طرز کار کردن دوربین دیجیتال
مگاپیکسل
فتوسلهای سنسور عکس را پیکسل هم می گویند. اکثر دوربینهای دیجیتال دارای سنسورهایی به اندازه 2/3 تا 2/10 مگاپیکسل هستند. هر چه تعداد پیکسلها بیشتر باشد، عکس دارای جزئیات بیشتری خواهد بود و از این رو می توان آنرا با کیفیت خوب در اندازه بزرگتری چاپ کرد.
سنسورهای عکس در دو مدل CCD و یا CMOS هستند.
از سنسور نوری به کارت حافظه
در یک دوربین دیجیتال که با فیلم کار می کند، عکس بر روی همان وسیله ای ثبت می شود که بعدا” نگهداری خواهد شد، یعنی فیلم نگاتیو یا اسلاید. دوربین دیجیتال با کمک گیرنده نوری خود یا سنسور، عکس را ثبت می کند. بعد از آن عکس یه یک وسیله ذخیره حقیقی تر انتقال پیدا می کند، یعنی یک کارت حافظه و پس از آن گیرنده CCD از محتوی خود تخلیه می شود.
زمانیکه اطلاعات مربوط به عکس به کارت حافظه انتقال پیدا می کند، اندازه های آنالوگ ولتاژ سلولهای نوری تبدیل به اعداد دیجیتال می شوند. کلمه دیجیتال از کلمه لاتینی digitus به معنی انگشت می آید. این بدین معنی است که با انگشتان اعداد را حساب کنیم تا اینکه عدد را به شکل رقم آن بیان کنیم.
انواع مختلف دوربینهای دیجیتال
دستگاه های چند منظوره
دوربینهای دیجیتالی وجود دارند که هم تلفن همراه هستند و هم می توانند موزیک در فرمت MP3 را پخش کنند و هم یک دوربین ویدیویی هستند و به وسیله آنها شما می توانید در اینترنت داخل شوید و یا با آنها یک e-mail بفرستید، و چه کار دیگری از آنها توقع دارید؟ اشکال مختلف دستگاه های کوچک با دوربینهای دیجیتال امروزه در حال گسترش هستند.
دوربینهای اتوماتیک یا کمپکت
اصطلاح کمپکت Compact در مورد دوربینها زمانی مورد استفاده واقع می شود که لنز و بدنه دوربین در یک واحد پیوسته قرار داشته باشند.این نوع دوربینها انواع و اقسام مدلها از کوچک ” ببینید و عکس بگیرید” تا مدلهای بزرگ تر که مانند دوربینهای بزرگ با امکانات اتوماتیک و قابلیت های تنظیم دستی هستند، وجود دارند
دوربینهای پیشرفته دیجیتال
این نوع دوربینهای دیجیتال از قطعات جدا از هم تشکیل شده اند که اغلب عبارت از یک بدنه دوربین به همراه تعدادی لنز است. دوربینهای پیشرفته دیجیتال تا کنون از گران ترین دوربینها بوده اند. این امر بستگی دارد به پیشرفته بودن و قابلیت کار کردن سریع و اتوماتیک آنها و همچنین این نکته که دوربینهای پیشرفته، دارای سنسور یا گیرنده نوری قوی هستند که درجه وضوح بالاتر و کیفیت بهتری از عکس را در مقایسه با دوربین کمپکت، عرضه می کنند. اغلب خریداران این نوع دوربینها عکاسان حرفه ای هستند که با سرمایه گذاری روی این دوربین ها می توانند از امکانات ساده تصحیح و رتوش عکس استفاده کنند ، مثل عکاسان مطبوعات.دوربینهای دیجیتال و آنالوگ معمولا” می توانند از لنزها و لوازم جانبی یکدیگر استفاده کنند.
استفاده از دوربین
عکاسی کردن با دوربین دیجیتال ، در لحظه ای که دکمه شاتر دوربین را فشار می دهید، تفاوت چندانی با لحظه ای که شاتر دوربین آنالوگ را فشار می دهید، ندارد.بزرگ ترین اختلاف در قبل از انداختن عکس است که در دوربینهای دیجیتال می توانید کنترل و تنظیم کنید که عکس چگونه بیفتد و بعد از گرفتن عکس بتوانید مستقیما” عکس را ببینید، روی آن کار کنید و تغییراتی اعمال کنید و یا آنها را چاپ کنید. توضیحاتی که در ادامه می آیند، در مورد اکثر دوربینها صدق می کنند.
قسمتهای مختلف دوربین
بزرگ یا کوچک ،ارزان یا گران، ساده یا پیشرفته ، در همه حالات یک دوربین از این قسمتها تشکیل شده است: چشمی، شاتر، دیافراگم، لنز، نورسنج و در مورد خیلی از دوربینها فلاش . برنامه های آماده ای که در دوربین هستند تا تصمیم بگیرند که قسمتهای مختلف دوربین چگونه با یکدیگر به طور اتوماتیک کار کنند، یک امری عادی در دوربینهای امروزی هستند. توانایی انجام تغییرات دستی در دوربینها، امروزه تبدیل به نکته ای مهم و مثبت شده که قیمت بیشتری را به قیمت اصلی دوربین اضافه می کند.
چشمی یا منظره یاب
خیلی از دوربینهای کمپکت دیجیتال و آنالوگ دارای پنجره کوچکی هستند که فرد عکاس می تواند با دیدن از میان آن کادر و اجزا درون آن ، عکس خود را مشخص نماید.این پنجره کوچک که به چشمی یا منظره یاب دوربین معروف است معمولا” در کنار لنز قرار دارد. چیزی که به عنوان تصویر از درون چشمی دوربین مشاهده می کنید ، تصویری تقریبی از نظر کادر یا عکس نهایی است. اختلاف در تصویر چشمی و تصویر نهایی به خطای پارالکس معروف است.زمانیکه مسئله کادر دقیق سوژه مهم باشد، مثل عکاسی کلوزآپ، صفحه LCD دوربین دیجیتال کمک بزرگی در این مسئله است ، چرا که گیرنده نوری دقیقا” آن چیزی را که می بینید، عکس خواهد گرفت.
شما می توانید منطقه فوکوس را با نشانه گرفتن دوربین به طرف سوژه طوری انجام دهید که مستطیل منطقه فوکوس در نقطه ای از عکس واقع شود که می خواهید فوکوس را روی آن انجام دهید. تکمه شاتر را مقدار کمی به پایین فشار دهید ، دوربین در این حالت فاصله تا سوژه را اندازه می گیرد و لنز را فوکوس می کند. در حالتیکه تکمه شاتر کماکان تا نیمه به پایین فشار داده شده است، کادرعکس خود را هم انتخاب می کنید.
صفحه LCD
فقط در دوربینهای عکاسی دیجیتال وجود دارد. این نوع چشمی با همکاری لنز دوربین، کادری که در عکس ظاهر خواهد شد را نشان می دهد. با استفاده از صفحه LCD می توان نه تنها متدی را که در بالا در مورد آن شرح دادیم (یعنی فوکوس کردن) را انجام دهید ، بلکه می توانید ببینید که عکس چگونه خواهد افتاد و مثلا” عکس چقدر روشن و یا تیره ظاهر خواهد شد. روی صفحه LCD معمولا” اطلاعات مربوط به تنظیماتی که در هنگام گرفته شدن عکس استفاده خواهند شد، مثل شاتر و اندازه دیافراگم هم نمایش داده می شوند.
در یک دوربین تک لنزی انعکاسی تصویری که درون چشمی آن مشاهده می شود، از درون لنز و یک سری آینه عبور می کند تا به پنجره چشمی در پشت دوربین می رسد. از این رو چشمی این گونه دوربینها ، کادر عکس را دقیقا” نشان داده و بعضی مواقع هم اطلاعات دیگر ، مثل سرعت شاتر و دیافراگم را در آن می توان مشاهده کرد.
شاتر
اندازه سرعت بر حسب ثانیه یا کسری از ثانیه بیان می شود. این اندازه معمولا” همراه با درجه باز بودن دیافراگم بیان می شود تا مقدار مشخص نوری که گیرنده نوری باید دریافت کند را مشخص کند. اما از این اندازه برای تاثیر حرکت در عکس هم استفاده می شود.
برای سرعتهای شاتر طولانی تر از ثانیه و جهت احتراز از لرزش دست، باید از سه پایه و یا سایر وسایل ثابت نگهداشتن دوربین استفاده کنید. حتی اگر همه کارها به طور اتوماتیک در دوربین شما انجام می شود، باز هم بهتر است که قبل از گرفتن عکس کنترلی در مورد سرعت شاتر بکنید تا بدانید که عکس شما با چه سرعتی گرفته می شود.
دیافراگم
دیافراگم اغلب در لنز جای دارد. اندازه باز بودن دیافراگم همراه با سرعت شاتر، مقدار نوری که به گیرنده نوری می رسد را تنظیم می کنند. رقم پایین تر در دیافراگم به معنی بازتر بودن دیافراگم است. برای هر پله یا گامی که دیافراگم کاهش پیدا می کند ( یعنی رقم ها افزایش پیدا می کنند) مقدار نوری که به داخل دوربین راه پیدا می کند، نصف می شود. دیافراگم 8/2 دو برابر دیافراگم 4 نور به داخل دوربین وارد می کند.
اندازه دیافراگم بازتر (رقمهای کوچک تر) همچنین باعث می شود تا عمق میدان عکس کاهش پیدا کند. این بدین معنی است که تصویر فقط در محدوده کمی به صورت واضح دیده خواهد شد و قبل و بعد از این منطقه، تصویر سوژه تار خواهد بود. عمق میدان کمتر را می توان در موارد مشخصی به کار برد ، مثلا” زمانی که عکس شخصی را می خواهیم از پس زمینه متحرک آن جدا کنیم.
لنز
در یک دوربین قطع کوچک که از فیلم mm 36×24 استفاده می کند، یک لنز mm 50 لنزی نرمال به حساب می آید. این لنز نه تصویر را بزرگتر و نه کوچکتر می کند. لنزی که باعث می شود موضوع عکس بزرگتر شود به لنز تله مشهور است که فاصله کانونی آن بیشتر از mm 50 است و اگر موضوع عکس کوچکتر از اندازه طبیعی آن شود، آن لنز ، لنزی واید است. لنزهای با فاصله کانونی متغیر به لنز زوم مشهور هستند.
در لنز نرمال، فاصله کانونی برابر اندازه قطر کادر نگاتیو است. دوربین دیجیتال دارای گیرنده نوری یا سنسوری است که اندازه آن خیلی کوچکتر از قطع یک فیلم است. از این رو لنز نرمال در دوربین دیجیتال کوچکتر از لنز نرمال در دوربینهای سنتی قطع کوچک است. فاصله کانونی لنز، معمولا” در دوربینهای دیجیتال معادل فاصله کانونی لنزهای دوربینهای قطع کوچک در نظر گرفته می شود.
زوم دیجیتال
دوربینهای دیجیتال دارای هر دو نوع زوم اپتیک و دیجیتال هستند. زوم دیجیتال به معنی این است که دوربین به طریق الکترونیکی و دیجیتالی یک تصویر را بزرگ می کند. اما در این حالت عکس نمی تواند دارای اطلاعاتی بیشتر از آن چیزی که زوم اپتیک عرضه می کند ، باشد. از این رو کیفیت زوم دیجیتال بسیار پایین تر از زوم معادل اپتیک است. جهت بزرگ کردن یک عکس می توانید از یک نرم افزار تصویری ، بعد از برداشتن عکس استفاده کنید.
فلاش
حتی دوربینهای کوچک و ساده هم، امروزه مجهز به فلاش هستند. میدان روشن کردن فلاشهای ثابت روی دوربینها محدود است ( بین 5/0 تا 3 متر ، جهت اطلاع دقیق به دفترچه دوربین خود مراجعه کنید) اما این فلاش برای فاصله های کم و کوتاه در یک محیط سربسته کفایت می کند.
کاهش خطر قرمزی چشم
فلاش ها معمولا” روی یک دوربین کوچک در کنار لنز قرار گرفته اند. اگر کسی که عکس او گرفته می شود، مستقیما” به دوربین نگاه کند، نور فلاش منعکس شده از برخورد به سرخرگهای شبکیه چشم باعث قرمز شدن چشم فرد در عکس خواهد شد که پدیده چشم قرمز مشهور است. برای مقابله با بروز این پدیده ، فلاش می تواند قبل از گرفتن عکس، نوری از خود بیرون بدهد ، در این هنگام به دلیل نور بیشتر، مردمک چشم خود را جمع می کند و سپس فلاش زده می شود. از این رو یک فاصله و وقفه ای بین هنگامیکه شاتر فشارداده می شود و زمانیکه عکس گرفته می شود، بوجود می آید. در این فاصله ، ممکن است مدل عکاسی شما خسته شود و قیافه دیگری به خود بگیرد که در عکس ظاهر شود.
از آنجایی که اکثر نرم افزار های تصحیح عکس دارای ابزارهایی برای تصحیح قرمزی چشم هستند، پس فلاشهای تاخیری شاید دارای امتیاز منفی بیشتری باشند و مشکلات بیشتری تولید کنند.
فلاش حذف سایه ها
از فلاش می تواند حتی در زیر نور شدید خورشید، برای از بین بردن سایه ها و کم کردن کنتراست استفاده کرد. اگر شما بخواهید از فلاش جهت پر کردن سایه ها استفاده کنید، باید آنرا برای این کار تنظیم کنید. در این حالت هر بار که عکسی بگیرید، به طور اتوماتیک یک بار فلاش زده می شود.
نور سنجی
برای گرفتن عکس دقیق و درست ، باید مقدار مشخص و درستی نور به گیرنده نوری برسد. مقدار نور لازم، یا از طریق دوربین و یا به طور دستی تنظیم می شود که در این حالت شما خودتان اندازه شاتر و دیافراگم را تنظیم می کنید. خیلی از دوربینها این امکان را به شما می دهند که نورسنجی را خودتان انجام دهید.
نورسنجی ماتریسی
در اکثر عکسها نورسنجی بر مبنای کل عکس صورت می گیرد و نور تمام سطح عکس اندازه گیری می شود و نوردهی برای عکس بر مبنای میانگین نور دریافتی انجام می شود. این نوع نورسنجی به نورسنجی چند نقطه ای هم مشهور است.
نورسنجی نقطه ای
زمانی که اختلاف نور در نقاط مختلف عکس بسیار است، بهتر است که نور سنجی را از یک نقطه به خصوصی از عکس که مورد نظر هست و اهمیت بیشتری دارد ، انجام داد. این روش به نورسنجی نقطه ای مشهور است. در این روش فقط نوری که در مرکز چشمی دوربین دیده می شود، اندازه گیری می شود.
در نورسنجی نقطه ای می توانید دقیقا” مانند فوکوس کردن، مرکز چشمی دوربین را روی قسمتی از سوژه که مهم است، نشانه گیری کرده و مقدار نور را اندازه گیری کنید. سپس می توانید نوردهی را قفل کنید، این کار را با نیمه فشار دادن شاتر دوربین انجام می دهید. سپس کادر عکس خود را مشخص کنید و عکس دلخواه تان را بگیرید.
نورسنجی مرکزی
در نورسنجی مرکزی ، نور تمام محوطه اندازه گیری می شود ولی تاکید بیشتر بروی نقطه مرکزی عکس میباشد .
گول خوردن نورسنج دوربین
از طریق ترکیب شاتر کوتاه یا طولانی مدت با دیافراگم باز یا یسته ، دوربین مقدارنور را طوری تنظیم می کند که شما بتوانید دریک روز تاریک پاییز به خوبی روز آفتابی تابستان عکس بگیرید .اما اگر سوژه عکس شما بسیار روشن یا بسیار تاریک باشد ، نورسنج دوربین شما می تواند خیلی راحت گول بخورد وخود را برای اندازه ای اشتباه تنظیم کند .
تصحیح یا جبران نوردهی
اگر دوربین شما دارای کارکرد تصحیح نوردهی باشد ، می توانید ازاین امکان جهت تاباندن نور بیشتر یا کمتر به سنسور نوری استفاده کنید . کارکرد تصحیح نوردهی در عکاسی وسیله کمکی بسیار خوبی برای شرایط نوری نامناسب و یا مواقعی که سوژه عکس فوق العاده تیره و یا روشن است ، می باشد .
حالت اتوماتیک
درخیلی از دوربین ها تنظیم اندازه شاتر ودیافراگم به طور خودکار از طرف دوربین انجام می شود ، اما در عین حال می توان از حالتهای تقدم شاتر و یا تقدم دیافراگم ، هم جهت عکاسی در حالت اتوماتیک استفاده کرد. این بدین معنی است که شما یک سرعتی برای شاتر خود انتخاب می کنید و کار انتخاب و تنظیم دیافراگم را به دوربین واگذار می کنید و یا برعکس . استفاده از این امکانات برای به دست آوردن عمق میدان بیشتر ، حذف پس زمینه متحرک و یا منجمد کردن حرکت در عکس می تواند به کار رود .
دوربین دیجیتال چیست؟ قسمت 1
دوربین دیجیتال چیست؟ قسمت 2
دوربین دیجیتال چیست؟ قسمت 3
دوربین دیجیتال
مخترع دوربین دیجیتال استیون سسون میباشد که در زمان اختراع این دستگاه کارمند شرکت ایستمن کداک بود و بدین ترتیب اولین دوربین دیجیتالی تاریخ، توسط این شرکت ثبت گردید. اکنون در سه قطع دوربین (دوربین قطع کوچک، دوربین قطع متوسط و دوربین قطع بزرگ) تکنولوژی دیجیتال تحولاتی ایجاد کرده به عنوان نمونه ساخت پشتی دیجیتال برای دوربین قطع متوسط که با آداپتور قابل نصب بر روی دوربین قطع بزرگ نیز میباشد.
در دوربین دیجیتال، تصویربرداری بر روی فیلم صورت نمیگیرد بلکه توسط یک حسگر حساس (دستگاه جفتکنندهٔ بار (CCD) یا نیمرسانای اکسید فلزی مکمل (CMOS)) انجام میپذیرد.
عملکرد
از لحاظ عملکرد کلی، دوربینهای دیجیتال بسیار شبیه به دوربینهای عکاسی دارای فیلم یا غیر دیجیتال میباشند. این دوربینها همانند دوربینهای معمولی دارای یک منظره یاب، لنز برای کانونی کردن تصویر بر روی یک وسیله حساس به نور، وسیلهای برای نگهداری و انتقال چند تصویر گرفته شده در دوربین و یک جعبه در بر گیرنده تمام این تجهیزات میباشد. در یک دوربین معمولی فیلم حساس به نور تصویر را ذخیره میسازد و بعد از عملیات شیمیایی برای نگهداری تصویر از آن استفاده میشود. در حالی که در دوربین دیجیتال این کار با استفاده از ترکیبی از فناوری پیشرفته سنسور (حسگر) تصویر و ذخیره در حافظه انجام میگیرد و اجازه میدهد که تصاویر در شکل دیجیتال ذخیره شوند و به سرعت بدون نیاز به عملیات خاصی (نظیر عملیات شیمیایی بر روی فیلم) در دسترس باشند.
