• درخواست دمو
  • ۰۳۱-۹۱۰۰۱۸۸۱
بهسان اندیش
  • صفحه اصلی
  • محصولات
    • نرم افزار پلاک خوان
      • نرم افزار ثبت تردد جاده ای
      • نرم افزار مدیریت پارکینگ
      • نرم افزار تعمیرگاه ، کارواش و تعویض روغن
    • نرم افزار باسکول
    • راهکارهای سازمانی
      • نرم افزارانبار و حساب داری
    • محصولات جانبی
      • دوربین پلاک خوان
      • ماژول رله کنترل راهبند
  • نمونه کارها
    • سامانه جامع پلاکخوان خودرو
    • سامانه جامع مدیریت باسکول
    • سامانه قرائت فرم های چند گزینه ای
  • وبلاگ
  • ارتباط با ما
    • تماس با ما
    • درباره ما
    • دعوت به همکاری
  • جستجو
  • منو منو

آموزش Parallel Programming در سی شارپ

آموزش های زبان برنامه نویسی سی شارپ

موازی سازی(Parallelism) چیست؟

ﺷﺮﮐﺖ ﻫﺎی ﺗﻮﻟﯿﺪ ﮐﻨﻨﺪه ﭘﺮدازﺷﮕﺮ ﺑﺮای اﻓﺰاﯾﺶ ﺳﺮﻋﺖ ﭘﺮدازﻧﺪه ﻣﺠﺒﻮر ﺑﻪ ﺑﺎﻻﺑﺮدن ﻓﺮﮐﺎﻧﺲ ﭘﺮدازﺷﮕﺮ ﺑﻮدﻧﺪ. ﯾﮏ راه اﻓﺰاﯾﺶ وﻟﺘﺎژ ﻣﺼﺮﻓﯽ ﭘﺮدازﻧﺪه ﺑﻮد ﮐﻪ دارای ﻧﻘﺎط ﺿﻌﻔﯽ ﻣﺎﻧﻨﺪ اﻓﺰاﯾﺶ دﻣﺎ و اﻓﺰاﯾﺶ ﻣﺼﺮف ﺑﺎﻃﺮی ﻧﯿﺰ ﺑﻮد. از ﻃﺮﻓﯽ ﺗﻮﻟﯿﺪ ﮐﻨﻨﺪﮔﺎن ﭘﺮدازﻧﺪه ﺑﻪ ﮐﻤﮏ ﺑﺮﻧﺎﻣﻪ ﻧﻮﯾﺴﺎن ﭘﯽ ﺑﻪ ﺑﯿﮑﺎری زﯾﺎد ﭘﺮدازﺷﮕﺮﻫﺎ در زﻣﺎن ﺳﻮﯾﭻ ﮐﺮدن ﻓﺮاﯾﻨﺪ ﻫﺎ و ﻧﺦ ﻫﺎ ﺷﺪﻧﺪ ﮐﻪ ﺣﺪود ﻧﯿﻤﯽ از زﻣﺎن ﭘﺮدازش را ﺑﻪ ﻫﺪر ﻣﯽ داد. ﺑﺮاي ﺟﺒﺮان ﺣﺎﻓﻈﻪ ﮐﺶ را ﮔﺴﺘﺮش دادﻧﺪ اﻣﺎ ﺑﻪ دﻟﯿﻞ ﮔﺮان ﺑﻮدﻧﺶ ﺑﺎز دﭼﺎر ﻣﺤﺪودﯾﺖ ﺑﻮدﻧﺪ. ﺑﻨﺎﺑﺮاﯾﻦ ﭘﺮدازﻧﺪه ﻫﺎﯾﯽ ﺗﻮﻟﯿﺪ ﮐﺮدﻧﺪ ﮐﻪ ﺑﺘﻮاﻧﺪ ﭘﺮازش ﻣﻮازي را (در اﺑﺘﺪا) در دو ﻫﺴﺘﻪ ﺑﻪ اﺟﺮا ﺑﺮﺳﺎﻧﻨﺪ.

ﻧﺎم اﯾﻦ ﻫﺴﺘﻪ ﻫﺎ ﻫﺴﺘﻪ ﻫﺎی ﺳﺨﺖ اﻓﺰاری ﯾﺎ ﻓﯿﺰﯾﮑﯽ ﮔﺬاﺷﺘﻨﺪ. اﻧﺪك زﻣﺎﻧﯽ ﺑﻌﺪ ﻓﻨﺎوری ای ﺑﺮای رﺳﯿﺪن ﺑﻪ ﭘﺮدازش ﻣﻮازی اﻣﺎ در ﺳﻄﺢ ﻣﺤﺪود Hyper ﺗﺮی و ارزان ﺗﺮ ﺑﺎ ﻧﺎم اﺑﺮ ﻧﺨﯽ ﯾﺎ Hyper-Threading اراﺋﻪ ﮐﺮدﻧﺪ و ﻧﺎم آن را ﻫﺴﺘﻪ ﻫﺎی ﻣﻨﻄﻘﯽ ﯾﺎ ﻧﺦ ﻫﺎی ﺳﺨﺖ اﻓﺰاری ﮔﺬاﺷﺘﻨﺪ. ﺣﺎل ﻧﻮﺑﺖ ﺑﺮﻧﺎﻣﻪ ﻧﻮﯾﺴﺎن ﺑﻮد ﺗﺎ ﺑﺮﻧﺎﻣﻪ ﻫﺎی ﺑﺮاي اﺳﺘﻔﺎده از اﯾﻦ ﻓﻨﺎوری ﻫﺎی ﻧﻮﯾﻦ ﺑﻨﻮﯾﺴﻨﺪ. ﺑﺮﻧﺎﻣﻪ ﻧﻮﯾﺴﯽ ﻣﻮازی ﻋﻨﻮاﻧﯽ اﺳﺖ، ﮐﻪ ﻣﻮﺿﻮﻋﯽ ﮔﺴﺘﺮده در دﻧﯿﺎي ﻧﺮم اﻓﺰار اﯾﺠﺎد ﮐﺮده است.

روش موازی سازی(Parallelism(

ﺳﺎده ﺗﺮﯾﻦ ﺷﯿﻮه ﻣﻮازي ﺳﺎزي در ﻗﺎﻟﺐ Task ها ﺻﻮرت ﻣﯽ ﮔﯿﺮد، در ﻫﺮ Task ﺗﺎﺑﻊ ﯾﺎ ﻗﻄﻌﻪ ﮐﺪي ﻧﻮﺷﺘﻪ ﻣﯽ ﺷﻮد و ﺳﭙﺲ ﺑﻮﺳﯿﻠﻪ Delegate اي ﮐﻪ ﮐﺎر ﻣﺪﯾﺮﯾﺖ Task ﻫﺎ را ﺑﺮ ﻋﻬﺪه دارد اﯾﻦ  Task ﻫﺎ ﺑﺼﻮرت ﻣﻮازی ﺑﺴﺘﻪ ﺑﻪ ﻫﺴﺘﻪ ﻫﺎی ﻣﻨﻄﻘﯽ در دﺳﺘﺮس اﺟﺮا ﻣﯽ ﺷﻮﻧﺪ. روش ﻫﺎی ﺑﺴﯿﺎری ﺑﺮاي ﻣﻮازی ﺳﺎزی وﺟﻮد دارد ﻣﺎﻧﻨﺪ اﺳﺘﻔﺎده از ﮐﻼس Parallel.For یا Parallel.ForEach ﮐﻪ در ﺟﺎي ﺧﻮد ﮐﺎرﺑﺮد ﻫﺎی ﻣﺨﺘﺺ ﺑﻪ ﺧﻮدﺷﺎن را دارﻧﺪ. همیشه الگورﯾﺘﻢ ﻫﺎی ﺗﺮﺗﯿﺒﯽ را ﻧﻤﯽ ﺗﻮان ﺑﻪ الگورﯾﺘﻤﯽ ﻣﻮازي ﺗﺒﺪﯾﻞ ﮐﺮد ﭼﺮا ﮐﻪ ﮐﺪ ﻫﺎی ﺗﺮﺗﯿﺒﯽ ای ﻫﺴﺘﻨﺪ ﮐﻪ اﺟﺮاي ﮐﺪ ﻫﺎي دﯾﮕﺮ ﻧﯿﺎز ﺑﻪ ﺗﮑﻤﯿﻞ ﺷﺪن آن ﻫﺎ دارد. ﺑﺴﺘﻪ ﺑﻪ الگورﯾﺘﻢ درﺻﺪی از آن را ﻣﯽ ﺗﻮان ﻣﻮازی ﮐﺮد. ﻗﺒﻞ از ﻣﻮازی ﺳﺎزی ﺑﺎﯾﺪ ﻣﻮازی ﺳﺎزی را در ذﻫﻨﺘﺎن ﻃﺮاﺣﯽ ﮐﻨﯿﺪ.


Parallel Programming  یا برنامه نویسی موازی یعنی تقسیم یک مسئله به مسائل کوچکتر و سپردن آن ها به واحد های جداگانه برای پردازش کردن.این مسائل کوچک به صورت همزمان شروع به اجرا می کنند. Parallel Programming وظیفه یا Task را به اجزا مختلفی تقسیم می کند.

فرم های مختلفی از Parallel وجود دارد .مانند bit-level ،  instruction-level، data ، taskدر این آموزش راجع به Data Parallelism و Task Parallelism بحث خواهیم کرد.

تصور کنید هسته CPUمتشکل از چندین ریزپردازنده است که همه این ها به حافظه اصلی دسترسی دارند.هر کدام از این ریزپردازنده ها قسمتی از مسئله را حل می کنند.

Data Parallelism

این مورد بر روی توزیع دیتا در نقاط مختلف تمرکز می کند.یعنی داده را به بخش های مختلفی می شکند.هر کدام از این بخش ها به Thread جداگانه ای برای پردازش داده می شود.

Task Parallelism

این مفهوم وظایف یا Taskها را به بخش هایی شکسته و هر کدام را به یک Thread جهت پردازش می دهد.

در پروژه ای که به صورت ضمیمه این مقاله می باشد (در پروژه DataParallisem)به سه صورت مختلف وظیفه یا Task تعریف شده است.

1-به صورت Function

2- به صورت Delegate–

3-به صورت لامبدا

کد این قسمت به صورت زیر می باشد

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
  
namespace TPL_part_1_creating_simple_tasks
{
    class Program
    {
        static void Main(string[] args)
        {
            //Action delegate
            Task task1 = new Task(new Action(HelloConsole));
 
            //anonymous function
            Task task2 = new Task(delegate
            {
                HelloConsole();
            });
             
            //lambda expression
                Task task3 = new Task(() = > HelloConsole());                 
             
            task1.Start();
            task2.Start();
            task3.Start();
             
            Console.WriteLine("Main method complete. Press any key to finish.");
            Console.ReadKey();
        }
        static void HelloConsole()
        {
            Console.WriteLine("Hello Task");
        }
    }
}

 

بعد از اجرا، هر کدام از Task ها اجرا شده البته به صورت همزمان و کارهای محوله به آنها را انجام میدهند.

آموزش موازی سازی در سی شارپ

 

در این آموزش بر روی مفهوم Data Parallelism تمرکز خواهیم کرد.توسط Data Parallelism عملیات یکسانی بر روی المانهای یک مجموعه یا آرایه به صورت همزمان انجام خواهد شد. که در فضای نام System.Threading.Tasks.Parallel قرار دارد. روش اصلی برای انجام Data Parallelismنوشتن یک تابع است که یک حلقه ساده بدون Thread دارد .

public static void DataOperationWithForeachLoop()
       {
           var mySource = Enumerable.Range(0, 1000).ToList();
           foreach (var item in mySource)
           {
               Console.WriteLine("Square root of {0} is {1}", item, item * item);
           }
       }

 

خروجی برنامه را در زیر می بینید

آموزش موازی سازی در سی شارپ

 

عملیات Data Parallelism را می توان با یک حلقه foreach موازی هم انجام داد.

public static void DataOperationWithDataParallelism()
        {
            var mySource = Enumerable.Range(0, 1000).ToList();
            Parallel.ForEach(mySource, values = > CalculateMyOperation(values));
        }
 
        public static  void CalculateMyOperation(int values)
        {
            Console.WriteLine("Square root of {0} is {1}", values, values * values);
        }

بعد از اجرا شکل زیر را خواهید دید.

آموزش موازی سازی در سی شارپ

 

در این کد در داخل حلقه Foreach  یک تابع Delegate قرار دادیم در این تابع به ازای هر تکرار حلقه بر روی مجموعه تابعی که درون Delegate فراخوانی کرده ایم اجرا خواهد شد.

Data Parallelism توسط PLINQ

PLINQ به معنای Parallel LINQ است .این نسخه از لینک جهت پیاده سازی لینک بر روی پردازنده های چند هسته ای نوشته شده است.

توسط لینک می توان اطلاعات را از چندین منبع بازیابی کرد.و در نهایت این نتایج با هم ترکیب می شوند تا نتیجه نهایی Query به دست آید.اما اگر از PLINQاستفاده کنیم این دستورات به جای اینکه پشت سر هم اجرا شوند به صورت موازی اجرا می شوند.

برای این که از PLINQ استفاده کرد فقط کافی است که در انتهای عبارت لینک از AsParallel استفاده کنیم.به کد زیر توجه کنید

public static void DataOperationByPLINQ()
    {
        long mySum = Enumerable.Range(1, 10000).AsParallel().Sum();
        Console.WriteLine("Total: {0}", mySum);
    }

بعد از اجرا شکل زیر را خواهید دید

آموزش موازی سازی در سی شارپ

 

برای به دست آوردن اعداد فرد در این مجموعه توسط Plinq از کد زیر استفاده می کنیم

public static void ShowEvenNumbersByPLINQ()
      {
          var numers = Enumerable.Range(1, 10000);
          var evenNums = from number in numers.AsParallel()
                         where number % 2 == 0
                         select number;
 
          Console.WriteLine("Even Counts :{0} :", evenNums.Count());
      }

پس از اجرا شکل زیر را خواهید دید

آموزش موازی سازی در سی شارپ

 

توسط متد Parallel.Invoke() می توانید چندین متد را مانند شکل زیر به صورت همزمان اجرا کنید.

Parallel.Invoke(    
() = > Method1(mycollection),    
() = > Method2(myCollection1, MyCollection2),    
() = > Method3(mycollection));

 MaxDegreeOfParallelism

ماکزیمم تعداد پردازش های موازی را مشخص می کند در کد زیر و در داخل Foreach در پارامتر دوم ماکزیمم تعداد پردازش های موازی مشخص شده اشت.

loopState.Break()

توسط این کد به Thread هایی که پردازش آنها طول کشیده اجازه می دهیم که بعدا Break شوند.به کد زیر توجه کنید.

var mySource = Enumerable.Range(0, 1000).ToList();    
int data = 0;    
Parallel.ForEach(    
    mySource,    
    (i, state) = >    
    {    
        data += i;    
        if (data  >  100)    
        {    
            state.Break();    
            Console.WriteLine("Break called iteration {0}. data = {1} ", i, data);    
        }    
    });    
Console.WriteLine("Break called data = {0} ", data);    
Console.ReadKey();

منبع

 


فایل ضمیمه این آموزش

TPL_part_1_creating_simple_tasks

رمز فایل: behsanandish.com


دانلود کتاب آموزش برنامه نویسی موازی با #C

Parallel Programming In Csharp

رمز فایل: behsanandish.com

 

مارس 29, 2020/0 دیدگاه /توسط daliri
https://behsanandish.com/wp-content/uploads/2018/08/images-5-1.jpg 344 304 daliri https://behsanandish.com/wp-content/uploads/2020/09/logo-farsi-englisi-300x195-1.png daliri2020-03-29 10:00:502020-03-29 10:00:50آموزش Parallel Programming در سی شارپ

تکنولوژی EFFIO-A و EFFIO-V

دوربین (camera)

تکنولوژی EFFIO-V و EFFIO-A چیست؟

تکنولوژی EFFIO-V و EFFIO-A که توسط شرکت سونی به بازار عرضه شده اند با قابلیت و عملکردهای بسیار توسعه یافته به عنوان نسل سوم سری EFFIO در نظر گرفته می شود.

