي محور، ابتدا نقاط يا ويژگي ها مشخص مي شود و سپس محل نسبي آن روي انگشت نگاشت مي شود. زماني كه كيفيت پايين باشد استخراج دقيق نقاط ويژگي مشكل مي باشد.
راه حل غلبه بر مشكل كيفيت پايين نمونه ها استفاده از توابع پيش پردازش است كه با كمك آن، تيرگي و ابهام موجود در نمونه هاي تصاوير، كاهش يافته و وضوح تصاوير افزايش مي يابد. همچنين انجام عمل پيش فيلترينگ روي پشت زمينه نمونه ها، نقاط تيره و مبهم را به كمترين مقدار خود كاهش مي دهد. در كنار اين اقدام ها، قطعه بندي نمونه هاي اثر انگشت نيز به وسيله شناسايي ميزان ويژگي ها در محل مورد نظر انجام مي شود كه به آن ROI(روشي است كه در آن به جاي اين كه مجبور باشيم كل تصوير را پردازش كنيم فقط ناحيه به خصوصي را كه مد نظرمان است يا كانال به خصوصي را كه مي خواهيم بر روي آن كار كنيم، پردازش مي كنيم) مي گويند. در اين روش، از يك وب كم يا سنسور ساده در ورودي استفاده مي شود كه فقط كافي است انگشت در چند سانتي متري عدسي دوربين يا سنسور نگه داشته شود. امروزه روش هاي ديگري هم براي بهبود كيفيت تصاوير گرفته شده وجود دارد كه مي توان از آن ها نيز استفاده كرد.
* تغيير در پايگاه داده زيست سنجی: اولين مرحله در سيستم هاي تشخيص بيومتريك، ذخيره نمونه هاي منحصر به فرد به منظور استفاده از آن ها در فرآيند تصديق هويت مي باشد. در اكثر سيستم ها يك پايگاه داده براي ذخيره اين نمونه ها در نظر گرفته مي شود. فرآيندي كه كاربر براي اولين بار در آن اقدام به ثبت اثر انگشت مي كند، فرآيند ثبت نام دارد.
* تغيير در استخراج كننده ويژگي ها: استخراج كننده ويژگي يكي از بخش هاي سيستم تشخيص زيست سنجی است كه ممكن است اين بخش توسط مهاجم مورد حمله قرار گرفته و كاركرد آن را تغيير يابد. مهاجم با ربودن تصاوير اثر انگشت از پايگاه داده، نمونه هاي تقلبي خود را جايگزين آن ها مي كند. در اين صورت، سيستم هنگام تشخيص نمونه ها، يك اثر انگشت معتبر را رد و يك اثر انگشت نامعتبر را تأييد مي كند.
يكي از روش هايي كه براي حفاظت نمونه ها از تقلب و جابه جايي وجود دارد استفاده از الگوريتم ها و كدهاي عددي به جاي مقايسه تصاوير، براي تحليل اطلاعات است يعني استفاده از نسخه تحريف شده سيگنال زيست سنجی يا بردار ويژگي است. همچنين واترماركينگ (واترماركينگ، استگانوگرافي يا نهان نگاري، دانش يا هنر پنهان كردن اطلاعات يا ارتباطات است به گونه اي كه يك پيام در بطن پيام ديگر مخفي مي شود. در اين صورت به پيامي كه قرار است مخفي شود، واترمارك و بهسيگنالي گفته مي شود) و پنهان سازي اطلاعات (Steganography) از ديگر تكنيك هايي است كه براي افزايش امنيت تصاوير اثر انگشت موجود در پايگاه داده مورد استفاده قرار مي گيرد.
مشكلات عملي زيادي در سيستم هاي شناسايي اثر انگشت وجود دارد. مثلاً هر دفعه كه يك اثر انگشت گرفته مي شود، ممكن است به خاطر قابليت كشساني پوست، تحريف هايي در شكل و محل اثر انگشت ايجاد شود. علاوه بر اين، اطمينان بالا و پردازش بلادرنگ، فاكتورهاي مهم مورد نياز در سيستم خودكار شناسايي اثر انگشت هستند.
از ديگر روش هايي كه امروزه در فناوري زيست سنجی از آن استفاده مي شود انجام برخي از حركات يا رفتارهاي خاص بر روي تجهيزات جمع آوري كننده اطلاعات مي باشد. از نمونه هاي اين روش مي توان به دستگاه هايي اشاره كرد كه از كاربر مي خواهد تا با دست خويش، عمل خاصي را انجام داده يا شكل مشخصي را در صفحه ثبت كننده اطلاعات، ترسيم نمايد. اندازه گيري و ثبت ويژگي هايي همچون اندازه، طول، سرعت، شتاب، انحنا، ميزان فشار وارده، دامنه لرزش اعضاي حركتي بدن، درجه حرارت بدن و … و مقايسه آن ها با اطلاعات از قبل ثبت شده، از كاركردهاي اين دستگاه ها مي باشد. از مشكلات خاص اين روش نيز مي توان به عدم بهره گيري از آن ها در هنگام بيماري افراد در روش ايي كه نيازمند انجام حركات رفتاري خاص هستند يا آموختن بعضي از روش هاي اجرايي حركات و رفتارها اشاره نمود.
يكي ديگر از روش هاي زيست سنجی، تأييد هويت افراد بر اساس كف دست آن ها مي باشد. در اين روش، كف دست به صورت كامل بر روي دستگاه هاي جمع آوري كننده داده ها قرار گرفته و اطلاعات خاصي از آن استخراج مي شود. اين شيوه نيز با مشكلاتي مشابه روش زيست سنجشي اثر انگشت روبرو مي باشد كه مي توان با استفاده از درجه حرارت و رطوبت كف دست كاربر و همچنين شدت فشار آن بر روي صفحه دستگاه، صحت اطلاعات دريافتي را بررسي نمود. هندسه دست نيز يكي ديگر از روش هاي مورد استفاده در فناوري زيست سنجی است كه مي تواند با مشكلات مربوط به ويژگي زيست سنجی كف دست مواجه گردد كه به كارگيري ويژگي هاي تشخيصي، مي تواند خطاهاي وارده را كاهش دهد. استفاده از عنبيه چشم در تأييد هويت كاربران، يكي ديگر از روش هاي مورد استفاده در فناوري زيست سنجی مي باشد. مشكلاتي همچون نور كم محيط در هنگام تأييد عنبيه چشم مي تواند باعث تار بودن تصوير شده و در كاهش عملكرد اين روش تأثير بگذارد. در روش تأييد هويت بر اساس تشخيص چهره كه از شيوه هاي ديگر فناوري زيست سنجی مي باشد افراد مي توانند تصويز يا ويديوهاي جعلي را در مقابل دوربين قرار داده و موجب عدم كارايي اين روش گردند. نرم افزارهاي مورد استفاده در فناوري زيست سنجی نيز بايد علاوه بر سهولت كاربري و واسط گرافيكي پيشرفته، اثرهاي زيست سنجی جمع آوري شده را به صورت امن ذخيره كرده و قادر به گزارش هاي متنوع و همچنين ثبت خطاها و رويدادها باشد. تجهيزات و دستگاه هاي جمع آوري داده هاي زيست سنجی هم بايد داده هاي دريافتي را به صورت امن ارسال كرده و از روش هاي رمزنگاري قابل اطمينان در طول فرآيند انتقال داده ها استفاده نمايند. همچنين پايگاه هاي داده اي كه اطلاعات زيست سنجی در آن ذخيره مي گردد بايد اطلاعات را به صورت رمزگذاري شده نگهداري نموده و از تكنيك هاي ويژه اي همچون سايه زني و مخفي سازي داده ها بر روي تصاوير و يا الگوريتم هاي رمزنگاري پيشرفته، به منظور تأمين امنيت بيشتر و چلوگيري از تحريف داده ها استفاده نمايند. امروزه وسايل و تجهيزات زيست سنجی خاصي براي انواع مختلفي از خدمات الكترونيك ابداع شده اند كه در آن ها، تصديق هويت با استفاده از يك عامل امنيتي هوشمند انجام مي شود كه اين عامل هوشمند داراي خاصيت تشخيص زنده بودن فرد است. لازم است كه اين عامل در فعاليت هاي زيست سنجی كه از راه دور انجام مي گيرند به هر فرد يك شناسه به همراه آدرس IPاختصاص دهد به گونه اي كه فرد ديگري قادر به استفاده از آن ها توسط رايانه ديگري نباشد.