گرچه اصول کلی این دوربینها شبیه به دوربینهای فیلمی هستند، نحوه کار داخل این دوربینها کاملاً متفاوت است. در این دوربینها تصویر توسط یک سنسور CCD یا یک CMOS گرفته میشود. CCD بصورت ردیفها و ستونهایی از سنسورهای نقطهای نور هستند که هر چه تعداد این نقاط بیشتر و فشرده تر باشد، تصویر دارای دقت بالاتری است) هر سنسور نور را به ولتاژی متناسب با درخشندگی نور تبدیل کرده و آن را به بخش تبدیل سیگنالهای آنالوگ به دیجیتال ADC میفرستد که در آنجا نوسانات دریافتی از CCD به کدهای مجزای باینری (عددهای مبنای دو بصورت صفر و یک) تبدیل میشود. خروجی دیجیتال از ADC به یک پردازنده سیگنالهای دیجیتال DSP فرستاده میشود که کنتراست و جزئیات تصویر در آن تنظیم میشود و قبل از فرستادن تصویر به حافظه برای ذخیره تصویر، اطلاعات را به یک فایل فشرده تبدیل میکند. هر چه نور درخشندهتر باشد، ولتاژ بالاتری تولید شده و در نتیجه پیکسلهای رایانهای روشنتری ایجاد میشود. هر چه تعداد این سنسورها که بهصورت نقطه هستند بیشتر باشد، وضوح تصویر به دست آمده بیشتر است و جزئیات بیشتری از تصویر گرفته میشود.
تمام این پروسه، پروسهای هماهنگ با محیط زیست است. سنسورهای CCD یا CMOS در تمام مدت عمر دوربین در جای خود ثابت بوده و بدون نیاز به تعویض کار میکنند. ضمناً به علت عدم وجود قطعات متحرک عمر دوربین بسیار بیشتر میشود. سنسور CCD از میلیونها سنسور نوری تشکیل شده است و حساسیت به نور آن از سنسورهای CMOS بهتر است. در عوض در سنسور CMOS مصرف انرژی کمتر بوده و مشکل Over Exposure کمتر بوجود میآید. دوربینهای دیجیتال در بطن کار، از دوربینهای آنالوگ پیروی میکنند، با این تفاوت که در این دوربینها، همانطور که از اسمشان نیز برداشت میشود، کنترل بخشهای مختلف از جمله فوکوسر و … به صورت دیجیتالی انجام شده یا در صفحه حساس این دوربینها، سی سی دی و سی ماس، جایگزین فیلمهای قدیمی شده است.
دریافت و ثبت تصویر در دوربینهای دیجیتال
صفحههای حساس در دوربینهای دیجیتال حرفهای، ccd یا cmos است که مختصراً به بررسی آن میپردازیم. حسگرهای نوری از هزاران ردیف المان نیمههادی بسیار کوچک و حساس به نور تشکیل شدهاند که میتوانند ذرات یا فوتونهای نور را به بار الکتریکی تبدیل کنند. حال هر چه شدت نور ورودی بیشتر یا کمتر باشد، الکتریسیته ایجاد شده متعاقباً دستخوش تغییر میشود. جنس این صفحهها اغلب از عناصری از جمله سیلیسیم و ژرمانیوم است. به طور نمونه شرکت کانن در دوربینهای SLR خود تاکنون تنها از سنسورهای CMOS استفاده کرده است، در حالی که شرکت نیکون از هر دو نوع سنسور بهره میگیرد. بطور کلی تفاوت کیفی زیادی بین این دو نوع سنسور وجود ندارد اما حسگرهای CMOS کم مصرف تر بوده و در شرایط کم نور و با نوردهیهای طولانی عملکرد بهتری دارند. ضمناً از نظر فنی امکان تولید سنسورهای CCD در ابعاد فول فریم (۲۴×۳۶میلیمتر) موجود نیست.
مزیتهای دوربینهای دیجیتال
- مخابره: شاید مهمترین و اصلیترین دلیل تولید دوربین دیجیتال را بتوان مخابره نامید چرا که تولید آن پس از درخواست موسسات تحقیقات فضایی از تولیدکنندگان تجهیزات عکاسی برای تصویری قابل مخابره جهت تحقیقات فضایی شکل گرفت
- هزینهٔ کمتر: به لحاظ اینکه در هر دوره عکاسی دیگر احتیاج به خرید، ظهور و چاپ فیلم نیست.
- مقدار خطای کمتر: به علت پیش نمایش بهتر عکس و نشان دادن عکس در همان زمان میتوان در صورت مشاهدهٔ خطایی فاحش عکس را مجدادا ثبت کرد در صورتی که در عکاسی آنالوگ پس از مرحلهٔ ظهور میتوان چنین تشخیصی داد که معمولاً دیر است
- مقدار ریسک پایین: از بین رفتن یا افت کیفیت شدید فیلم به علت زمان، حرارت، و نور دیدگی، خطای ظهور، چاپ، تاریخ فیلم و… طبیعتاً حذف شده و جای خود را از لحاظ ریسک تنها به خطاهای الکترونیکی بسیار ناچیز میدهد.
- نگهداری بهتر: امکان آرشیو میلیونها عکس در یک فضای بسیار کم با ماندگاری بسیار طولانیتر
- عکسبرداری متوالی:در دوربینهای آنالوگ به طور معمول بیشترین تعداد عکس برداری متوالی بیشتر از ۳۶ عدد (به لحاظ تعداد کاست) نمیشد به غیر از مواردی خاص که گاهی تا ۳۶۰ عدد اضافه میشد (با حجمی مزاحم) ولی با زحمتی چندین برابر برای تعویض فیلم! در صورتی که در دوربینهای جدید دیجیتال با فشار دادن دکمه شاتر میتوان بیش از هزاران عکس را بدون توقف در یک کارت حافظه بسیار کوچک جا داد.
- گستره پویایی بیشتر از فیلم منفی
قسمتهای مختلف دوربین
چشمی یا منظره یاب
خیلی از دوربینهای کمپکت دیجیتال و آنالوگ دارای پنجره کوچکی هستند که فرد عکاس می تواند با دیدن از میان آن کادر و اجزا درون آن ، عکس خود را مشخص نماید. این پنجره کوچک که به چشمی یا منظره یاب دوربین معروف است معمولا” در کنار لنز قرار دارد. چیزی که به عنوان تصویر از درون چشمی دوربین مشاهده می کنید ، تصویری تقریبی از نظر کادر یا عکس نهایی است. اختلاف در تصویر چشمی و تصویر نهایی به خطای پارالکس معروف است.
زمانیکه مسئله کادر دقیق سوژه مهم باشد، مثل عکاسی کلوزآپ، صفحه LCD دوربین دیجیتال کمک بزرگی در این مسئله است ، چرا که گیرنده نوری دقیقا” آن چیزی را که می بینید، عکس خواهد گرفت.
شما می توانید منطقه فوکوس را با نشانه گرفتن دوربین به طرف سوژه طوری انجام دهید که مستطیل منطقه فوکوس در نقطه ای از عکس واقع شود که می خواهید فوکوس را روی آن انجام دهید. تکمه شاتر را مقدار کمی به پایین فشار دهید ، دوربین در این حالت فاصله تا سوژه را اندازه می گیرد و لنز را فوکوس می کند. در حالتیکه تکمه شاتر کماکان تا نیمه به پایین فشار داده شده است، کادرعکس خود را هم انتخاب می کنید.
صفحه LCD
در یک دوربین تک لنزی انعکاسی تصویری که درون چشمی آن مشاهده می شود، از درون لنز و یک سری آینه عبور می کند تا به پنجره چشمی در پشت دوربین می رسد. از این رو چشمی این گونه دوربینها ، کادر عکس را دقیقا” نشان داده و بعضی مواقع هم اطلاعات دیگر ، مثل سرعت شاتر و دیافراگم را در آن می توان مشاهده کرد.
شاتر
اندازه سرعت بر حسب ثانیه یا کسری از ثانیه بیان می شود. این اندازه معمولا” همراه با درجه باز بودن دیافراگم بیان می شود تا مقدار مشخص نوری که گیرنده نوری باید دریافت کند را مشخص کند. اما از این اندازه برای تاثیر حرکت در عکس هم استفاده می شود.
برای سرعتهای شاتر طولانی تر از ثانیه و جهت احتراز از لرزش دست، باید از سه پایه و یا سایر وسایل ثابت نگهداشتن دوربین استفاده کنید. حتی اگر همه کارها به طور اتوماتیک در دوربین شما انجام می شود، باز هم بهتر است که قبل از گرفتن عکس کنترلی در مورد سرعت شاتر بکنید تا بدانید که عکس شما با چه سرعتی گرفته می شود.
دیافراگم
اندازه دیافراگم بازتر (رقمهای کوچک تر) همچنین باعث می شود تا عمق میدان عکس کاهش پیدا کند. این بدین معنی است که تصویر فقط در محدوده کمی به صورت واضح دیده خواهد شد و قبل و بعد از این منطقه، تصویر سوژه تار خواهد بود. عمق میدان کمتر را می توان در موارد مشخصی به کار برد ، مثلا” زمانی که عکس شخصی را می خواهیم از پس زمینه متحرک آن جدا کنیم.
لنز
در لنز نرمال، فاصله کانونی برابر اندازه قطر کادر نگاتیو است. دوربین دیجیتال دارای گیرنده نوری یا سنسوری است که اندازه آن خیلی کوچکتر از قطع یک فیلم است. از این رو لنز نرمال در دوربین دیجیتال کوچکتر از لنز نرمال در دوربینهای سنتی قطع کوچک است. فاصله کانونی لنز، معمولا” در دوربینهای دیجیتال معادل فاصله کانونی لنزهای دوربینهای قطع کوچک در نظر گرفته می شود.
زوم دیجیتال : دوربینهای دیجیتال دارای هر دو نوع زوم اپتیک و دیجیتال هستند. زوم دیجیتال به معنی این است که دوربین به طریق الکترونیکی و دیجیتالی یک تصویر را بزرگ می کند. اما در این حالت عکس نمی تواند دارای اطلاعاتی بیشتر از آن چیزی که زوم اپتیک عرضه می کند ، باشد. از این رو کیفیت زوم دیجیتال بسیار پایین تر از زوم معادل اپتیک است. جهت بزرگ کردن یک عکس می توانید از یک نرم افزار تصویری ، بعد از برداشتن عکس استفاده کنید.
فلاش
کاهش خطر قرمزی چشم: فلاش ها معمولا” روی یک دوربین کوچک در کنار لنز قرار گرفته اند. اگر کسی که عکس او گرفته می شود، مستقیما” به دوربین نگاه کند، نور فلاش منعکس شده از برخورد به سرخرگهای شبکیه چشم باعث قرمز شدن چشم فرد در عکس خواهد شد که پدیده چشم قرمز مشهور است. برای مقابله با بروز این پدیده ، فلاش می تواند قبل از گرفتن عکس، نوری از خود بیرون بدهد ، در این هنگام به دلیل نور بیشتر، مردمک چشم خود را جمع می کند و سپس فلاش زده می شود. از این رو یک فاصله و وقفه ای بین هنگامیکه شاتر فشارداده می شود و زمانیکه عکس گرفته می شود، بوجود می آید. در این فاصله ، ممکن است مدل عکاسی شما خسته شود و قیافه دیگری به خود بگیرد که در عکس ظاهر شود.
از آنجایی که اکثر نرم افزار های تصحیح عکس دارای ابزارهایی برای تصحیح قرمزی چشم هستند، پس فلاشهای تاخیری شاید دارای امتیاز منفی بیشتری باشند و مشکلات بیشتری تولید کنند.
نحوه ی عملکرد دوربین دیجیتال
نقشه انفجاری یک دوربین دیجیتال را در شکل زیر مشاهده می کنید:
نقاط نشان داده شده بر روی شکل فوق عبارتند از:
1- محل رسیدن نور از جسم مورد نظر به دوربین
2- فیلترهای نصب شده بر روی دوربین برای افزایش کیفیت عکس و همچنین محافظت از لنز دوربین
3- سیستم فکوس خودکار برای جلوگیری از گرفتن عکس های تار
4- سنسور دوربین که از میلیون ها پیکسل تشکیل می شود. هر یک از این پیکسل ها میزان روشنی و رنگ نور رسیده شده به آن را اندازه گیری می نماید
5- مدارهای الکترونیکی دوربین که خروجی سنسور را به تصویر دیجیتال تبدیل می نمایند
6- صفحه نمایش دوربین که به ما این امکان را می دهد تا عکس ها را بتوانیم بلافاصله بعد از گرفته شدن مشاهده و بررسی نماییم
7- کارت حافظه دوربین برای ثبت عکس ها بر روی آن
دوربین های دیجیتال اطلاعات هر منظره را به جای این که به صورت تغییر شیمیایی بر روی فیلم های عکاسی ثبت نماید، به صورت اعداد در حافظه دوربین ذخیره می کند و لذا دیگر نیاز به ظاهر کردن و چاپ کردن ندارند و می توان آن ها را بلافاصله پس از گرفته شدن مشاهده نموده و یا حذف نمود.
برخلاف عکس های چاپ شده، کیفیت عکس های دیجیتال با گذشت زمان پایین نمی آید و لذا شما قادر خواهید بود عکس های خود را برای سال های سال نگه دارید.
دوربین های دیجیتال از لنز برای فکوس نمودن تصویر بر روی حسگر خود (به جای فیلم در دوربین های قدیمی) استفاده می کنند.
اطلاعات این بارها به مدارهای الکترونیکی دوربین وارد می شود و در آن جا پس از اندازه گیری شدن به مقادیر دیجیتال تبدیل می گردد. پردازنده کامپیوتری دوربین سپس این مقادیر دیجیتال را پردازش نموده و آن ها را به صورت عکس بر روی کارت حافظه ذخیره می نماید. عکس های ذخیره شده سپس قابل انتقال به کامپیوترهای دیگر و یا چاپ شدن را دارا خواهند بود. بالا رفتن سرعت عکاسی با دوربین های دیجیتالی، انقلابی در صنعت عکاسی ایجاد نموده است.
نحوه کار حسگر دوربین های دیجیتالی:
در این بخش نحوه عملکرد حسگرهای دوربین های دیجیتالی را کمی بیشتر توضیح می دهیم. به شکل زیر دقت نمایید:
در شکل فوق، در مرحله اول شاتر دوربین در هنگام عکاسی باز می شود و اجازه می دهد تا نور به حسگر دوربین برسد.
در مرحله دوم، نور به حسگر می رسد. حسگر دوربین، شبکه ای از پیکسل ها می باشد که هر یک از آن ها مقدار نوری که به او می رسد را اندازه گیری می کند. نور رسیده به هر پیکسل ترکیبی از سه رنگ قرمز، آبی و سبز می باشد.
هر پیکسل دارای فیلترهای سبز، آبی و قرمز می باشند و هر یک از این فیلترها می توانند مانن آن چه در مرحله 3 مشاهده می شود، میزان روشنایی رنگ مربوط به خود را در نوری که به آن ها رسیده اندازه گیری نمایند.
اطلاعات به دست آمده از کلیه پیکسل ها سپس به صورت دیجیتال و در نهایت به صورت عکس درخواهند آمد.اولین دوربین دیجیتال مدل در سال 1976 توسط کداک ساخته شده ولی تا سال 1994 که اپل دوربین دیجیتال QT100 خود را عرضه نمود، به صورت همگانی درنیامد.
دوربین دیجیتال چیست؟ قسمت 1
دوربین دیجیتال چیست؟ قسمت 2
دوربین دیجیتال چیست؟ قسمت 3
واتسون، کابوس آزمون تورینگ!
واتسون را که بهطور حتم به خاطر میآورید؟ ماشین ساخت آیبیام که در سال 2011 با شکست دادن رقبای انسانی خبره در بازی Jeopardy سروصدای زیادی به پا کرد. این ماشین به عنوان یکی از مدرنترین نمونههای ماشینهای هوشمند امروزی میتواند مورد بسیار خوبی برای بررسی وضعیت آزمون تورینگ در جهان امروز به شمار میرود.
خبر بد این است که واتسون آزمون تورینگ را با موفقیت پشت سر نگذاشته است و با تعاریف کلاسیک، به هیچ عنوان ماشین هوشمندی به شمار نمیآید. اما این باعث نمیشود تا این ماشین، انقلابی در حوزه هوش مصنوعی محسوب نشود. ماهنامه ساینتیفیک امریکن در شماره ماه مارس 2011 و کمی پس از موفقیت واتسون در Jeopardy مصاحبهای را با استفن بیکر، روزنامهنگاری که در فرآیند ساخت واتسون با تیم آیبیام همراه بود انجام داد که در آن بیکر به نکات جالبی در رابطه با وضعیت کنونی هوش مصنوعی اشاره میکند. بیکر ابتدا در پاسخ به این پرسش که چگونه واتسون دنیای هوش مصنوعی را تغییر داده، میگوید: «رؤیای اولیه در مورد هوش مصنوعی هیچگاه به ثمر نرسید. در واقع دانشمندان پس از چندین دهه تحقیق، به این نتیجه رسیدند که ساخت سیستمی شبیه به مغز انسان، خیلی سختتر از آن چیزی است که تصور میشد.
حتی واتسون نیز که انسان را در Jeopardy شکست داد، به این رؤیا چندان نزدیک نشده است. با این حال، در عرض 15 سال گذشته پیشرفتهای خیرهکنندهای در جنبههای کاربردی هوش مصنوعی صورت گرفته است. راهبردهای آماری برای شبیهسازی بعضی جنبههای آنالیز انسانی توانسته سیستمهايی کاربردی را در اختیار مردم قرار دهد که در هر زمینهای، از دیپ بلو گرفته تا نت فلیکس، آمازون و گوگل زندگی ما را قبضه کردهاند.» بیکر سپس در مورد واتسون میگوید: «موضوع جدید درباره واتسون، راهبرد تماماً عملگرای آن است. این ماشین روشهای مختلفی را برای پاسخ به یک پرسش امتحان میکند. در اینجا راهبرد درست یا نادرست وجود ندارد بلکه واتسون در طول زمان یاد میگیرد تا چه زمانی به کدام روش تکیه کند. به نوعی میتوان گفت در جنگ بین راهبردهای مختلف در هوش مصنوعی واتسون به مانند یک ندانمگرا (آگنوستیسیست) عمل میکند. جنبه جدید دیگر، توانایی بالای این ماشین در فهم زبان انگلیسی است. تواناییای که به عقیده من از تمرین داده شدن این سیستم با دیتاستهای عظیم ناشی شده است و با وجود خیرهکننده بودن، یک روش جدید و بکر به شمار نمیآید.» بیکر سپس به توضیح مقایسه واتسون با مغز انسان پرداخته و میگوید: «تیم آیبیام در هنگام برنامهریزی واتسون توجه چنداني به ساختار مغز انسان نداشته است.
به عقیده من واتسون محصول واقعی مهندسی است: استفاده از فناوریهای موجود برای ساخت ماشینی با ویژگیهای مشخص در زمانی خاص.» بیکر سپس اضافه میکند: «با این حال من شباهتهایی را در شیوه تفکر واتسون و انسانها مشاهده میکنم که البته به این دليل نیست که ما از یک طراحی یکسان سود میبریم، بلکه ما در واقع به دنبال حل مسائلی یکسان هستیم. به عنوان مثال، برخلاف بسیاری از کامپیوترها واتسون برای عدم قطعیت برنامهریزی شده است. این سیستم هیچگاه از جوابی که میدهد صد درصد مطمئن نیست بلکه در مورد آن شک و تردید دارد. این برای ماشینی که قرار است با زبان انسانها ارتباط برقرار کند، راهبردی هوشمندانه به شمار میرود.»
بیکر در ادامه به نقاط قوت واتسون در درک زبان انگلیسی و جستوجوی سریع میان حجم عظیمی از دادهها اشاره کرده و اذعان میکند که چنین سیستمی میتواند به راحتی در زمینههای دیگری که حالت پرسش و پاسخ دارند، مانند حوزه بهداشت و درمان، به کار گرفته شود. نکتهای که بیکر بارها و بارها در این مصاحبه به آن اشاره میکند، این است که واتسون در واقع توانایی استدلال چندانی ندارد و این یکی از تفاوتهای اصلی آن با بسیاری از سیستمهای موجود هوش مصنوعی است. میتوان این موضوع را به این صورت خلاصه کرد که طبق تعاریف سنتی هوشمندی، واتسون به هیچ عنوان هوشمند به شمار نمیآید چراکه ماشینی است با تواناییهای بسیار محدود که به هیچ عنوان نمیتواند استدلالهای پیچیده را مدیریت کند. با این حال، تلفیق قدرت جستوجوی بهینه اطلاعات و توانایی بالا در درک زبان انسانی، واتسون را به انقلابی در هوش مصنوعی تبدیل کرده که میتواند در زمانی کوتاه پاسخهایی را تولید کند که ارائه آنها از قدرت انسان خارج است.