این دو محصول جدید میتوانند با سنسور تصویر 960H ترکیب شده تا بتوانند کیفیت تصویری بالاتر از 700 تی وی لاین را ایجاد نماید. همچنین این آی سی ها بهبود یافتند تا قابلیت هایی از قبیل کاهش نویز سه بعدی (3D-NR)و قرار گرفتن در معرض مادون قرمز و طیف گسترده ای پویا (WDR) و یا مه زدا DEFOG)) و نمایش تصاویر در شرایط مختلف مانند نور کم ، نور مادون قرمز و نور زیاد که کاملا توسعه یافته در عملکرد خود داشته باشند. علاوه بر این این آی سی ها برای اولین بار قابلیت تشخیص اتوماتیک به صورت صنعتی و انتخاب صحنه را دارا هستند.

EFFIO-V و EFFIO-A ، اصلاح شده تا پردازشگر سیگنال را با وضوح بالا انجام دهد و رزولوشن بالای 700تی وی لاین را ایجاد کند که این رزولوشن بالاتر از رزولوشن سری های EFFIOموجود 650 تی وی لاین است .

EFFIO-V و EFFIO-A

قابلیت کاهش نویز سه بعدی

این تکنولوژی تاری موضوعات در حال حرکت ، روشنی و سیگنال به نویز تصاویری که حتی در محیط های کم نور هستند را کاهش می دهد. همچنین به طور موثر از شرایط زمانی که انعکاس نور مادون قرمز بیش از حد شده باشد و یا جزئیات نفر پنهان شده باشد و یا زمانی که در اطراف لبه ای بیرونی تصاویر و یا گوشه های تاریک شده (سایه) باشد جلوگیری می کند.
بنابراین قابلیت این تکنولوژی بهبود بخشیدن تصاویر در محیط های کم نور می باشد.

این محصولات عملکرد مناسب در هر شرایطی برای تنظیم تصاویر را دارا هستند . بعضی از نصب ها زمان زیادی برای تنظیم چند دوربین با ویژگی های مختلف برای کیفیت بهتر را از ما می گیرند . اما EFFIO-V و EFFIO-A قابلیت تشخیص اتوماتیک صحنه را دارند و فقط نیاز به یک عملکرد برای 40الگو در صحنه های تصاویر را برای تصویری ایده آل مثل محدوده دینامیکی ، درجه حرارت ، رنگ را دارد. قابلیت انتخاب صحنه از پیش تنظیم شده برای صحنه های عمومی از جمله دوربین های محیط داخل و محیط خارج نصب شده یا نظارت ترافیکی و یا نور پس زمینه تنظیمات اتوماتیک آنها بر پایه تنظیمات برای کیفیت تصویر ایده آل می باشد .

این قابلیت تنظیمات اتوماتیک برای آسان تر شدن نصب و راه اندازی تصاویر با کیفیت است .

 

EFFIO-V و EFFIO-A

 

 

 

استفاده از EFFIO-V و EFFIO-A

استفاده از EFFIO-V و EFFIO-A

 

 

تاری در سایر ccd ها

سایر ccd ها

 

 

منبع

 
Item Effio-V Effio-A
Supported CCDs 760 H, 960 H WDR/normal CCD 760 H, 960 H normal CCD
 

 

 

 

 

 

 

 

 

 

Functions

Resolution Horizontal over 700 TV lines ←
WDR ✔ —
ATR-EX2 ✔ ←
Noise reduction 2D-NR, 3D-NR ←
Day & Night ✔ ←
Polygon privacy mask Up to 20 masks ←
E-zoom ✔ ←
Slow shutter ✔ ←
Digital image stabilizer ✔ ←
BLC/HLC ✔ ←
Automatic scene detection function ✔ ←
Scene selection function ✔ ←
AF detector ✔ ←
Motion detection ✔ ←
White pixel detection compensation Static and dynamic ←
OSD Flexible 8 languages ←
Lens shading compensation ✔ ←
Defog ✔ ←
Automatic mechanical iris adjustment ✔ ←
External synchronization LL, VSL ←
RS-485 ✔ ←
Coaxial communication ✔ (Coaxitron by Pelco) ←
Outputs Analog outputs Y/C separate, composite ←
Digital outputs ITU-R BT.656 compliant
(27 MHz / 36 MHz)
←
Package 97-pin LFBGA ←
مارس 28, 2020/0 دیدگاه /توسط admin
https://behsanandish.com/wp-content/uploads/2018/08/cxd4141_2.jpg 230 315 admin https://behsanandish.com/wp-content/uploads/2020/09/logo-farsi-englisi-300x195-1.png admin2020-03-28 10:00:522020-03-28 10:00:52تکنولوژی EFFIO-A و EFFIO-V

تبدیل فضای رنگی به یک دیگر

پردازش تصویر با کتابخانه متن باز OpenCV, پروژه ها و سورس کدهای پردازش تصویر و بینایی ماشین

چرا از فضای رنگی مختلف استفاده می کنیم؟

از فضای رنگی مختلف استفاده می کنیم چون این امکان در آن فضای رنگی به ما داده میشه تا بتوینم رنگ دلخواه مان را به راحتی از محدوده دیگر رنگ ها جدا کنیم .فرض کنید که شما قصد دارید رنگ سبز را در تصویر فیلتر نمایید این بازه شامل طیفی می باشد که یک سمت آن سبز تیره و در سمت دیگر آن سبز روشن می باشد برای جدا کردن آن در فضای رنگی RGB این امکان وجود ندارد که شما بتوان به صورت خطی یعنی هر کانال با یک شرط بازه رنگ دلخواه را انتخاب نمائید پس به خاطر چنین مشکلاتی تصویر را به فضای رنگی HSV انتقال می دهیم که این فضا از اجزای Hue (رنگدانه) ،Saturation(اشباع) و Value(روشنایی) تشکیل شده.برای تفکیک رنگ سبز در این فضای رنگی کافیست محدوده Hue خود که مربوط به رنگ مورد نظر را انتخاب کرده و سپس کل محدوه اشباع و در نهایت انتخاب محدوده دلخواه برای روشنایی پس در این فضای رنگی به راحتی تونستید رنگ دلخواه خودتون را انتخاب کنید.

تبدیل فضای رنگی در opencv

در کتابخانه Opencv می تونیم از تابع cvtColor استفاده کنیم.

مثال:


/*------------------------------------------------------------------------------------------*\
This file contains material supporting chapter 3 of the cookbook:
Computer Vision Programming using the OpenCV Library
Second Edition
by Robert Laganiere, Packt Publishing, 2013.

This program is free software; permission is hereby granted to use, copy, modify,
and distribute this source code, or portions thereof, for any purpose, without fee,
subject to the restriction that the copyright notice may not be removed
or altered from any source or altered source distribution.
The software is released on an as-is basis and without any warranties of any kind.
In particular, the software is not guaranteed to be fault-tolerant or free from failure.
The author disclaims all warranties with regard to this software, any use,
and any consequent failure, is purely the responsibility of the user.

Copyright (C) 2013 Robert Laganiere, www.laganiere.name
\*------------------------------------------------------------------------------------------*/

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

#include <iostream>
#include <vector>

void detectHScolor(const cv::Mat& image, // input image
double minHue, double maxHue, // Hue interval
double minSat, double maxSat, // saturation interval
cv::Mat& mask) { // output mask

// convert into HSV space
cv::Mat hsv;
cv::cvtColor(image, hsv, CV_BGR2HSV);

// split the 3 channels into 3 images
std::vector<cv::Mat> channels;
cv::split(hsv, channels);
// channels[0] is the Hue
// channels[1] is the Saturation
// channels[2] is the Value

// Hue masking
cv::Mat mask1; // under maxHue
cv::threshold(channels[0], mask1, maxHue, 255, cv::THRESH_BINARY_INV);
cv::Mat mask2; // over minHue
cv::threshold(channels[0], mask2, minHue, 255, cv::THRESH_BINARY);

cv::Mat hueMask; // hue mask
if (minHue < maxHue)
hueMask = mask1 & mask2;
else // if interval crosses the zero-degree axis
hueMask = mask1 | mask2;

// Saturation masking
// under maxSat
cv::threshold(channels[1], mask1, maxSat, 255, cv::THRESH_BINARY_INV);
// over minSat
cv::threshold(channels[1], mask2, minSat, 255, cv::THRESH_BINARY);

cv::Mat satMask; // saturation mask
satMask = mask1 & mask2;

// combined mask
mask = hueMask&satMask;
}

int main()
{
// read the image
cv::Mat image= cv::imread("boldt.jpg");
if (!image.data)
return 0;

// show original image
cv::namedWindow("Original image");
cv::imshow("Original image",image);

// convert into HSV space
cv::Mat hsv;
cv::cvtColor(image, hsv, CV_BGR2HSV);

// split the 3 channels into 3 images
std::vector<cv::Mat> channels;
cv::split(hsv,channels);
// channels[0] is the Hue
// channels[1] is the Saturation
// channels[2] is the Value

// display value
cv::namedWindow("Value");
cv::imshow("Value",channels[2]);

// display saturation
cv::namedWindow("Saturation");
cv::imshow("Saturation",channels[1]);

// display hue
cv::namedWindow("Hue");
cv::imshow("Hue",channels[0]);

// image with fixed value
cv::Mat newImage;
cv::Mat tmp(channels[2].clone());
// Value channel will be 255 for all pixels
channels[2]= 255;
// merge back the channels
cv::merge(channels,hsv);
// re-convert to BGR
cv::cvtColor(hsv,newImage,CV_HSV2BGR);

cv::namedWindow("Fixed Value Image");
cv::imshow("Fixed Value Image",newImage);

// image with fixed saturation
channels[1]= 255;
channels[2]= tmp;
cv::merge(channels,hsv);
cv::cvtColor(hsv,newImage,CV_HSV2BGR);

cv::namedWindow("Fixed saturation");
cv::imshow("Fixed saturation",newImage);

// image with fixed value and fixed saturation
channels[1]= 255;
channels[2]= 255;
cv::merge(channels,hsv);
cv::cvtColor(hsv,newImage,CV_HSV2BGR);

cv::namedWindow("Fixed saturation/value");
cv::imshow("Fixed saturation/value",newImage);

// Testing skin detection

// read the image
image= cv::imread("girl.jpg");
if (!image.data)
return 0;

// show original image
cv::namedWindow("Original image");
cv::imshow("Original image",image);

// detect skin tone
cv::Mat mask;
detectHScolor(image,
160, 10, // hue from 320 degrees to 20 degrees
25, 166, // saturation from ~0.1 to 0.65
mask);

// show masked image
cv::Mat detected(image.size(), CV_8UC3, cv::Scalar(0, 0, 0));
image.copyTo(detected, mask);
cv::imshow("Detection result",detected);

// A test comparing luminance and brightness

// create linear intensity image
cv::Mat linear(100,256,CV_8U);
for (int i=0; i<256; i++) {

linear.col(i)= i;
}

// create a Lab image
linear.copyTo(channels[0]);
cv::Mat constante(100,256,CV_8U,cv::Scalar(128));
constante.copyTo(channels[1]);
constante.copyTo(channels[2]);
cv::merge(channels,image);

// convert back to BGR
cv::Mat brightness;
cv::cvtColor(image,brightness, CV_Lab2BGR);
cv::split(brightness, channels);

// create combined image
cv::Mat combined(200,256, CV_8U);
cv::Mat half1(combined,cv::Rect(0,0,256,100));
linear.copyTo(half1);
cv::Mat half2(combined,cv::Rect(0,100,256,100));
channels[0].copyTo(half2);

cv::namedWindow("Luminance vs Brightness");
cv::imshow("Luminance vs Brightness",combined);

cv::waitKey();
}

منبع

مارس 28, 2020/0 دیدگاه /توسط admin
https://behsanandish.com/wp-content/uploads/2018/08/HSV_cone.jpg 450 600 admin https://behsanandish.com/wp-content/uploads/2020/09/logo-farsi-englisi-300x195-1.png admin2020-03-28 10:00:242020-03-28 10:00:24تبدیل فضای رنگی به یک دیگر

حذف نویز تصویر به کمک هوش مصنوعی

وبلاگ

مقدمه

حذف نویز تصاویر _ گروهی از محققان سیستمی را توسعه داده اند که با استفاده از هوش مصنوعی و بدون نیاز به عکس های واضح از منبع، نویز تصاویر را از بین می برد.

شرح خبر

این گروه متشکل از محققان انویدیا، MIT و دانشگاه آلتو در توسعه این سیستم از یادگیری عمیق بهره برده اند که بر خلاف روش های قبلی نیازی به مشاهده نمونه های کامل از تصویر مورد نظر داشته و تنها با استفاده از داده های ناقص یا دو تصویر غیر واضح به افزایش کیفیت تصاویر می پردازد. علاوه بر این نتیجه نهایی افزایش کیفیت، حذف متون یا اصلاح تصویر نسبت به روش های قبلی به مراتب بهتر است.

یادگیری عمیق گونه ای از یادگیری ماشینی است که در آن سیستم با کمک هوش مصنوعی نحوه بازیابی تصاویر دارای نویز از طریق کنار هم قرار دادن تصاویر، متون یا ویدیوها را فرا می گیرد. یکی دیگر از قابلیت های جالب توجه سیستم جدید افزایش کیفیت تصاویر در عرض چند میلی ثانیه است.
مبنای کار هوش مصنوعی در این سیستم بر شبکه عصبی استوار است که با استفاده از تصاویر دارای نویز آموزش دیده است. در این روش هوش مصنوعی علی رغم عدم نیاز به تصاویر واضح از منبع باید دوبار تصویر را مشاهده کند.

آزمایشات این گروه نشان داده که از تصاویر تخریب شده از طریق نویزهایی نظیر «گاوسی افزایشی»، «پواسون» یا ترکیب آنها می توان برای تولید تصاویر بهینه ای استفاده کرد که کیفیت آن‌ها با تصاویر بازیابی‌ شده از عکس های بدون مشکل تقریبا برابر است.
کاربردهای علمی این سیستم مبتنی بر یادگیری عمیق شامل زمینه های پزشکی است که در آن می توان کیفیت اسکن های MRI و تصاویر دیگر را به شکل چشمگیری افزایش داد.

چند ماه قبل نیز تیم تحقیقاتی انستیتوی «ماکس پلانک» به رهبری دکتر مهدی سجادی، الگوریتمی را توسعه داده بودند که با بهره گیری از هوش مصنوعی وضوح تصاویر بی کیفیت را تا حد زیادی بهبود می بخشید.

مارس 27, 2020/0 دیدگاه /توسط admin
https://behsanandish.com/wp-content/uploads/2018/07/photo_2018-07-25_11-18-06.jpg 380 600 admin https://behsanandish.com/wp-content/uploads/2020/09/logo-farsi-englisi-300x195-1.png admin2020-03-27 10:00:282020-03-27 10:00:28حذف نویز تصویر به کمک هوش مصنوعی

کانال بهسان اندیش در تلگرام و سایر پیام رسان ها

وبلاگ

راه اندازی کانال شرکت بهسان اندیش در تلگرام و سایر پیام رسان ها

کانال شرکت بهسان اندیش در تلگرام و سایر پیام رسان ها– در دنیای مجازی که شبکه های اجتماعی همچون کشوری مستقل عمل می کنند دسته ای از کاربران متناسب با فعالیت خود نیاز به امکاناتی خاص تر دارند. سازمان های دولتی و خصوصی، برند ها، شخصیت های سیاسی، هنری، فرهنگی و… برای ایجاد ارتباط و پیشبرد فعالیت خود نیاز به اعتماد مخاطب دارند.