پس از ثبت داده زيست سنجی توسط عامل هوشمند، براي اين كه اطمينان حاصل گردد نمونه هاي جمع آوري شده داراي كمترين مقدار تيرگي و نويز هستند، عمل پيش پردازش روي آن ها انجام مي گيرد. سپس بررسي زنده بودن نمونه ثبت شده توسط عامل هوشمند، اولين آزمايشي است كه روي نمونه انجام مي شود. اين كار، براي جلوگيري از به كارگيري روش هاي جعلي در تصديق هويت صورت مي گيرد. پس از عمليات مقداردهي اوليه، اين نمونه هاي جمع آوري شده با نمونه هاي موجود در پايگاه هاي داده سرورهاي زيست سنجی كه به صورت رمزشده ذخيره شده اند، تطبيق داده مي شود. اگر در هر لحظه از زمان، آزمايش هاي صورت پذيرفته با موفقيت همراه نباشد فوراً خدمات الكترونيك متوقف شده و نتيجه به ارايه كنندگان آن خدمات اطلاع داده خواهد شد. اين فرآيند در تمام مدت زمان ارايه خدمات الكترونيك انجام مي گيرد.
در پايان بهتر است يادآور شد كه به منظور اجراي امنيت كامل، تلفيق چند ويژگي متفاوت زيست سنجشي در قالب يك روش واحد، ضروري بوده و منجر به امنيت پايدار و اثربخشي بهتري براي سيستم هاي بهره گير از اين فناوري خواهد شد. معمول ترين و كاربردي ترين شيوه اي نيز كه در اين روش مورد استفاده قرار مي گيرد تلفيق اثر انگشت و تصوير چهره براي تأييد هويت كاربران مي باشد كه اگرچه هر كدام به تنهايي، يك ويژگي مطلوب به شمار نمي روند اما بهره گيري از آن ها به موازات هم، مي تواند منجر به اثربخشي و كارايي بالاتري در احراز هويت كاربران گردد.
چندین تکنیک رفتاری برای تایید هویت وجود دارد که به اختصار به آن ها اشاره می کنیم.
۱-۱تایید امضاخصوصیات رفتاری
بررسی خودکار امضاء تعمیمی از یک پروسه آشناست. در حالیکه اپراتور انسانی شکل نهایی امضاء را بررسی میکند، بیشتر شکلهای خودکار تایید امضاء، تاکید بیشتری روی حرکتهای پروسه امضا کردن دارند. سرعت نسبی که خطها کشیده می شود و فشار وارده، سیستم را قادر میسازد که سنجشهای انجام شده را بین امضاها حتی جایی که محیط کاملا متفاوت است, مقایسه کند و بیشتر تلاشها برای جعل امضا را با شکست مواجه کند. الگوی مرجع امضا معمولا ۱ کیلو بایت است که این حجم کم دیتا این تکنیک را برای استفاده آنلاین یا بهمراه کارت هوشمند مناسب میسازد. یک فایده جانبی بیشتر سیستمهای تایید امضا این است که با ثبت امضاء بعنوان اثبات تراکنش صورت گرفته، باعث کم شدن سیستمهای برپایه کاغذ می شود و احتیاج به مستندسازی کاغذی را مرتفع می کند.
۲-۱الگو و دینامیک تایپ کلید
روشی که یک نفر با صفحه کلید تایپ می کند با امضا کردن تشابهاتی دارد. الگو های تایپیست های ماهر تقریبا خیلی زود از الگوهای تایپ کردنشان تشخیص داده می شود. پیاده سازی های فعلی به دلیل مشکلات یکسان نبودن صفحه کلیدها و تاخیرهای نرم افزار سیستم به آزمایشگاه محدود هستند. از طرف دیگر، هزینه اضافی پایین و عملیات شفاف, این روش را به یک تکنیک بسیار جذاب برای کاربردهایی مثل محافظت کردن از تعداد کمی از کاربرهای با الویت بالا در سیستم کامپیوتری، تبدیل می کند.
۱-۳تشخیص صدا
سیستم های تشخیص صدا به راحتی توسط مشتریان پذیرفته می شود، اما متاسفانه هنوز به سطح کارایی که مورد نیاز بیشتر محیط های تجاری هستند، نرسیده اند. استفاده از تشخیص صدا اجازه بررسی بیش از یک مورد را می دهد: سیستم می تواند تست کند که چه چیز گفته می شود به علاوه این که چگونه گفته می شود. در بعضی از محیط ها پیاده سازی این سیستم هزینه خیلی کمی دارد. تشخیص صدا شاخه ای از فناوری پردازش صوت است که کاربردهای بسیار وسیع تری در زمینه های دیگر، به خصوص در سیستم های تلفنی دیجیتالی و کنفرانس تصویری دارد. نکته جالب توجه این است که مشخصاتی از صدا که توسط این سیستم ها سنجیده می شود با آن هایی که یک انسان شنونده توجه می کند، تفاوت دارند، در حالی که شخصی که با تقلید صدا می خواهد خود را جای شخص دیگر نشان بده، روی مشخصات انسانی تمرکز می کند.
۲– Physiometric – خصوصیات فیزیکی
سنجش اعضا بدن از قدیمی ترین روش های تشخیص هویت است که با پیشرفت فناوری به تنوع آن افزوده شده است.
۱-۲اثر انگشت
این روش قدیمی ترین روش آزمایش تشخیص هویت از راه دور است. اگرچه قبلا اثر انگشت تنها در زمینه جرم قابل بحث بود، تحقیقات در بسیاری کشورها سطحی از پذیرش را نشان می دهد که به این روش اجازه استفاده در برنامه های عمومی می دهد. سیستم ها می توانند جزئیاتی از اثر انگشت (نقاطی مانند تقاطعها یا کناره های برجستگی ها) یا کل تصویر را بگیرند. الگوهای مرجع که برای حفظ این جزئیات به کار می رود در حدود۱۰۰ بایت هستند که در مقایسه با تصویر کاملی که از اثر انگشت با حجم ۵۰۰ تا ۱۵۰۰ بایت میباشد, بسیار کوچک تر هستند. در برنامه های عمومی مشکلاتی در ثبات وجود دارد. بعضی کارگران و افراد سیگاری اغلب انگشتانی دارند که تحلیل اثر انگشت آنان مشکل است. با این وجود، طرح های بلند مدت و موفق زیادی در استفاده از اثر انگشت وجود داشته است. در حال حاضر اثر انگشت خوان های زیادی در بسیاری از کشور های دنیا وجود دارند که به همراه بعضی کارتخوان ها استفاده می شود. اگرچه در حال حاضر قیمت آن ها چندان پایین نیست اما میزان عرضه آنان در فروشگاه های کامپیوتر عادی باعث افت سریع قیمت آنان خواهد شد.