بیکر در پایان مصاحبه میگوید: «میتوان بحث را به این صورت خلاصه کرد که واتسون در واقع چیزی غیر از آمار تولید نمیکند.» وی ادامه میدهد: «با این حال، چنین پیشرفتهایی درس بزرگی به ما میدهد و آن این است که برای موفقیت در اقتصاد دانش، افراد باید از دانستههایشان استفاده کرده و به ایدههای نوین دست یابند. در غیر این صورت آنها میتوانند خیلی راحت با ماشینها جایگزین شوند.» نکتهای که بیکر به آن اشاره میکند، بیشتر از آن که برای دانشمندان علوم کامپیوتر جذاب باشد، موضوع مطالعات مربوط به نیروی کار انسانی است. هوش مصنوعی کاربردی میتواند ماشینهایی مانند واتسون را طراحی کند که شاید در تعریف تورینگ هوشمند شمرده نشوند، اما توانایی کند و کاو حجم بسیار عظیمی از دادهها و ارائه اطلاعاتی مفید از آنها در زبان انسان را در چنته دارند. بدون هیچ تعارفی حداقل در زمینههای خدماتی، بسیاری از شغلها میتوانند خیلی راحت با کامپیوترهایی ارزان قیمت جایگزین شوند.
این همان چیزی است که مدیران Diapers.com را به سمت اداره کل سیستم انبار به دست روباتها سوق میدهد. یا فدکس را قانع میکند که میتوان تعداد اپراتورهای شرکت را به حداقل رسانده و از ماشینهایی برای خدماترساني به تماسهای مشتریان استفاده کرد. چندین دهه قبل، انسانها میترسیدند روزی ماشینها آن قدر هوشمند شوند که کنترل انسانها را در دست گیرند. با این حال نزدیک به سی سال قبل و با شروع زمستان هوش مصنوعی، این ترس معنای سنتی خود را از دست داد و هماکنون توانسته به شیوهای جدید خود را وارد زندگی انسانها کند. حقیقت تلخی در پسزمینه ماشینهایی مانند واتسون وجود دارد: بسیاری از کارهایی که تصور میکنیم هوشمندی انسانمحورمان، ما را قادر به انجامشان میسازد در واقع آنقدرها هم از نظر ماشینها کار پیچیدهای به شمار نمیآید. اگر باور ندارید، میتوانید از مبادلهگران سنتی بورس در حوالی والاستریت سراغی بگیرید.
آينده
رابرت فرنچ، دانشمند علوم شناختی در مرکز ملی تحقیقات علمی فرانسه در رابطه با آینده آزمون تورینگ میگوید: «دو پیشرفت مهم در حوزه فناوری اطلاعات میتواند آزمون تورینگ را از بازنشستگی خارج کند. اول دسترسی بسیار گسترده به دادههای خام؛ از فیدهای ویدیویی گرفته تا محیطهای کاملاً صوتی و از مکالمههای عادی تا اسناد فنی. چنین اطلاعاتی در هر زمینهای که به مغز انسان خطور میکند به صورت گسترده در دسترس هستند. پیشرفت دوم ایجاد روشهای پیشرفته جمعآوری، مدیریت و پردازش این مجموعه غنی از دادهها است.»
البته توسعه یک سیستم به وسیله بارورکردن آن با مجموعهای وسیع از دادهها و روشهای کسب اطلاعات مفید از چنین دادههایی، شاید خیلی شبیه به سیستم یادگیری انسان نباشد، اما ممکن است در نهایت به سیستمی منجر شود که در همه زمینهها، رفتاری انسانی از خود بروز دهد. همانطور که در بخش دوم مقاله مشاهده کردید، دنیای امروز هوش مصنوعی چندان به ساخت ماشینی که انسان را شبیهسازی کند، علاقهمند نیست بلکه انقلاب جدید هوش مصنوعی نگاه به راهبردهای کاربردیتری دارد. در این راهبردهای جدید لزومی دیده نمیشود تا ماشین، رفتاری انسانی از خود نشان بدهد. در مقابل ماشین با منطقکاری خود که در مواردی کاملاً با مدل انسانی آن متفاوت است، کار کرده و با استفاده از دادههای فراوان، الگوریتمهای احتمالاتی و قدرت پردازشی بالا، سعی در انجام کارهایی دارد که انسانها از انجام آن ناتوانند.
با این حال، هنوز هم رؤیای ساخت ماشینی انسان نما برای انسان به صورت معمایی جذاب و البته بسیار سخت باقی مانده است. همه ما سالها تصویر این رؤیا را در فیلمهای هالیوودی تماشا کردهایم و هرچند در واقعیت، رسیدن به آن نقطه خیلی سختتر از آن چیزی بود که تورینگ و دیگر پیشگامان هوش مصنوعی تصور میکردند، اما پیشرفتهایی مانند ساخت واتسون، ماشینی که میتواند زبان انسانی را به خوبی تحليل کند، همچنان محققان را به آینده امیدوار میکند. پیشرفت چنین پروژههایی بهشدت وابسته به تعهد دولتها و سرمایهای است که آنان در اختیار مؤسسات تحقیقاتی قرار میدهند زیرا به دلیل فاصله چنین تحقیقاتی از حوزه کاربرد، از نظر اقتصادی نمیتوان آنها را یک سرمایهگذاری منطقی قلمداد کرد. آینده پر از شگفتیهایی است که ما انتظارش را نداریم اما مسیر تا به همین جا نیز به حد کافی لذتبخش بوده است که دغدغه آینده، ما را از ادامه راه دلسرد نکند.
نظریه و آزمون تورینگ (هوش مصنوعی)
بیش از نیم قرن پیش، هنگامی که هنوز هیچ تراشه سیلیکونیای ساخته نشده بود، آلن تورینگ یکی از بحث برانگیزترین پرسشهای فلسفی تاریخ را پرسید. او گفت آیا ماشین میتواند فکر کند و اندکی بعد کوشید به پیروی از این قاعده که هر ادعای علمی باید از بوته آزمایش سربلند بیرون بیاید، پرسش فلسفی خود را با یک آزمایش ساده و در عین حال پیچیده جایگزین کند. او پرسید آیا یک ماشین یک کامپیوتر میتواند بازی تقلید را با موفقیت پشت سر بگذارد.
او آزمونی طراحی کرد که خود، آن را بازی تقلید نامید. او آزمون بازی تقلید را چنین شرح داد: یک پرسشگر- یک انسان- همزمان در حال گفتوگو با دو نفر است. هر یک از این دو نفر در اتاقهای جداگانه قرار گرفتهاند و پرسشگر نمیتواند هیچیک از آنها را ببیند یکی از این دو نفر انسان است و دیگری یک ماشین یعنی یک کامپیوتر. پرسشگر باید با این دو نفر شروع به گفتوگو کند و بکوشد بفهمد کدامیک از این دو، انسان است و کدامیک ماشین. اگر کامپیوتر بتواند طوری جواب دهد که پرسشگر نتواند انسان را از ماشین تمیز دهد آنگاه میتوان ادعا کرد که این ماشین هوشمند است. تورینگ برای آسانکردن شرایط این آزمون و پرهیز از پیچیدگیهای اضافی آن را به محاورهای متنی و روی کاغذ محدود کرد تا مجبور به درگیر شدن با مسائل انحرافی مانند تبدیل متن به گفتار شفاهی و تنظیم تن صدا و لهجه نباشیم.او همچنین بر اساس یک سری محاسبات پیشبینی کرد که ۵۰ سال بعد یعنی در سال ۲۰۰۰ انسان قادر خواهد بود کامپیوترهایی بسازد که در یک گفتوگوی پنج دقیقهای، فقط ۷۰درصد پرسشگرها بتوانند کشف کنند که در حال گفتوگو با یک انسان هستند یا یک ماشین. او برخورداری از یک میلیارد بیت حافظه (۱۲۵ میلیون بایت- حدود ۱۲۰ مگابایت) را یکی از مشخصههای اصلی این کامپیوتر دانست.تورینگ همچنین در این مقاله یک سری استدلالهای مخالف با نظریه و آزمون خود را مطرح کرد و کوشید به آنها پاسخ دهد، تصور اینکه ماشینهای هوشمندی ساخته شوند که بتوانند فکر کنند وحشتناک است. تورینگ در پاسخ میگوید این نکتهای انحرافی است، زیرا بحث اصلی او بایدها و نبایدها نیست بلکه بحث درباره ممکنهاست.
دیگر اینکه، ادعا میشود محدودیتهایی درباره نوع پرسشهایی که میتوان از کامپیوتر پرسید وجود دارد، زیرا کامپیوتر از منطق خاصی پیروی میکند. اما تورینگ در پاسخ میگوید: خود انسان هنگام گفتوگو پرغلط ظاهر میشود و نمیتوان گفتار هر انسانی را لزوما منطقی کرد. او پیشبینی کرد که منشأ اصلی هوشمندی ماشین فرضی او، حافظه بسیار زیاد و سریعی است که یک کامپیوتر میتواند داشته باشد. بنابراین از نگاه تورینگ، ماشین همچون کامپیوتر Deep Blue که کاسپاروف، قهرمان شطرنج را شکست داد، میتواند یک ماشین هوشمند تلقی شود. در عین حال تورینگ این نظر را که {آزمون مورد بحث معتبر نیست، زیرا انسان دارای احساسات است و مثلا موسیقی دراماتیک میسازد} رد کرد و گفت: هنوز هیچ سند قابل قبولی وجود ندارد که ثابت کند فقط ما انسانها دارای احساسات هستیم، زیرا مشخص نیست مفهوم دقیق این واژه به لحاظ علمی چیست.
در سال ۱۹۵۶ جان مک کارتی، یکی از نظریهپردازان پیشگام این نظریه در آن زمان، اصطلاح (هوشمند مصنوعی) را برای اولینبار در نخستین کنفرانسی که به این موضوع اختصاص یافته بود، به کار برد. او همچنین زبان برنامهنویس Lisp را ابداع کرد که در همین زمینه کاربرد دارد. دانشمندان بعدا این تاریخ را به عنوان تاریخ تولد علم هوش مصنوعی انتخاب کردند. تقریبا در همان زمان جان فون نیومان نظریه بازیها را معرفی کرد. این نظریه نقش موثری در پیشبرد جنبههای نظری و علمی هوش مصنوعی داشت. چند سال بعد، در سال ۱۹۶۸ آرتور سرکلارک، در رمان معروف خود، یعنی اودیسه فضایی ۲۰۰۱ اصطلاح (آزمون تورینگ) را به جای (بازی تقلید) سر زبانها انداخت. از زمانی که تورینگ این فرضیه را مطرح کرده است، هزاران دانشمند با هدف ساختن ماشینی که بتواند آزمون تورینگ را با موفقیت تمام کند، دست به کار شدهاند. اما هنوز کسی موفق نشده است چنین ماشینی بسازد و پیشبینی تورینگ هم درست از آب در نیامده است.
● چالشهای بنیادین هوش مصنوعی
البته امروزه هوش مصنوعی به واقعیت نزدیک شده است و تقریبا میتوان گفت وجود دارد اما دلایل اصلی متعددی وجود دارد که نشان میدهند چرا هنوز شکل تکامل یافته هوش که تورینگ تصور میکرد، به وقوع نپیوسته است. یکی از مهمترین مباحث مطرح در این زمینه، موضوع شبیهسازی است. غالبا پرسیده میشود آیا صرف اینکه ماشین بتواند نحوه صحبت کردن انسان را شبیهسازی کند، به معنی آن است که هوشمند است؟ به عنوان مثال، شاید شما هم درباره روباتهای نرمافزاری که میتوانند چت کنند چیزهایی شنیده باشید. این روباتها از روشهای تقلیدی استفاده میکنند و به تعبیری نمونه مدرن و اینترنتی آزمون تورینگ هستند. مثلا روبات Eliza یکی از اینهاست. این روبات را ژزف وایزنبام، یکی دیگر از پژوهشگران نامدار این حوزه اختراع کرد. الیزا در برخی مکالمات ساده میتواند طرف مقابل خود را به اشتباه بیندازد طوری که مخاطب ممکن است فکر کند در حال گپزدن با یک انسان است. البته الیزا هنوز نتوانسته است آزمون تورینگ را با موفقیت پشت سر بگذارد.
● شاخههای علم هوش مصنوعی
ا) هوش مصنوعی سمبلیک یا نمادین Symbolic Ai
۲) هوش غیر سمبلیک یا پیوندگرا Connection Ai
سپس در دهه ۱۹۵۰ کارهای روزنبالت (Rosenblatt) در مورد شبکههای دو لایه مورد توجه قرار گرفت. در دهه ۱۹۴۷ الگوریتم backpropagation توسط Werbos معرفی شد ولی متدولوژی شبکههای عصبی عمدتا از دهه ۱۹۸۰ به این سو رشد زیادی کرد و مورد استقبال دانشمندان قرار گرفت. منطق فازی ابتدا توسط پروفسور لطفیزاده، در سال ۱۹۶۵ معرفی شد و از آن زمان به بعد توسط خود او و دیگر دانشمندان دنبال شد.در دهه ۱۹۸۰ تلاشهای دانشمندان ژاپنی برای کاربردی کردن منطق فازی به ترویج و معرفی منطق فازی کمک زیادی کرد. مثلا طراحی و شبیهسازی سیستم کنترل فازی برای راهآهن Sendiaتوسط دو دانشمند به نامهای Yasunobo و Miyamoto در سال ۱۹۸۵، نمایش کاربرد سیستمهای کنترل فازی از طریق چند تراشه مبتنی بر منطق فازی در آزمون «پاندول معکوس» توسطTakeshi Yamakawa در همایش بینالمللی پژوهشگران منطق فازی در توکیو در سال ۱۹۸۷ و نیز استفاده از سیستمهای فازی در شبکه مونوریل توکیو و نیز معرفی سیستم ترمز ABS مبتنی بر کنترلهای فازی توسط اتومبیلسازی هوندا در همین دهه تاثیر زیادی در توجه مجدد دانشمندان جهان به این حوزه از علم داشت.
● فراتر از هوشمندی ماشین
چنان که گفتیم، هوش مصنوعی دانش و مهندسی ساختن ماشینهای هوشمند، به ویژه کامپیوترهای هوشمند است. اما بهراستی هوشمند چیست؟ در واقع هنوز دانشمندان نتوانستهاند تعریف واحدی از هوشمندی ارائه دهند که مستقل از «هوش انسان» باشد. ما میدانیم که برخی از ماشینها یا جانداران میتوانند هوشمند باشند، اما بشر هنوز نمیداند که مایل است کدام دسته از فرآیندهای محاسباتی یا پردازش را هوشمندی بنامد. بنابراین برای پاسخ دادن به این پرسش که «آیا فلان ماشین هوشمند است؟» هنوز فرمول مشخصی وجود ندارد، در واقع هوشمندی، خود یک مفهوم فازی و نادقیق است. هوشمندی را میتوان فرآیندی تلقی کرد که دانشمندان هنوز در حال شبیهسازی، تحلیل و حتی تعریف مشخصههای آن هستند.
موضوع مهم دیگر که در ارتباط با هوش مصنوعی مطرح است، هدف دانشمندان از به کارگیری آن است. روشن است که هدف اولیه بشر از ورود به این موضوع، شبیهسازی هوش انسان در کالبد ماشین بوده است. ولی امروزه دیگر چنین نیست و این تصور که هدف علم هوش مصنوعی تنها شبیهسازی هوش انسانی است، تصوری نادرست است. در حقیقت موضوع شبیهسازی هوش انسانی عاملی پیشبرنده در این حوزه از علم است که به دانشمندان انگیزه میدهد تا آن را توسعه دهند، اما در خلال روند توسعه، بشر میتواند به دستاوردهایی برسد که در تمام زمینهها کاربرد دارد. سیستمهای خبره و مبتنی بر دانش نمونهای از این دستاوردهاست. بسیاری از نرمافزارهای موسوم به سیستمهای تصمیمسازی (Decision Making Systems) در شاخه اقتصاد یا سیستمهایی که در تجزیه و تحلیل دادههای پزشکی به کار میروند از این دستاورد بهره میگیرند.
منابع
/fa.wikipedia.org
آزمونتورینگ
آزمون تورینگ روشی برای سنجش میزان هوشمندی ماشین است. آزمون به این صورت انجام میگیرد که یک شخص به عنوان قاضی، با یک ماشین و یک انسان به گفتگو مینشیند، و سعی در تشخیص ماشین از انسان دارد. در صورتی که ماشین بتواند قاضی را به گونهای بفریبد که در قضاوت خود دچار اشتباه شود، توانسته است آزمون را با موفقیت پشت سر بگذارد.
برای اینکه تمرکز آزمون بر روی هوشمندی ماشین باشد، و نه توانایی آن در تقلید صدای انسان، مکالمه تنها از طریق متن و صفحه کلید و نمایشگر کامپیوتر صورت میگیرد.
آزمون تورینگ
تست تورینگ یک تست از توانایی ماشین است برای نمایش دادن رفتاری هوشمندانه شبیه به انسان. آزمون تورینگ در سال ۱۹۵۰ توسط آلن تورینگ،ریاضیدان انگلیسی مطرح گردید. از نظر تورینگ، پرسش «آیا ماشینها میتوانند تفکر کنند» بیمعنیتر از آن بود که بتوان پاسخ روشنی به آن داد. چرا که نمیتوان تعریف مشخصی برای تفکر ارائه داد. بنابراین تورینگ پرسش را به این گونه مطرح نمود: آیا میتوان ماشینی ساخت که آزمون تورینگ را پشت سر بگذارد؟
هم اکنون دو نسخهٔ مختلف از این آزمون وجود دارد: آزمون استاندارد تورینگ، و آزمون تقلید.
آزمون تقلید
در این آزمون، دو شخص با جنسیتهای متفاوت، از طریق یادداشت با شخص سومی که قاضی است گفتگو میکنند. قاضی این دو بازیکن را نمیبیند، و با پرسش و پاسخ سعی دارد تشخیص دهد کدام یک مرد و کدام یک زن هستند. نقش بازیکن اول این است که قاضی را به نحوی بفریبد که در تشخیص جنست آن دو اشتباه کند.
تورینگ نقش بازیکن فریبکار را به ماشین سپرد، و در صورتی که این ماشین موفق شود که قاضی را بفریبد، از آزمون موفق بیرون آمده است و میتوان آن را ماشین هوشمند نامید.
مشکلات آزمون تورینگ
آزمون تورینگ فرض میکند که انسانها میتوانند با مقایسهٔ میان رفتار ماشین و انسان، پی به میزان هوشمند بودن آن ببرند. به دلیل این فرض، و تعدادی پیش فرضهای دیگر، دانشمندان حوزهٔهوش مصنوعی صحت آزمون تورینگ را مورد تردید قرار دادند.
اولین نکتهای که مطرح میگردد این است که تعدادی از رفتارهای انسان هوشمندانه نیستند. به عنوان مثال، توانایی توهین به دیگران، یا اشتباههای تایپی مکرر هنگام نوشتن با صفحه کلید.
نکتهٔ دومی که به آن اشاره میگردد این است که بعضی از رفتارهای هوشمندانه، انسانی نیستند. به عنوان مثال، کامپیوترها بسیار سریعتر از انسان محاسبه میکنند.