در شبکه های اجتماعی ، گاه هویت واقعی یک کاربر مشخص نیست و ممکن است دیگران به اسم سازمان ها و اشخاص صفحاتی را ایجاد کنند و نام آن برند یا شخص را خدشه دار نمایند و با توجه به آنکه ایجاد اعتماد در مخاطب، امری مشکل است ، تلگرام با رسمیت بخشیدن به صفحات و تایید آنها این رویکرد را متفاوت کرده است.

شرکت بهسان اندیش به منظور ارائه خدمات و فعالیت های خود در شبکه های اجتماعی اقدام به راه اندازی کانال شرکت بهسان اندیش در تلگرام و پیام رسان های داخلی نموده که علاقمندان می توانند از طریق لینک زیر در این پیام رسان ها ما را دنبال کنید:

? پیام رسان تلگرام (مرکز اصلی اطلاع رسانی شرکت) :

https://t.me/Behsan_Transit

 

? در سروش (با اینترنت نیم بها) :
sapp.ir/behsanandish

 

 

 

مارس 26, 2020/0 دیدگاه /توسط admin
https://behsanandish.com/wp-content/uploads/2018/05/social-network.jpg 800 800 admin https://behsanandish.com/wp-content/uploads/2020/09/logo-farsi-englisi-300x195-1.png admin2020-03-26 10:00:012020-03-26 10:00:01کانال بهسان اندیش در تلگرام و سایر پیام رسان ها

تشخیص و شمارش خودرو های در حال حرکت در متلب

پروژه ها و سورس کدهای پردازش تصویر و بینایی ماشین

کد برنامه تشخیص و شمارش خودروهای در حال حرکت در زبان Matlab

در این پروژه سعی داریم با استفاده از روش «رهگیری اهداف چندگانه» اقدام به شناسایی اشیاء در حال حرکت نموده و آنها را شمارش نمائیم. این برنامه می تواند جهت شمارش تعداد خودروهای عبوری، تعداد افراد در حال تردد و… مورد استفاده قرار بگیرد. این الگوریتم توسط شرکت mathwork پیاده سازی گردیده و جهت استفاده علاقه مندان ادامه ارائه می گردد.

باتوجه به توضیحات کامل این پروژه از ذکر توضیحات اضافه اجتناب میکنیم و فقط شرحی مختصر از عماکرد برنامه ارائه می نماییم. ابتدا با استفاده از چند فریم به عنوان نمونه، زمینه(background) را شناسایی می کنیم و سپس به اقدام به تشخیص آبجکت های(foreground) می نماییم. سپس با استفاده از روش کالمن (Kalman) اقدام به رهگیری آبجکت هایی که از مقداری مشخص (اصلاحا blob) بزرگتر هستند می نمائیم.  در ادامه آبجکت ها را رهگیری می کنیم تا هنگامی که از صفحه خارج شوند. نکته جالب توجه این هست که اگر آبجکتی موقتا ناپیدا شود(مثلا زیر پل یا درخت قرار بگیرد) به عنوان «Predicted» برچسب خورده و پس از پیدا شدن مجددا به عنوان همان آبجکت قبلی شناسایی می شود.

 

تشخیص و شمارش خودروهای در حال حرکت

سورس کد برنامه تشخیص و شمارش خودرو:

 

%% Multiple Object Tracking Tutorial
% This example shows how to perform automatic detection and motion-based
% tracking of moving objects in a video. It simplifies the example
% <matlab:helpview(fullfile(docroot,'toolbox','vision','vision.map'),'MotionBasedMultiObjectTrackingExample')
% Motion-Based Multiple Object Tracking> and uses the |multiObjectTracker|
% available in Automated Driving System Toolbox.
%
% Copyright 2016 The MathWorks, Inc.
 
%%
% Detection of moving objects and motion-based tracking are important 
% components of many computer vision applications, including activity
% recognition, traffic monitoring, and automotive safety. The problem of
% motion-based object tracking can be divided into two parts:
%
% # Detecting moving objects in each frame 
% # Tracking the moving objects from frame to frame 
%
% The detection of moving objects uses a background subtraction algorithm
% based on Gaussian mixture models. Morphological operations are applied to
% the resulting foreground mask to eliminate noise. Finally, blob analysis
% detects groups of connected pixels, which are likely to correspond to
% moving objects. 
%
% The tracking of moving objects from frame to frame is done by the
% |multiObjectTracker| object that is responsible for the following:
%
% # Assigning detections to tracks. 
% # Initializing new tracks based on unassigned detections. All tracks are
% initialized as |'Tentative'|, accounting for the possibility that they
% resulted from a false detection.
% # Confirming tracks if they have more than _M_ assigned detections in _N_
% frames.
% # Updating existing tracks based on assigned detections.
% # Coasting (predicting) existing unassigned tracks.
% # Deleting tracks if they have remained unassigned (coasted) for too long.
%
% The assignment of detections to the same object is based solely on
% motion. The motion of each track is estimated by a Kalman filter. The
% filter predicts the track's location in each frame, and determines the
% likelihood of each detection being assigned to each track. To initialize
% the filter that you design, use the |FilterInitializationFcn| property of
% the |multiObjectTracker|.
%
% For more information, see
% <matlab:helpview(fullfile(docroot,'toolbox','vision','vision.map'),'multipleObjectTracking') Multiple Object Tracking>.
%
% This example is a function, with the main body at the top and helper 
% routines in the form of 
% <matlab:helpview(fullfile(docroot,'toolbox','matlab','matlab_prog','matlab_prog.map'),'nested_functions') nested functions> 
% below.
 
function p12_on_video_using_tracking_matlab_sample()
% Create objects used for reading video and displaying the results.
videoObjects = setupVideoObjects('6.mp4');
 
% Create objects used for detecting objects in the foreground of the video.
minBlobArea = 10000; % Minimum blob size, in pixels, to be considered as a detection
detectorObjects = setupDetectorObjects(minBlobArea);
 
%% Create the Multi-Object Tracker
% When creating a |multiObjectTracker|, consider the following: 
%
% # |FilterInitializationFcn|: The likely motion and measurement models. 
% In this case, the objects are expected to have a constant speed motion.
% The |initDemoFilter| function configures a linear Kalman filter to 
% track the motion. See the 'Define a Kalman filter' section for details.
% # |AssignmentThreshold|: How far detections may fall from tracks. 
% The default value for this parameter is 30. If there are detections
% that are not assigned to tracks, but should be, increase this value. If
% there are detections that get assigned to tracks that are too far,
% decrease this value.
% # |NumCoastingUpdates|: How long a track is maintained before deletion.
% In this case, since the video has 30 frames per second, a reasonable
% value is about 0.75 seconds (22 frames).
% # |ConfirmationParameters|: The parameters controlling track confirmation.
% A track is initialized with every unassigned detection. Some of these
% detections might be false, so initially, all tracks are |'Tentative'|. 
% To confirm a track, it has to be detected at least _M_ out of _N_
% frames. The choice of _M_ and _N_ depends on the visibility of the
% objects. This example assumes a visibility of 6 out of 10 frames.
tracker = multiObjectTracker(...
 'FilterInitializationFcn', @initDemoFilter, ...
 'AssignmentThreshold', 30, ...
 'NumCoastingUpdates', 22, ...
 'ConfirmationParameters', [6 10] ...
 );
 
%% Define a Kalman Filter
% When defining a tracking filter for the motion, complete the following
% steps:
%
% *Step 1: Define the motion model and state*
%
% In this example, use a constant velocity model in a 2-D rectangular
% frame.
%
% # The state is |[x;vx;y;vy]|.
% # The state transition model matrix is |A = [1 dt 0 0; 0 1 0 0; 0 0 1 dt; 0 0 0 1]|.
% # Assume that |dt = 1|.
%
% *Step 2: Define the process noise*
%
% The process noise represents the parts of the process that are not taken
% into account in the model. For example, in a constant velocity model, the
% acceleration is neglected.
%
% *Step 3: Define the measurement model*
%
% In this example, only the position (|[x;y]|) is measured. So, the
% measurement model is |H = [1 0 0 0; 0 0 1 0]|.
%
% Note: To preconfigure these parameters, define the |'MotionModel'|
% property as |'2D Constant Velocity'|.
%
% *Step 4: Initialize the state vector based on the sensor measurement*
%
% In this example, because the measurement is |[x;y]| and the state is
% |[x;vx;y;vy]|, initializing the state vector is straightforward. Because
% there is no measurement of the velocity, initialize the |vx| and |vy|
% components to 0.
%
% *Step 5: Define an initial state covariance*
%
% In this example, the measurements are quite noisy, so define the initial 
% state covariance to be quite large: |stateCov = diag([50, 50, 50, 50])|
%
% *Step 6: Create the correct filter*
% 
% In this example, all the models are linear, so use |trackingKF| as the
% tracking filter.
 function filter = initDemoFilter(detection)
 % Initialize a Kalman filter for this example.
 
 % Define the initial state.
 state = [detection.Measurement(1); 0; detection.Measurement(2); 0];
 
 % Define the initial state covariance.
 stateCov = diag([50, 50, 50, 50]);
 
 % Create the tracking filter.
 filter = trackingKF('MotionModel', '2D Constant Velocity', ... 
 'State', state, ...
 'StateCovariance', stateCov, ... 
 'MeasurementNoise', detection.MeasurementNoise(1:2,1:2) ... 
 );
 end
 
%%% 
% The following loop runs the video clip, detects moving objects in the
% video, and tracks them across video frames. 
 
% Count frames to create a sense of time.
frameCount = 0;
while hasFrame(videoObjects.reader)
 % Read a video frame and detect objects in it.
 frameCount = frameCount + 1; % Promote frame count
 frame = readFrame(videoObjects.reader); % Read frame 
 [detections, mask] = detectObjects(detectorObjects, frame); % Detect objects in video frame 
 
 % Run the tracker on the preprocessed detections.
 confirmedTracks = updateTracks(tracker, detections, frameCount);
 
 % Display the tracking results on the video.
 displayTrackingResults(videoObjects, confirmedTracks, frame, mask);
end
%% Create Video Objects
% Create objects used for reading and displaying the video frames.
 
 function videoObjects = setupVideoObjects(filename)
 % Initialize video I/O
 % Create objects for reading a video from a file, drawing the tracked
 % objects in each frame, and playing the video.
 
 % Create a video file reader.
 videoObjects.reader = VideoReader(filename);
 
 % Create two video players: one to display the video,
 % and one to display the foreground mask. 
 videoObjects.maskPlayer = vision.VideoPlayer('Position', [20, 400, 700, 400]);
 videoObjects.videoPlayer = vision.VideoPlayer('Position', [740, 400, 700, 400]);
 end
 
%% Create Detector Objects
% Create objects used for detecting foreground objects.
% Use |minBlobArea| to define the size of the blob, in pixels, that is
% considered to be a detection. 
%
% * Increase |minBlobArea| to avoid detecting small blobs, which are more
% likely to be false detections, or if several detections are created for 
% the same object due to partial occlusion.
% * Decrease |minBlobArea| if objects are detected too late or not at all.
 
 function detectorObjects = setupDetectorObjects(minBlobArea)
 % Create System objects for foreground detection and blob analysis
 
 % The foreground detector segments moving objects from the
 % background. It outputs a binary mask, where the pixel value of 1
 % corresponds to the foreground and the value of 0 corresponds to
 % the background.
 
 detectorObjects.detector = vision.ForegroundDetector('NumGaussians', 3, ...
 'NumTrainingFrames', 40, 'MinimumBackgroundRatio', 0.7);
 
 % Connected groups of foreground pixels are likely to correspond to
 % moving objects. The blob analysis System object finds such
 % groups (called 'blobs' or 'connected components') and computes
 % their characteristics, such as their areas, centroids, and the
 % bounding boxes.
 
 detectorObjects.blobAnalyzer = vision.BlobAnalysis('BoundingBoxOutputPort', true, ...
 'AreaOutputPort', true, 'CentroidOutputPort', true, ...
 'MinimumBlobArea', minBlobArea);
 end
 
%% Detect Objects
% The |detectObjects| function returns the centroids and the bounding boxes
% of the detected objects as a list of |objectDetection| objects. You can
% supply this list as an input to the |multiObjectTracker|. The
% |detectObjects| function also returns the binary mask, which has the same
% size as the input frame. Pixels with a value of 1 correspond to the
% foreground. Pixels with a value of 0 correspond to the background.
%
% The function performs motion segmentation using the foreground detector. 
% It then performs morphological operations on the resulting binary mask to
% remove noisy pixels and to fill the holes in the remaining blobs.
%
% When creating the |objectDetection| list, the |frameCount| serves as the
% time input, and the centroids of the detected blobs serve as the
% measurement. The list also has two optional name-value pairs:
%
% * |MeasurementNoise| - Blob detection is noisy, and this example defines 
% a large measurement noise value.
% * |ObjectAttributes| - The detected bounding boxes that get passed to the
% track display are added to this argument.
 
 function [detections, mask] = detectObjects(detectorObjects, frame)
 % Expected uncertainty (noise) for the blob centroid.
 measurementNoise = 100*eye(2); 
 % Detect foreground.
 mask = detectorObjects.detector.step(frame);
 
 % Apply morphological operations to remove noise and fill in holes.
 mask = imopen(mask, strel('rectangle', [9, 9]));
 mask = imclose(mask, strel('rectangle', [10, 10])); 
 mask=bwareaopen(mask,1500);
 mask = imfill(mask, 'holes');
 
 % Perform blob analysis to find connected components.
 [~, centroids, bboxes] = detectorObjects.blobAnalyzer.step(mask);
 
 % Formulate the detections as a list of objectDetection objects.
 numDetections = size(centroids, 1);
 detections = cell(numDetections, 1);
 for i = 1:numDetections
 detections{i} = objectDetection(frameCount, centroids(i,:), ...
 'MeasurementNoise', measurementNoise, ...
 'ObjectAttributes', {bboxes(i,:)});
 end
 end
 
%% Display Tracking Results
% The |displayTrackingResults| function draws a bounding box and label ID
% for each track on the video frame and foreground mask. It then displays
% the frame and the mask in their respective video players.
 
 function displayTrackingResults(videoObjects, confirmedTracks, frame, mask)
 % Convert the frame and the mask to uint8 RGB.
 frame = im2uint8(frame);
 mask = uint8(repmat(mask, [1, 1, 3])) .* 255;
 
 if ~isempty(confirmedTracks) 
 % Display the objects. If an object has not been detected
 % in this frame, display its predicted bounding box.
 numRelTr = numel(confirmedTracks);
 boxes = zeros(numRelTr, 4);
 ids = zeros(numRelTr, 1, 'int32');
 predictedTrackInds = zeros(numRelTr, 1);
 for tr = 1:numRelTr
 % Get bounding boxes.
 boxes(tr, : ) = confirmedTracks(tr).ObjectAttributes{1}{1};
 
 % Get IDs.
 ids(tr) = confirmedTracks(tr).TrackID;
 
 if confirmedTracks(tr).IsCoasted
 predictedTrackInds(tr) = tr;
 end
 end
 
 predictedTrackInds = predictedTrackInds(predictedTrackInds > 0);
 
 % Create labels for objects that display the predicted rather 
 % than the actual location.
 labels = cellstr(int2str(ids));
 
 isPredicted = cell(size(labels));
 isPredicted(predictedTrackInds) = {' predicted'};
 labels = strcat(labels, isPredicted);
 
 % Draw the objects on the frame.
 frame = insertObjectAnnotation(frame, 'rectangle', boxes, labels);
 
 % Draw the objects on the mask.
 mask = insertObjectAnnotation(mask, 'rectangle', boxes, labels);
 end
 
 % Display the mask and the frame.
 videoObjects.maskPlayer.step(mask); 
 videoObjects.videoPlayer.step(frame);
 end
displayEndOfDemoMessage(mfilename)
end
%% Summary
% In this example, you created a motion-based system for detecting and
% tracking multiple moving objects. Try using a different video to see if
% you can detect and track objects. Try modifying the parameters of the
% |multiObjectTracker|.
%
% The tracking in this example was based solely on motion, with the
% assumption that all objects move in a straight line with constant speed.
% When the motion of an object significantly deviates from this model, the
% example can produce tracking errors. Notice the mistake in tracking the
% person occluded by the tree.
%
% You can reduce the likelihood of tracking errors by using a more complex
% motion model, such as constant acceleration or constant turn. To do that,
% try defining a different tracking filter, such as |trackingEKF| or
% |trackingUKF|. 