۲-۲هندسه دست
هندسه دست امتیاز بالایی در راحتی استفاده بدلیل بزرگ بودن کسب میکند و میتواند با استفاده از سیستم راهنما در جای ثابتی قرار بگیرد. دست توسط مجموعه ای برجستگیهای مشخص به موقعیت صحیح برای اسکن شدن هدایت می شود و تصویر توسط یک دوربین CCD گرفته می شود.الگوی مرجع میتواند از نظر حجم خیلی کوچک باشد. (محصولی که بیشترین وسعت استفاده تجاری را در حال حاضر دارد تنها از ۹بایت استفاده می کند). اگرچه تغییرات روزانه مانند کثیفی روی کارایی آن تاثیر ندارد اما سنجش می تواند بوسیله جراحت یا افزایش سن تاثیر بپذیرد و اگر الگو مرتبا نتواند بروز شود، عملیات ثبت مجدد در هر زمانی لازم است.
۳-۲اسکن شبکیه
اسکنرهای شبکیه مشخصات الگوهای رگ های خونی روی شبکیه را با استفاده از لیزر مادون قرمز کم قدرت و دوربین می سنجند. در این روش، برای بدست آوردن یک تصویر متمرکز, چشم باید نزدیک دوربین قرار بگیرد. الگوهای مرجع بسیار کوچک هستند (۳۵بایت در بیشتر سیستمهای تجاری معمول). تحقیقات پزشکی اخیر نشان داده است که مشخصات شبکیه برخلاف آنچه در گذشته تصور می شد، پایدار نیست و توسط بعضی بیماری ها که حتی ممکن است خود شخص مطلع نباشد تغییر می کنند. بسیاری از افراد نگران قرار دادن چشم خود درتماس نزدیک با منبع نور هستند. به همین دلیل، این روش جای خود را به اسکن عنبیه داده است.
۴-۲اسکن عنبیه
اسکنرهای عنبیه رگههای موجود در عنبیه چشم را مورد سنجش قرار می دهند. این تکنیک به عنوان نتیجه ای از تعداد زیادی از ویژگی ها، سطح بالایی از تفاوت را به وجود می آورد و نسبت به گذشت زمان پایداری بالایی دارد. کاربر باید از فاصله ۳۰ سانتیمتری یا بیشتر برای چند ثانیه به دوربین نگاه کند. سیستم با عینک و لنزهای تماسی کاربران تطابق دارد، هرچند که سنسور باید طوری قرار بگیرد یا تغییر کند که برای کابران با قدهای متفاوت و آن هایی که روی صندلی چرخدار قرار دارند، مناسب باشد. اسکن عنبیه از تمام مواردی که شرح داده شد، جدیدتر است. از نظر نظری، هر بخش از ساختمان بدن انسان می تواند در زیست سنجی قابل استفاده قرار گیرد. اما طرح های تجاری روی آن هایی تمرکز شده است که به راحتی سنجیده می شود و از طرف جامعه آسان تر پذیرفته می شود. گاهی لازم است بررسی شود که سنجش برروی یک شخص زنده انجام می شود تا یک کپی. یک روش که مستقیما از خصوصیات زنده استفاده می کند اسکن سیاهرگ است. موقعیت سیاهرگ از طریق جریان خون گرم سنجیده می شود. تشخیص های مربوط به صورت تکنیکی که بیشتر توسط انسان ها استفاده می شود. یک زیست سنجی قابل دوام است، مخصوصا جایی که دوربین ها از قبل استفاده می شود و جایی که بررسی کلی، همه آن چیزی است که مورد نیاز است. ویژگی های مشخص یا نقاط برجسته سنجیده برای ایجاد الگوی مرجع استفاده می شود. آخرین زیست سنجی مربوط به تحلیل DNA است. به هر حال، با اطمینان می توان گفت که هنوز خیلی سال مانده است تا این روش در بررسی هویت در فروشگاه های عادی یا هنگام سوار شدن به اتوبوس مورد استفاده قرار گیرد.
زیست سنجی و کارت ها
بعضی تکنیک های شناسایی، به ویژه کلمات عبور، استثنائا برای پیاده سازی در سیستم توزیع شده مناسب سازی شده اند. آن ها کمترین حجم ذخیره سازی و پردازش را دارند، اما همچنان که دیدیم، به عنوان ابزار چندان امنی شناخته نمی شود. به هرحال احتیاجات فضای ذخیره سازی یک عامل محدودکننده است. بیشتر الگوهای مرجع به ۴۰تا ۱۵۰۰ بایت برای ذخیره شدن احتیاج دارند. الگوهای مرجع کوچک تر می توانند روی کارت های مغناطیسی یا بارکدها ذخیره شوند. برای الگوهای بزرگ تر می توان از بارکدهای دو بعدی یا هلوگرام ها استفاده کرد، اما تقریبا هر جایی که ذخیره امن مورد نیاز است راضی کننده ترین پاسخ استفاده از کارت هوشمند است. کارت ها ابزار مناسبی برای ترکیب زیست سنجی ها هستند. اگر دو یا سه عامل زیست سنجی روی کارت ذخیره شوند، اشتباهات در عدم تایید افراد ذینفع به حداقل می رسد یا همان کارت می تواند در محیط های متفاوت مورد استفاده قرار گیرد: تشخیص صدا برای سیستم تلفن، اثرانگشت برای کار با کامپیوتر و یک PIN برای خرید و فروش. استفاده از چنین زیست سنجی های لایه بندی شده ای امروزه در حال آغاز در تجارت هستند.
عنبیه قسمت رنگی چشم است که ترکیبی است از نوعی ماهیچه به شکل دایره با یکسری خطوط شعاعی، لایهای یا توری مانند که در پیش از تولد انسان شکل گرفته است و تا زمان مرگ تقریباً هیچ تغییری نمیکند. این ماهیچه شامل یکسری کارکترها مانند: خطوط، حلقهها، حفرهها، شیارها، تارها، لکهها و… است که قابل تفکیک میباشند. میتوان گفت که عنبیه چشم همه افراد با یکدیگر متفاوت است.
تصویر عنبیه معمولاً توسط یک دوربین تک رنگ مادون قرمز (۷۰۰–۹۰۰nm) که مجهز به سنسور CCD است گرفته میشود. معمولاً فاصله دوربین تا چشم باید چیزی در حدود ۱۸ اینچ باشد. (تابش نور به عنبیه سپس اندازهگیری بازگشت آن) فرایند پردازش بدین شکل است که ابتدا مکان و اندازه مردمک در تصویر مشخص شده و سپس با به دست آوردن مکان و اندازه عنبیه، کلیه تصویر عنبیه که در میان این دو دایره قرار دارد به شکل مستطیلی با ابعاد معین تبدیل میشود، این تکنیک باعث میشود تا با کوچک یا بزرگ شدن مردمک تصویر مستطیل شکل تقریباً ثابت بماند تا در انجام فرایندهای بعدی مشکلی نباشد. تصویر موجود در مستطیلی با ابعاد معین دارای مشخصههای قابل تبدیل به کدهای باینری است، در این تبدیلها روشهای مختلفی وجود دارد که هر یک مزایا و معایب خودرا دارند.
پس از بدست آوردن الگوی باینری، با استفاده از بدست آوردن فاصله همینگ بین الگوی موجود با الگوی بدست آمده میتوان نتیجه تطبیق را بدست آورد.
در روشهای دیگری مانند نمونه یابی در مکانهای مشخص با برداشت چند نمونه از قسمتی از تصویر عنبیه که مشخصات قابل توجهی دارد، در زمان تشخیص با استفاده از نمونههای ذخیره شده و مکان یابی نمونهها، عنبیه افراد قابل تشخیص است. این سیستم دارای قابلیت خوبی در تشخیص افراد است بدین دلیل که عنبیه هم منحصربهفرد است و هم در برابر گذشت زمان مقاوم، ولی متأسفانه حجم الگوها در این روش بسیار بالا است، این تکنولوژی بسیار گران است، کاربر پسند نیست و به دلیل اینکه در حین نمونه برداری لازم است که چشم کاملاً بی حرکت باشد لذا الگو برداری ممکن است دقیق نباشد.