تورینگ پیشنهاد داده است که ماشین میتواند به صورت اتفاقی در خروجی خود اشتباهاتی را وارد کند، یا مدت زمان زیادی را صرف محاسبات کرده و در انتها پاسخی اشتباه دهد که قاضی را بفریبد، تا «بازیکن» بهتری باشد.
آزمون تورینگ چیست و چه کاربردی دارد؟
آزمون تورینگ چیست؟
در سال 1950 آلنتورینگ در مقالهای با عنوان «ساز و کار رایانش و هوشمندی» برای نخستینبار آزمون تورینگ را به جهانیان معرفی کرد. به پیشنهاد تورینگ، این آزمون که میتوان به آسانی آن را اجرا کرد، مشخص میکند که آیا یک ماشین به حد کافی هوشمند است یا خیر. در نسخه ابتدایی تعریف شده توسط تورینگ یک انسان در نقش داور از طریق ترمینالی متنی با یک مجموعه از شرکتکنندگان که ترکیبی از انسانها و ماشینها هستند، ارتباط برقرار میکند. در صورتی که داور انسانی نتواند شرکتکننده ماشین را از شرکتکنندگان انسانی تشخیص دهد، آن ماشین از نظر تورینگ شایسته صفت هوشمند است.
توجه داشته باشید که لزومی ندارد ماشین به سؤالات مطرح شده توسط داور پاسخ صحیح دهد، بلکه تنها تقلید رفتار انسانی است که هوشمند بودن یا نبودن ماشین را مشخص میکند.
تورینگ مقاله مورد نظر را این گونه آغاز میکند: «من پیشنهاد میکنم که این پرسش را مد نظر قرار دهید: آیا ماشینها میتوانند فکر کنند؟» سپس از آنجا که تعریف دقیق تفکر بسیار مشکل است، تورینگ پیشنهاد میکند که این پرسش به گونه دیگری مطرح شود: «آیا قابل تصور است که کامپیوترهای دیجیتال بتوانند در بازی تقلید، عملکرد مناسبی از خود ارائه دهند؟» پرسشی که به گمان تورینگ دلیلی برای منفی بودن پاسخ آن وجود نداشت. در مورد شرایط دقیق آزمون تورینگ بحثهای زیادی مطرح است که باعث شده نسخههای مختلفی از این آزمون به وجود آید.
نکته اول شیوه انجام این آزمایش است که تقریباً همه اعتقاد دارند که نمیتوان تنها به یک آزمایش اتکا کرد و باید درصد موفقیت در تعداد زیادی آزمایش محاسبه شود. نکته بعدی در میزان اطلاعات پیش از آزمایش داور است. به عنوان مثال، برخی پیشنهاد کردهاند که لزومی ندارد داور بداند یکی از افراد درگیر در آزمایش کامپیوتر است و برخی دیگر اعتقاد دارند که مشکلی با دانستن این موضوع وجود ندارد چرا که در واقع آزمون تورینگ برای توانایی فریب دادن داور طراحی نشده بلکه صرفاً سنجش میزان توانایی ماشین در شبیهسازی رفتارهای انسانی مدنظر است.
در اینجا باید به نکته مهمی در رابطه با آزمون تورینگ اشاره کرد. تا قبل از ارائه آزمون تورینگ، دانشمندان فعال در زمینه علوم شناختی و هوش مصنوعی مشکلات فراوانی را برای تعریف دقیق هوشمندی و مشخصکردن اینکه چه زمانی میتوان یک فرآیند را تفکر نامید، تجربه میکردند. تورینگ که یک ریاضیدان خبره بود با ارائه آزمون تورینگ در واقع سعی داشت تا از دنیای تعاریف نادقیقی که هضم آن برای حوزههای دقیقی مانند علوم کامپیوتر مشکل بود، فاصله گرفته و معیاری مشخص برای میزان هوشمندی ماشینها ارائه کند. دانیل کلمنت دنت، دانشمند علوم شناختی و فیلسوف امریکایی در این رابطه میگوید: «هنگامي كه تورینگ، آزمون مورد نظر را برای هوشمندی ماشینها ارائه کرد، هدف وی بنا کردن پلتفرمی برای انجام تحقیقات علمی نبود بلکه وی آزمون تورینگ را به عنوان یک ختمالکلام برای بحثهای مورد نظر در آن زمان ارائه کرد.
در واقع، کلام اصلی تورینگ در مقابل کسانی که اصولاً تعریف هوشمندی برای ماشین را غیرقابل قبول میدانستند، این بود که: هر ماشینی که بتواند این آزمون را به صورت عادلانهای پشت سر بگذارد، قطعاً یک موجود هوشمند است و دیگر بحثی در این زمینه باقی نمیماند.» دنت سپس به بحث در مورد هوشمندی در قرن 17 توسط دکارت اشاره میکند و متذکر میشود که وی نیز روشی مشابه برای تعریف هوشمندی ارائه داده بود که براساس برقرارکردن یک مکالمه با موجود مورد نظر بنا شده بود. در نتیجه تورینگ ادعا نمیکند ماشینی که نتواند با ما به شکل درستی مکالمه برقرار کند هوشمند نیست، بلکه صرفاً ادعا دارد اگر ماشینی این توانایی را داشته باشد شکی در هوشمندی آن باقی نمیماند.
تلاشهای نیمه تمام
از اواسط دهه 1960 بسیاری از افراد فعال در زمینه هوش مصنوعی سعی کردند تا به ساخت ماشینهایی روی بیاورند که با در اختیار داشتن توانایی درک زبان انسان و استفاده از اطلاعات گنجانده شده در آنها، بتوانند به گذراندن آزمون تورینگ نزدیک شوند. جوزف وایزنباوم در 1966 برنامهای کامپیوتری با نام الیزا را معرفی کرد که یکی از نخستین نمونههای پردازش زبان طبیعی بود. این برنامه قادر بود تا یک مکالمه را با در اختیار داشتن کمترین اطلاعات ممکن نسبت به موضوع مورد بحث پیش ببرد. یکی از مشهورترین موارد پیادهسازی شده در الیزا، شبیهسازی با عنوان «دکتر» بود که سعی داشت تا نقش یک روانکاو را برای ماشین شبیهسازی کند.
پاسخهاي الیزا عموماً بسیار کلی بودند و برای تولید آنها از تکنیکهای موجود تطابق الگو در آن زمان استفاده میشد. وایزنباوم در 1976 در مقالهای با عنوان «قدرت کامپیوتر و استدلال انسان» اشاره کرد که بسیاری از افرادی که با اسکریپت «دکتر» کار کردهاند به زودی ارتباط عاطفی قوی با آن برقرار کردند، حتی اصرار داشتند که در هنگام کارکردن با برنامه در اتاق تنها گذاشته شوند. خود وایزنباوم اشاره کرده است که در طول سالهای استفاده از الیزا مواردی بوده که کاربران در تشخیص انسان نبودن الیزا با مشکل مواجه شدهاند یا حتی در آن ناکام ماندهاند. به طور کلی این دیدگاه که الیزا توانسته است آزمون تورینگ را پشت سر بگذارد در جامعه علمی هوش مصنوعی چندان طرفدار ندارد اما به طور حتم این قطعه کد نقش زیادی در پیشرفت شبیه ساختن برنامههای کامپیوتری به رفتارهای انسان ایفا کرد.
کنت کولبی در 1972 نمونهای جدیدتر از الیزا را با عنوان «پری» (PARRY) معرفی کرد که در واقع پیادهسازی رفتار یک بیمار شیزوفرنیک پارانویا بود. کمی بعد از معرفی پری، این ماشین در یک آزمایش واقعی قرار داده شد تا قدرت آن در گذراندن آزمون تورینگ مشخص شود. در این آزمایش گروهی از روانکاوان باتجربه ترکیبی از بیماران واقعی و نسخههای برنامه پری را از طریق یک تله پرینتر مورد بررسی قرار دادند. سپس از یک گروه روانکاو دیگر خواسته شد تا با مشاهده ریز مکالمات مشخص کنند که کدام مورد، مکالمه با ماشین و کدام یک مکالمه با انسان بوده است. در نهایت، روانکاوان گروه دوم تنها در 48 درصد موارد توانستند درست حدس بزنند؛ نتيجهاي که تقریباً مشابه سکه انداختن برای تعیین ماشین یا انسان بودن طرف مکالمه است! توسعه برنامههایی مانند الیزا و پری که در دسته کلی چت باتها قرار میگیرند هنوز هم در جای جای دنیا ادامه دارد. چنین برنامههایی که صرفاً قصد شبیهسازی یک مکالمه هوشمند را دارند عموماً از دانش خاصی برخوردار نیستند بلکه سعی میکنند تا با تکنیکهای زبانی و البته الگوریتمهای پیچیده، مکالمه را به شیوهای قابل قبول پیش ببرند؛ مکالمهای که لزوماً خروجی مفیدی برای کاربر ندارد.
چنین برنامههایی هر چند ممکن است در موارد خاصی حتی تا مرز گذراندن آزمون تورینگ نیز پیش روند، اما به دلیل نبود یک دانش ساختاری در درون سیستم، قلمرو بسیار محدودی دارند. تمرکز تحقیقات و نیروی انسانی متخصص حوزه هوش مصنوعی روی ساخت ماشینی که صرفاً بتواند به طریقی آزمون تورینگ را با موفقیت پشت سر گذارد، برای سالهای متمادی منجر به تحقیقاتی این چنینی شد که هر چند کسی در ارزش بسیار زیاد آن شکی ندارد، اما نمیتواند به عنوان بخشی از راهحل یک مسئله دنیای واقعی به کار رود.
آیا این هوشمندی است؟
در بیش از شصت سالی که آزمون تورینگ در حوزه هوش مصنوعی حضور داشته است، انتقادات مختلفی به آن وارد شده که بخش بزرگی از آنها بر این موضوع استوار بودهاند که آیا این آزمون معیار خوبی برای تشخیص هوشمندی یک سیستم است؟
به عنوان مثال، جان سیرل فیلسوف امریکایی در مقالهای با عنوان «ذهنها، مغزها و برنامهها» در سال1980 آزمایشی ذهنی با عنوان «اتاق چینی» را طراحی کرد که به تعریف هوشمندی مورد نظر حوزه هوش مصنوعی حمله میکند.
فرض کنید که شما یک برنامه در اختیار دارید که میتواند طوری رفتار کند که زبان چینی را میفهمد. این برنامه یک ورودی از کاراکترهای چینی را گرفته و براساس آنها خروجی متشکل از کاراکترهای چینی تولید میکند. همین طور فرض کنید که این برنامه آزمون تورینگ را با موفقیت پشت سر بگذارد. حال در اینجا یک پرسش بزرگ به وجود میآید : «آیا این ماشین بهراستي چینی میفهمد یا تنها میتواند فهم زبان چینی را شبیهسازی کند؟» سیرل بیان میکند که اگر وی در اتاقی، مقابل این ماشین قرار بگیرد، میتواند با واردکردن هر ورودی چینی در کامپیوتر و یادداشتکردن خروجی برنامه روی یک تکه کاغذ آزمون تورینگ را با موفقیت پشت سر بگذارد. وی سپس اشاره میکند که فرقی میان نقش ماشین در حالت اول و نقش وی در حالت دوم وجود ندارد و از آنجایی که وی یک کلمه چینی نمیفهمد، در نتیجه ماشین نیز درکی از زبان چینی ندارد. در نهایت وی نتیجه میگیرد که بدون درک شیوه عملکرد کامپیوتر و تنها از روی مشاهده رفتار آن نمیتوان نتیجه گرفت که کاری که ماشین انجام میدهد فکر کردن است.
دیدگاه جان سیرل از طرف دانشمندان علوم شناختی مورد انتقادات فراوانی قرار گرفته است. از جمله این انتقادات میتوان به این نکته اشاره کرد که ممکن است فرد به صورت خاص زبان چینی را نفهمد اما سیستم به صورت یک کل توانایی فهم زبان چینی را دارد و نمیتوان توانایی فهم انسان به عنوان بخشی از این سیستم را از کل جدا کرد. هر چند آزمایش «اتاق چینی» مورد انتقادات فراوانی قرار گرفته و نمیتواند به عنوان یک خطر جدی برای آزمون تورینگ تلقی شود، اما با مشاهده چنین دیدگاههایی کاملاً مشخص میشود که چرا پیادهسازی ایده آزمون تورینگ در دنیای واقعی تا این اندازه مشکل است.
دسته دیگری از انتقادات به این موضوع اشاره دارند که میزان تقلید از رفتارهای انسانی لزوماً معیار خوبی برای هوشمندی نیست. چراکه نه تمام رفتارهای انسانی هوشمندانه است و نه تمام رفتارهای هوشمندانه انسانی است. این که تا چه حد این جمله را قبول دارید، میتواند موضوع خوبی برای یک بحث فلسفی طولانی باشد و البته بعید است به نتیجه مشخصی برسد. به عنوان مثال، ابرکامپیوتر دیپبلو ساخت آیبیام را در نظر بگیرید که در دهه 1990 موفق شد گری کاسپاروف استاد مسلم شطرنج جهان را شکست دهد. دیپ بلو طبیعتاً نمیتواند در مکالمه با انسان همراهی کند اما به خوبی وی (حتی بهتر از او) شطرنج بازی میکند. آیا این ماشین کمتر از الیزا هوشمند است؟ جواب از نظر بسیاری خیر است. اما باز هم باید توجه داشت که تورینگ به هیچ عنوان ادعا نمیکند عدم تقلید از انسان به معنای عدم هوشمندی است.
این که آیا تقلید از رفتار انسان واقعاً نشاندهنده هوشمندی است یا خیر، هنوز مورد بحث و بررسی است. بهعبارتي، هنوز هم تعریف دقیقی برای هوشمندی در اختیار نداریم و همین موضوع باعث میشود تا نتوان در این مورد استدلال چندان قابل قبولی ارائه داد. به هر روی، ما امروز میدانیم که رفتار هوشمندانه و رفتار انسانی ممکن است لزوماً به یک معنی نباشند. همچنین آگاه هستیم که برای گذراندن آزمون تورینگ، آشنایی ماشین به جزئیات و قوانین زبان انسانی به همان اندازه اهمیت دارد که دانش و استدلال گنجانده شده در آن ارزشمند است. خبر نهچندان امیدوار کننده، این است که با وجود پیشرفتهای فراوان حوزه یادگیری زبان و زبانشناسی، فرآیند دقیقی که باعث میشود انسانها در یادگیری یک زبان به چنین درجهای از تبحر دستیابند، به طور دقیق برای دانشمندان مشخص نیست. حتی از تمام این موارد که بگذریم، مسئلهای بسیار مهمتر مطرح میشود و آن این است که آیا اصولاً گذراندن یا نگذراندن آزمون تورینگ تا این حد مسئله مهمی است؟ دنیای نوین هوش مصنوعی اعتقاد دارد که پاسخ این پرسش منفی است. در ادامه مقاله ميكوشيم تا تصویری از وضعیت آزمون تورینگ در دنیای امروز ترسیم کنيم.
وقتی انسان آنقدرها هم جذاب نیست
استیون لوی در سال 2010 در مقالهای با عنوان «انقلاب هوش مصنوعی آغاز شده است» نگاه متفاوتی را نسبت به دنیای هوش مصنوعی در روزگار نوین ارائه میدهد. نگاهی که البته لوی با بسیاری از صاحبنظران دیگر به اشتراک میگذارد. وی در ابتدا به سیستم اداره انبار Diapers.com که به صورت کامل توسط روباتها انجام میشود اشاره مختصری کرده و متذکر میشود که اداره این سیستم با سازماندهی فعلی برای انسانها تقریباً غیرممکن است. سپس ادامه میدهد «روباتهای به کار گرفته شده در این انبار خیلی باهوش نیستند. آنها توانایی حتی نزدیک به هوش انسانی را نیز در اختیار نداشته و بهطور قطعی نمیتوانند آزمون تورینگ را با موفقیت پشت سر بگذارند. اما آنها نمایانگر نگاه جدیدی در حوزه هوش مصنوعی هستند. هوش مصنوعی امروز تلاش نمیکند تا مغز را بازسازی کند. بلکه در مقابل این حوزه، از یادگیری ماشین، دیتاستهای عظیم، حسگرهاي پیشرفته و الگوریتمهای پیچیده استفاده کرده تا کارهای گسسته را به نحو احسن انجام دهد. مثالهای این امر در همه حوزهها مشهود است. ماشینهای گوگل پرسوجوهای پیچیده انسانی را تفسیر میکنند. شرکتهای کارت اعتباری از هوش مصنوعی برای تشخیص کلاهبرداری سود میبرند. نت فلیکس با استفاده از آن، سعی میکند ذائقه مشترکانش را حدس زده و فیلمهای مورد علاقهشان را به آنان پیشنهاد کند و سرانجام، سیستم مالی از هوش مصنوعی برای مدیریت میلیاردها داد و ستد استفاده میکند (که تنها گهگاهی از هم میپاشد!).»
لوی سپس با اشاره به زمستان هوش مصنوعی که باعث متوقف شدن مقطعی پیشرفتها در حوزه هوش مصنوعی و «مرگ هدف اولیه» شد، میگوید: «اما این باعث شد تا یک هدف جدید متولد شود؛ ماشینها ساخته شدهاند تا کارهایی را انجام دهند که انسانها نمیتوانند هیچ گاه از عهده آنها برآیند.» همانطور که لوی بهدرستی اشاره میکند ساخت سیستمهای منطقی که بتوانند شیوه تفکر انسان را بهطور کامل شبیهسازی کرده و با استفاده از اصول منطقی ساده یک ماشین هوشمند را تشکیلدهند، کاری است که محققان در خلال دهههای 1960 و 1970 انجام آن را خیلی سختتر از آن چیزی که تصور میشد، یافتند. در مقابل، تحقیقات جدیدتر حوزه هوش مصنوعی بخش دیگری از حقیقت را نمایان ساخت. منطق کارکرد کامپیوترها ممکن است با آنچه انسانها از تفکر منطقی انتظار دارند کاملاً متفاوت باشد. یکی از حوزههایی که مانور اصلی خود را بر این حقیقت استوار کرده، الگوریتمهای احتمالاتی هستند.
با پیشرفت قدرت محاسباتی کامپیوترها، دانشمندان بیش از هر زمان دیگری، نسبت به الگوریتمهایی که المانهای تصادفی را شامل میشوند، علاقه نشان میدهند. ترکیب این الگوریتمها با قدرت محاسباتی امروز عموماً پاسخهایی «به حد کافی مناسب» را برای مسئلههای پیچیدهای که حل آنها دور از دسترس بود، ارائه میدهد. به عنوان مثال، الگوریتمهای ژنتیک را در نظر بگیرید. در چارچوب این الگوریتمها ماشین با یک ساختار منطقی گامبهگام و استدلالهای پیچیده مواجه نمیشود بلکه صرفاً یک سیستم بازخورد از تعدادی جوابها را در اختیار گرفته و سعی میکند تا رفتار درست را براساس ورودی انسانی پیدا کند. چنین روشهای استدلالی از عهده انسانها خارج است. ما برای خروج از یک وضعیت نامطلوب نمیتوانیم میلیونها راه را آزمون کنیم بلکه عموماً سعی میکنیم تا با استفاده رشتهای از تفکرات پیچیده، راه خروج را به صورت مکاشفهای (Heuristic) پیدا کنیم. در مقابل ماشینها میتوانند منطق دیگری را دنبال کنند و آن انجام آزمون و خطا در مقیاس میلیونی است. شاید تصور بسیاری بر این باشد که راهبرد اول نسبت به راهبرد دوم از ارزش بیشتری برخوردار است. از جهاتي نميتوان به این دیدگاه اعتراضی داشت، اما بهنظر ميرسد تا زمانی که یک راهبرد میتواند پاسخ مناسبی را در مدت زمانی کوتاه در اختیار ما قرار دهد، انتقاد از آن چندان محلی از اعراب ندارد.