تشخیص و شمارش خودروهای در حال حرکت

 

منبع:

https://www.mathworks.com/

 

جهت دانلود بر روی لینک زیر کلیک نمایید.

تشخیص و شمارش خودروهای درحال حرکت

ویدئوی پیوست برنامه تشخیص و شمارش خودورهای در حال حرکت

رمز فایل : behsanandish.com

 

مارس 25, 2020/0 دیدگاه /توسط admin
https://behsanandish.com/wp-content/uploads/2018/05/carCount.jpg 800 1133 admin https://behsanandish.com/wp-content/uploads/2020/09/logo-farsi-englisi-300x195-1.png admin2020-03-25 10:00:252020-03-25 10:00:25تشخیص و شمارش خودرو های در حال حرکت در متلب

محاسبه نرم (soft computing)

آموزش های عمومی هوش مصنوعی

محاسبات نرم

محاسبات نرم (به انگلیسی: soft computing) به مجموعه‌ای از شیوه‌های جدید محاسباتی در علوم رایانه، هوش مصنوعی، یادگیری ماشینی و بسیاری از زمینه‌های کاربردی دیگر اطلاق می‌شود. در تمامی این زمینه‌ها به مطالعه، مدل‌سازی و آنالیز پدیده‌های بسیار پیچیده‌ای نیاز است که شیوه‌های علمی دقیق در گذشته، در حل آسان، تحلیلی، و کامل آنها موفق نبوده‌اند.

نکته‌ها و چرایی‌های فلسفی

در مقایسه با تدابیر علمی نرم، روش‌های علمی به‌کاررفته در سده‌های پیشین، تنها از عهدهٔ مدل‌سازی و آنالیز سامانه‌های نسبتاً ساده در مکانیک، فیزیک، و برخی از زمینه‌های کاربردی و مهندسیبرآمده‌اند. مسائل پیچیده‌تری همچون سامانه‌های وابسته به علوم زیست‌شناسی و پزشکی، علوم اجتماعی، علوم انسانی، علوم مدیریت و نظایر آنها بیرون از قلمرو اصلی و توفیق‌آفرین روش‌هایریاضی و تحلیلی دقیق باقی مانده‌بودند. شایان ذکر است که خصایص سادگی و پیچیدگی اموری هستند نسبی، و به‌طور یقین، اغلب مدل‌سازی‌های ریاضی و علمی موفق در گذشته هم، به مفهوم مطلق کلام، بسیار پراهمیت و پیچیده بوده‌اند.

محاسبات نرم با تقبل نادقیق بودن و با محور قراردادن ذهن انسان به‌پیش می‌رود. اصل هدایت‌کنندهٔ محاسبات نرم بهره‌برداری از خاصیت عدم دقیق‌بودن جهت مهارکردن مسئله و پایین‌آوردن هزینهٔ راه‌حل است.

محاسبات نرم را می‌شود حاصل تلاش‌های جدید علمی دانست که مدل‌سازی، تحلیل، و در نهایت کنترل سیستم‌های پیچیده را با سهولت و موفقیت زیادتری امکان‌پذیر می‌سازد. به عنوان مهم‌ترین شاخه‌های این محاسبات، باید منطق فازی، شبکه‌های عصبی مصنوعی، و الگوریتم ژنتیک را بر شمرد.

برخلاف شیوه‌های محاسباتی سخت که تمامی همت و توان خود را به دقیق‌بودن، و “در جهتِ مدل نمودنِ کاملِ حقیقت”، معطوف می‌دارند، روش‌های نرم، براساس تحمل نادقیق‌نگری‌ها، حقایق جزئی و ناکامل، و فقدان اطمینان، استوار گردیده‌اند. درک هرچه روشن‌تر از چرایی، چگونگی، و نیز فلسفهٔ این‌گونه محاسباتِ جدید است که افق‌های جدید در علوم پیچیدهٔ آینده را روشن می‌سازد.

یکی از بزرگ‌ترین زمینه‌های کاربرد محاسبات نرم در ایجاد و گسترش وب معنی‌گرا خواهد بود.

محاسبات نرم در مقایسه با محاسبات سخت به زبان سادهٔ علمی، روش‌های سخت، برآمده از طبیعت و نحوهٔ رفتار ماشین است؛ ولی، در مقابل، شیوه‌های نرم، به انسان و تدابیر اتخاذشده از سویذهن او به‌ منظور حل‌ و فصلِ مسائل، اختصاص پیدا می‌کند.

منبع

 


تعریف محاسبات نرم

شناسایی و نحوه کنترل رفتار یک پدیده و سیستم، از مباحث مهم و کلیدی در امر سیستم کنترل می باشد. اصولاً جهت شناسایی و مدل سازی رفتار یک سیستم به معادله ریاضی آن رجوع می شود. بسیاری از پدیده ها رفتار پیچیده ای دارند و براحتی نمی توان معادله ریاضی آن را بدست آورد. مثلاً نحوه کنترل نوسان بار جرثقیل هوایی جهت قرار دادن بار در نقطه مطلوب، بسیار پیچیده است و اغلب به ۱۰۰% دقیق نیز نخواهد بود و حداقل نیازمند یک معادله دیفرانسل درجه ۵ جهت پیاده سازی آن خواهیم بود.

در صورتی که فقط یک متغیر دیگر بخواهیم به سیستم فوق اضافه نماییم، ممکن است این معادله دیفرانسیل پیچیده تر نیز بشود. بدست آوردن خود این معادله ریاضی دردسر فراوانی دارد، پیاده سازی آن در یک سیستم کنترل الکترونیکی چالش بزرگتری است.

مغز انسان، هرگز برای برخورد با چالش ها و مسائل روزمره پیرامونش، خود را درگیر فرمول و محاسبات پیچیده نمی کند. انسان براساس یادگیری ها و آموخته های خود تصمیماتی می گیرد که منجر به کنترل مسائل پیچیده خواهد بود. اما همین انسان در صورتی که بخواهد نحوه برخورد با یک فرد متخلف را مدل نماید و آن را به یک کامپیوتر بسپارد، حداقل نیاز به دانش معادلات دیفرانسیل، معادلات لاپلاس و … می باشد. اینگونه محاسبات خشک و مبتنی بر معادلات دقیق ریاضیات تحت عنوان “محاسبات سخت” نامیده می شوند.

از طرف دیگر روش هایی وجود دارند که می توانند رفتار پیچیده ترین و مغشوش ترین پدیده ها را نیز با دقت بالایی (نه بصورت ۱۰۰ %دقیق) مدل سازی نمایند. این محاسبات که تحت عنوان “محاسبات نرم” شناخته می شوند، مبتنی بر استنتاج ذهن انسان، شبیه سازی عملکرد نرون های مغز، شبیه سازی رفتار پدیده های اجتماعی طبیعت (الگوریتم های تکاملی مثل ژنتیک، فاخته، کلونی مورچه و…) است.

شبکه های عصبی مصنوعی، سیستم های فازی و الگوریتم های تکاملی از مهمترین شاخه های محاسبات نرم محسوب می شوند. یک راننده ماهر جرثقیل هوایی جهت کنترل نوسان بار، هرگز در ذهنش یک معادله درجه ۵ را بکار نمی گیرد. او با استفاده از یک سیستم استنتاج فازی ذهنی (تعدادی اگر-آنگاه) به خوبی این سیستم پیچیده را با استفاده از تجربیاتش کنترل می نماید. در واقع می توان این تجربیات فرد متخصص را بصورت قوانین فازی درآورد و به سیستم کنترل سپرد.

در سال های اخیر، کاربرد محاسبات نرم در هوش مصنوعی، داده کاوی و  سیستم های کنترل هوشمند بسیار پر رنگ و چاره ساز بوده است.

منابع

  1. https://fa.wikipedia.org
  2. http://mohammadisite.ir
مارس 24, 2020/0 دیدگاه /توسط daliri
https://behsanandish.com/wp-content/uploads/2018/04/r_2764_151207121647.jpg 256 256 daliri https://behsanandish.com/wp-content/uploads/2020/09/logo-farsi-englisi-300x195-1.png daliri2020-03-24 10:00:422020-03-24 10:00:42محاسبه نرم (soft computing)

مقالات و جزوات آموزشی پیرامون هیستوگرام

آموزش عمومی پردازش تصویر و بینایی ماشین, مقالات

مقالات

1.بررسی روشهای متعادل سازی هیستوگرام در بهبود تصویر

چکیده: افزایش کنتراست به عنوان یکی از مسائل مهم در پردازش تصویر است.متعادل سازی هیستوگرام (HE) یکی از روش های معمول برای بهبود کنتراست در تصاویر دیجیتال است و یک روش افزایش کنتراست ساده و موثر است با این حال، این روش معمولا باعث کنتراست بیش از حد می شود که باعث ظاهر غیر طبیعی در تصویر پردازش شده می شود. هم چنین HE میانگین روشنایی تصویر را به خوبی حفظ نمی کند بنابراین روش های دیگری برای متعادل سازی تصویر با حفظ روشنایی تصویر ارائه شده است. این مقاله به بررسی فرم های جدید هیستوگرام برای افزایش کنتراست تصویر می پردازد. تفاوت عمده میان روش ها معیارهای مورد استفاده، تقسیم هیستوگرام ورودی است. متعادل سازی دو هیستوگرام با حفظ روشنایی(BBHE) میانگین مقادیر شدت به عنوان نقطه جداسازی استفاده می کند. متعادل سازی دو هیستوگرام با حداقل خطای متوسط روشنایی(MMBEBHE) است. متعادل سازی هیستوگرام متوسط – مجرای بازگشتی(RMSHE) بهبود یافته BBHE است. روش یکنواخت سازی پویلی هیستوگرام با حفظ روشنایی(BPDHE) بسط یافته MPHBP و DHE است.
واژه های کلیدی: بهبود کنتراست، متعادل سازی هیستوگرام، خطای متوسط روشنایی، تقسیم بندی هیستوگرام، حفظ روشنایی
فایل PDF – در 22 صفحه- نویسنده : نوشین الله بخشی

بررسی روشهای متعادل سازی هیستوگرام در بهبود تصویر

رمز فایل : behsanandish.com


2. بهبود کیفیت تصاویر آندوسکوپی از طریق تعدیل هیستوگرام فازی و توزیع ناهمسانگرد کنتراست

چکیده: در این مقاله روشی جدید برای بهبود کیفیت تصاویر آندوسکوپی به وسیله ی تعدیل هیستوگرام فازی و توزیع ناهمسانگرد کنتراست ارائه می شود. تصاویر آندوسکوپی موجود در کشورمان از لحاظ نور و کیفیت وضعیت مناسبی ندارند و همین موضوع تبدیل به چالشی جهت تشخیص انواع بیماری های دستگاه گوارش شده است. برای غلبه بر این مشکلات و کمک به پزشکان برای تشخیص بهتر، در این مقاله یک روش وفقی با استفاده از تعدیل هیستوگرام فازی و توزیع کنتراست ارائه می شود. همچنین در روش پیشنهادی مفهوم جدیدی از توزیع کنتراست بر اساس آنالیز محلی تصاویر آندوسکوپی معرفی می شود. سپس به وسیله انتخاب وفقی پارامتر هدایت که نقشی مهم در توزیع ایفا می کند، توزیع کنتراست به منظور بهبود کیفیت تصاویر آندوسکوپی به تصویر اعمال می شود و در نهایت بعد از انتقال به سه فضای رنگ YIQ ،XYZ و HSI به کمک روش تعدیل هیستوگرام فازی، تغییرات نامحسوس رنگ نمایان تر می شود. نتایج تجربی نشان می دهد که روش ارئه شده عملکرد قابل توجهی در افزایش قابلیت دیداری تصاویر آندوسکوپی از خود نشان می دهد.

 

واژه های کلیدی: تصاویر آندوسکوپی، توزیع ناهمسانگرد کنتراست، تعدیل هیستوگرام فازی

فایل PDF – در 6 صفحه- نویسندگان : حسین قیصری، میرحسین دزفولیان

بررسی روشهای متعادل سازی هیستوگرام در بهبود تصویر

رمز فایل : behsanandish.com


3. تشخیص زود هنگام پوسیدگی دندان با استفاده از آنالیز هیستوگرام و طیف توان

چکیده: این مقاله به تشخیص پوسیدگی در مراحل اولیه با استفاده از آنالیز هیستوگرام و طیف توان می پردازد. داده های مورد نیاز شامل تصاویر اشعه ایکس دندان های نرمال و پوسیده از هر شخص می باشد که توسط ابزار پردازش سیگنال MATLAB آنالیز می شود. برای هر تصویر، هیستوگرام و طیف توان محاسبه می شود. سپس یک بررسی دقیق انجام می گیرد. نتایج نشان می دهد که هیستوگرام شدت پیکسل برای دندان های نرمال و پوسیده در محدوده های مختلف متمرکز شده است و تفاوت های آشکاری در بخش های طیفی بدست آمده بین دندان های نرمال و پوسیده وجود دارد. طیف توان دندان پوسیده در مقایسه با طیف دندان نرمال دارای بخش های فرکانس بالااست. هم چنین به کارگیری GUI(واسط کاربر گرافیکی) این کار را آسان تر و وابسته به تعامل کاربر می کند. این روش برای دندان پزشکان در تشخیص پوسیدگی در مراحل اولیه بسیار سودمند می باشد.