یکی از مشکلات موجود در سیستمهای تشخیص هویت به کمک الگوهای عنبیه، مسدود شدن عنبیهی چشم بوسیلهی مژههاست. در مقاله اصلاح اثر مخرب مژهها بر تصاویر عنبیه به کمک فیلتر میانه با قاب افقی که توسط آقای محمدمهدی ابراهیمی و دیگر همکاران نگارش یافته، راه حل این مشکل ارائه شده است.
شناسایی از روی شبکیه چشم
شبکیه چشم در منتهیالیه کره چشم قرار دارد که شامل یکسری رگهای خونی است که این مویرگها داری اشکال مختلفی هستند، این خصیصه در افراد منحصربهفرد است. با قرارگیری چشم کاربر در یک مکان مشخص، یک دسته نور ماوراء قرمز یا نور سبز با طول موج کوتاه به شبکیه چشم تابیده میشود و بازتاب آن توسط یک دوربین CCD اندازهگیری میشود. این روش تقریباً مشابه شناسایی از طریق عنبیه میباشد.
شناسایی از روی نمودار حرارتی چهره
نمودار حرارتی چهره نیز یکی دیگر از پارامترهایی است که در تمامی افراد حتی دوقلوها نیز متفاوت است. نمودار ترموگرام در برابر گذشت زمان [تا مدت محدودی]، آرایش و اصلاح کردن مقاوم است، حتی جراحی پلاستیک نیز باعث بروز آسیب به نمودار ترموگرام نمیشود. جهت تصویر برداری از چهره از یک دوربین مادون قرمزبا طول موج ۳ الی ۵ میکرون یا ۸ الی ۱۲ میکرون بدین صورت که تا عمق ۴ سانتیمتر زیر پوست را حس کند استفاده میشود.
شناسایی از روی نحوه راه رفتن
معمولاً این روش در جاهایی که ارتباط مستقیم با افراد میسر نیست کاربرد دارد خصوصاً در فرودگاهها و معابر امنیتی. (این سیستم شناسایی تقریباً یک سیستم شناسایی مخفی است) در این روش یک تصویر از شخص در هنگام راه رفتن بدست میآید که معرف نمودار جابجایی و زمان برای وی است. در هنگام راه رفتن افراد حرکت پاها و سر افراد با یکدیگر متفاوت است (البته حرکت دستان نیز در برخی موارد کاربرد دارد) که الگوی بدست آمده از این قسمتها میباشد.
شناسایی از روی هندسه دست
دراین سیستم دست در یک مکان مشخص مطابق شکل قرار میگیرد. سپس با استفاده از یک دوربین دیجیتال CCD با کیفیت مطلوب ۳۲۰۰۰ پیکسل تصویر دست از دو نمای فوقانی و کناری گرفته میشود؛ که یک تصویر ۳بعدی از دست تولید میکند. از تصویر بدست آمده حدوداً ۱۷ قسمت دست اندازهگیری میشود، منجمله: انگشتان (طول، پهنا، ضخامت، انحنا) و پارامترهای هندسی دیگر که در شکل آمده است. معمولاً حجم داه بدست آمده ۹بایت است.
ترکیبات بیومتریک
با ترکیبات بیومتریک میتوان کارایی، امنیت و دقت سیستم را تا حد قابل ملاحظهای افزایش داد، که در ذیل به تعدادی از روشهای ممکن اشاره خواهیم کرد:
ترکیب سنسور
در این مدل ما برای یک متد از بیومتریک، از چندین سنسور استفاده میکنیم. بعنوان مثال در اثر انگشت از سنسورهای نوری، خازنی، آلتراسوند یا سنسورهای دیگر استفاده کنیم. این کار باعث افزایش دقت در امر نمونه برداری خواهد شد.
ترکیب واحد نمونه برداری
در این روش ما از چند واحد نمونه برداری میکنیم. بعنوان مثال در روش اثر انگشت از دو انگشت اشاره و انگشت وسط ویا انگشتان دیگر نیز عمل نمونه برداری را انجام میدهیم ویا از انگشت دستچپ و راست نمونه برداری میکنیم.
ترکیب نمونه برداری
در این روش چندین بار از مشخصه مورد نظر نمونه برداری میکنیم و ممکن است دو یا چند الگو از یک کاربر داشته باشیم. بعنوان مثال از انگشت کاربر دوبار نمونه برداری میکنیم و در حافظه ذخیره میکنیم.
ترکیب روشهای بیومتریک
در این روش مااز ترکیب دو یا چند روش بیومتریک استفاده میکنیم. بعنوان مثال: اثر انگشت + هندسه چهره + هندسه دست
از دیر باز انسان برای بقا، نیاز به تشخیص دوست از دشمن داشته است و تشخیص هویت برای وی امری حیاتی بوده و هست، لذا امروزه سعی در مکانیزه سازی سیستم های شناسایی یا تشخیص هویت شده است. نیازی که پیشرفت در آن باعث کاهش تخلفات، افزایش امنیت، تسریع در امور روزمره و … شده است. در گذشته جهت شناسایی جرم و جنایتکار، از روال شناسایی اثر انگشت و چهرهنگاریاستفاده میشده، اما اکنون سیستم های مکانیزهای ایجاد شده است. به مجموعه ای از فناوری ها، جهت تشخیص و تایید هویت یک فرد به صورت خودکار بيومتريک می گویند. به طور مثالبرای صدور اجازه ورود به یک مجموعه، نیاز به شناسایی و تایید هویت می باشد. روش های شناسایی به صورت های زیر انجام می گیرد:
۱- اسناد و مدارک شناسایی – کارت های هوشمند، کارت های مغناطیسی، کلید، پاسپورت، شناسنامه و … ۲- اطلاعات – رمز یا کلمه عبور، پین کد و …
۳- ویژگی های فیزیولوژیکی و رفتاری – اثر انگشت؛ صدا؛ چشم و … (به این روش شناسایی سوم تشخیص هویت Biometric گفته می شود)
کلیه سامانه های بيومتريک دارای قابلیت تشخیص و تایید هویت به صورت یکجا هستند. مرحله تشخيص هويت با جستجوی ویژگی های فرد در بانک اطلاعاتي موجود در سامانه صورت می گیرد و درصورت وجود اطلاعات ذخیره شده شخص در بانک اطلاعاتي سامانه، هویت او شناسایی و مشخص می شود. در مرحله تائيد هويت تمامی مقایسات شخص و بانک اطلاعاتی به صورت تک به تک انجام می شود، سامانه کد ورودي را با کد موجود مقايسه مي کند و مشخص مي کند که آيا مورد تشخيص داده شده درست است يا نه. در بيشتر سامانه هاي بيومتريک مرحله ثبت نام در سامانه از مرحله تشخيص هويت جدا شده است، زيرا در مرحله ثبت نام بايد اين که آيا فرد قبلا در سامانه ثبت نام کرده است يا نه مدنظر قرار گيرد تا از ثبت نام يک نفر در سامانه با چند هويت مختلف جلوگيري شود و ضریب اطمينان سامانه بالا رود، در حالي که در مرحله تشخيص هويت مساله مهم فقط يافتن اطلاعات فرد از بين کدهاي ذخيره شده در بانک اطلاعات است. خصوصیات يک ویژگی بيومتريک خوب جهت ذخیره سازی در بانک اطلاعاتی و استفاده در سامانه عبارتند از :
١‐ منحصر به فرد بودن: هر فرد ويژگي را به طور منحصر به فرد و متمايز با ديگران داشته باشد.
٢ ‐ استخراج پذيري: بتوان آن ويژگي را در مورد هر فرد به راحتي، با سرعت بالا و بدون نياز به پردازش هاي زياد به دست آورد.