راسل و نوریگ نویسندگان مشهورترین کتاب درسی در زمینه هوش مصنوعی نیز دیدگاهی به نسبت نزدیک به دیدگاه لوی را در این زمینه ارائه میکنند. آنها اعتقاد دارند که شبیهسازی واقعي هوش انسان مسئلهای بسیار مشکل است که نیازی نیست به عنوان هدف اولیه تحقیقات هوش مصنوعی در نظر گرفته شود. هرچند در بسیاری از فناوریهای امروز تطبیق فناوری با رفتارها و عادتهای انسانی به عنوان یکی از برگهای برنده فناوری مورد نظر به شمار میرود (نگاهی به آیفون و آیپد بیاندازید) اما لزوماً راه ساخت یک ماشین هوشمند، از شبیهسازی رفتار انسانی نمیگذرد (همانطور که بارها در طول مقاله ذکر شد، تورینگ خود نیز چنین عقیدهای نداشت). راسل و نوریگ برای این موضوع آنالوژی جالبی ارائه میدهند: «هواپیماها با توجه به میزان کیفیت پروازشان آزمایش میشوند و نه شبیه بودنشان به پرندگان. متون هوافضا هدف حوزهشان را “ساخت ماشینهایی که آن قدر شبیه کبوترها پرواز کنند که بتوانند کبوترهای دیگر را فریب دهند” بیان نمیکنند.»
یک مدل چرخه حیات تفصیلی
یکی دیگر از مدلهای چرخه حیات که در تعدادی از پروژه های سیستم خبره به طور موفقیت آمیز بکار گرفته شده مدل خطی است که در شکل ۷-۶ نشان داده شده و توسط بوچلر تدوین شده است (Bochsler 88). این چرخه حیات شامل چندین مرحله از برنامه ریزی تا ارزیابی سیستم است و نحوه ایجاد سیستم را بگونه ای تشریح می کند که تواناییهای عملکردی سیستم مورد ارزیابی قرار گیرند. سپس چرخه حیات همان مراحل برنامه ریزی تا ارزیابی سیستم را تکرار می کند تا وقتی که سیستم برای استفاده عادی تحویل شود. پس از آن چرخه حیات برای نگهداری و تکمیل سیستم مورد استفاده قرار می گیرد. اگرچه در شکل به صراحت نشان داده نشده ولی مراحل تصدیق و اعتبارسنجی به موازات سایر مراحل انجام می شود. برای حفظ کیفیت سیستم خبره به جای برطرف کردن اشکالات به محض بروز، آنها را در مراحل متوالی پیگیری می نمایند. پریدن از روی یک یا چند مرحله حتی برای برطرف کردن یک اشکال کوچک به کیفیت کل سیستم صدمه می زند.
این چرخه حیات را می توان به صورت یکی از حلقه های مدل مارپیچی در نظر گرفت. هر مرحله از چند وظیفه تشکیل شده است. توجه کنید که همه وظایف ممکن است برای یک مرحله ضروری باشند بخصوص زمانی که سیستم به سوی مراحل نگهداری و تکمیل پیش می رود. در عوض در کل چرخه حیات یعنی از پیدایش مفهوم اولیه تا مرگ سیستم، ترکیبی از همه وظایف را داریم. همچنین به جای برخی احتیاجات قطعی که برای تکمیل هر مرحله باید ارضاء شوند، برخی وظایف بسته به نوع کاربرد پیش می آیند و بنابراین آنها را فقط به عنوان راهنما باید در نظر گرفت.
مدل چرخه حیات به تفصیل مورد بحث قرار می گیرد تا عوامل متعدد و موثر در طراحی یک سیستم خبره بزرگ و با کیفیت را نشان دهد. برای نمونه های کوچک تحقیقاتی که کاربرد عمومی ندارد، همه وظایف یا حتی همه مراحل ضروری نیستند. هر چند تجربه نشان می دهند برخی از نرم افزارهای که با هدف کاربردهای شخصی یا تحقیقاتی طراحی شده اند به تدریج در بازار راه پیدا کرده و یک نرم افزار عمومی شده اند.
طراحی
هدف از مرحله طراحی، تهیه یک برنامه کاری رسمی برای ایجاد سیستم خبره است. برنامه کاری عبارت است از مجموعه ای از مستندات که برای راهنمایی و ارزشیابی ایجاد سیستم بکار می رود. جدول ۲-۶ وظایف این مرحله را نشان می دهد.
مهمترین وظیفه در چرخه حیات امکان سنجی پروژه است. این ارزیابی باید به سوالات مربوط به ارزشمند بودن پروژه جواب داده و همچنین مناسب بودن سیستم خبره را برای انجام کار مشخص کند. پاسخ این دو سوال تعیین می کند که پروژه با استفاده از روش سیستمهای خبره انجام خواهد شد یا خیر. در تشخیص امکان سنجی پروژه عوامل بسیاری در نظر گرفته می شوند. همان طور که در بخش ۱-۶ مطرح شد این عوامل شامل انتخاب دامنه مناسب برای سیستم خبره، هزینه، عایدی و موارد دیگر هستند.
جدول ۲-۶ وظایف مرحله طراحی
وظیفه | هدف |
امکان سنجی | تعیین می شود که آیا ساخت سیستم با ارزش است یا نه و اگر جواب مثبت است آیا باید از تکنولوژی سیستم خبره استفاده شود. |
مدیریت منابع | تعیین منابع انسانی، زمان، پول، نرم افزار و سخت افزار مورد نیاز و اینکه چگونه باید منابع مورد نیاز را بدست آورد و مدیریت کرد. |
ترتیب وظایف | تعیین وظایف و ترتیب آنها در هر مرحله. |
زمان بندی | زمانهای شروع و تحویل وظایف در هر مرحله مشخص می شود. |
چیدمان مقدماتی عملکردها | تعیین اینکه با مشخص شدن عملکردهای سطح بالای سیستم، چگونه سیستم ساخته خواهد شد. این کار هدف سیستم را نیز مشخص می کند. |
احتیاجات سطح بالا | در مناسبات سطح بالا مشخص می شود که چگونه عملکردهای سیستم انجام خواهند شد. |
تعریف دانش
هدف از مرحله تعریف دانش این است که احتیاجات سیستم خبره به دانش تعریف شوند. مرحله تعریف دانش شامل دو وظیفه اصلی به شرح زیر است:
شناسایی و انتخاب منابع دانش.
کسب دانش و تحلیل و استخراج آن
هر یک از این دو وظیفه اصلی از چند وظیفه دیگر تشکیل شده اند، جدول ۳-۶ وظایف مربوط به شناسایی و انتخاب منابع را شرح داده است.
وظیفه | هدف |
شناسائی منابع | بدون در نظر گرفتن امکان دسترسی مشخص شود که چه منابعی از دانش وجود دارد. |
اهمیت منابع | فهرست اولویت بندی شده منابع دانش بر اساس اهمیتی که برای ایجاد سیستم دارند. |
دسترسی به منبع | فهرست منابع دانش که بر اساس میزان دسترسی مرتب شده است. کتابها و سایر مستندات معمولا بیش از افراد خبره در دسترس هستند. |
انتخاب منبع | انتخاب منبع دانش بر اساس میزان اهمیت و دسترسی. |
وظایف مربوط به کسب دانش و تحلیل و استخراج آن در جدول ۴-۶ تشریح شده اند.
هدف اصلی از وظیفه اکتساب دانش، وظیفه تحلیل دانش و وظیفه استخراج دانش، در واقع تولید و تصدیق دانش مورد نیاز سیستم است. هر بار که سطح دانش موجود ثبت شود باید دانش مورد تصحیح قرار گیرد و برای مرحله بعدی طراحی دانش آماده شود. علاوه بر روش متداول مصاحبه با افراد خبره، ممکن است از سایر روشها نظیر شبکه های مجموعه های اطلاعاتی و یا تئوری ساخت شخصی برای اجرای کسب دانش خودکار استفاده شود.
جدول ۴-۶ وظایف مربوط به کسب دانش و تحلیل و استخراج آن
وظیفه | هدف |
استراتژی کسب دانش | مشخص می کند که چگونه به کمک مصاحبه با فرد خبره، خواندن مستندات، استقراء، قاعده، شبکه های مجموعه های اطلاعاتی و غیره می توان به کسب دانش پرداخت. |
تعیین اجزای دانش | بدست آوردن دانش مورد نظر از منابعی که در این دوره از چرخه حیات مفید بوده اند. |
سیستم طبقه بندی دانش | طبقه بندی و سازمان دهی دانش برای کمک به فرد مجری سیستم جهت تصدیق و درک دانش. در صورت امکان از گروههای سلسله مراتبی استفاده شود. |
طرح تفصیلی عملکردها | قابلیتهای عملکردی سیستم به تفصیل مشخص می شود. این سطح از کار به مراتب فنی تر است در حالیکه طرح عملکردی اولیه در سطح مدیریت قرار داشته است. |
جریان کنترل اولیه | مراحل عمومی اجرای سیستم خبره را شرح می دهد. این فازها مربوط به گروههایی منطقی از قواعد هستند که در قالب گروههایی فعال یا غیر فعال می شوند تا جریان اجرای سیستم کنترل شود. |
دستورالعمل اولیه کاربر | سیستم را از دیدگاه کاربر شرح می دهد. (کاری که اغلب فراموش می شود ولی از جمله کارهای اساسی سیستم است) بسیار ضروری است که در جریان ساخت سیستم هرچه زودتر از کاربران بازخوری دریافت شود. اگر آنها از سیستم استفاده نکنند آن سیستم ارزشی ندارد. |
مشخصات احتیاجات | تعریف دقیق هدف سیستم، سیستم خبره با استفاده از این احتیاجات مورد تایید قرار خواهد گرفت. |
بستر دانش | سطح دانش برای سیستم تعریف می شود. حال هر تغییری باید با درخواست رسمی انجام شود. در حال حاضر دانش سطح بالا برای مرحله بعدی طراحی دانش کافی و مناسب است. |
طراحی دانش
هدف از مرحله طراحی دانش ایجاد یک نوع طرح تفصیلی برای سیستم خبره است. این مرحله شامل دو وظیفه اصلی است:
تعریف دانش
طرح تفصیلی
جدول ۵-۶ وظایف مربوط به تعریف دانش را تشریح کرده است.
درباره ساختار داخلی وقایع که در جدول ۵-۶ مطرح شده مراجعه به متون مربوط به نرم افزار CLIPS ضروری است. ایده اصلی تعیین ساختار وقایع، انطباق با سبک مناسب است. به عنوان مثال یک واقعیت مثل «۱۰» به تنهایی چندان معنی دار نیست. «۱۰» به تنهایی چه چیز را نشان می دهد؟ اگر اطلاعات بیشتری همراه این واقعیت باشد مثلا «قیمت ۱۰» و یا جمله کاملتر باشد مثل «قیمت طلا ۱۰» در آن صورت معنی دار خواهد بود. توجه کنید که این نحوه بیان «واقعیت» به صورت سه تایی شیء – مشخصه – ارزش متداول بوده، و بنابراین خواندن و درک آن برای مردم آسان است. CLIPS از چنین ساختاری برای قواعد و همچنین اشیاء پشتیبانی می کند.
جدول ۵-۶ وظایف تعریف دانش
وظیفه | هدف |
نمایش دانش | مشخص می کند که دانش چگونه در قالب قواعد، چارچوبها و یا منطق نشان داده می شود و این بستگی به نوع ابزار سیستم خبره دارد که از سیستم پشتیبانی می کند. |
ساختار کنترلی تفصیلی | سه ساختار کنترلی عمومی را مشخص می کند (۱) اگر سیستم در کدهای رویه ای احاطه شده چگونه می توان آنرا فرخوانی کرد (۲) کنترل گروههایی از قواعد مرتبط در داخل یک سیستم اجرائی (۳) ساختارهای کنترلی فراسطحی برای قواعد. |
ساختار واقعیتهای داخلی | ساختار درونی وقایع را به یک روش منطقی برای کمک به درک آنها و ایجاد یک سبک مناسب مشخص می کند. |
ارتباط مقدماتی با کاربر | نحوه ارتباط اولیه با کاربر را تعیین می کند. از کاربران درباره نحوه ارتباط بازخورهایی گرفته می شود. |
برنامه آزمون اولیه | مشخص می کند که چگونه کدها مورد آزمایش قرار می گیرند. داده های آزمون، برگزارکنندگان آزمون و چگونگی تحلیل نتایج تعریف می شوند. |
در برخی از زبانهای سیستم خبره ممکن است مقادیر مورد قبول فیلدها، انواع محدودی داشته باشند به طوری که فقط مقادیر خاصی را قبول کنند. اگر در قاعده ای از مقادیر غیر مجاز استفاده شود موتور استنتاج پیغام خطا خواهد بود. مرحله طراحی تفصیلی دانش در جدول ۶-۶ نشان داده شده است.
جدول ۶-۶ وظایف طراحی تفصیلی دانش
وظیفه | هدف |
ساختار طراحی | مشخص می کند که چگونه دانش به صورتی منطقی در پایگاه دانش سازمان دهی می شود و در پایگاه دانش چه چیزی وجود دارد. |
استراتژی اجرا | مشخص می کند که چگونه سیستم اجرا می شود. |
جزئیات ارتباط با کاربر | پس از دریافت بازخور از کاربر در مرحله ارتباط مقدماتی با کاربر جزئیات ارتباط با کاربر مشخص می شود. |
مشخصات طراحی و گزارش دهی | مستند کردن طراحی |
برنامه آزمون تفصیلی | مشخص می کند که چگونه کدها به دقت مورد آزمون و بررسی قرار می گیرند. |
محصول مرحله طراحی تفصیلی، مستندات پایه طراحی است که از طریق آن کدنویسی انجام می شود. مستندات پایه ای قبل از کدنویسی باید مورد بازنگری قرار گیرد.
جدول ۷-۶ وظایف کدنویسی و آزمون
وظیفه | هدف |
کد نویسی | اجرای برنامه نویسی |
آزمونها | آزمون برنامه ها با استفاده از داده های آزمون، مجریان آزمون و رویه های تحلیل آزمون |
فهرست منابع | تولید کد منابع به طور مستند و واضح |
راهنمای کاربر | ایجاد یک راهنمای کاری برای کاربر به گونه ای که کاربر و فرد خبره بتوانند به سیستم بازخور ارائه دهند. |
راهنمای نصب سیستم و بکارگیری آن | مستندسازی نصب سیستم و بکارگیری آن برای کاربران |
مستندات تشریح سیستم | مستندات کلی سیستم برای عملیات، محدویتها و مسائل |
این مرحله با بازنگری آمادگی آزمون به اتمام می رسد که بدین صورت مشخص می شود آیا سیستم خبره برای مرحله بعدی یعنی بررسی دانش آماده است یا خیر.
تصدیق بر دانش
هدف از مرحله تصدیق دانش، تعیین درستی، کامل بودن و سازگاری سیستم است. این مرحله به دو وظیفه اصلی تقسیم می شود.
آزمونهای رسمی
تحلیل آزمون
جدول ۸-۶ وظایف مربوط به آزمون رسمی را در مرحله تصدیق دانش تشریح می کند.
جدول ۸-۶ وظایف آزمون رسمی در مرحله بررسی دانش
وظیفه | هدف |
رویه های آزمون | رویه های آزمون رسمی را اجرا می کند. |
گزارشهای آزمون | نتایج آزمون را مستند می کند. |
جدول ۹-۶ وظایف تحلیل آزمون را نشان می دهد.
جدول ۹-۶ وظایف تحلیل آزمون
وظیفه | هدف |
ارزیابی نتایج | نتایج آزمونها را تجزیه و تحلیل می نماید. |
پیشنهادها | پیشنهادها و نتایج آزمونها را مستند می کند. |
در مرحله تحلیل آزمون مشکلات عمده زیر پیگیری می شود.
پاسخهای نادرس
پاسخهای ناقص
پاسخهای غیر منطقی و ناسازگار
و تعیین می شود که آیا مشکلات مربوط به قواعد، زنجیره های استنتاج، یا عدم قطعیت و یا ترکیبی از این سه عامل است. اگر مشکلات موجود مربوط به سیستم خبره نباشد آنگاه تجزیه و تحلیل نرم افزار ابزار سیستم خبره برای یافتن اشکالات ضروری است.
ارزیابی سیستم
همان طور که در جدول۱۰-۶ تشریح شده، مرحله نهایی ایجاد سیستم در چرخه حیات، مرحله ارزیابی سیستم است. هدف این مرحله جمع بندی آموخته ها و پیشنهادات برای بهبود و تصحیح عملکرد سیستم است.
جدول ۱۰-۶ وظایف مرحله ارزیابی سیستم
وظیفه | هدف |
ارزیابی نتایج | نتایج آزمونها و تصدیق جمع بندی می شود. |
پیشنهادها | هرگونه تغییری در سیستم را پیشنهاد می کند. |
اعتبارسنجی | اگر سیستم با توجه به نیازهای کاربر و احتیاجات درست عمل می کند معتبر خواهد بود. |
گزارش بین کار یا نهایی | اگر سیستم تکمیل شده باشد گزارش نهایی منتشر می شود در غیر این صورت یک گزارش بین کار منتشر خواهد شد. |
از آنجا که یک سیستم خبره معمولا طی چند تکرار از چرخه حیات ساخته می شود، گزارش مرحله ارزیابی سیستم معمولا یک گزارش میان مرحله ای است که هر بار دانش جدیدی به سیستم اضافه شود پیشرفت عملکرد سیستم را تشریح می کند. ولی توانایی یک بخش جدید در سیستم باید توسط خود آن بخش و همچنین به عنوان قسمتی از دانش قبلی تصدیق شود. یعنی تصدیق سیستم باید با توجه به همه دانش سیستم و نه فقط دانش جدید صورت بگیرد. سیستم خبره همچنین باید در هر مرحله مورد اعتبارسنجی قرار گیرد نه اینکه فقط در تکرار نهایی چرخه حیات اینکار صورت پذیرد. لازم به تذکر است که تحقیقاتی نیز بر روی سیستمهایی که پایگاه دانش آنها به طور خودکار مورد اعتبارسنجی قرار می گیرد صورت گرفته است (Stachowitz 87).
خلاصه
در این فصل ما یک روش مهندسی نرم افزار را برای ساخت سیستمهای خبره مطرح کردیم. حال که از تکنولوژی سیستمهای خبره برای حل مسائل دنیای واقعی استفاده می شود، سیستمهای خبره باید از کیفیت مناسبی برخوردار باشند. عوامل متعددی باید در طراحی یک سیستم خبره در نظر گرفته شود که انتخاب مسئله، هزینه و عایدی از آن جمله اند. برای ساخت یک سیستم موفق باید جنبه های مدیریتی و فنی مورد نظر قرار گیرند.
یکی از مفاهیم بسیار مفید مهندسی نرم افزار، چرخه حیات است. مفهوم چرخه حیات، فرآیند ایجاد نرم افزار را به صورت یک سری مراحل در نظر می گیرد که از مفهوم اولیه شروع شده و به مرگ نرم افزار ختم می شود. با اجرای پیوسته یک چرخه حیات می توان نرم افزاری با کیفیت بالا ایجاد نمود. چندین مدل مختلف از چرخه های حیات برای سیستمهای خبره مطرح شد و یکی از آنها به تفصیل مورد بحث قرار گرفت.
منابع
- fa.wikipedia.org
- http://itresearches.ir
- www.ihoosh.ir
- http://zagra.co
مراحل ایجاد یک سیستم خبره
ایجاد یک سیستم خبره تا حد زیادی بستگی به تأمین منابع دارد. ولی مانند هر پروژه دیگری، ایجاد سیستم بستگی به این دارد که فرآیند ایجاد سیستم چگونه سازماندهی و مدیریت شود.