واژه های کلیدی: پوسیدگی دندان، هیستوگرام، طیف توان، GUI، شدت پیکسل

فایل PDF – در 6 صفحه- نویسندگان : محمد کریمی مریدانی، شبنم قهاری و فاطمه غلامی

تشخیص زود هنگام پوسیدگی دندان با استفاده از آنالیز هیستوگرام و طیف توان

رمز فایل : behsanandish.com


4. بازیابی تصاویر چهره با استفاده از ترکیب هیستوگرام گرادیان و الگوی باینری محلی

چکیده: بازیابی چهره، یک موضوع تحقیقاتی مهم در پردازش تصویر است که هدف آن استخراج تصاویر چهره ای است که مشابه با یک تصویر جستار باشند. در این مقاله روشی برای بازیابی تصاویر چهره با استفاده از ترکیب هیستوگرام گرادیان و الگوی باینری محلی(LBP) پیشنهاد شده است. ترکیب این دو روش مقاومت در مقابل تغییرات موجود در تصاویر چهره را افزایش می دهد و در نتیجه عملکرد سیستم را در بازیابی تصاویر بهبود می بخشد. برای افزایش توانایی سیستم، یک طرح فیدبک ارتباطی مبتنی بر ماشین بردار پشتیبان(SVM) معرفی می کنیم. آزمایش ها بر روی پایگاه داده ی AR و در دو حالت بدون تصاویر با مانع و با تصاویر با مانع اناجم شده است. نتایج آزمایش ها نشان می دهد که روش پیشنادی ما به خوبی می تواند تصاویر چهره را بازیابی کند. در ادامه، روش پیشنهادی خود را با برخی از روش های موفق در توصیف چهره مقایسه کرده ایم. معیار دقت متوسط میانگین(MAP) برای روش پیشنهادی در حالت های اول و دوم آزمایش به ترتیب برابر است با 94/40%  و 68/12%. در حالی که بهترین نرخ برای روش های مقایسه شده برابر است با 90/37% و 61/99%. این نتایج نشان می دهد روش پیشنهادی ما نسبت به این روش ها بهتر عمل می کند و یک روش خوب برای بازیابی تصاویر چهره است.

واژه های کلیدی: الگوی باینری محلی، بازیابی چهره، فیدبک ارتباطی، ماشین بردار پشتیبان، هیستوگرام گرادیان.

فایل PDF – در 11 صفحه- نویسندگان : محمد قاصری و حسین ابراهیم نژاد

ﺑﺎزﯾﺎﺑﯽ ﺗﺼﺎوﯾﺮ ﭼﻬﺮه ﺑﺎ اﺳﺘﻔﺎده از ﺗﺮﮐﯿﺐ ﻫﯿﺴﺘﻮﮔﺮام ﮔﺮادﯾﺎن و اﻟﮕﻮی ﺑﺎﯾﻨﺮی ﻣﺤﻠﯽ

رمز فایل : behsanandish.com


5. بهبود وفقی کنتراست با استفاده از متعادل سازی بهینه هیستوگرام دو بعدی

چکیده: در این مقاله، برای بهبود وفقی کنتراست به ارائه و حل یک مسئله ی بهینه سازی در هیستوگرام دوبعدی پرداخته شده است. برای جلوگیری از بروز اثرات نامطلوب ناشی از دست کاری هیستوگرام تصویر، در بیان ریاضی مسأله در این مقاله همانند روش های مشابه دیگر، از یک سو هیستوگرام بهینه ی خروجی از روی هیستوگرامی دوبعدی که بیشترین شباهت را به هیستوگرام دوبعدی تصویر ورودی و نیز توزیع یکنواخت داشته باشد به دست می آید و از سویی دیگر بر خلاف دیگر روش ها، با وزن دهی وفقی، اطلاعات محلی مناسبی را نیز دراین جستجو در نظر می گیرد. نگاشت مناسب با حل این مسأله ی بهینه سازی به دست آمده و آزمایش های گوناگونی که بر روی تصاویر گوناگون انجام شده است، درستی مدل بهینه سازی را نشان می دهد. به کارگیری الگوریتم پیشنهادی بر روی تصاویر متعدد، در مقایسه با روش مرجع به صورت میانگین به بهبود 75 درصدی و 3 درصدی معیارهای AMBEN  و  DEN  منجر شده است.

واژه های کلیدی: بهبود کنتراست، هیستوگرام دوبعدی، هموارسازی هیستوگرام

فایل PDF – در 10 صفحه- نویسندگان : سحر ایروانی و مهدی ازوجی

ﺑﻬﺒﻮد وﻓﻘﯽ ﮐﻨﺘﺮاﺳﺖ ﺑﺎ اﺳﺘﻔﺎده از ﻣﺘﻌﺎدل ﺳﺎزی ﺑﻬﯿﻨﻪ ی ﻫﯿﺴﺘﻮﮔﺮام دوﺑﻌﺪی

رمز فایل : behsanandish.com


6. A Study for Applications of Histogram in Image Enhancement

مطالعه برای کاربرد هیستوگرام در بهبود تصویر

Abstract- Image Enhancement aims at improving the visual quality of input image for a particular area. The criterion used by enhancement algorithms to enhance the image is; using histogram details of that image. This paper defines the various applications of histograms through which they help in the enhancement process. The paper also represents three basic histogram processing techniques- histogram sliding, histogram stretching, and histogram equalization, and how these techniques help in enhancement process, which factors effect these techniques. We examine subjectively the effect of these processing techniques. Comparative analysis of these techniques is also carried out.

Keywords: Histogram Equalization, Histogram Sliding, Histogram Stretching, Image Enhancement, Visual Quality.

فایل PDF – در 5 صفحه- نویسندگان : Harpreet Kaur, Neelofar Sohi

A Study for Applications of Histogram in Image Enhancement

رمز فایل : behsanandish.com


7. An Adaptive Histogram Equalization Algorithm on the Image Gray Level Mapping

الگوریتم انعکاس هیستوگرام سازگار بر روی نقشه سطح خاکستری تصویر

Abstract
The conventional histogram equalization algorithm is easy causing information loss. The paper presented an adaptive histogram-based algorithm in which the information entropy remains the same. The algorithm introduces parameter ȕ in the gray level mapping formula, and takes the information entropy as the target function to adaptively adjust the spacing of two adjacent gray levels in the new histogram. So it avoids excessive gray pixel merger and excessive bright local areas of the image. Experiments show that the improved algorithm may effectively improve visual effects under the premise of the same information entropy. It is useful in CT image processing.

Keywords: Histogram Equalization; Image Enhancement; Gray Level Mapping; Information Entropy

فایل PDF – در 8 صفحه- نویسندگان : Youlian Zhu, Cheng Huang

An Adaptive Histogram Equalization Algorithm on the Image

رمز فایل : behsanandish.com


8. Contrast Enhancement Algorithm Based on Gap Adjustment for Histogram Equalization

الگوریتم تقویت کنتراست براساس تنظیم گاف برای برابری هیستوگرام

Abstract: Image enhancement methods have been widely used to improve the visual effects of images. Owing to its simplicity and effectiveness histogram equalization (HE) is one of the methods used for enhancing image contrast. However, HE may result in over-enhancement and feature loss problems that lead to unnatural look and loss of details in the processed images. Researchers have proposed various HE-based methods to solve the over-enhancement problem; however, they have largely ignored the feature loss problem. Therefore, a contrast enhancement algorithm based on gap adjustment for histogram equalization (CegaHE) is proposed. It refers to a visual contrast enhancement algorithm based on histogram equalization (VCEA), which generates visually pleasing enhancedimages,andimprovestheenhancementeffectsofVCEA.CegaHEadjuststhegapsbetween two gray values based on the adjustment equation, which takes the properties of human visual perception into consideration, to solve the over-enhancement problem. Besides, it also alleviates the feature loss problem and further enhances the textures in the dark regions of the images to improve the quality of the processed images for human visual perception. Experimental results demonstrate that CegaHE is a reliable method for contrast enhancement and that it significantly outperforms VCEA and other methods.

Keywords: cumulative distribution function (CDF); contrast enhancement; histogram equalization (HE); human visual perception; gap adjustment

فایل PDF – در 18 صفحه- نویسندگان : Chung-Cheng Chiu , and Chih-Chung Ting

Contrast Enhancement Algorithm Based on Gap

رمز فایل : behsanandish.com


9. Enhancement of Images Using Histogram Processing Techniques

بهبود تصاویر با استفاده از تکنیک های پردازش هیستوگرام

Abstract- Image enhancement is a mean as the improvement of an image appearance by increasing dominance of some features or by decreasing ambiguity between different regions of the image. Image enhancement processes consist of a collection of techniques that seek to improve the visual appearance of an image or to convert the image to a form better suited for analysis by a human or machine. Many images such as medical images, remote sensing images, electron microscopy images and even real life photographic pictures, suffer from poor contrast. Therefore it is necessary to enhance the contrast.The purpose of image enhancement methods is to increase image visibility and details. Enhanced image provide clear image to eyes or assist feature extraction processing in computer vision system. Numerous enhancement methods have been proposed but the enhancement efficiency, computational requirements, noise amplification, user intervention, and application suitability are the common factors to be considered when choosing from these different methods for specific image processing application.

Keywords: Enhancement, Histogram processing techniques, PSNR,MSE.

فایل PDF – در 5 صفحه- نویسندگان :Komal Vij , Yaduvir Singh

Enhancement of Images Using Histogram Processing

رمز فایل : behsanandish.com


10. USE OF HISTOGRAM EQUALIZATION IN IMAGE PROCESSING FOR IMAGE ENHANCEMENT

استفاده از تعادل هیستوگرام در پردازش تصویر برای افزایش تصویر

Abstract— Digital Image Processing is a rapidly evolving field with the growing applications in science & engineering. Image Processing holds the possibility of developing an ultimate machine that could perform visual functions of all living beings. The image processing is a visual task, the foremost step is to obtain an image i.e. image acquisition then enhancement and finally to process. In this paper there are details for image enhancement for the purpose of image processing. Image enhancement is basically improving the digital image quality. Image histogram is helpful in image enhancement. The histogram in the context of image processing is the operation by which the occurrences of each intensity value in the image is shown and Histogram equalization is the technique by which the dynamic range of the histogram of an image is increased.

Keywords- Image processing, image enhancement, image histogram, Histogram equalization

فایل PDF – در 5 صفحه- نویسندگان :Sapana S. Bagade , Vijaya K. Shandilya

USE OF HISTOGRAM EQUALIZATION IN IMAGE PROCESSING FOR IMAGE ENHANCEMENT

رمز فایل : behsanandish.com


جزوات آموزشی

1. Computer Vision – Histogram Processing

1. بینایی کامپیوتر- پردازش هیستوگرام

فایل PDF – در 40 صفحه- نویسنده : Dr. S. Das 

Computer Vision -histogram processing

رمز فایل : behsanandish.com


2. Digital Image Processing (CS/ECE 545)  Lecture 2: Histograms and Point Operations (Part 1)

پردازش تصویر دیجیتال(CS/ECE 545)  درس 2: هیستوگرام و عملیات نقطه

فایل PDF – در 56 صفحه- نویسنده : Prof Emmanuel Agu

Digital Image Processing-histograms and point operations

رمز فایل : behsanandish.com


3. Part 3: Image Processing – Digital Images and Intensity Histograms

بخش 3: پردازش تصویر – تصاویر دیجیتال و هیستوگرام های شدت

فایل PDF – در 57 صفحه- نویسنده : Georgy Gimel’farb

Digital Images and Intensity Histograms

رمز فایل : behsanandish.com


4.  Digital Imaging and Multimedia Histograms of Digital Images

تصویربرداری دیجیتالی و هیستوگرام های چند رسانه ای از تصاویر دیجیتال

فایل PDF – در 12 صفحه- نویسنده : Ahmed Elgammal

Digital Imaging and Multimedia

رمز فایل : behsanandish.com

مارس 23, 2020/0 دیدگاه /توسط daliri
https://behsanandish.com/wp-content/uploads/2018/04/hist.jpg 256 256 daliri https://behsanandish.com/wp-content/uploads/2020/09/logo-farsi-englisi-300x195-1.png daliri2020-03-23 10:00:552020-03-23 10:00:55مقالات و جزوات آموزشی پیرامون هیستوگرام

رباتیک چیست؟ قسمت 2

آموزش های عمومی هوش مصنوعی

مهندسی رباتیک چیست ؟

مهندسی رباتیک چیست ؟

ربات چيست؟

ربات يك ماشين الكترومكانيكي هوشمند است با خصوصيات زير:
– مي توان آن را مكرراً برنامه ريزي كرد.
– چند كاره است.
– كارآمد و مناسب براي محيط است.

اجزاي يك ربات

– وسايل مكانيكي و الكتريكي:
شاسي، موتورها، منبع تغذيه، …
– حسگرها (براي شناسايي محيط):
دوربين ها، سنسورهاي sonar، سنسورهاي ultrasound، …
– عملكردها (براي انجام اعمال لازم)
بازوي روبات، چرخها، پاها، …
– قسمت تصميم گيري (برنامه اي براي تعيين اعمال لازم):
حركت در يك جهت خاص، دوري از موانع، برداشتن اجسام، …
– قسمت كنترل (براي راه اندازي و بررسي حركات روبات):
نيروها و گشتاورهاي موتورها براي سرعت مورد نظر، جهت مورد نظر، كنترل مسير، ..

تاريخچه رباتيك:

– 270 ق م : زماني كه يونانيان به ساخت مجسمه هاي متحرك ميپرداختند.
– حدود سال 1250 م: بيشاپ آلبرتوس ماگنوس (Bishop Albertus Magnus) ضيافتي ترتيب داد كه درآن، ميزبانان آهني از مهمانان پذيرايي مي كردند. با ديدن اين روبات، سنت توماس آكويناس (Thomas Aquinas) برآشفته شد، ميزبان آهني را تكه تكه كرد و بيشاب را ساحر و جادوگر خواند.
– سال 1640 م: دكارت ماشين خودكاري به صورت يك خانم ساخت و آن را Ma fille Francine ” مي ناميد.اين ماشين كه دكارت را در يك سفر دريايي همراهي مي كرد، توسط كاپيتان كشتي به آب پرتاب شد چرا كه وي تصور مي كرد اين موجود ساخته شيطان است.
– سال 1738 م: ژاك دواكانسن (Jacques de Vaucanson) يك اردك مكانيكي ساخت كه از بيش از 4000 قطعه تشكيل شده بود. اين اردك مي توانست از خود صدا توليد كند، شنا كند، آب بنوشد، دانه بخورد و آن را هضم و سپس دفع كند. امروزه در مورد محل نگهداري اين اردك اطلاعي در دست نيست.
– سال 1805 م: عروسكي توسط ميلاردت (Maillardet) ساخته شد كه مي توانست به زبان انگليسي و فرانسوي بنويسد و مناظري را نقاشي كند.
– سال 1923 م: كارل چاپك (Karel Capek) براي اولين بار از كلمه روبات (robot) در نمايشنامه خود به عنوان آدم مصنوعي استفاده كرد. كلمه روبات از كلمه چك robota گرفته شده است كه به معني برده و كارگر مزدور است. موضوع نمايشنامه چاپك، كنترل انسانها توسط روباتها بود، ولي او هرگونه امكان جايگزيني انسان با روبات و يا اينكه روباتها از احساس برخوردار شوند، عاشق شوند، يا تنفر پيدا كنند را رد مي كرد.
– سال 1940 م: شركت وستينگهاوس (Westinghouse Co.) سگي به نام اسپاركو (Sparko) ساخت كه هم از قطعات مكانيكي و هم الكتريكي در ساخب آن استفاده شده بود. اين اولين باري بود كه از قطعات الكتريكي نيز همراه با قطعات مكانيكي استفاده مي شد.
– سال 1942 م: كلمه روباتيك (robatics) اولين بار توسط ايزاك آسيموف در يك داستان كوتاه ارائه شد. ايزاك آسيموف (1920-1992) نويسنده كتابهاي توصيفي درباره علوم و داستانهاي علمي تخيلي است.
– دهه 1950 م: تكنولوژي كامپيوتر پيشرفت كرد و صنعت كنترل متحول شد. سؤلاتي مطرح شدند. مثلاً: آيا كامپيوتر يك روبات غير متحرك است؟
– سال 1954 م: عصر روبات ها با ارائه اولين روبات آدم نما توسط جرج دوول (George Devol) شروع شد.
– سال 1956 م: پس از توسعه فعاليتهاي تكنولوژي يك كه بعد از جنگ جهاني دوم، يك ملاقات تاريخي بين جورج سي.دوول(George C.Devol) مخترع و كارآفرين صاحب نام، و ژوزف اف.انگلبرگر (Joseph F.Engelberger) كه يك مهندس با سابقه بود، صورت گرفت. در اين ملاقات آنها به بحث در مورد داستان آسيموف پرداختند. ايشان سپس به موفقيتهاي اساسي در توليد روباتها دست يافتند و با تأسيس شركتهاي تجاري، به توليد روبات مشغول شدند. انگلبرگر شركت Unimate برگرفته از Universal Automation را براي توليد روبات پايه گذاري كرد. نخستين روباتهاي اين شركت در كارخانه جنرال موتورز (General Motors) براي انجام كارهاي دشوار در خودروسازي به كار گرفته شد. انگلبرگر را “پدر روباتيك” ناميده اند.
– دهه 1960 م: روباتهاي صنعتي زيادي ساخته شدند. انجمن صنايع روباتيك اين تعريف را براي روبات صنعتي ارائه كرد:
“روبات صنعتي يك وسيلة چند كاره و با قابليت برنامه ريزي چند باره است كه براي جابجايي قطعات، مواد، ابزارها يا وسايل خاص بوسيلة حركات برنامه ريزي شده، براي انجام كارهاي متنوع استفاده مي شود.”
– سال 1962 م: شركت خودروسازي جنرال موتورز نخستين روبات Unimate را در خط مونتاژ خود به كار گرفت.
– سال 1967 م: رالف موزر (Ralph Moser) از شركت جنرال الكتريك (General Electeric) نخستين روبات چهارپا را اختراع كرد.
– سال 1983 م: شركت Odetics يك روبات شش پا ارائه كرد كه مي توانست از موانع عبور كند و بارهاي سنگيني را نيز با خود حمل كند.
– سال 1985 م: نخستين روباتي كه به تنهايي توانايي راه رفتن داشت در دانشگاه ايالتي اهايو (Ohio State Uneversity) ساخته شد.
– سال 1996 م: شركت ژاپني هندا (Honda) نخستين روبات انسان نما را ارائه كرد كه با دو دست و دو پا طوري طراحي شده بود كه مي توانست راه برود، از پله بالا برود، روي صندلي بنشيند و بلند شود و بارهايي به وزن 5 كيلوگرم را حمل كند
روباتها روز به روز هوشمندتر مي شوند تا هرچه بيشتر در كارهاي سخت و پر خطر به ياري انسانها بيايند.
امروزه، 90% روباتها، روباتهاي صنعتي هستند، يعني روباتهايي كه در كارخانه ها، آزمايشگاهها، انبارها، نيروگاهها، بيمارستانها، و بخشهاي مشابه به كارگرفته مي شوند.در سالهاي قبل، اكثر روباتهاي صنعتي در كارخانه هاي خودروسازي به كارگرفته مي شدند، ولي امروزه تنها حدود نيمي از روباتهاي موجود در دنيا در كارخانه هاي خودروسازي به كار گرفته مي شوند.مصارف روباتها در همه ابعاد زندگي انسان به سرعت در حال گسترش است تا كارهاي سخت و خطرناك را به جاي انسان انجام دهند.براي مثال امروزه براي بررسي وضعيت داخلي رآكتورها از روبات استفاده مي شود تا تشعشعات راديواكتيو به انسانها صدمه نزند.

3 قانون روباتيك مطرح شده توسط آسيموف:

1- روبات ها نبايد هيچگاه به انسانها صدمه بزنند.
2- روباتهابايد دستورات انسانها را بدون سرپيجي از قانون اوّل اجرا كنند.
3- روباتها بايد بدون نقض قانون اوّل و دوم از خود محافظت كنند.

انواع ربات ها :

رباتهاي امروزي كه شامل قطعات الكترونيكي و مكانيكي هستند در ابتدا به صورت بازوهاي مكانيكي براي جابجايي قطعات و يا كارهاي ساده و تكراري كه موجب خستگي و عدم تمركز كارگر و افت بازده ميشد بوجود آمدند. اينگونه رباتها جابجاگر (manipulator) نام دارند. جابجاگرها معمولا در نقطه ثابت و در فضاي كاملا كنترل شده در كارخانه نصب ميشوند و به غير از وظيفه اي كه به خاطر آن طراحي شده اند قادر به انجام كار ديگري نيستند. اين وظيفه ميتواند در حد بسته بندي توليدات, كنترل كيفيت و جدا كردن توليدات بي كيفيت, و يا كارهاي پيچيده تري همچون جوشكاري و رنگزني با دقت بالا باشد.
نوع ديگر رباتها كه امروزه مورد توجه بيشتري است رباتهاي متحرك هستند كه مانند رباتهاي جابجا كننده در محيط ثابت و شرايط كنترل شده كار نميكنند. بلكه همانند موجودات زنده در دنياي واقعي و با شرايط واقعي زندگي ميكنند و سير اتفاقاتي كه ربات بايد با انها روبرو شود از قبل مشخص نيست. در اين نوع ربات هاست كه تكنيك هاي هوش مصنوعي ميبايست در كنترلر ربات(مغز ربات) به كار گرفته شود.

رباتهاي متحرك به دسته هاي زير تقسيم بندي ميشوند:

1-رباتهاي چرخ دار
با انواع چرخ عادي
و يا شني تانك
و با پيكربندي هاي مختلف يك, دو يا چند قسمتي
2-رباتهاي پادار مثل سگ اسباب بازيAIBO ساخت سوني كه در شكل بالا نشان داده شد يا ربات ASIMO ساخت شركت هوندا
3-رباتهاي پرنده
4-رباتهاي چند گانه(هايبريد) كه تركيبي از رباتهاي بالا يا تركيب با جابجاگرها هستند
و …

مزاياي روباتها:

1- روباتيك و اتوماسيون در بسياري از موارد مي توانند ايمني، ميزان توليد، بهره و كيفيت محصولات را افزايش دهند.
2- روباتها مي توانند در موقعيت هاي خطرناك كار كنند و با اين كار جان هزاران انسان را نجات دهند.
3- روباتها به راحتي محيط اطراف خود توجه ندارند و نيازهاي انساني براي آنها مفهومي ندارد. روباتها هيچگاه خسته نمي شوند.
4- دقت روباتها خيلي بيشتر از انسانها است آنها در حد ميلي يا حتي ميكرو اينچ دقت دارند.
5- روباتها مي توانند در يك لحظه چند كار را با هم انجام دهند ولي انسانها در يك لحظه تنها يك كار انجام مي دهند.

معايب روباتها:

1- روباتها در موقعيتهاي اضطراري توانايي پاسخگويي مناسب ندارند كه اين مطلب مي تواند بسيار خطرناك باشد.
2- روباتها هزينه بر هستند.
3- قابليت هاي محدود دارند يعني فقط كاري كه براي آن ساخته شده اند را انجام مي دهند.

 

منبع

 


کلمه ربات توسط Karel Capek نویسنده نمایشنامه ( R.U.R  عقل ربات های جهانی) در سال 1920 ابداع شد. ریشه این کلمه، کلمه چک اسلواکی (robotnic) به معنی کارگر می‌باشد.

امروزه معمولاً کلمه ربات به معنی هر ماشین ساخت بشر که بتواند کار یا عملی که به‌طور طبیعی توسط انسان انجام می‌شود را انجام دهد، استفاده می‌شود.

رباتیک چیست ؟

رباتیک شاخه ای از مهندسی مکانیک، مهندسی برق، مهندسی الکترونیک و علوم کامپیوتر است که به طراحی، ساخت، بهره برداری و استفاده از ربات می پردازد. رباتیک فن‌اوری جدیدی نیست ولی توانایی کاربردش در تمام‌ عرصه‌های علوم و تاثیرش در فناوری‌های دیگر اهمیت زیادی دارد.

 

رباتیک چیست

 

منظور از ربات های صنعتی چیست ؟

امروزه، 90% رباتها، رباتهای صنعتی هستند، یعنی رباتهایی که در کارخانه ها، آزمایشگاهها، انبارها، نیروگاهها، بیمارستانها، و بخشهای مشابه به کارگرفته می شوند.در سالهای قبل، اکثر رباتهای صنعتی در کارخانه های خودروسازی به کارگرفته می شدند، ولی امروزه تنها حدود نیمی از رباتهای موجود در دنیا در کارخانه های خودروسازی به کار گرفته می شوند.

ربات‌ها از چه ساخته می‌شوند؟

ربات‌ها دارای سه قسمت اصلی هستند:

  • مغز که معمولاً یک کامپیوتر است.
  • محرک و بخش مکانیکی شامل موتور، پیستون، تسمه، چرخ‌ها، چرخ دنده‌ها و …
  • سنسور که می‌تواند از انواع بینایی، صوتی، تعیین دما، تشخیص نور، تماسی یا حرکتی باشد.با این سه قسمت، یک ربات می‌تواند با اثرپذیری و اثرگذاری در محیط کاربردی‌تر شود.

رباتیک چیست2

جنبه های رباتیک

نمی توان گفت که انواع مختلفی از رباتها وجود دارند. آنها با توجه به محیط ها و کاربردهای مختلف ساخته می شوند که باعث می شود دارای اشکال و نرم افزارهای مختلفی باشند ، اما در ساخت همه ی آنها سه موضوع مشترک وجود دارد :

  • قطعات مکانیکی مانند قاب ، فرم ، طراحی شکل ربات
  • قطعات الکتریکی مانند مدارهای کنترلی و باتری
  • کد های برنامه نویسی که باعث می شود یک ربات تحت شرایط خاص چگونه عمل کند.

تأثیر رباتیک در جامعه 

علم رباتیک در اصل در صنعت به‌کار می‌رود و ما تأثیر آن را در محصولاتی که هر روزه استفاده می‌کنیم، می‌بینیم. که این تأثیرات معمولاً در محصولات ارزان‌تر دیده می‌‌شود.

ربات‌ها معمولاً در مواردی استفاده می‌شوند که بتوانند کاری را بهتر از یک انسان انجام دهند یا در محیط پر خطر فعالیت نمایند مثل اکتشافات در مکان‌های خطرناک مانند آتش‌فشان‌ها که می‌توان بدون به خطر انداختن انسان‌ها انجام داد.

قوانین سه‌گانه رباتیک

ایزاک آسیموف نویسنده داستان‌های علمی تخیلی قوانین سه‌گانه رباتیک را به صورت زیر تعریف‌کرده است:
1ـ یک ربات نباید به هستی انسان آسیب برساند یا به واسطه بی‌تحرکی، زندگی یک انسان را به مخاطره بیاندازد.
2ـ یک ربات باید از دستوراتی که توسط انسان به او داده می‌شود، اطاعت کند؛ جز در مواردی که با قانون یکم در تضاد هستند.
3ـ یک ربات باید تا جایی‌که با قوانین یکم و سوم در تضاد نباشد از خود محافظت کند.

مشکلات رباتیک

یک ربات مانند هر ماشین دیگری، می‌تواند بشکند یا به هر علتی خراب شود. ضمناً آن‌ها ماشین‌های قدرتمندی هستند که به ما اجازه می‌دهند کارهای معینی را کنترل کنیم.

خوشبختانه خرابی ربات‌ها بسیار نادر است زیرا سیستم رباتیک با مشخصه‌های امنیتی زیادی طراحی می‌شود که می‌تواند آسیب‌ آن‌ها را محدود ‌کند.

در این حوزه نیز مشکلاتی در رابطه با انسان‌های شرور و استفاده از ربات‌ها برای مقاصد شیطانی داریم. مطمئناً ربات‌ها می‌توانند در جنگ‌های آینده استفاده شوند. این می‌تواند هم خوب و هم بد باشد. اگر انسان‌ها اعمال خشونت آمیز را با فرستادن ماشین‌ها به جنگ یکدیگر نمایش دهند، ممکن است بهتر از فرستادن انسان‌ها به جنگ با یکدیگر باشد. ربات‌ها می‌توانند برای دفاع از یک کشور در مقابل حملات استفاده می‌شوند تا تلفات انسانی را کاهش دهد. آیا جنگ‌های آینده می‌تواند فقط یک بازی ویدئویی باشد که ربات‌ها را کنترل می‌کند؟

مزایای رباتیک

معمولاً یک ربات می‌تواند کارهایی که ما انسان‌ها می‌خواهیم انجام دهیم را ارزان‌تر انجام‌ دهد. ربات‌ها می‌توانند کارها را دقیقتر از انسان‌ها انجام دهند و روند پیشرفت در علم پزشکی و سایر علوم کاربردی را سرعت ‌بخشند. ربات‌ها به ویژه در امور تکراری و خسته کننده مانند ساختن صفحه مدار، ریختن چسب روی قطعات یدکی و… سودمند هستند. برای مثال امروزه برای بررسی وضعیت داخلی رآکتورها از ربات استفاده می شود تا تشعشعات رادیواکتیو به انسانها صدمه نزند. رباتها روز به روز هوشمندتر می شوند تا هرچه بیشتر در کارهای سخت و پر خطر به یاری انسانها بیایند.

 

رباتیک چیست

نرم افزارهای حوزه ی رباتیک

RobotWorks :  این نرم افزار میتواند واسط رباتیک و گذرگاه شبیه سازی ربات را برای نرم افزار محبوب SolidWorks ایجاد نماید. با استفاده از RobotWorks قادر خواهید بود ربات های صنعتی خود را در نرم افزار SolidWorks طراحی کرده و حرکات و اطلاعات مربوط به آنها را به صورت سه بعدی ( در نرم افزار RobotWorks ) مشاهده نمایید .

EASY-ROB : EASY-ROB  یک نرم افزار کاربردی در زمینه ی شبیه سازی بازو های رباتیک است که کاربران با استفاده از آن میتوانند ضمن مشاهده ی رفتار دقیق بازو، اطلاعات مربوط به ساخت آن را نیز از نرم افزار استخراج نمایید.

RoboCupRescue : وجود بلایای طبعیی همچون سیل، زلزله و… و خرابی هایی که بعد از رخ دادن آنها دامن گیر انسان ها میشود باعث شد، تا بشر به کاربرد ربات ها در زمینه ی امداد و نجات توجه بیشتر داشته باشد، در این بین گروه های مختلفی در زمینه ی طراحی و ساخت ربات های امداد گر شروع به فعالیت کردند یکی از این گروه ها تیم تحقیقاتی RoboCupRescue میباشد.

Microsoft Robotics Developer Studio : این نرم افزار یکی از نرم افزارهای قوی در زمینه شبیه سازی ربات ها است.شما با استفاده از این نرم افزار، می توانید به راحتی بخش مکانیک ربات خود را شبیه سازی نمایید.

Webots : نرم افزار Webots برای مدلسازی و برنامه نویسی و شبیه سازی ربات های متحرک مورد استفاده قرار می گیرد.کتابخانه های این محصول، به شما امکان می دهد که برنامه های کنترلی خودتان را به منظور ساخت ربات های واقعی بر روی این ربات ها به اجرا در بیاورید. همچنین خود نرم افزار هم این امکان رو به شما می دهد که ربات های مختلفی را در یک محیط طراحی کنید و برای هر کدام می توانید ویژگی های متفاوتی را تعریف کنید، همانند، شکل، رنگ، تکسچر، جرم، اصطکاک و غیره. همچنین شما می توانید هر ربات را با تعداد زیادی از سنسورها و محرک ها مجهز کنید. شما قادر خواهید بود که برای آنها برنامه نویسی کنید و نتایج را بر روی ربات های واقعی پیاده کنید. بیش از 5000 دانشگاه و مرکز تحقیقاتی از این نرم افزار استفاده می کنند.