٣‐ قابليت تفکيک پذيري بالا: يعني اين که اختلاف اين ويژگي در مورد دو فرد متفاوت خيلي زياد باشد تا به راحتي قابل تقکيک باشند.
٤‐ پايداري: ويژگي استخراج شده در طول زمان و در اثر تغييراتي در يک شخص در طول عمرش به وجود مي آيند بدون تغيير باقي بماند.
تکنیک های رفتاری که طرز انجام کاری توسط کاربر مانند امضا کردن یا بیان کردن یک عبارت را می سنجند. سنجش اعضا که یک خصوصیت فیزیکی را مانند اثرانگشت یا شکل یک دست می سنجند. رفتار با زمان و حال شخص تغییر می کند. تکنیک های سنجش رفتار هنگامی به بهترین نحو عمل می کنند که مرتبا استفاده شوند، و به این ترتیب سطوح تغییرات هر فرد مورد توجه قرار گیرد. مدل های سنجش های رفتاری باید این تغییرات را لحاظ کنند. از طرف دیگر، سنجش های مشخصات فیزیکی به ابزار سنجش بزرگ تر و نرم افزار پیچیده تری احتیاج دارند. به عنوان مثال، آن ها مجبورند موقعیت دست را با الگو تطبیق دهند. باید میان سیستم هایی که برای تشخیص فرد طراحی شده اند و آن هایی که باید فقط هویت یک فرد را تایید کنند تفاوت قائل شویم. عمل دوم بسیار آسان تر است و پارامترهای تایید هویت می توانند بر پایه همان شخص تنظیم گردند. این روش حالت طبیعی برای سیستم های کارت هوشمند است که الگوی مرجع (template) در کارت یا یک سیستم مرکزی نگه داری می شود.
یک تست زیست سنجی شامل سه مرحله است:
–۱ثبت مشخصات ۲– استفاده ۳– بروز رسانی
کاربران با سنجش های اولیه در سیستم ثبت نام می شود. این عمل معمولا سه مرتبه یا بیشتر برای ثبت اطلاعات دقیق تر انجام می گیرد. مدت زمان انجام این عمل در این مرحله بیشتر از زمانی است که سیستم برای تشخیص کاربر مورد استفاده قرار می گیرد. وقتی که سنجش انجام گرفت هنگام استفاده ،نمونه با الگوی مرجع مقایسه می شود. در اینجا تعیین سطوح مناسب تفاوت مجاز (tolerance) مخصوصا برای سنجشهای رفتاری مهم است. بیشتر سیستم های زیست سنجی مخصوصا آنهایی که از مشخصات رفتاری استفاده میکنند، باید برای بروز رسانی الگوی مرجع تدارک دیده شده باشند. در حالت تشخیص صدا و امضا، معمولا یک فانکشن تطبیقی استفاده می شود که با هر بار سنجش توسط سیستم، بروز رسانی الگوی مرجع انجام میگیرد.
برای مشخصاتی که تغییر کندتر است، سیستم میتواند درصد تطبیق یا تعداد دفعاتی که یک شخص پذیرفته نمی شود را اعلام کند و در مواقعی که لازم است، عمل ثبت مجددا انجام گیرد. ثبت تراکنش اغلب یک ویژگی مفید است و میتواند براحتی در یک سیستم بر پایه کارت هوشمند ایجاد گردد.
اجزای یک سیستم زیست سنجی
یک سیستم زیست سنجی شامل موارد زیر است:
۱-ابزار اندازه گیری
که واسط کاربر را تشکیل میدهد. راحتی استفاده یک فاکتور مهم دیگر برای زیست سنجی است: ابزار باید مطابق با غریزه باشد و فضای کمی برای خطا ایجاد کند و باید قابل استفاده برای دامنه وسیعی از مردم و بخصوص افراد ناتوان باشد.
۲-نرم افزار عامل
که شامل الگوریتم های ریاضی است که پارامترهای سنجش شده را با الگوی مرجع مقایسه میکنند. جدیدترین الگوریتمها وابستگی کمی به مدلسازی آماری دارند و بیشتر بر پایه برنامه ریزی دینامیک، شبکه های عصبی و منطق فازی هستند که انعطاف پذیری را افزایش میدهد. لذا احتمال اینکه مثلا شخصی بخاطر لکه یا کثیفی جزیی پذیرفته نشود، کم است البته چنانچه بقیه الگو تطبیق دقیقی داشته باشند.
۳-سخت افزار و سیستمهای بیرونی
قابلیت استفاده، قابلیت اطمینان و هزینه سیستم اغلب حداقل به همان اندازه که به ابزار سنجش بستگی دارد، به سخت افزار بستگی دارد. بعضی سیستم ها ( مانند تست اثرانگشت) فی نفسه برای استفاده در سیستمهای توزیع شده مناسب هستند، در حالیکه بقیه (مانند تشخیص صدا) برای سیستمهای متمرکز مناسب هستند. هزینه ابزار زیست سنجی بسرعت در حال کاهش است. اکنون، برای ATMها و ابزار کنترل دسترسی مخصوصی مناسب هستند. هنوز یک افت هزینه دیگری لازم است تا اینکه زیست سنجی ها در خرید و فروش های خودکار و محیط های کنترل دسترسی مورد استفاده قرار بگیرد.
زیست سنجی ، یا بیومتریک (به انگلیسی: Biometrics)، به نوع خاصی از روشهای امنیتی گفته میشود که در آن برای کنترل دسترسی و برقراری امنیت از خواص قابل اندازهگیری بدن انسان یا هر موجود زندهٔ دیگر استفاده میشود. همانگونه که از کلمهٔ بیومتریک بر میآید در این روش با استفاده از الگوریتمهای ریاضی از اندامها برداشتهای ثابت و یکتایی میشود که میتوان از آن به عنوان یک کلمهٔ عبور یکسان و غیرقابل تقلید و گاه غیرقابل تغییر استفاده کرد. به هر خصوصیت زیستی یا فیزیکی که با رایانه قابل اندازهگیری و بازشناسی خودکار باشد زیستسنجه گفته میشود.
اگرچه ممکن است این اسم به نظر غریب و جدید بیاید اما واقعیت این است که بشر مدت زیادیاست که از آن بهره میبرد و مثال زندهٔ آن استفاده از عکسهاییاست که در کارتهای مختلف از آن بهره میبریم. در واقع در تمامی آن کارتها شخص کنترلکننده با دیدن عکس و مقایسه آن با چهره واقعی شما از اصول اولیه زیست سنجی (بیومتری) پیروی میکند یکی دیگر از اینگونه مثالها استفاده از اثر انگشت است که قدمتی بس طولانی در بین اذهان عمومی بشر دارد.
شرایط اصلی برای تبدیل یک خاصیت قابل اندازهگیری بدن به یک خاصیت مناسب جهت استفاده به عنوان یک متود شناسایی :برای اینکه یک عضو بدن بتواند به عنوان یک وسیله اندازگیری مطرح شود باید شرایط خاصی داشته باشد به عنوان مثال باید ثابت باشد مثلاً شما نمیتوانید رنگ مو یا وزن را به عنوان یک خاصیت بیومتریک در نطر بگیرید زیرا دائماً در حال تغییر و تبدیل هستند، در ضمن خواص انتخاب شده میبایست نشاندهنده یک انسان خاص باشند و میبایست به سهولت قابل دسترسی باشند یعنی برای بررسی آن نیاز به زحمت زیادی نباشد.