مدیریت پروژه
انتظار می رود مدیریت پروژه، موارد ذیل را تأمین نماید. در حقیقت مدیریت پروژه، خود یکی از موضوعات مورد نظر طراحات سیستمها خبره بوده است.
مدیریت فعالیتها | |
برنامه ریزی | – تعریف فعالیتها– تعیین اولویت فعالیتها
– احتیاجات منابع – اهداف شاخص میانی – مدت فعالیتها – مسئولیتها – تعیین زمانهای شروع و پایان – رفع مشکل زمان بندی فعالیتهایی که اولویت یکسان دارند. – نظارت بر عملکرد پروژه – برنامه های تحلیل، زمان بندیها و فعالیتهای ثبت شده |
مدیریت پیکره بندی محصول | |
مدیریت محصول | – مدیریت نسخه های مختلف محصول– مدیریت تغییرات پیشنهادی و انجام ارزشیابی
– تخصیص پرسنل برای انجام تغییرات – نصب نسخه های جدید محصول |
مدیریت منابع
تخمین منابع مورد نیاز
منابع در دسترس
تعیین مسئولیتها برای استفاده بهینه از منابع
تهیه و تدارک منابع بحرانی برای به حداقل رساندن گلوگاه ها
فعالیتهای لازم برای ایجاد یک سیستم خبره، آن دسته از وظایفند که برای ساخت سیستم لازمند. شکل ۲-۶ یک نگرش سطح بالا از فعالیتهای لازم برای ساخت سیستم را نشان می دهد که شامل مراحلی است که سیستم باید از آنها عبور کند.
مسئله تحویل
سیستم چگونه تحویل داده خواهد شد؟
با این که استفاده از کامپیوترهای (اندازه متوسط) مدرن بسیار آسان بوده و زمان تحویل را نیز کاهش می دهد، ولی اغلب تحویل سیستم بر روی چنین کامپیوترهیی بسیار هزینه بر است. از این گذشته، هزینه نگهداری سالانه نیز این هزینه را به طور قابل توجهی افزایش می دهد.
بسته به تعداد سیستمهای خبره ای که در صف تحویل قرار دارند، مسئله تحویل سیستمهای ساخته شده ممکن است به یک مشکل جدی بدل شود. به همین دلیل مسئله تحویل باید در اولین مرحله ایجاد سیستم مورد نظر قرار گیرد.
حالت ایده آل آن است که سیستم خبره تحویل شده را بتوان روی سخت افزار استاندارد اجرا نمود. ولی بعضی ابزارهای سیستم خبره به یک ریزپردازنده LISP خاص نیاز دارند که هزینه را تا حد زیادی افزایش می دهد.
در بسیاری از موارد، سیستم خبره باید با سایر برنامه های موجود، یکپارچه شود. در این موارد باید به ارتباطات و هماهنگ سازی ورودی و خروجیهای سیستم خبره با سایر برنامه ها توجه شود. همچنین ممکن است مایل باشیم که در زبان برنامه نویسی رایج، سیستم خبره به عنوان یک رویه، فراخوانی شود و سیستم باید از این برنامه پشتیبانی کند.
نگهداری و تکامل
چگونه سیستم تکامل یافته و از آن نگهداری می شود؟
فعالیتهای نگهداری و تکامل یک سیستم خبره بیش از برنامه های رایج کامپیوتری، ادامه خواهد یافت. زیرا سیستمهای خبره مبتنی بر الگوریتم نیستند، عملکرد آنها به دانش وابسته است. هر دانش جدیدی که کسب شود، دانش قدیمی اصلاح می شود و عملکرد سیستم بهبود می یابد.
در یک محصول با کیفیت تجاری باید یک روش سیستماتیک و موثر برای جمع آوری شکایات از کاربران وجود داشته باشد. هر چند در سیستمهای خبره مربوط به تحقیقات، جمع آوری و رسیدگی به گزارشهای مربوط به ایرادات و نقائص از اولویت بالایی برخوردار نیست، ولی این موضوع در سیستمهایی با کیفیت تجاری دارای اولویت زیادی است. فقط در صورتی می توان بخوبی از سیستم نگهداری کرد که گزارشهای مربوط به ایرادات جمع آوری شده باشد.
ارتقاء و غنی سازی یک سیستم خبره پس از تحویل در سیستمهای خبره تجاری از اهمیت بیشتری برخوردار است. سازندگان یک سیستم تجاری علاقه مند به کسب موفقیتهای مالی هستند. این به معنای شنیدن خواسته های کاربران و بکارگیری آنها جهت بهبود سیستم است. در موقعیتهای واقعی یک سیستم خبره تجاری ممکن است هرگز به نقطه پایان نرسد، بلکه همواره بهتر شود.
خطاها در مراحل ایجاد
همان طور که شکل ۳-۶ نشان می دهد، خطاهای عمده ای که احتمالا در ایجاد سیستم خبره رخ می دهد. با تشخیص مرحله ای که احتمال بروز آن خطا بیشتر است دسته بندی می شود. این خطاها شامل موارد زیر هستند.
خطاهای موجود در دانش فرد خبره، منبع دانش سیستم خبره است. اگر در دانش فرد خبره خطایی وجود داشته باشد، نتایج آن ممکن است در کل فرآیند ایجاد سیستم منتشر شود. یکی از مزایای جنبی ساخت یک سیستم خبره این است که وقتی دانش فرد خبره، به صراحت بیان شده و شفاف می شود خطاهای احتمالی آن آشکار خواهد شد.
در پروژه هایی که ماموریت حساسی به عهده دارند و زندگی یا اموال افراد در خطر است، ممکن است لازم باشد از یک رویه رسمی برای تصدیق دانش فرد خبره استفاده شود. یکی از روشهای موفقیت آمیزی که ناسا برای پروازهای فضایی بکار برد استفاده از کمیته فنی پرواز بود که به طور منظم، راه حل مسائل و روشهای تحلیلی بکار رفته در ایجاد راه حلها را مورد بازنگری قرار می داد (Culbert 87). کمیته های فنی از کاربران سیستم، افراد خبره در زمینه های مستقل از هم، سازندگان سیستم و مدیران تشکیل می شود تا همه زمینه های ایجاد سیستم به طور موثر پوشش داده شود.
مزیت استفاده از کمیته فنی این است که دانش فرد خبره در بدو ایجاد سیستم مورد بررسی دقیق قرار می گیرد و این زمانی است که تصحیح خطاهای موجود دار دانش بسیار آسان تر است. هر چه خطاهای موجود در دانش دیرتر ظاهر شود هزینه بیشتری برای تصحیح آن لازم است. اگر در ابتدا دانش فرد خبره بررسی نشود، آزمون نهایی جهت تصدیق سیستم خبره صورت خواهد گرفت. اعتبارسنجی نهایی سیستم خبره مشخص می کند که آیا این سیستم جوابگوی نیازها هست یا خیر و به خصوص اینکه آیا راه حلها کامل و صحیح هستند یا نه.
عیب استفاده از کمیته فنی، هزینه ای است که در ابتدا تحمیل می شود. ولی این هزینه با افزایش کارایی فرآیند ایجاد سیستم جبران می شود.
خطای معنایی. خطای معنایی زمانی رخ می دهد که مفهوم دانش به درستی منتقل نمی شود. به عنوان یک مثال بسیار ساده فرض کنید یک فرد خبره می گوید «شما می توانید آتش را با آب خاموش کنید.» و مهندس دانش این گونه تعبیر می کند که «آتش سوزیها را می توان با آب مهار کرد.» خطای معنایی زمانی روی می دهد که یا مهندس دانش تعبیر نادرستی از پاسخ فرد خبره داشته باشد و یا فرد خبره، سوال مهندس دانش را به درستی تعبیر نکند و یا هر دوی این موارد.
خطای شکلی. خطاهای شکلی و یا دستور زبانی ساد هستند و زمانی روی می دهد که قاعده یا واقعیت به شکل نادرستی وارد شود. ابزارهای سیستم خبره باید این خطاها را شناسایی کرده و پیغامی مناسب به کاربر ارائه دهند. سایر خطاهایی که در مرحله ساخت پایگاه دانش روی می دهند نتیجه خطاهای موجود در منبع دانش هستند که در مراحل قبلی آشکار نشده اند.
خطاهای موتور استنتاج. مانند هر قسمتی از یک نرم افزار، موتور استنتاج نیز ممکن است دچار خطا شود. اولین باری که یک ابزار سیستم خبره جهت استفاده عمومی آماده می شود باید کلیه خطاهای عمومی آن برطرف شده باشد. ولی گاه خطاهایی وجود دارند که فقط در شرایطی بسیار نادر بروز می کنند که به عنوان مثال قرار گرفتن ۱۵۹ قاعده در دستور کار از آن جمله است. ممکن است بعضی خطاها بسیار ظریف باشند و فقط در تطبیق خاصی از قواعد با واقعیات بروز کنند. به طور کلی خطاهای موتور استنتاج ممکن است در تطبیق قواعد با واقعیات، رفع تناقض و اجرای فعالیتها روی دهند. اگر این خطاها به طور پیوسته رخ ندهند تشخیص آنها بسیار دشوار است. وقتی از ابزار سیستم خبره برای مأموریتهای حساس استفاده می کنید باید مشخص کنید که ابزار چگونه معتبر می شود.
ساده ترین روش برای خطاهای ابزار، روش قدیمی سوال از کاربران و فروشندگان ابزار است. باید فروشندگان ابزار فهرستی از مشتریان، خطاهای برنامه و چگونگی رفع آنها و نیز طول زمان استفاده از ابزار را تهیه نمایند. گروهی از کاربران می تواند منبع اطلاعاتی بسیار خوبی باشد.
خطاهای زنجیره استنتاج. این خطاها ممکن است در اثر عواملی همچون دانش آمیخته با خطا، خطاهای معنایی، خطاهای موتور استنتاج، تخصیص اولویت نادرست به قواعد و ارتباطات برنامه ریزی نشده بین قواعد بروز کنند. خطاهای پیچیده تر در زنجیره های استنتاج مربوط به عم قطعیت قواعد و شواهد، انتشار عدم قطعیت در زنجیره استنتاج و عدم یکنواختی هستند.
تنها انتخاب روشی برای مواجهه با عدم قطعیت نمی تواند همه مسائل مربوط به عدم قطعیت را خود به خود حل کند. به عنوان مثال، قبل از اینکه شما روش استنتاج بیزی ساده را انتخاب کنید باید بررسی نمایید که آیا تضمینی برای فرض استقلال شرطی وجود دارد یا خیر.
خطاهای مربوط به محدوده های جهل. یکی از مشکلات مربوط به همه مراحل ایجاد سیستم، تعیین محدوده های جهل سیستم است. افراد خبره، محدوده دانش خود را می دانند و خوشبختانه همان طور که به مرزهای جهل خود نزدیک می شوند به تدریج اطمینان آنها نسبت به استنتاج کاهش می یابد. افراد خبره باید به حدی صادق باشند که وقتی به مرزهای جهل خود نزدیک می شوند اجازه دهند که نتایج با عدم قطعیت بیشتری همراه باشد. ولی در یک سیستم خبره حتی اگر مدارک و زنجیره استنتاج بسیار ضعیف شوند باز هم با همان اطمینان به پاسخگویی ادامه می دهد مگر اینکه یک سیستم خبره طوری برنامه ریزی شده باشد که بتواند در چنین شرایطی با عدم قطعیت نتایج را بیان کند.
مهندسی نرم افزار و سیستمهای خبره
در قسمت قبل درباره ملاحظات کلی در بکارگیری سیستم خبره بحث کردیم. حال اجازه بدهید با یک دیدگاه فنی تر یعنی با دیدگاه مهندس دانش که سیستم را ساخته است مراحل ساخت سیستم خبر را مرور نماییم.
وقتی سیستم خبره از مرحله تحقیق بیرون آمد، لازم است سطح کیفیت نرم افزار به سطح استاندارد نرم افزارهای معمولی ارتقاء یابد. متدولوژی پذیرفته شده برای ایجاد نرم افزارهای کیفی در حد استانداردهای تجاری، صنعتی و دولتی، مهندسی نرم افزار است.
پیروی از استانداردهای مناسب برای ایجاد یک محصول از اهمیت زیادی برخوردار است در غیر این صورت احتمالا محصول کیفیت خوبی نخواهد داشت. در حال حاضر سیستمهای خبره را باید محصولی مانند سایر محصولات نرم افزاری نظیر پردازشگر لغات، برنامه پرداخت حقوق، بازیهای کامپیوتری و غیره در نظر گرفت.
با این وجود تفاوت مشهودی بین مأوریت سیستمهای خبره و سایر محصولات مصرفی نظیر پردازشگر لغات و بازیهای ویدئویی وجود دارد. معمولا تکنولوژی سیستمهای خبره وظیفه دارد دانش و خبرگی را برای موقعیتهای سطح بالا و احتمالا خطرناک که زندگی و اموال افراد در خطر است تهیه کند. این مأموریت حساسی است که در قسمت قبلی نیز به آن اشاره شد.
این مأمویت های حساس و بحرانی با مأموریت ساده پردازشگر لغات و برنامه های ویدئویی یعنی افزایش کارایی و تفریح کردن تفاوت بسیار زیادی دارد. زندگی هیچ انسانی نمی تواند به سیستمهای خبره، سیستمهایی با توان عملکرد بالا هستند که باید کیفیت بسیار خوبی داشته باشند در غیر این صورت با اشکالات زیادی رو به رو خواهند شد. همان طور که در شکل ۴-۶ نشان می دهد مهندسی نرم افزار روشهایی برای ساخت نرم افزار کیفی ارائه می دهد.
تشریح کلمه کیفیت به صورت کلی دشوار است زیرا این کلمه برای افراد معانی گوناگونی دارد. یکی از تعاریف کیفیت این است که آن را به صورت مشخصه های لازم یا مطلوبیک شی تعریف کنیم که در مقیاسهای خاصی تعیین شده است. کلمه شی در اینجا به معنای هر نوع سخت افزار یا نرم افزار یا محصولات نرم افزاری است. مشخصه ها و مقادیر آنها شاخص نامیده می شوند زیرا از آنها برای اندازه گیری اشیاء استفاده می شود. به عنوان مثال، قابلیت اطمینان اندازه گیری شده یک دیسک درایو، شاخصی برای کیفیت آن است. یکی از معیارهای این مشخصه، متوسط زمان بین خرابی (MTBF) درایوهاست. MTBF یک درایو قابل اطمینان، حدود ۱۰۰۰ ساعت است، در حالی که برای یک درایو غیر قابل اطمینان ممکن است حدود ۱۰۰ ساعت باشد.
جدول ۱-۶ فهرستی از چند شاخص ارائه داده است که ممکن است در ارزیابی کیفیت یک سیستم خبره کاربرد داشته باشند. این شاخصها فقط جنبه راهنما دارند زیرا یک سیستم خبره مخصوص ممکن است برخی از این شاخصها یا شاخصهای دیگری داشته باشد. در هر حال بهتر است که فهرستی از شاخصهای لازم تهیه شود تا از آن بتوان در تشریح کیفیت استفاده کرد.
فهرست شاخصها به شما کمک می کند تا به راحتی شاخصها را اولویت بندی کنید زیرا ممکن است بعضی از آنها با هم تناقض داشته باشند. به عنوان مثال افزایش تعداد آزمونهای یک سیستم خبره جهت اطمینان از درستی عملکرد آن، هزینه را افزایش خواهد داد. معمولا تصمیم گیری در مورد زمان ختم آزمونها کاری دشوار است که نیازمند بررسی عواملی همچون زمان بندی، هزینه و احتیاجات می باشد. در حالت ایده آل همه نیازهای فوق باید ارضاء شوند. در عمل ممکن است به بعضی از این نیازها اهمیت بیشتری داده و لذا موضوع ارضا همه عوامل به طور جدی دنبال نشود.
چرخه حیات سیستم خبره
یکی از روشهای کلیدی در مهندسی نرم افزار، چرخه حیات است. چرخه حیات نرم افزار مدت زمانی است که از لحظه ای که نرم افزار مفهوم خود را پیدا می کند شروع شده و پس از اینکه سیستم از رده خارج شد پایان می یابد. چرخه حیات علاوه بر اینکه به ایجاد و نگهداری سیستم به طور جداگانه می پردازد، نوعی پیوستگی و ارتباط بین کلیه مراحل ایجاد می کند. هر چه در چرخه حیات، برنامه ریزی برای نگهداری و ارتقاء سیستم زودتر انجام شود هزینه مراحل بعدی کاهش خواهد یافت.
هزینه های نگهداری
برای نرم افزارهای معمولی، معمولا ۶۰ تا ۸۰ درصد کل هزینه نرم افزار مربوط به هزینه نگهداری است که حدود ۲ تا ۴ برابر هزینه ایجاد سیستم است. اگر چه هنوز به دلیل جدید بودن سیستمهای خبره، اطلاعات کمی درباره نگهداری آنها در دست است ولی احتمالا برای سیستمهای خبره ارقام فوق صادق نیستند. اگر برنامه های معمولی با الگوریتم های شناخته شده نیاز به چنین هزینه زیادی جهت نگهداری دارند احتمالا سیستمهای خبره نیاز به هزینه بیشتری خواهند داشت زیرا این سیستمها مبتنی بر دانش تجربی و هیوریستیکها هستند. سیستمهای خبره ای که حجم بالایی از استنتاجها را در شرایط عدم اطمینان انجام می دهند هزینه نگهداری و ارتقاء بالاتری را می طلبند.
مدل آبشاری
برای نرم افزارهای معمولی، مدلهای چرخه حیات متعددی ایجاد شده است. مدل آبشاری کلاسیک، مدل اصلی چرخه حیات است که در شکل ۵-۶ نمایش داده شده است. این مدل برای برنامه نویسان نرم افزارهای معمولی بسیار آشنا است. در مدل آبشاری هر مرحله با یک فعالیت تصدیق و اعتبارسنجی (V&V) پایان می یابد تا مشکلات آن مرحله به حداقل برسد. همچنین دقت کنید که پیکانها فقط یک مرحله به جلو یا عقب می روند. این موضوع سبب می شود تا ایجاد دوباره سیستم بین دو مرحله مجاور، حداقل هزینه را در برداشته باشد در حالیکه ایجاد دوباره سیستم طی چند مرحله هزینه بالاتری در پی خواهد داشت.
اصطلاح دیگری که به چرخه حیات اطلاق می گردد مدل پردازش است زیرا این موضوع به دو مسئله اصلی در ایجاد نرم افزار مربوط می شود.
۱) بعد از این کار چه کاری باید انجام شود؟
۲) مرحله بعد طی چه مدت زمانی انجام می شود؟
مدل پردازش عملا یک فوق اسلوب یا فرا روش شناسی است زیرا ترتیب و مدت زمان لازم جهت اجرای روشهای نرم افزاری را مشخص می کند. روشهای ایجاد نرم ازار (متدولوژیها) موارد زیر را نشان می دهند.
روشهای خاص برای انجام یک مرحله نظیر
برنامه ریزی
احتیاجات
کسب دانش
آزمونها
نمایش محصول هر مرحله
مستندسازی
کد نویسی
نمودارها
مدل کدنویسی و اصلاح
تاکنون مدلهای پردازش بسیاری برای ایجاد نرم افزار مورد استفاده قرار گرفته اند. اولین مدل، مدل غیر معروف کدنویسی و اصلاح است که در آن ابتدا کدنویسی صورت می گیرد و سپس در صورتی که درست عمل نکند اصلاح می شود (Boehm 88). این روشی است که برنامه نویسان کم تجربه هم برای برنامه های متداول و هم برای سیستمهای خبره در پیش می گیرند.