تاثیرات شغلی رباتیک

بسیاری از مردم از اینکه ربات‌ها تعداد شغل‌ها را کاهش دهد و افراد زیادی شغل خود را از دست دهند، نگرانند. این تقریباً هرگز قضیه‌ای بر خلاف تکنولوژی جدید نیست. در حقیقت اثر پیشرفت‌ تکنولوژی مانند ربات‌ها (اتومبیل و دستگاه کپی و…) بر جوامع ، آن است که انسان بهره‌ورتر می‌شود.

آینده رباتیک

جمعیت ربات‌ها به سرعت در حال افزایش است. این رشد توسط ژاپنی‌ها که ربات‌های آن‌ها تقریباً دو برابر تعداد ربات‌های آمریکا است، هدایت شده است.
همه ارزیابی‌ها بر این نکته تأکید دارد که ربات‌ها نقش فزاینده‌ای در جوامع مدرن ایفا خواهند کرد. آن ها به انجام کارهای خطرناک، تکراری، پر هزینه و دقیق ادامه می‌دهند تا انسان‌ها را از انجام آن‌ها باز دارند.

منبع

 


منابع

1.fa.wikipedia.org

2. www.enline.ir

3.http://rasekhoon.net

4.http://mediasoft.ir

رباتیک چیست؟ قسمت 1
رباتیک چیست؟ قسمت 2

مارس 22, 2020/0 دیدگاه /توسط hgadmin
https://behsanandish.com/wp-content/uploads/2019/08/RPA-April-2014-2-1.jpg 256 256 hgadmin https://behsanandish.com/wp-content/uploads/2020/09/logo-farsi-englisi-300x195-1.png hgadmin2020-03-22 10:00:072020-03-22 10:00:07رباتیک چیست؟ قسمت 2

رباتیک چیست؟ قسمت 1

آموزش های عمومی هوش مصنوعی

رباتیک

رباتیک شاخه ای میان رشته ای از مهندسی و علم است که شامل مهندسی مکانیک ، مهندسی برق و علوم رایانه و چند رشته دیگر می‌شود . رباتیک شامل طراحی ، ساخت ، راه اندازی و استفاده از رباتها می شود، همچنین مانند سیستم های رایانه ای ، کنترل ، بازخورد حسگرها و پردازش اطلاعات نیز در این گروه قرار می گیرند.

برای آشنایی بیشتر با ربات میتوانید به نوشته ربات چیست مراجعه نمایید.

این فناوریها استفاده می شوند تا ماشینها را به گونه ای ارتقا دهند که جایگزین انسان گردند. رباتها می توانند در هر موقعیت و برای هر منظوری به کار بروند ولی امروزه بسیاری از آنها در محیط های خطرناک ( مانند تشخیص و غیر فعال سازی بمبها ) ، فرآیندهای تولید یا مکانهایی که انسان قادر به حیات نیست ، استفاده می شوند. رباتها می توانند به هر شکل و قیافه ای باشند ولی بعضی از آنها طراحی می شوند تا شبیه انسان به نظر برسند. گفته می‌شود که این کار به این دلیل صورت می گیرد تا رفتارهای این رباتها که از مردم عادی تقلید می‌شود ، بیشتر مورد قبول قرار گیرد. تلاش می‌شود که رباتهای انسان نما بتوانند راه رفتن ، حرف زدن ، شناختن و مخصوصا هر چیزی را که انسان می‌تواند انجام دهد ، تقلید کنند . خیلی از رباتهای امروزی که از طبیعت الهام گرفته شده اند ، در پهنه رباتهای مقلد موجودات زنده قرار می گیرند.

سیستم دست رباتی سایه

سیستم دست رباتی سایه

ایده ایجاد ماشینهایی که بتوانند به شکل خودکار کار کنند ، به دوران قدیم بازمی گردد ولی تحقیق اساسی در مورد به کاربرد رساندن و استفاده های بالقوه از رباتها تا قرن بیستم انجام نشده بود. در طول تاریخ بارها خاطر نشان شده است که یک روز رباتها خواهند توانست رفتار انسانها را تقلید کنند و کارها را به شیوه مشابه انسان انجام دهند . امروزه رباتیک یک حوزه از علم با رشد سریع است. ، همزمان با ادامه پیشربتهای تکنولوژی ؛ تحقیق ، طراحی و ساخت رباتهای جدید در خدمت اهداف عملی متعددی در حوزه های خانگی ، صنعتی و نظامی انجام می گیرد. بسیاری از رباتها برای انجام شغلهای خطرناک برای مردم انجام وظیفه می کنند ، مانند کار کردن در خنثی سازی بمب ، یافتن بازمانده های زیر آوارهای غیر پایدار ، مین یابی یا جستجوی کشتی های غرق شده .

رباتیک همچنین به عنوان یک هدف آموزشی در مجموعه چند گانه علم ، تکنولوژی ، مهندسی و ریاضی نیز به کار می رود.

ریشه شناسی

رباتیک از کلمه ربات مشتق شده است . خود کلمه ربات برای اولین بار توسط نویسنده ای از اهالی چکسلواکی به نام کارل چاپک و در نمایشنامه ای به اسم کارخانه ربات سازی روسوم در سال 1920 معرفی شد. کلمه روبات از واژه اسلاوی ” روبوتا ” به دست آمده است که در اصل به معنی کارگر به کار می رود. نمایشنامه در مورد یک کارخانه است که آدم های مصنوعی به نام ربات ها تولید می کند ؛ موجوداتی که می توانند با انسانها اشتباه گرفته شوند و این بسیار مشابه ایده های مدرن امروزی در مورد انسان نماها است. کارل چاپک این کلمه را متعلق به خودش نمی داند ، وی یک نامه کوتاه به قسمت ریشه شناسی لغات در فرهنگ انگلیسی آکسفورد نوشته است که در آن برادرش جوزف چاپک را به عنوان ابداع کننده اصلی این کلمه نام برده است.

مطابق فرهنگ انگلیسی آکسفورد کلمه رباتیک اولین بار در نوشته ای توسط آیزاک آسیموف ، در قسمتی از یک داستان کوتاه علمی تخیلی به نام “دروغگو” به کار برده شد. این داستان اولین بار در مجله علمی تخیلی استوندینگ چاپ شد. در آن هنگام آسیموف خودش نمی دانست که این کلمه به نام او ثبت خواهد شد ؛ وی فکر می کرد همان گونه که علم و تکنولوژی مربوط به وسایل الکترونیکی را الکترونیک می نامند ، پس رباتیک به علم و تکنولوژی مربوط به رباتها اشاره خواهد داشت . آسیموف در بعضی از آثارش خاطر نشان می کند که اولین کاربرد کلمه رباتیک در داستان کوتاه او به نام “سرگردانی” ( مجله علمی تخیلی استوندینگ ، مارس 1942 ) بوده است ولی باید توجه کرد که چاپ اصلی داستان “دروغگو” ده ماه پیش از “سرگردانی” بوده است ، بنابراین عموما داستان قدیمی تر به عنوان منشا کلمه شناخته می شود.

منبع


رباتیک، علمی با هدف راحتی انسان

اگر فردی علاقه‌مند به تکنولوژی هستید یا اخبار روز دنیا را در زمینه‌های مختلف علمی دنبال می‌کنید، حتما متوجه شده‌اید، همان گونه که امروزه ربات‌ها در بسیاری از مسائل مانند: ” صنعت، پزشکی، آتش نشانی ، حتی در خانه‌ها و ...”  به کمک انسان‌ها امده و بسیاری از مشکلات را حل کرده است، تاثیر وسیعی در زندگی آینده انسان‌ها خواهند داشت.

امروزه همان طور که شاهد آن هستیم، خانواده‌ها چه در ایران و چه در خارج کشور فرزند خود را تشویق به حضور در کلاس‌های رباتیک و ساخت ربات‌ها می‌کنند و همچنین مسابقات ربات‌ها که در زمینه‌های مختلفی به انجام می‌رسد، با استقبال خوب و رو به رشدی از سوی اکثر کشورها مواجه می‌شود.همچنین رشته‌ی دانشگاهی مهندسی رباتیک و هوش مصنوعی در خارج از کشور با استقبال خوبی از سوی علاقه مندان به این حوزه رو به رو است و زمینه‌های تحقیقاتی و کاری فراوانی برای مهندسین و فارغ التحصیلان این رشته تدارک دیده اند، زیرا  این موضوع برای آن‌ها روشن است، که زندگی امروز و فردا‌ی ما، جدا از ربات‌ها امکان پذیر نیست.

برای آشنایی بیشتر با هوش مصنوعی میتوانید به نوشته هوش مصنوعی چیست مراجعه نمایید.

 

رباتیک-تکنولوژی

 

دکتر  کارو لوکاس قوکاسیان ، دانشمند برجسته ایرانی و از پژوهشگران به‌ نام سیستم‌های هوشمند در ایران بود. زمینه‌ی پژوهش‌های او پیش‌بینی سری‌های زمانی، مدل‌های عاطفی و منطق فازی است. وی همچنین به عنوان «پدر علم رباتیک ایران» شناخته می‌شود.صحبت‌های ایشان در زمینه رباتیک این جمله را تصدیق می‌کند که :

یکی از مهم‌ترین دستاوردهای علمی بشر، علم رباتیک است که با رشد روز افزون دانش بشری، بیشتر وارد زندگی انسان‌ها شده و آن‌ را دست‌خوش تغییر می‌کند. 

رباتیک دقیقا یعنی چه؟

رباتیک علم مطالعه فن آوری مرتبط با طراحی ساخت و اصول کلی و کاربرد ربات‌ها است، که با هدف راحتی انسان و افزایش وقت مفید او به وجود آمده است، به عبارت دیگر رباتیک علم و فن آوری ماشین‌های قابل برنامه ریزی، با کاربردهای عمومی می‌باشد.

هر دستگاه الکترومکانیکی که عمل خاصی را انجام دهد ربات نامیده می‌شود که می‌تواند جهت انجام یک وظیفه خاص برنامه ریزی شود.

کلمه ربات اولین بار توسط Karel Capek  نویسنده نمایشنامه R.U.R روبات‌های جهانی روسیه در سال ۱۹۲۱ ابداع شد. ریشه این کلمه، کلمه چک اسلواکی (robotnic) به معنی کارگر می‌باشد. تفاوت ربات با انسان از بسیاری جهات قابل چشم پوشی نیست. مثلا خستگی ناپذیری و انجام یک کار تکراری با دقت فراوان و یا کارهایی که توان زیادی نیاز دارند و بازوهای انسان توان لازم برای انجام آن را ندارند به راحتی از عهده ربات‌ها بر می‌آید.

ربات‌ها می‌توانند بسیار ساده و یا با ساختاری پیچیده باشند ولی در همه حالت‌ها ربات، ترکیب علوممکانیک و الکترونیک است.

برخلاف تصور  عمومی از ربات‌ها که به عنوان ربات‌های انسان نما که تقریباً قابلیت انجام هر کاری را دارند، بیشتر دستگاه‌های رباتیک در مکان‌های ثابتی در کارخانه‌ها بسته شده اند و در فرایند ساخت با کمک کامپیوتر، اعمال قابل انعطاف، ولی محدودی را انجام می‌دهند.این دستگاه  حداقل شامل یک کامپیوتر برای نظارت بر اعمال و عملکرد  اسباب انجام دهنده عمل مورد نظر  و همچنین ممکن است دارای حسگرها و تجهیزات جانبی باشد.

انواع ربات‌ها

 احتمالا این سوال برایتان به‌وجود آمده که ایده اصلی ساخت ربات‌ها چگونه شکل می گیرد و هر ربات از چه قسمت‌هایی تشکیل شده است.

دو نکته در به وجود آمدن و ایده اصلی ربات اهمیت دارد، ابتدا اینکه یک مشکل یا سختی کار وجود دارد و باید حل گردد. دوم اینکه در طبیعت موجودی آن را حل کرده یا نه؟ مثلا تونل زدن زیر خاک یک مشکل بیان می‌گردد. و در طبیعت یک کرم کوچولو به راحتی می‌تواند زیر خاک حرکت نماید این دو باعث طراحی و ساخت یک ربات می‌گردد که به صورت اتوماتیک تونل کنده و پیش می‌رود.

ربات‌ها همانند کامپیوترها قابلیت برنامه ریزی دارند.بسته به نوع برنامه‌ای که شما به آن‌ها می‌دهید، کارها وحرکات مختلفی را انجام می‌دهند. رشته‌ی دانشگاهی نیز تحت عنوان رباتیک وجود دارد که به مسائلی از قبیل: “سنسورها، مدارات ، فیدبک‌ها،پردازش اطلاعات و بست و توسعه ربات‌ها” می‌پردازد.ربات‌ها انواع مختلفی دارند از قبیل: “روبات‌های شمشیر باز، ربات دنبال کننده خط یا مسیریاب، کشتی گیر، فوتبالیست، ربات‌های پرنده و ربات‌های خیلی ریز تحت عنوان «میکرو ربات‌ها» و «نانو ربات‌ها»  نیز وجود دارند. ربات‌ها برای انجام کارهای سخت و دشواری  که بعضی مواقع انسان‌ها از انجام آن‌ها عاجز یا انجام آن‌ها برای انسان خطرناک هستند; مثل: “ربات‌هایی که در نیروگاه‌های هسته‌ای وجود دارند” ،استفاده می‌شوند.کاری که ربات‌ها انجام می‌دهند، توسط میکرپروسسورها (microprocessors) و میکرو کنترل‌ها(microcontroller) کنترل می‌شود.

شما با تسلط در برنامه نویسی میکرو پروسسورها و میکروکنترل‌ها، می‌توانید دقیقا به ربات بگویید همان کاری را که انتظار دارید، انجام دهد.

 

رباتیک-ربات فوتبالیست

 

بعضی از ربات‌ها، ماشین‌های مکانیکی نسبتاً ساده‌ای هستند که کارهای اختصاصی مانند جوشکاری و یا رنگ افشانی را انجام می‌دهند، که سایر سیستم‌های پیچیده تر که بطور همزمان چند کار انجام می‌دهند، از دستگاههای حسی، برای جمع آوری اطلاعات مورد نیاز برای کنترل کارشان نیاز دارند.حسگرهای یک ربات ممکن است بازخورد حسی ارائه دهند، طوریکه بتوانند اجسام را برداشته و بدون آسیب زدن، در جای مناسب قرار دهند. ربات دیگری ممکن است دارای نوعی دید باشد.، که عیوب کالاهای ساخته شده را تشخیص دهد. بعضی از ربات‌های مورد استفاده در ساخت مدارهای الکترونیکی، پس از مکان یابی دیداری علامت‌های تثبیت مکان بر روی برد، می‌توانند اجزا بسیار کوچک را در جای مناسب قرار دهند.

ربات‌ها دارای سه قسمت اصلی هستند:

۱. مغز که معمولا یک کامپیوتر است.

۲. محرک و بخش مکانیکی شامل موتور، پیستون، تسمه، چرخ‌ها، چرخ‌دنده‌ها و …

۳. سنسور که می‌تواند از انواع بینایی، صوتی، تعیین دما، تشخیص نور و تماسی یا حرکتی باشد.

 

رباتیک-ربات های خط تولید

 

ربات‌هایی که امروزه بسیار  در حال تکاملند، ربات‌های انسان نما  (human robotic) هستند، آن‌ها قادرند اعمالی شبیه انسان را انجام دهند.حتی بعضی از آن‌ها همانند انسان دارای احساسات نیز هستند.برخی دیگر اشکال خیلی ساده‌ای دارند.آن‌ها دارای چرخ یا بازویی هستند که توسط میکروکنترلرها یا میکروپروسسورها کنترل می‌شوند.در واقع میکروکنترلر یا میکرو پروسسور به مانند مغز انسان در ربات کار می‌کند.برخی از ربات‌ها مانند انسان‌ها وجانوران خون گرم در برخورد و رویارویی با حوادث و مسائل مختلف به صورت هوشمند از خود واکنش نشان می‌دهند.یک نمونه از این ربات‌ها، ربات مامور است.