بطور کلی ویژگیهای بیومتریک به دو دسته تقسیم میشوند: ۱- خصوصیات وابسته به فیزیک انسان، این دسته از ویژگیها به مجموعهای از خصوصیات همراه انسان اعم از اثرانگشت، عنبیه چشم، چهره، DNA و غیره اشاره دارد، این ویژگیها عمدتاً از بدو تولد انسان و گهگاه قبل از تولد انسان شروع به شکل گیری نموده و تا آخر عمر در بدن انسان ثابت و غیرقابل تغییر (گهگاه تغییرات اندک) میمانند.
۲- خصوصیات رفتاری انسانها، این ویژگیها در حقیقت خصوصیات ناشی از رفتارهای انسان هاست نظیر راه رفتن انسان، نحوه فشردن دکمهها (مثلاً موبایل) و غیره که میتواند بیانگر مشخصات یک انسان خاص باشد نظیر راه رفتن یک انسان که گاهی با نگاه کردن آن از پشت سر میتوان تشخیص داد که وی کدام یک از دوستانتان است.
انواع روشهای تعیین هویت زیست سنجی موجود
تعیین هویت از طریق اثر انگشت تعیین هویت از طریق بررسی دقیق کف دست تعیین هویت از طریق رگهای کف دست تعیین هویت از طریق کنترل شبکیه چشم تعیین هویت از طریق کنترل رگهای چشم تعیین هویت از طریق صورت تعیین هویت از طریق امضا تعیین هویت از طریق شناسایی صدا تعیین هویت از طریق عنبیه چشم تعیین هویت از طریق راه رفتن تعیین هویت از طریق چهره
ارزیابی ویژگیهای بیومتریک انسان
معمولاً ویژگیهای انسانها با ۹ پارامتر مورد ارزیابی قرار میگیرد که عبارتند از:
۱- عمومیت، هر شخص دارای آن ویژگی باشد.
۲- یکتایی، چه تعداد نمونه متفاوت را میتوان تفکیک کرد.
۳- دوام، معیاری برای آنکه سنجش شود یک ویژگی چه مدت عمر میکند.
۴- قابلیت ارزیابی، سهولت استفاده برای ارزیابی نمونههای متفاوت.
۵- کارایی، دقت، سرعت و پایداری روش مورد استفاده.
۶- مقبولیت، میزان پذیرش تکنولوژی.
۷- جایگزین، سهولت در استفاده از جایگزین
۸- تصدیق هویت، در تصدیق هویت مشخصه یک فرد به پایگاه اطلاعات ارسال میشود و هدف بررسی آن به منظور تصدیق هویت آن فرد میباشد که پاسخ سیستم الزاماً مثبت یا منفی است.
۹- تشخیص هویت، در سیستمهای تشخیص هویت مشخصه بیومتریک فرد به سیستم ارائه میشود و سیستم با جستجوی پایگاه اطلاعات مشخصات فرد را در صورت موجود بودن استخراج میکند.
مزایای استفاده از روشهای امنیتی زیست سنجی
با این روش شما میتوانید تقریباً مطمئن باشید که همان کسی که باید به منابع دسترسی دارد برای مثال اثر انگشت همواره یکتا و یکسان است، مشکلاتی مانند فراموش کردن رمز عبور یا گم کردن آن در این روش وجود ندارد. سرعت بسیار بالایی دارد و برای کاربران عادی نیاز به آموزش ندارد، امکان سرقت آلات بیومتری (زیست سنجشی) نیز بسیار کم است! یا در پاره ایی از مواقع صفر است.
این مقاله به معرفی سیستمهای تشخیص هویت که مهمترین و دقیقترین آنها بیومتریک است خواهد پرداخت. پس از تعریف بیومتریک به تعریف معماری سیستمهای بیومتریک میپردازیم و درمییابیم که هر سیستم بیومتریک با چه معماریای کار میکند. در این مقاله همچنین در مورد چند تکنولوژی بیومتریک هم توضیح داده میشود مانند اثر انگشت، عنبیه چشم، نحوه راه رفتن، چهره و … اما به دلیل اینکه سیستم اثر انگشت از اهمیت بیشتری نسبت به دیگر سیستمها برخوردار است بیشتر به تجزیه و تحلیل این سیستم خواهیم پرداخت و ابتدا به معرفی خطوط و نقاط مشخصه انگشت که در اصطلاح به آنها ریزهکاری گفته میشود میپردازیم و سپس روشهای پردازش این نقاط برای رسیدن به الگویی برای شناسایی هویت را بیان خواهیم نمود.
پس از آن سنسورهای مختلف که همگی همراه با شکل برای فهم بیشتر مطرح شدهاند مورد بحث قرار خواهند گرفت و سپس این سنسورها با هم مقایسه میشوند و مزیت هر یک بیان میشود. سپس به معرفی سایر سیستمها خواهیم پرداخت و در انتها به معرفی مفهوم ترکیبات بیومتریک و روشهای متنوع آن خواهیم پرداخت. استفاده از روش ترکیب بیومتریک کارایی، امنیت، دقت سیستم را افزایش میدهد.
علم بیومتریک اشاره دارد به تکنولوژیی برای اندازهگیری و آنالیز مشخصات بدن افراد جهت تشخیص هویت شخص.
همه سیستمهای بیومتریک دارای معماری ویژهای برای پردازش نمونه مورد بررسی و احراز هویت میباشند. روشهای مختلفی برای تشخیص هویت در بیومتریک وجود دارد که هر یک با توجه به دقت و کارایی مورد استفاده قرار میگیرند. اثر انگشت به دلیل اینکه برای هر فرد منحصربهفرد است و با گذشت زمان هیچ گونه تغییری نمیکند، در میان سیستمهای بیومتریک بیشتر مورد استفاده قرار میگیرد. البته سیستمهای دیگر مانند: عنبیه چشم، شبکیه چشم و نمودار حرارتی چهره هم از فردی به فرد دیگر متفاوت هستند. برای افزایش کارایی و امنیت و دقت سیستم میتوانیم از ترکیبات بیومتریک استفاده کنیم.
مقدمه
از دیر باز انسان برای بقا، نیاز به تشخیص دوست از دشمن داشته است و تشخیص هویت برای وی امری حیاتی بوده و هست، لذا امروزه سعی در مکانیزه سازی سیستمهای شناسایی یا تشخیص هویت شده است. «این پیشرفتها دلیل بر نیاز جامعه و جهان است». نیازی که پیشرفت در آن باعث کاهش تخلفات، افزایش امنیت، تسریع در امور روزمره و … شده است.
در گذشته جهت شناسایی جرم و جنایتکار، از روال شناسایی اثر انگشت و چهرهنگاری استفاده میشده، اما اکنون سیستمهای مکانیزهای ایجاد شده است.
سیستمهای تشخیص هویت
توکن معمولاً چیزی است که شما به همراه خود دارید و میتوان گفت سند هویت شماست، مانند: کارتهای هوشمند، کارتهای مغناطیسی، کلید، پاسپورت، شناسنامه و … این اشیاء دارای نواقصی هستند همچون: گم شدن، عدم همراه بودن شخص، فرسوده شدن و جعل شدن.
دومین نوع سیستمهای شناسایی دانش نام دارد، یعنی چیزی که شما بخاطر میسپارید مانند: پسورد و پین کد. البته این سری نیز دارای نواقصی هستند مانند: فراموش کردن و لو رفتن.
دسته سوم سیستمهای مبتنی بر بیومتریک است. این سیستمها از خصیصههای فیزیولوژیکی و رفتاری انسان جهت شناسایی استفاده میکنند. این روش دیگر معایب روشهای قبل را ندارد و امنیت و دقت را تا حد بسیار زیادی افزایش داده است.