از سال ۱۹۷۰ نقایص روش کدنویسی و اصلاح بخوبی مشهود شده بود و لذا مدل آبشاری برای ارائه یک روش سیستماتیک پدید آمد. این روش به ویژه برای پروژه های بزرگ مفید بود. ولی روش آبشاری نیز با مشکلاتی همراه بود زیرا در این مدل فرض می شود که همه اطلاعات لازم برای یک مرحله وجود دارد. اغلب مواقع در عمل این مکان وجود ندارد که بتوان یک بخش خاص را به طور کامل نوشت مگر اینکه قبلا یک نمونه آزمایشی از سیستم ساخته شده باشد. این موضوع موجب پدیدار شدن مفهوم جدیدی شد: «آن را دوبار انجام دهید.» یعنی در ابتدا با ساخت یک نمونه، احتیاجات را مشخص کرده و سپس سیستم اصلی را بسازید.
مدل افزایشی
مدل آبشاری افزایشی از بهبود روش آبشاری و روش استاندارد بالا به پائین بدست آمده است. ایده اصلی روش افزایشی این است که با افزای قابلیتهای عملکردی، نرم افزار بهبود یابد. مدل افزایشی در پروژه های بزرگ نرم افزاری متداول بسیار موفق عمل کرده است. همچنین در بعضی سیستمهای خبره که اضافه شدن قواعد، توانایی سیستم را از سطح دستیار به همکار و از همکار به سطح خبره افزایش می دهد، مدل افزایشی کاملا موفق عمل کرده است. بنابراین در یک سیستم خبره، توسعه یا افزایش کلی از سطح دستیار به سطح همکار و از سطح همکار به سطح خبره است. توسعه یا افزایش جزئی، میزان خبرگی را در هر سطحی افزایش می دهد که گاه بهبودهای مهمی را نیز صورت می دهد یک توسعه یا افزایش ریز عبارت از تغییر در خبرگی است که با اضافه شدن یا اصلاح یک قاعده منفرد صورت می گیرد.
مزیت اصلی این روش آن است که «افزایش قابلیتهای عملکردی» در مدل افزایشی را بسیار راحت تر از«محصول هر مرحله» در مدل آبشاری می توان مورد آزمون، تصدیق و اعتبارسنجی قرار داد. فرد خبره می تواند به جای یک اعتبارسنجی کامل و کلی در انتهای کار، هر افزایش عملکرد را بلافاصله مورد آزمون، تصدیق و اعتبارسنجی قرار دهد. این امر هزینه تصحیحهای کلی را در سیستم کاهش می دهد. در اصل مدل افزایشی شبیه به نمونه سازی سریع و پیوسته است که کل مراحل ایجاد سیستم را در بر می گیرد. بر خلاف روش «آن را دوبار انجام دهید» که برای تعیین احتیاجات سریعا یک نمونه از مراحل اولیه می سازد، در این روش نمونه متکامل شونده بنوعی همان سیستم مورد نظر ماست.
مدل مارپیچی
همان طور که شکل ۶-۶ نشان می دهد مدل افزایشی را می توان به صورت تعدیلی از یک مدل مارپیچی متداول تجسم کرد. در هر حلقه مارپیچ، توانایی های عملکردی جدیدی به سیستم اضافه می شود. آخرین نقطه که «سیستم تحویل شده» نام دارد عملا پایان مارپیچ نیست. بلکه با شروع نگهداری و ارتقاء سیستم یک مارپیچ جدید شروع می شود. این مارپیچ را می توان اصلاح کرد تا مراحل کلی کسب دانش، کدنویسی، ارزشیابی و برنامه ریزی به طور دقیق تر مشخص شوند.
سیستم خبره قسمت 1
سیستم خبره قسمت 2
سیستم خبره قسمت 3
سیستم خبره قسمت 4
سیستم خبره قسمت 5
سیستم خبره قسمت 6
مقدمه ای بر سیستمهای خبره
سیستم خبره چیست؟
مقدمه ی آموزش سیستم های خبره و هوش مصنوعی
اولین قدم در حل هر مسئله ای تعریف دامنه یا محدوده آن است. این نکته همانطور که در مورد روشهای برنامه نویسی متعارف صحت دارد، در مورد هوش مصنوعی نیز درست است. اما به خاطر اسراری که از قبل در مورد هوش مصنوعی ( AI ) وجود داشته، هنوز هم برخی مایلند این عقیده قدیمی را باور کنند که ” هر مسئله ای که تا به حال حل نشده باشد یک مسئله هوش مصنوعی است”. تعریف متداول دیگری به این صورت وجود دارد ” هوش مصنوعی کامپیوترها را قادر می سازد که کارهایی شبیه به آنچه در فیلمها دیده می شود انجام دهند”.چنین تفکراتی در دهه ۱۹۷۰ میلادی رواج داشت، یعنی درست زمانی که هوش مصنوعی در مرحله تحقیق بود ولی امروزه مسائل واقعی بسیاری وجود دارند که توسط هوش مصنوعی و کاربردهای تجاری آن قابل حلند.
اگرچه برای مسائل کلاسیک هوش مصنوعی از جمله ترجمه زبانهای طبیعی، فهم کلام و بینایی هنوز راه حل عمومی یافت نشده است، ولی محدود کردن دامنه مسئله می تواند به راه حل مفیدی منجر شود. به عنوان مثال، ایجاد یک « سیستم زبان طبیعی ساده » که ورودی آن جملاتی با ساختار اسم، فعل و مفعول باشد کار مشکلی نیست. در حال حاضر، چنین سیستمهایی به عنوان یک واسط در ایجاد ارتباط کاربر پسند با نرم افزارهای بانک اطلاعاتی و صفحه گسترده ها به خوبی عمل می کنند. در حقیقت (پاره) جملاتی که امروزه در برنامه های کامپیوتری مخصوص بازی و سرگرمی به کار می روند توان بالای کامپیوتر در فهم زبان طبیعی را به نمایش می گذارند.
هوش مصنوعی شامل چندین زیر مجموعه است. زیر مجموعه سیستمهای خبره یکی از موفق ترین راه حلهای تقریبی برای مسائل کلاسیک هوش مصنوعی است. پروفسور فیگن بام از دانشگاه استانفورد یکی از پیشکسوتان تکنولوژی سیستم های خبره، تعریفی در مورد سیستمهای خبره دارد : « … یک برنامه کامپیوتری هوشمند که از دانش و روشهای استنتاج برای حل مسائلی استفاده می کند که به دلیل مشکل بودن، نیاز به تجربه و مهارت انسان » (Feigenbaum 82 ). بنابراین سیستم خبره یک سیستم کامپیوتری است که از قابلیت تصمیم گیری افراد خبره، تقلید می نماید. لغت تقلید به این معناست که سیستم خبره سعی دارد در تمام جنبه ها شبیه فرد خبره عمل کند. عمل تقلید از شبیه سازی قوی تر است چون در شبیه سازی تنها در بعضی موارد شبیه چیزهای واقعی عمل می شود.
اگرچه هنوز یک برنامه چند منظوره برای حل مسائل ایجاد نشده است، ولی سیستمهای خبره در محدوده های خاص به خوبی عمل می کنند. برای اثبات موفقیت سیستمهای خبره فقط کافی است که کاربردهای متعدد سیستمهای خبره را در تجارت، پزشکی، علوم مهندسی ملاحظه نمود و یا کتابها، مجلات، سمینارها و محصولات نرم افزاری اختصاص یافته به سیستمهای خبره را مشاهده کرد.
سیستمهای خبره یکی از شاخه های هوش مصنوعی است که همچون یک فرد خبره با استفاده وسیع از دانش تخصصی به حل مسائل می پردازد. فرد خبره کسی است که در یک زمینه خاص دارای تجربه و مهارت و در یک کلامخبرگی است. بنابراین فرد خبره دارای دانش یا مهارت خاصی است که برای بیشتر مردم ناشناخته و یا غیر قابل دسترسی است. فرد خبره مسایلی را حل می کند که یا توسط دیگران قابل حل نیست و یا او مؤثرترین ( و البته نه ارزانترین) راه حل را برای آن مسئله ارائه می دهد. وقتی سیستمهای خبره اولین بار در دهه ۱۹۷۰ توسعه یافتند، فقط دارای دانش خبرگی بودند. ولی لغت سیستم خبره امروزه اغلب به هر سیستمی اطلاق می شود که از تکنولوژی سیستم خبره استفاده می کند. این تکنولوژی می تواند شامل زبانهای خاص سیستمهای خبره، برنامه ها و سخت افزارهای طراحی شده برای کمک به توسعه و اجرای سیستمهای خبره باشد.
دانش موجود در سیستمهای خبره می تواند شامل تجربه و یا دانشی باشد که از طریق کتب، مجلات و افراد دانشمند قابل دسترسی است. اصطلاحات سیستم خبره، سیستم مبتنی بر دانش و یا سیستم خبره مبتنی بر دانش، به طور مترادف به کار می روند. بیشتر مردم از اصطلاح سیستم خبره به دلیل کوتاه بودنش استفاده می کنند. این در حالی است که ممکن است حتی در آن سیستم خبره هیچ تجربه و مهارتی وجود نداشته و فقط شامل دانش عمومی باشد.
شکل ۲-۱ مفهوم بنیانی یک سیستم خبره مبتنی بر دانش را نشان می دهد. کاربر حقایق (یا وقایع) و یا سایر اطلاعات را به سیستم خبره داده و در پاسخ، تجربه، تخصص و توصیه های عالمانه و در یک کلام خبرگی دریافت می کند. از نظر ساختار داخلی، سیستم خبره از دو بخش اصلی تشکیل می شود. بخش اول پایگاه دانش است. این پایگاه حاوی دانشی است که بخش دوم یعنی موتور استنتاج به کمک آن نتیجه گیری می کند. این نتایج، پاسخ سیستم خبره به سوالات کاربر می باشد.
سیستمهای مبتنی بر دانش کارا طوری طراحی شده اند که بتواند به عنوان یک دستیار هوشمند برای افراد خبره عمل کنند. این دستیاران هوشمند به وسیله تکنولوژی سیستمهای خبره طراحی شده اند و دلیل این کار، امکان بسط دانش آنها در آینده می باشد. هر چه دانش بیشتری به یک سیستم دستیار هوشمند اضافه شود، بیشتر شبیه به یک فرد خبره عمل می کند. توسعه یک سیستم دستیار هوشمند می تواند مرحله مهمی در ایجاد یک سیستم خبره کامل باشد. بعلاوه یک دستیار هوشمند می تواند با سرعت بخشیدن به حل مسئله، وقت فرد خبره را آزاد کند. معلمین هوشمند یکی دیگر از کاربردهای هوش مصنوعی هستند. بر خلاف سیستمهای قدیمی آموزش به کمک کامپیوتر، سیستمهای جدید می توانند بسته به زمینه و مفهوم، آموزش یا راهنمایی ارائه دهند (Giarratano 91a).
بر خلاف دانش مربوط به تکنیکهای حل مسایل عمومی، دانش یک فرد خبره حوزه مند است یعنی محدود به یک دامنه خاص است. دامنه یک مسئله، نشاندهنده حوزه خاصی همچون حوزه پزشکی، مالی، علوم و یا مهندسی است که یک فرد خبره می تواند مسایل آن را به خوبی حل کند. سیستمهای خبره طوری طراحی شده اند که مثل افراد خبره در یک حوزه خاص، مهارت داشته باشند. به عنوان مثال شما معمولا انتظار ندارید که یک متخصص شطرنج، در زمینه مسایل پزشکی نیز دانش تخصصی داشته باشد. تخصص داشتن در یک حوزه خاص، به خودی خود، منجر به تخصص داشتن در حوزه های دیگر نمی شود.
دانش یک فرد خبر درباره حل یک مساله خاص، حوزه دانش فرد خبره نامیده می شود.
طراحی سیستمهای خبره
انتخاب مسئله مناسب
قبل از اینکه شما یک سیستم خبره بسازید باید یک مسئله مناسب انتخاب کنید. مانند هر پروژه نرم افزاری، قبل از اینکه خود را درگیر تعهدات زیادی نسبت به افراد، منابع و زمان برای یک سیستم خبره پیشنهادی نماییم، باید بعضی ملاحظات کلی را در نظر داشته باشیم. هر چند این ملاحظات کلی در مدیریت پروژه هر برنامه معمولی نیز وجود دارد ولی باید به منظور پاسخگویی به نیازهای خاص سیستمهای خبره، آنها را اختصاصی کرد. نوعی نگرش اجمالی و از بالا به مدیریت ایجاد سیستم خبره در شکل ۶-۱ نشان داده شده است. سه مرحله کلی که در شکل ۱-۶ نشان داده شده دارای ملاحظات تخصصی تری هستند که در بخش ۳-۶ بحث شده است. همچنین برخی ملاحظات تخصصی تر به صورت پرسش و پاسخ مطرح خواهند گردید تا به صورت یک مجموعه راهنماییها برای پروژه های سیستمهای خبره در آیند.
انتخاب الگوی مناسب
چرا ما یک سیستم خبره می سازیم؟
عواید سیستم
سیستم خبره چه عوایدی دارد؟
این سوال با سوال اول در ارتباط است. ولی از آنجا که این سوال به دنبال دانستن میزان بازگشت سرمایه بوده یعنی با لزوم بازگشت مخصوص سرمایه افراد، منابع، زمان و پول مورد نیاز در ارتباط است از سوال اولی عملی تر است. عواید سیستم ممکن است به صورت پول، افزایش کارایی و یا هر یک از مزایای سیستمهای خبره باشد همچنین یادآوری این نکته لازم است که اگر کسی از سیستم استفاده نکند آن سیستم هیچ عایدی نداشته است. از آنجا که سیستم خبره یک فن آوری نوین است پاسخ دادن به این سؤال در مقایسه با برنامه کامپیوتری معمولی بسیار دشوارتر و پر مخاطره تر است.
ابزارها
چه ابزارهایی برای ساخت سیستم در دسترس داریم؟
امروزه تعداد زیادی ابزار سیستم ذخیره در دسترس وجود دارد که هر یک مزایا و معایبی دارند. به دلیل توسعه سریع ابزارهای نرم افزاری معرفی یک لیست بهنگام از ابزارها کار دشواری است. به راحتی می توان دید که ابزارهای موجود هر ساله ارتقاء یافته و بعضا در طول دو تا سه سال کاملا بازنگری می شوند.
این ارتقا، فقط به ابزارهای نرم افزاری محدود نمی شود. بسیاری از ابزارهای دارای جدیدترین فن آوریها که در اواسط دهه ۱۹۸۰ فقط بر روی ماشینهای لیسپ ۰۰۰/۵۰ دلاری کار می کرد بعدها برای اجرا بر روی ریز کامپیوترها و ریزپردازنده های سفارشی بازنویسی گردید. این موضوع باعث شد قیمت سخت افزارهای بکار گیرنده این ابزارها بسیار کاهش یابد. بهترین راهنمایی برای انتخاب ابزار، بررسی مقالات روز و گفتگو با سازندگان سیستمهای خبره است.
هزینه
این کار چه میزان هزینه در برخواهد داشت؟
هزینه ساخت یک سیستم خبره بستگی به افراد، منابع و زمان تخصیص یافته برای ساخت آن دارد. علاوه بر سخت افزار و نرم افزار لازم برای اجرای یک ابزار سیستم خبره، ممکن است هزینه قابل توجهی نیز صرف آموزش آن شود. اگر پرسنل شما در خصوص کار با یک ابزار، کم تجربه یا بی تجربه باشند، آموزش آنها پر هزینه خواهد بود. به عنوان مثال آموزش یک ابزار سیستم خبره که دربردارنده آخرین تکنولوژی است ممکن است ۲۵۰۰ دلار در هفته برای هر نفر هزینه در بر داشته باشد.
سیستم خبره قسمت 1
سیستم خبره قسمت 2
سیستم خبره قسمت 3
سیستم خبره قسمت 4
سیستم خبره قسمت 5
سیستم خبره قسمت 6
گذری بر سیستمهای خبره (Expert Systems)
سیستم خبره چیست؟
ساختار یك سیستم خبره
پایگاه دانش یك سیستم خبره از هر دو نوع دانش مبتنی بر حقایق (factual) و نیز دانش غیرقطعی (heuristic) استفاده میكند. Factual knowledge، دانش حقیقی یا قطعی نوعی از دانش است كه میتوان آن را در حیطههای مختلف به اشتراك گذاشت و تعمیم داد؛ چراكه درستی آن قطعی است.
استفاده از منطق فازی
دستاورد سیستمهای خبره را میتوان صرفهجویی در هزینهها و نیز تصمیمگیریهای بهتر و دقیقتر و بسیاری موارد تخصصیتر دیگر عنوان كرد. استفاده از سیستمهای خبره برای شركتها میتواند صرفهجویی به همراه داشته باشد.
از سیستمهای خبره در بسیاری از حیطهها از جمله برنامهریزیهای تجاری، سیستمهای امنیتی، اكتشافات نفت و معادن، مهندسی ژنتیك، طراحی و ساخت اتومبیل، طراحی لنز دوربین و زمانبندی برنامه پروازهای خطوط هوایی استفاده میشود. دو نمونه از كاربردهای این سیستمها در ادامه توضیح دادهشدهاند.
سیستمهایی كه در این زمینه مورد استفاده قرار میگیرند، چندین هدف پیچیده و تعاملی را مورد بررسی قرار میدهند تا جوانب كار را روشن كنند و به اهداف مورد نظر دست یابند یا بهترین گزینه را پیشنهاد دهند. بهترین مثال از این مورد، زمانبندی پروازهای خطوط هوایی، كارمندان و گیتهای یك شركت حمل و نقل هوایی است.
صنعت خدمات مالی یكی از بزرگترین كاربران سیستمهای خبره است. نرمافزارهای پیشنهاددهنده نوعی از سیستمهای خبره هستند كه به عنوان مشاور بانكداران عمل میكنند. برای نمونه، با بررسی شرایط یك شركت متقاضی وام از یك بانك تعیین میكند كه آیا پرداخت این وام به شركت برای بانك مورد نظر صرفه اقتصادی دارد یا نه. همچنین شركتهای بیمه برای بررسی میزان خطرپذیری و هزینههای موارد مختلف، از این سیستمها استفاده میكنند.
از نخستین سیستمهای خبره میتوان به Dendral اشاره كرد كه در سال 1965 توسط Edward Feigenbaum وJoshun Lederberg پژوهشگران هوش مصنوعی در دانشگاه استنفورد ساخته شد.
خبرگی
خبرگی(Expertise) دانشی است تخصصی که برای رسیدن به آن نیاز به مطالعه مفاهیم تخصصی یا دورههای ویژه وجود دارد.
سیستمهای خبره
سیستمهای خبره یکی از زیرشاخههای هوش مصنوعی میباشد و یک سیستم خبره به برنامه کامپیوتری گفته میشود که دارای خبرگی در حوزه خاصی میباشد و میتواند در آن حوزه تصمیمگیری با کمک به خبره جهت تصمیمگیری بکار رود.
سیستمهای خبره برا حل مسائلی بکار میروند که:1. الگوریتم خاصی برا حل آن مسائل وجود ندارند.
2. دانش صریح برای حل آن مسائل وجود دارد.
بنابراین اگر سیستمی با استفاده از روشهای علم آماراقدام به پیشبینی دمایهوای فردا کند، در حوزه سیستمهای خبره قرار نمیگیرد.اما اگر سیستمی بااستفاده از این قاعده که«در این فصل سال دمایهوا معمولا ثابت میباشد» و این واقعیت که «دمای امروز 25 درجه سانتی گراد میباشد» به این نتیجه دست یابد که «دمای فردا 25 درجه خواهد بود» در حوزه سیستمهای خبره قرا خواهد گرفت.