 

رباتیک-ربات شبه انسان

 

برخی ربات‌ها نیز یکسری کارها را به صورت تکراری با سرعت و دقت بالا انجام می‌دهند، مثل ربات‌هایی که در کارخانه‌های خودرو‌سازی استفاده می‌شوند.این گونه ربات‌ها، کارهایی از قبیل جوش دادن بدنه ماشین ، رنگ کردن ماشین را با دقتی بالاتر از انسان بدون خستگی و وقفه انجام می‌دهند.بیشتر ربات‌ها امروزه در کارخانه‌ها برای ساخت محصولاتی مانند اتومبیل؛ الکترونیک و همچنین برای اکتشافات زیرآب یا در سیارات دیگر مورد استفاده قرار می‌گیرد.

 

مکاترونیک-ربات صنعتی

بازار کار مهندس رباتیک

همان‌طور که در قبل گفته شد، پیش بینی می‌شود که رباتیک یکی از ۱۰ صنعت برتر آینده باشد. کاربرد محصولات رباتیک از محدوده کارخانجات فراتر رفته و در حال ورود به کاربردهای روزمره است.

امروزه کمتر صنعتی را می‌توان یافت که در آن از ربات استفاده نشود . بازوهای رباتیکی که بدون استراحت قطعات و محصولات را از نقطه‌ای به نقطه‌ی دیگر جا‌به‌جا می‌کنند، ربات‌های جوشکار ، ربات‌های رنگرز ، ربات‌های بسته بند ، ربات‌های تراشکار ، ربات‌های چاپگر ، ربات‌های کنترل کیفیت ، ربات‌های سوراخکار ، ربات‌های کنترل دما ، ربات‌های هشداردهنده‌ی نشت گاز ، ربات‌های غربال ، سانتریفوژهای خودکار و … همگی نمونه‌هایی از ربات‌ها در کارخانه‌ها هستند.کارخانجات برای افزایش سرعت و کیفیت و دقت و هزینه‌ی پایین تر به سمت رباتیکی کردن تمامی قسمت‌های کارخانه پیش می‌روند و در بعضی از قسمت‌ها که برای انسان خطرناک است مانند جوشکاری و رنگ پاشی و سموم شیمیایی ناچار به استفاده از ربات می‌شوند.

 

رباتیک-ربات‌جوشکار

 

مهندسی رباتیک ارتباط زیادی با مهندسی مکانیک، مهندسی کامپیوتر و مهندسی الکترونیک و علوم کامپیوتر دارد. مهندس رباتیک باید برای ساخت روبات‌ها در این علوم مهندسی مرتبط مسلط باشد به عنوان مثال باید در برنامه نویسی و تنظیم الگوریتم بهینه، طراحی مدارهای الکتریکی و الکترونیکی، طراحی کامپیوتری مدارها، طراحی سیستم آیرودینامیکی و … تبحر و تسلط کافی داشته باشد. مهندس رباتیک به کسب و کارهای مختلف راه حل‌های خودکار و اتوماتیک ارائه می‌کند تا بتوانند کارآمدتر کار کنند. کار دیگر مهندس رباتیک رفع مشکلات موجود در برنامه‌های ربات‌ها و ارائه خدمات فنی به مشتریان است.

رباتیک با مکاترونیک تفاوت های بسیاری دارد که در مقاله مهندسی مکاترونیک می‌توانید جزییات آن را مطالعه نمایید.

مهندس رباتیک فردی است که پاسخگوی  نیاز صنعت در تحقیق و توسعه، طراحی، تولید، نگهداری و تعمیرات ربات‌ها می‌باشد.

یکی از شاخه‌های اصلی مهندسی رباتیک را میتوان بخش تحقیقات دانست. بنابراین در بخش رباتیک به متخصصانی نیاز است که تحقیقات کرده ، مفاهیم و کاربردهای جدید را یافته و راه‌های پیشرفت مفاهیم و کاربردهای موجود را بیابند. می‌توان گفت مهندسی رباتیک زمینه‌ای جذاب برای آنانی است که در حوزه تکنولوژی علاقه و استعداد خوبی دارند.

کار مهندس رباتیک، تحقیق و توسعه طرح‌ها، ساخت نمونه روبات‌ها و بررسی کاربردهای مختلف آن‌ها از حوزه‌های نظامی و خودرو تا حوزه پزشکی و کمک به افراد ناتوان برای رفع مشکلاتشان می‌باشد. همچنین مهندس رباتیک، ربات‌های موجود و توانمندی‌هایشان را ارتقا داده و اصلاحات لازم را روی آن‌ها انجام می‌دهد.

 

رباتیک-بیو‌مکاترونیک

آینده شغلی مهندس رباتیک

مهندس رباتیک می‌تواند در دو حوزه‌ صنعت و  آموزش و پژوهش مشغول به کار شود. صنایع خودرو، هوافضا، تولید تجهیزات الکترونیکی، هسته‌ای، معدن، نساجی، کامپیوتر، کشاورزی و … نمونه‌هایی از حوزه‌ی صنعت هستند. علاقه‌مندان به مشاغل آموزشی وپژوهشی می‌توانند با کسب مدارک عالی در این حوزه، در دانشگاه‌ها و مراکز آموزش عالی تدریس کنند. از آن‌جایی که مهندسی رباتیک رشته‌ای نوپا در کشورمان ایران می‌باشد، فرصت‌های شغلی خوبی در بخش آموزش عالی وجود دارد.

امروزه بسیاری از صنایع کشور از جمله کارخانه‌هایی مانند فولاد ، خودروسازی ، مواد غذایی و … تقریبا تمام اتوماتیک هستند. اما متاسفانه تمام ربات‌های آن وارداتی است و حتی در برخی  موارد نصب و کنترل و تعمیر آن‌ها بر عهده‌ی متخصصان خارجی می‌باشد. شرکت‌های فعال داخلی در حوزه رباتیک صرفا به واردات و در برخی از موارد تعمیرات روبات‌ها می‌پردازند.

علیرغم شرکت فعال گروه‌های دانش آموزی و دانشجویی در مسابقات مختلف رباتیک و کسب مقام‌های برتر، توجه کافی و هدفمند به استفاده ازاین نیروها در صنایع و بخش‌های مختلف کشور برای طراحی، تولید و تعمیر و نگهداری داخلی ربات‌های مورد نیاز نمی‌شود. در سال‌های قبل این مسابقات فقط در حد کسب یک مقام بوده ، نه ارتباطی با صنایع کشور داشته و نه تاثیری در تبدیل کردن ایران به یکی از قطب‌های رباتیک ایران. کشوری مثل ژاپن که به صورت فعال در بحث تحقیقات رباتیک کار می‌کند و به دنبال ساخت روبات‌های انسان نما است، از لحاظ صنعتی و تولید ربات نیز بسیار پیشرفت کرده است تا جایی که یکی از بزرگترین صادرکننده‌های ربات در جهان می‌باشد.

رباتیک-مسابقات

 

از دیگر مشکلاتی که در این حوزه وجود دارد، عدم شناخت و آگاهی لازم مردم به خصوص کارفرمایان و صاحبان صنایع از شغل مهندسی رباتیک است. به عنوان مثال برخی از کارفرمایان هنوز اطلاعات کاملی از رشته‌ی مهندسی رباتیک و توانمندی‌های مهندسان رباتیک ندارند و در استخدام‌های خود از مهندسان دیگر مانند برق و مکانیک استفاده می‌کنند.

در کنار این موارد حوزه رباتیک در جهان و ایران یک بخش جدید و رو به رشد است. در کشور ما نیز چند سالی است که رشته‌ی تخصصی مهندسی رباتیک ایجاد و فارغ التحصیلانی را به بازارکار ارائه کرده است. البته در بخش آموزش ضعف‌هایی وجود دارد که برای پیشرفت حوزه رباتیک باید رفع شود. یکی از مهم ترین آن‌ها تعداد محدود دانشگاه‌های دارنده رشته‌ی مهندسی رباتیک می‌باشد.

جالب است بدانید که میزان متوسط درآمد سالیانه‌ی یک مهندس رباتیک در آمریکا در سال ۲۰۱۳، حدود ۷۱.۰۰۰ دلار آمریکا و در انگلستان حدود ۵۸.۷۰۰ دلار آمریکا اعلام شده است .

اطلاعات و آمار دقیقی از میزان حقوق  مهندسان رباتیک در بخش دولتی و خصوصی کشور در دسترس نمی‌باشد، ولی در بخش خصوصی میزان حقوق و درآمد مهندسان رباتیک متفاوت است. برای یک مهندس مکاترونیک در یک شرکت، بسته به مهارت و تخصص او در آشنایی با سیستم‌ها و نرم افزارهای کامیپوتری درآمد ماهانه ۲ الی ۳ میلیون تومان برای شروع کار به او پرداخت می‌شود.

 

مهارت در نرم‌افزارهای تخصصی مهندسی رباتیک 

با توجه به آنکه شرط ورود به هر شغلی تخصص و مهارت در زمینه‌ی آن شغل است  یکی از مهارت‌های لازم در مهندسی رباتیک یادگیری نرم‌افزارهای تخصصی این رشته است.

مهم‌ترین نرم‌افزارهای تخصصی و کاربردی مهندسی رباتیک

  • Webots
  • RobotWorks
  • Microsoft Robotics
  •  Solidworks
  •  Catia
  • ADAMS
  • Ansys
  • Cosmos
  • Matlab
  • Proteus
  •  Protel
  • Orcad
  • LabVIEW
  • PicBasic
  • bascom
  • wincc

منبع

رباتیک چیست؟ قسمت 1
رباتیک چیست؟ قسمت 2

مارس 21, 2020/0 دیدگاه /توسط daliri
https://behsanandish.com/wp-content/uploads/2018/02/RPA-April-2014-2.jpg 256 256 daliri https://behsanandish.com/wp-content/uploads/2020/09/logo-farsi-englisi-300x195-1.png daliri2020-03-21 10:00:342020-03-21 10:00:34رباتیک چیست؟ قسمت 1
صفحه 1 از 3123

صفحات

  • #9096 (بدون عنوان)
  • #12541 (بدون عنوان)
  • 990729
  • home
  • product-mahdi
  • slider1
  • slider2
  • slider3
  • slider4
  • Video Test
  • آموزش
  • آموزش پردازش تصویر در نرم افزار متلب (Matlab)
  • آموزش های زبان برنامه نویسی سی شارپ (#C)
  • آموزش های زبان سی پلاس پلاس (++C)
  • آموزش های عمومی برنامه نویسی
  • آموزش های عمومی پردازش تصویر و بینایی ماشین
  • آموزش های عمومی هوش مصنوعی
  • ابزار و محصولات جانبی
  • ارتباط با ما
  • استخدام برنامه نویس
  • استخدام برنامه نویس
  • برگه نمونه
  • برگه نمونه
  • برنامه نویسی
  • بینایی ماشین (Machine Vision) و بینایی کامپیوتر
  • پردازش تصویر با کتابخانه متن باز OpenCV
  • پردازش تصویر و بینایی ماشین
  • پروژه ها و سورس کدهای پردازش تصویر و بینایی ماشین
  • پروژه ها و سورس کدهای هوش مصنوعی
  • تست اسلایدر
  • تشخيص پلاک خودرو(Car Plate Recognition)
  • تشخیص نوری کاراکتر و تشخیص دست خط (OCR/HCR)
  • تشخیص هویت زیست سنجی (Biometrics Identification)
  • تماس با ما
  • دانلود نسخه دمو سامانه کنترل تردد بهسان
  • درباره ما
  • درخواست دمو
  • دعوت به همکاری
  • دوربین و ابزارهای تصویربرداری (camera)
  • سامانه جامع پلاکخوان خودرو(کنترل تردد بهسان)
  • سامانه جامع مدیریت باسکول (بهسان توزین)
  • سامانه قرائت فرم های چند گزینه ای
  • سامانه قرائت فرم های چند گزینه ای
  • صفحه اصلی
  • فرم درخواست همکاری
  • محصولات
  • محصولات جانبی
  • مقالات ، سمینارها و کنفرانس های پردازش تصویر
  • مقالات، سمینارها و کنفرانس های هوش مصنوعی
  • نرم افزار باسکول
  • نرم افزار ثبت تردد جاده ای
  • نرم افزار مدیریت تعمیرگاه ، کارواش و تعویض روغن بهسان
  • نرم افزارانبار و حساب داری بهسان اندیش
  • نمونه کارها
  • نمونه کارهای سامانه جامع پلاکخوان خودرو
  • هوش محاسباتی (Computational Intelligence)
  • هوش مصنوعی
  • وبلاگ

دسته ها

  • آموزش پردازش تصویر در نرم افزار متلب (Matlab)
  • آموزش عمومی پردازش تصویر و بینایی ماشین
  • آموزش های زبان برنامه نویسی سی شارپ
  • آموزش های عمومی هوش مصنوعی
  • اخبار
  • بینایی ماشین (Machine Vision) و بینایی کامپیوتر
  • پردازش تصویر با کتابخانه متن باز OpenCV
  • پروژه ها و سورس کدهای پردازش تصویر و بینایی ماشین
  • پروژه ها و سورس کدهای هوش مصنوعی
  • تشخيص پلاک خودرو
  • تشخیص نوری کاراکتر و تشخیص دست خط
  • تشخیص هویت زیست سنجی
  • دسته‌بندی نشده
  • دوربین (camera)
  • مقالات
  • مقالات ، سمینارها و کنفرانس های پردازش تصویر
  • مقالات، سمینارها و کنفرانس های هوش مصنوعی
  • هوش محاسباتی
  • وبلاگ

بایگانی

  • آوریل 2022
  • مارس 2022
  • دسامبر 2021
  • نوامبر 2021
  • سپتامبر 2021
  • جولای 2021
  • می 2021
  • مارس 2021
  • فوریه 2021
  • آوریل 2020
  • مارس 2020
  • فوریه 2020
  • ژانویه 2020
  • دسامبر 2019
  • نوامبر 2019
  • اکتبر 2019
  • سپتامبر 2019
  • آگوست 2019
  • مارس 2019
  • ژانویه 2018
  • دسامبر 2017

تلفن های تماس:

تلفن: ۹۱۰۰۱۸۸۱(۰۳۱)
بازرگانی و فروش:۰۹۱۳۶۵۳۱۸۸۱
پشتیبانی: ۰۹۱۱۷۶۱۰۲۷۵

ساعات کاری

از شنبه تا چهارشنبه : ۰۹:۰۰ تا ۱۷:۰۰

پنچ شنبه ها : از ۰۹:۰۰ تا ۱۳:۳۰

پیوند ها :

  • درخواست دمو
  • مطالب و آموزش ها
  • همکاری با بهسان اندیش
  • درباره ما

 

محصولات :

  • پلاک خوان
  • نرم افزار ثبت تردد جاده ای
  • نرم افزار مدیریت پارکینگ
  • نرم افزار مدیریت کارواش
  • نرم افزار تعمیرگاه خودرو
  • نرم افزار جامع مدیریت باسکول
  • ماژول رله کنترل راهبند
  •  

 

تمامی حقوق مالکیت معنوی این ‌سایت برای شرکت بهسان اندیش سپهر، محفوظ است.
  • Instagram
  • Facebook
  • Youtube
  • LinkedIn
  • Mail
رفتن به بالا