بیومتریک چیست؟
اندازهگیری و تحلیل آماری دادههای بیولوژیکی
بیومتریک اشاره دارد به تکنولوژیی برای اندازهگیری و آنالیز مشخصات بدن افراد جهت تشخیص هویت شخص
شناسایی اتوماتیک یک شخص با استفاده از ویژگیهای اختصاصی (مشخصات فیزیولوژیکی یا رفتاری)(تعریف در کنسرسیوم بیومتریک)
دو اصطلاح مهم در بیومتریک: تطابق یک به یک، عمل تطابق الگوهای کاربر با دادههای ذخیره شده. تطابق یک به چند، یافتن یک الگو از میان الگوهای ذخیره شده جهت شناسایی کاربر.
طبقهبندی متدهای بیومتریک
عموماً در سیستمهای بیومتریک از دو نوع ویژگی مختلف افراد جهت شناسایی استفاده میشود که در ذیل به آنها اشاره میکنیم.
(پارامترهای فیزیولوژیکی)
اساس شناسایی در این کلاس، اندازهگیری و آنالیز مشخصههای ثابت یک شخص میباشد.
(پارامترهای رفتاری)
شناسایی الگوهای رفتاری مشخص یک فرد
پارامترهای فیزیولوژیکی:
(اثر انگشت)
(شناسایی از روی شبکیه چشم)
(شناسایی از طرق عنبیه چشم)
(شناسایی از روی هندسه دست)
پارامترهای رفتاری:
(شناسایی از طریق امضاء)
(شناسایی از طریق صدا)
(شناسایی از روی شدت ضربه شخص بر روی کیبورد)
در این مقاله ما سعی بر معرفی این سیتمها داریم.
معماری سیستمهای بیومتریک
تمامی سیستمهای بیومتریک دارای یک معماری کلی یکسان در ساخت هستند که به آنها اشاره میکنیم.
درخواست دادهها
پردازش سیگنال
تطبیق
تصمیمگیری
فضای ذخیرهسازی
محیط انتقال دادهها
زیر سیستم درخواست داده در این زیر سیستم دادههای خام، که از یک فرد، توسط یک سنسور ویژه اسکن شده است، وارد سیستم میشود. فرایندی که در این زیر سیستم انجام میشود:
دریافت دادهها توسط سنسور
تبدیل دادههای (سیگنالها) دریافتی از سنسورها به فرم مناسبی (A/D) جهت ارسال به زیر سیستم پردازش سیگنال
زیرسیستم پردازش سیگنال عملیات این زیر سیستم به شرح ذیل میباشد:
دریافت دادههای خام از زیر سیستم جمعآوری داده
استخراج خصیصه
عملیات فیلترینگ جهت حذف نویز
اصلاح دادهها
تبدیل دادههای دریافتی به فرم لازم (تولید الگو) برای زیر
سیستم تطبیق.
از دادههای دریافت شده در این زیر سیستم، پس از پردازش، یک الگو از برخی ویژگیهای موجود تولید و ذخیره میشود. در واقع این الگوی تولید شده مورد مقایسه و شناسایی قرار میگیرد.
ماهیت این الگو که از روی یک شابلون از پیش تعریف شده تولید میشود (یک استاندارد ثابت)، ماتریسی از صفر و یک میباشد. در واقع این شابلون قسمتهای مورد اندازهگیری از یک نمونه را برمیگرداند.
زیرسیستم تطبیق
خروجی این زیر سیستم از مقایسه دو الگو بدست میآید. فرایند این زیر سیستم شامل:
دریافت دادههای پردازش شده (الگو) از زیر سیستم قبل و دریافت الگوهای ذخیره شده مقایسه الگوی تولید شده در زیر سیستم قبل، با الگوهای موجود
زیر سیستم تصمیمگیری
این زیر سیستم پس از اجرای زیر سیستم قبل فراخوانی میشود که وظیفه آن تصمیمگیری بر روی تطابق انجام شده متناسب با درخواست است. در این مرحله یک حد یا آستانه در نظر گرفته شده است. اگر امتیاز بیشتر یا برابر این آستانه باشد، کاربر تأیید میشود در غیر اینصورت کاربر پذیرفته نمیشود.
زیر سیستم فضای ذخیرهسازی
شامل الگوهایی است که در هنگام ثبت نام از کاربران بدست آمده است. ممکن است برای هر کاربر یک یا چند الگو ذخیره شده باشد.
زیر سیستم محیط انتقال
وظیفه این بخش انتقال دادهها، بین اجزاء یک سیستم بیومتریک است.
پارامترهای مهم در سیستمهای بیومتریک
در همه سیستمهای بیومتریک پارامترهایی موجودند که ویژگیها و قابلیتهای سیستم شما را معرفی میکنند.
نرخ پذیرش اشتباه
این پارامتر تعیین کننده امکان پذیرش کاربر جعلی از کاربر اصلی میباشد. این پارامتر باید تا جای ممکن کوچک باشد.
نرخ عدم پذیرش اشتباه
این مقیاس نمایانگر اینست که تا چه اندازه شخص اصلی اشتباهاً پذیرش نمیشود (حساسیت بسیار بالا). این پارامتر نیز باید تا حد مورد نیاز کم باشد.
نرخ خطای مساوی:
کاهش نرخ پذیرش اشتباه باعث افزایش غیر تعمدی نرخ عدم پذیرش اشتباه میشود. نقطهای که میزان نرخ عدم پذیرش اشتباه با نرخ پذیرش اشتباه برابر میشود نقطه نرخ خطای مساوی است. هرچه میزان این پارامتر کمتر باشد نمایانگر اینست که سیستم دارای یک حساسیت بهتر و توازن خوبی است.
نرخ ثبت نام نادرست
احتمال خطایی که در هنگام نمونه بردای جهت ثبت در پایگاه داده، در خصوص تشخیص صحیح ممکن است رخ هد.
تکنولوژیهای بیومتریک
اثر انگشت
هندسه دست
اندازهگیری شبکیه چشم
اندازهگیری عنبیه
تشخیص چهره
تشخیص امضاء
تشخیص صدا
آزمایش دیانای
تشخیص از روی سیاهرگ دست
نمودار حرارتی چهره
شدت ضربه بر روی صفخه کلید
شکل گوش
بوی بدن
شناسایی از طریق اثر انگشت
به دلیل اهمیت این سیستم، بیشتر به تجزیه و تحلیل آن خواهیم پرداخت. یکی از قدیمیترین روشهای تشخیص هویت، روش شناسایی از طریق اثر انگشت میباشد. نوک انگشت دارای یکسری خطوط است که از یک طرف انگشت به طرف دیگر ادامه دارد. این خطوط دارای یکسری نقاط مشخصه میباشند که به آنها ریزه کاری گویند.
این ریزه کاریها شامل کمانها، مارپیچها، حلقهها، انتهای لبهها، انشعابها، نقطهها (شیارهای نزدیک به لبهها)، جزایر (دو انشعاب نزدیک به هم)، تقاطع (نقطه تلاقی دو یا چند لبه)، منفذها میباشند. در واقع ما در این سری از سیستمها الگوهای تولید شده از این ریزه کاریها را مورد مقایسه قرار میدهیم.
در تشخیص اثر انگشت دو روش عمده وجود دارد: در روش اول یک شابلون از محل قرار گیری ریزه کاریهای: “انتهای لبهها، انشعابها، کمانها، مارپیچها و حلقه هاً تهیه میشود و الگوها بر این اساس تولید میشوند.
در حالت دیگر مابقی ریزه کاریهای ذکر شده نیز الگو برداری میشوند.”با مقایسه نوع، راستا (جهت) و ارتباط (موقعیت) ریزه کاریها عمل شناسایی انجام میشود. ”
در روش دوم از مقایسه نواحی در برگیرنده همه ریزه کاریهای ذکر شده و نیز علامتهای مجزای دیگر و دادههای حاصل از مقایسه مجموعه لبهها در این نواحی، استفاده میشود.
عموماً سایز الگو در روش دوم دو الی سه برابر بزرگتر از روش اول میباشد. در روش اول تقریباً امکان ندارد که بتوان تصویر اثر انگشت را از الگوی مبنا بدست آورد به دلیل اینکه از تعدادی از ریزه کاریها الگوبرداری مشود و مابقی ترتیب اثر داده نمیشوند، ولی از روش دوم میتوان به اثر انگشت نیز رسید.
مراحل پردازش تصویر در شناسایی بر اساس اثر انگشت
حالت اول شمای یک اثر انگشت پردازش نشده را نمایش میدهد. در مرحله دوم جهت خطوط اثر انگشت توسط متدهای خاصی تولید میشود تا از آن بتوان در شناخت جهت هر ریزه کاری استفاده کرد.
در حالت سوم نویزهای موجود در تصویر اول را حذف کرده سپس مرز بین لبهها و شیارها مشخص میشود.
در مرحله چهارم میزان رنگ تصویر حاصله را کاهش میدهند تا نویزهای کوچک باقیمانده نیز حذف شوند و نیز حجم تصویر نیز کاهش یابد. در مرحله پنجم ریزه کاریها علامت گذاری میشوند و در مرحله آخر نیز این ریزه کاریها بیکدیگر متصل میگردند که ماتریس حاصل از شکل بدست آمده از این نواحی و ماتریس حصل از جهتها در شکل دوم و نیز ماتریس شامل نوع ریزه کاریهای در نظر گرفته شده، الگوی ما را تولید میکند. مراحل در شکل زیر به نمایش گذاشته شدهاند:
سنسورهای مورد استفاده در روش شناسایی با استفاده از اثر انگشت:
۱-سنسور نوری
در این تکنولوژی کاربر انگشت خود را بر روی یک سطح پلاستیکی یا شیشهای تمییز قرار میدهد، سپس یک اسکنر) CCD (شروع به اسکن کردن و تصویر برداری از انگشت میکند. این اسکنرها دارای تعدادی گیرنده نوری هستند که بصورت سطری در کنار یکدیگر قرار گرفتهاند، که نوسانات و تغییرات شدت نور دریافتی را اندازهگیری میکنند. با تابش یک دسته شعاع نوری با شدت ثابت به انگشت، بازتاب این شعاع نوری توسط این دوربینهای CCD اندازهگیری میشود. این آرایههای CCD تصویری با رزولوشن ۷۲–۶۰۰dpi را نمایش میدهند؛ که البته قابلیت تصویر برداری تا ۱۰۰۰dpi را دارا میباشند. تصویر اثر انگشت تولیدی بصورت یکسری لبههای تاریک و شیارهای روشن نشان داده میشود که در ابتدا نامفهومند و با عملیات پردازش تصویر، تصویر واضحی از اثر انگشت تولید میشود
۲-سنسور خازنی
عملیات این سری از سنسورها بصورت جوشن خازنی است (یک ماتریس از خازنهای کنار هم). با تماس انگشت بر سطح سنسور، بین لبههای اثر انگشت و سنسور، یک ظرفیت خازنی مطابق با شکل ایجاد میشود که با اندازهگیری این سطوح خازنی و پردازش این سیگنالها، یک تصویر دیجیتالی بصورت ترکیبی از رنگهای مشکی، سفید و خاکستری (روشن و تیره) ۸بیتی بدست میآید. شکل زیر بیانگر این موضوع است. همانطور که در شکل مشاهده میکنید، انگشت باعث برقراری ارتباط بین دو الکترود میشود که این امر باعث بوجود آمدن فضای خازنی در بین این دو الکترود شده است. تغییرات فاصلهای که بین لبهها و شیارهای انگشت وجود دارد، باعث پیدایش یک سیگنال ولتاژی در فضای خازنی میشود که در شکل دوم نشان داده شده است.
با توجه به اینکه فاصله بین پیک لبه و شیار از یک نقطه به یک نقطه دیگر تغییر میکند، داده خام برگردانده شده توسط سنسور به یک تصویر درهم که دارای یکسری سایههای خاکستری است، تبدیل میشود؛ که از یک الگوریتم دیگر جهت تکمیل و تصحیح این تصویر استفاده میشود رزولوشن این تصویر توسط اندازه و تقسیمبندی سلولهای سنسور تعیین میگردد. بعنوان مثال برای یک رزولوشن ۵۰۰dpi به یک سنسور با اندازه سلول ۵۰۰ میکرون نیاز است. عموماً این سری سنسورها رزولوشن ۲۵۰–۵۰۰dpi را تولید میکنند. دقت این سنسورها تا اندازهای پایین است و نیاز به بازسازی تصویر بیشتری دارند.
۳-سنسور آلتراسوند
این سنسورها از یکسری فرستنده- گیرندههای صوتی استفاده میکنند. آنها امواج آلتراسوند را به شئ ساطع میکنند، سپس به حالت گیرنده رفته و امواج بازگشتی را ذخیره میکنند. (مطابق شکل) این امواج توسط تکنیکهای ویژه تصور صوتی پردازش میشوند. نحوه الگو برداری از یک سطح کثیف توسط سنسورهای آلتراسوند فرکانس ارسالی و دریافتی این سنسورها قابل تنظیم است. این ویژگی باعث میشود که فرکانسهای ناهمگن دریافتی را حذف کند. فرکانسهای این سنسورها را میتوان طوری تنظیم نمود که از سلولهای بیجان عبور کنند که این یک مزیت بزرگ سنسورهای آلتراسوند است. مزایای سیستمهای اندازهگیری اثر انگشت:
هر شخص دارای اثر انگشت منحصربهفردی است
اثر انگشت در برابر گذشت زمان مقاوم است
این تکنولوژی به بلوغ خود رسیده است
استفاده از آن بسیار راحت است
دارای نرخ خطای مساوی پایینی میباشد
ارزان است
عامه پسند است
شناسایی از طریق چهره
فرم هندسی یک چهره نیز از پارامترهای مورد اندازهگیری در سیستمهای بیومتریک است ولی نمیتوان گفت که جزء خصیصههای منحصربهفرد افراد است لذا این سیستمها در جاهایی که تعداد کاربران کم است و نیز زمانهای الگوبرداری درازمدت نیست، این سیستمها مناسبند. از دیگر کاربردهای این سیستمها، استفاده در سیستمهای مالتی بیومتریک جهت افزایش دقت است. تصویر چهره یک کاربر میتواند توسط یک دوربین سیاه و سفید با استاندارد که یک رزولوشن ۲۴۰*۳۲۰ و اقلاً ۳ تا ۴ فریم را تولید کند، گرفته میشود. دو روند اصلی برای تشخیص چهره انجام میشود
روند کلی یا کل چهره
خصوصیات پایهای چهره
بر شناسایی و تشخیص نقاط ثابت و معین در چهره که با مرور زمان کمترین حساسیت و تغییری را از خود نشان میدهند شامل: قسمتهایی از چشم، اطراف بینی و دهان و بخشهایی که استخوان گونه را احاطه کردهاند تکیه دارد.
یا روند کلی یا کل چهره
در این روش یک تصویر کامل و یکجا از چهره، بدون لوکالیزه کردن نقاط ویژه مورد پردازش قرار میگیرد. این متد از تکنولوژیهای زیرجهت پردازش چهره بهره میگیرد:
تحلیل آماری
شبکههای عصبی
در کل سیستمهای این چنینی دارای دقت بالایی نیستند به دلیل اینکه چهرها کاملاً منحصربهفرد نیستند و گاه اتفاق میافتد که دو نفر (مخصوصا دوقلوها) از نظر چهره با هم مشابهند؛ لذا از اینگونه سیستمها فقط در مکانهایی استفاده میشوند که امنیت تا حد بسیار زیاد مورد نظر نباشد.