از سیستم خبره نباید انتظار داشت که نتیجه بهتر از نتیجه یک خبره را بیابد. سیستم خبره تنها میتواند همسطح یک خبره اقدام به نتیجهگیری نماید. سیستمهای خبره همیشه به جواب نمیرسند.
باتوجه به این که علوم مختلفی وجود دارد در نتیجه خبرگی در شاخههای علمی متفاوت مطرح است. یک فرد خبره(Expert) فردی است که در زمینهای خاص مهارت دارد به طور مثال یک پزشک یک مکانیک و یک مهندس افرادی خبره هستند. این مسئله بیانگر این است که دامنه کاربرد سیستمهای خبره گسترده است و میتوان برای هر زمینه کاری یک سیستم خبره طراحی نمود.
بیان خبرگی در قالب دانش یا بازنمایی دانش
برای این که این خبرگی یک سیستم خبره تشکیل دهد لازم است این خبرگی در قالب دانش بیان شود. بازنمایی دانش تکنیکی است برای بیان خبرگی در قالب دانش.بازنمایی دانش برای ایجاد و سازماندهی دانش یک فرد خبره در یک سیستم خبره استفاده میشود.
اجزای اصلی سیستم خبره
یک سیستم خبره دارای اجزای زیر میباشد:
پایگاه دانش
یکی از مولفههای مهم سیستمهای خبره پایگاه دانش یا مخزن دانش است. محلی است که دانش خبره به صورت کدگذاری شده و قابل فهم برای سیستم ذخیره میشود. پایگاه قواعد دانش، محلی است که بازنمایی دانش صورت میگیرد. بازنمایی دانش بعد از اتمام مراحل به پایگاه قواعد دانش تبدیل میشود.
به کسی که دانش خبره را کد کرده و وارد پایگاه دانش میکند مهندس دانش (Knowledge engineer) گفته میشود.
بطور کلی دانش به صورت عبارات شرطی و قواعد در پایگاه دانش ذخیره میگردد.«اگر چراغ قرمز است آنگاه متوقف شو»
هرگاه این واقعیت وجود داشته باشد که «چراغ قرمز است» آنگاه این واقعیت با الگوی« چراغ قرمز است» منطبق میشود. دراین صورت این قاعده برآورده میشود و دستور متوقف شو اجرا میشود.
موتور استنتاج
یعنی از دانش موجود استفاده و دانش را برای حل مسئله به هم ربط دهیم.
موتور استنتاج با استفاده از قواعد منطق و دانش موجود در پایگاه دانش و حقایق حافظه کاری اقدام به انجام کار خاصی مینماید. این عمل یا بصورت افزودن حقایق جدیدی به پایگاه دانش میباشد یا بصورت نتیجهای برای اعلام به کاربر یا انجام کار خاصی میباشد.
حافظه کاری
حافظهای برای ذخیره پاسخ سوالهای مربوط به سیستم میباشد.
امکانات کسب دانش
امکانات کسب دانش در واقع راهکارهایی برای ایجاد و اضافه نمودن دانش به سیستم میباشد. امکاناتی است که اگر بخواهیم دانشی به سیستم اضافه کنیم باید یک بار از این مرحله عبور کنیم اگر این دانش قبلا در سیستم وجود نداشته باشد به موتور استنتاج میرود روی آن پالایشی صورت میگیرد و سپس در پایگاه دانش قرار میگیرد.
امکانات توضیح
برای نشان دادن مراحل نتیجهگیری سیستم خبره برای یک مسئله خاص با واقعیت خاص به کاربر به زبان قابل فهم برای کاربر بکارمیرود. این امکانات این فایده را دارد که کاربر با دیدن مراحل استنتاج اطمینان بیشتری به تصمیم گرفتهشده توسط سیستم خواهد داشت و خبرهای که دانش او وارد پایگاه دانش شدهاست اطمینان حاصل خواهد کرد که دانش و به صورت صحیح وارد شدهاست.
اگر د ارتباط با سیستم سوال و جوابهایی مطرح شود و سیستم به ما یک سری راهکار پیشنهاد کند و توضیحی در زمینه اینکه چرا چنین سوالی پرسیده میشود؟(Why) و چگونه به این نتیجه رسیدهایم؟(How) را در ناحیهای ذخیره نماییم، امکانات توضیح را تشکیل میدهد.
بخش ارتباط با کاربر
مربوط به بخشی است که بطور مستقیم با کاربر در ارتباط است.
کاربردهای سیستم های خبره
1- جایگزینی برای فرد خبره(سیستم اینترنتی در زمینه مشاور محصولات یک شرکت)
-
- تداوم کار در صورت عدم دسترسی به فرد خبره
-
- کاهش هزینه
-
- احساساتی نبودن سیستم و خستگی ناپذیری آن
2- کمک و دستیار( برنامههای MS Project یا Autocad یا Pspicee برنامههایی هستند که دانشی برای انجام عملیاتی برای کمک به افرادی خاص را دارند)
سیستم خبره قسمت 1
سیستم خبره قسمت 2
سیستم خبره قسمت 3
سیستم خبره قسمت 4
سیستم خبره قسمت 5
سیستم خبره قسمت 6
مدل سیستم خبره
یک مدل سیستم خبره مشتمل بر چهار بخش اصلی است:
پایگاه دانش (Knowledge Base)
-
- موتور استنتاج (Inference Engine)
- امکانات توضیح (Explanation Facilities)
- رابط کاربر (User Interface)
پایگاه دانش (Knowledge Base)
محلی است که دانش خبره به صورت کدگذاری شده و قابل فهم برای سیستم ذخیره میشود. با این توصیف دو اصطلاح زیر تعریف میشود:
— شیء (Object): منظور از شیء در اینجا نتیجهای است که با توجه به قوانین مربوط به آن تعریف میگردد.
— شاخص (Attribute): منظور از شاخص یا «صفت» یک کیفیت ویژه است که با توجه به قوانینی که برای آن در نظر گرفته شده است به شما در تعریف شیء یاری میدهد.
بنابراین میتوان پایگاه دانش را به صورت لیستی از اشیاء که در آن قوانین و شاخصهای مربوط به هر شیء نیز ذکر شده است در نظر گرفته شود.
در سادهترین حالت (که در اکثر کاربردها نیز همین حالت بکار میرود) قانونی که به یک شاخص اعمال میشود این مطلب را بیان میکند که آیا شیء مورد نظر شاخص دارد یا ندارد؟
یک سیستم متخصص که انواع مختلف میوه را شناسایی میکند احتمالاً دارای بانک اطلاعاتی به صورت زیر خواهد بود:
شیء قانون شاخص
سیب دارد روی درخت رشد میکند.
دارد گرد است
دارد رنگ قرمز یا زرد است
ندارد در کویر رشد میکند
بانک ساده شده بالا، تنها با استفاده از قانون <<دارد>>:
شیء | شاخصهایی که دارد |
---|---|
سیب | رشد روی درخت |
سیب | گرد بودن |
سیب | رنگ قرمز یا زرد |
سیب | رشد نکردن در کویر |
به کسی که دانش خبره را به صورت کدگذاری شده درمیآورد، مهندس دانش گفته میشود. به طور کلی دانش به صورت عبارات شرطی و قواعد در پایگاه دانش ذخیره میگردد.
فریمها(Minsky(1975، و پس از آن هستان شناسیها از روشهای مدرن جهت ارائه دانش در سیستمهای خبرهاند.
موتور استنتاج (Inference Engine)
حتی زمانی که قلمرو دانش را با قوانین نمایش میدهیم، باز هم یک فرد خبره باید مشخص کند که کدام قوانین را برای حل مسئله خاصی به کار میبرد. علاوه بر این باید مشخص کند که این قوانین را در چه ردهای به کار میبرد. به طور مشابه یک سیستم خبره نیاز خواهد داشت تا تصمیم بگیرد که چه قانونی و در چه مورد و ردهای باید برای ارزیابی انتخاب شود.
دستگاه استنتاج در واقع قلب یک سیستم خبره است. یک نظام پیچیده که قواعد استنتاج را که به صورت مجموعهای از قواعد “اگر … پس …” برای یافتن پاسخ یا قضاوت نهایی به کار میگیرد چیزی که سیستم خبره را سیستم خبره میکند روشی است که این قواعد براساس آن مورد پردازش قرار میگیرند. دستگاه استنتاج برای رسیدن به قضاوت میتواند به دو صورت عمل کند و در واقع ازسلسله مراتب قواعد استدلال به دو طریق عبور کند یکی از دو شیوه روش استدلال پیش رو است که از دادهها شروع میکند و به نتیجه میرسد یعنی با درنظر گرفتن دادههای مربوط به موضوع مورد سؤال از (اگر)ها شروع کرده و به نتایج یا (پس)های مناسب میرسد به عبارت دیگر در زنجیره پیش رو از مقدمات به نتایج میرسیم، روش دوم استنتاج آن است که از نتایج شروع میکند و برای چنان نتایج مشخص به دنبال مقامات یا شرایط اولیه مناسب میگردد به عبارت دیگر نقطه شروع (پس)ها هستند و از آنها به (اگر)ها دست مییابد. روش اول استنتاج را روش مبتنی بر داده و روش دوم را روش مبتنی بر هدف میخوانند.
امکانات توضیح (Explanation Facilities)
برای نشان دادن مراحل نتیجهگیری سیستم خبره برای یک مسئله خاص با واقعیات خاص به زبان قابل فهم برای کاربر به کار میرود. این امکانات این فایده را دارد که کاربر با دیدن مراحل استنتاج اطمینان بیشتری به تصمیم گرفته شده توسط سیستم خواهد داشت؛ و خبرهای که دانش او وارد پایگاه دانش شده است اطمینان حاصل خواهد کرد که دانش او به صورت صحیح وارد پایگاه دانش شده است.
رابط کاربر
منظور از رابط کاربر، مجموعهای از تجهیزات و نرمافزارها است که به صورت کانال ارتباط کاربر و سیستم خبره عمل میکند یعنی به کاربر امکان ارایه اطلاعات مربوط به مسئله مورد نظر را به سیستم میدهد و از طرف دیگر استنتاجات سیستم را در اختیار کاربر میگذارد.
واسط کاربر یک سیستم خبره طبیعتاً باید از قدرت تبادلی بالایی برخوردار باشد تا ساختار تبادل اطلاعات به شکل گفتگوی یک متقاضی و یک انسان خبره صورت گیرد.
مزایای یک سیستم خبره چیست؟
میزان مطلوب بودن یک سیستم خبره اصولاً به میزان قابلیت دسترسی به آن و میزان سهولت کار با آن بستگی دارد.
مزایای سیستمهای خبره را میتوان به صورت زیر دستهبندی کرد:
-
- افزایش قابلیت دسترسی: تجربیات بسیاری از طریق کامپیوتر دراختیار قرار میگیرد و به طور سادهتر میتوان گفت یک سیستم خبره، تولید انبوه تجربیات است.
- کاهش هزینه:تجربیات بسیاری از طریق کامپیوتر دراختیار قرار میگیرد و به طور سادهتر میتوان گفت یک سیستم خبره، تولید انبوه تجربیات است
- کاهش خطر: سیستم خبره میتواند در محیطهایی که ممکن است برای انسان سخت و خطرناک باشد نیز بکار رود.
- دائمی بودن: سیستمهای خبره دائمی و پایدار هستند. به عبارتی مانند انسانها نمیمیرند و فنا ناپذیرند.
- تجربیات چندگانه: یک سیستم خبره میتواند مجموع تجربیات و آگاهیهای چندین فرد خبره باشد.
- افزایش قابلیت اطمینان: سیستمهای خبره هیچ وقت خسته و بیمار نمیشوند، اعتصاب نمیکنند یا علیه مدیرشان توطئه نمیکنند، درصورتی که اغلب در افراد خبره چنین حالاتی پدید میآید.
- قدرت تبیین (Explanation): یک سیستم خبره میتواند مسیر و مراحل استدلالی منتهی شده به نتیجهگیری را تشریح نماید. اما افراد خبره اغلب اوقات به دلایل مختلف (خستگی، عدم تمایل و…) نمیتوانند این عمل را در زمانهای تصمیمگیری انجام دهند. این قابلیت، اطمینان شما را در مورد صحیح بودن تصمیمگیری افزایش میدهد.
- پاسخدهی سریع:سیستمهای خبره، سریع و دراسرع وقت جواب میدهند.
- پاسخدهی در همه حالات: در مواقع اضطراری و مورد نیاز، ممکن است یک فرد خبره به خاطر فشار روحی یا عوامل دیگر، صحیح تصمیمگیری نکند ولی سیستم خبره این معایب را ندارد.
- پایگاه تجربه: سیستم خبره میتواند همانند یک پایگاه تجربه عمل کند و انبوهی از تجربیات را در دسترس قرار دهد.
- آموزش کاربر(Intelligent Tutor): سیستم خبره میتواند همانند یک خودآموز هوش عمل کند. بدین صورت که مثالهایی را به سیستم خبره میدهند و روش استدلال سیستم را از آن میخواهند.
- سهولت انتقال دانش: یکی از مهمترین مزایای سیستم خبره، سهولت انتقال آن به مکانهای جغرافیایی گوناگون است. این امر برای توسعه کشورهایی که استطاعت خرید دانش متخصصان را ندارند، مهماست.
مثالهایی از سیستمهای خبره تجاری:
-
- MYCIN : اولین سیستم متخصص موفق جهان بود که در سال ۱۹۷۰ در دانشگاه استنفورد طراحی شد. هدف از ساخت این سیستم کمک به پزشکان در تشخیص بیماریهای ناشی از باکتری بود. مشکل عمده در تشخیص بیماری برای یک پزشک آن است که تشخیص سریع و قاطع یک بیماری با توجه به تعداد بسیار زیاد بیماری موجود، عملی دشوار است.MYCIN با تشخیص دادن قاطع بیماریها توانست که این نیاز را برآورده سازد.
- PROSPECTOR: یک متخصص در امر زمینشناسی است که احتمال وجود رسوبات معدنی در یک ناحیه بخصوص را پیش بینی میکند. این سیستم در سال ۱۹۸۷ توسط «ریچارد دودا» و «پیتر هارد» و «رنه ربو» ساخته شد.
در اوایل دهه ۸۰ سیستمهای متخصص به بازار عرضه شد که میتوانستند مشورتهای مالیاتی، توصیههای بیمهای یا قانونی را به استفاده کنندگان خود ارائه دهند.
مشخصههای سیستم خبره
-
- جداسازی دانش از کنترل – یک سطح پایینتر این مبحث، در پایگاه داده قابل مشاهده است. در پایگاه داده سعی بر این است که دادهها از رویههای پیادهسازی شونده روی دادهها، مجزا باشند. مزیت این جداسازی این است که تعمیم یافتگی در سیستم، افزایش مییابد.
- برخورداری از دانش خبره و تخصصی
- تمرکز بر روی تخصصهای خاص و ویژه
- استدلال با نمادها
- استدلال هیوریستیک و تجربی – استدلالی که بر اثر تجربه به دست میآید.
- قابلیت استدلال نادقیق – یعنی با قوانین احتمالی هم استدلال نماید. سیستم خبره باید بتواند در محیطهایی که اطلاعات نادقیق است(کامل نیست) استدلال کند. این استدلال میتواند اشتباه باشد چون اطلاعات کامل نیست. مثلاً پزشکی را در نظر بگیرید که تجربه داردو تازهکار هم نیست، ولی زمانی که وضعیت بحرانی پیش میآید بااید بتواند با اطلاعات کم، بهترین تصمیم را بگیرد.
- محدودیت نسبت به مسائل قابل حل – تنها مسائل قابل حل، توسط سیستمهای خبره، قابل پیادهسازی باشد. تا مسئلهای حل نشده باشد، سیستم خبره نمیتواند به آن پاسخ دهد. باید یک فرد خبرهای باشد که اطلاعات از او گرفته شده و در سیستم قرار داده شود.
- مناسب بودن سیستم خبره از نظر پیچیدگی – مسائل سیستم خبره نباید خیلی سخت و نه خیلی راحت باشد.
- احتمال اشتباه – ممکن است سیستم خبره در تعیین راهحل دچار مشکل شود.
سیستم های خبره
سیستم های خِبره یا سیستمهای خِبره (Expert systems) به دستهای خاص از نرمافزارهای رایانهای اطلاق میشود که در راستای کمک به کاردانان و متخصّصان انسانی و یا جایگزین جزئی آنان در زمینههای محدود تخصّصی تلاش دارند. اینگونه سیستم ها، در واقع، نمونههای آغازین و سادهتری از فناوری پیشرفتهتر سیستم های دانش-بنیان به شمار میآیند. تیم ما توانایی اجرا و پیاده سازی انواع سیستم های خبره را دارد.
اگر بخواهیم سیستمهای خبره را در یک جمله توصیف کنیم باید بگوییم که این سیستمها بهطور کلی برنامههایی هستند که قادرند همانند انسان مسایل خاصی را استدلال کنند. این سیستمها برای استدلال، از الگوهای منطقی خاصی استفاده میکنند که مشابه همان کاری است که انسان در زمان حل یک مسئله عمل میکند. در واقع همانطور که انسان برای حل یک مسئله، تعقل یا اندیشه میکند، سیستمهای خبره نیز برای این کار به الگوها و راه و روشهایی متوسل میشوند که انسان برای آنها مشخص کرده است، بنابراین چون از منطق بشری استفاده میکنند میتوان گفت که تا حدودی همانند انسان فکر میکنند.
سیستم های خبره در زمینههای بسیار متنوعی کاربرد یافتهاند که برخی از این زمینهها عبارتند از پزشکی، حسابداری، کنترل فرایندها، منابع انسانی، خدمات مالی، و GIS. حسابداری، تجزیه و تحلیلهای مالی پزشکی (تشخیص بیماری)، آنژیوگرافی، باستان شناسی، تولید ویفرهای سیلیکونی و انواع خاصی از پرتونگاری در زمینههای مختلف دیگری نیز سیستمهای خبره پدید آمدهاند همانند: مشاوره حقوقی، مشاوره برای انتخاب بهترین معماری یا ترکیب بندی سیستم کامپیوتری، مشاوره مهندسی ساختمان و غیره.
در هر یک از این زمینهها میتوان کارهایی از نوع راهنمایی، پردازش، دستهبندی، مشاوره، طراحی، تشخیص، کاوش، پیش بینی، ایجاد مفاهیم، شناسایی، توجیه، یادگیری، مدیریت، واپایش، برنامهریزی، زمانبندی و آزمایش را با مددجویی از سیستم های تجربی با سرعت و آسانی بیشتری به انجام رسانید.
سیستم های خبره یا به عنوان جایگزین فرد متخصص یا به عنوان کمک به وی استفاده میشوند.
سیستم های خبره سیستم های برنامه ریزی شدهای هستند که پایگاه دانش آنها انباشته از اطلاعاتی است که انسانها هنگام تصمیم گیری درباره یک موضوع خاص بر اساس آن تصمیم میگیرند.
درواقع سیستم خبره برنامه های کامپیوتری هستند که نحوه تفکر یک متخصص در یک زمینه خاص را شبیهسازی میکند. این نرمافزارها، دارای الگوی منطقی هستند که یک متخصص براساس آنان تصمیمگیری میکند. یکی از اهداف هوش مصنوعی، فهم هوش انسانی با شبیهسازی آن توسط برنامه کامپیوتری است. البته بدیهی است که هوش را میتوان به بسیاری از مهارتهای مبتنی بر فهم، از جمله توانایی تصمیم گیری، یادگیری و فهم زبان تعمیم داده و از اینرو یک واژه کلی محسوب میشود. بیشترین دستاوردهای هوش مصنوعی، در زمینه تصمیمگیری و حل مسئله بوده است؛ که عالیترین موضوع سیستم خبره را شامل میشود. به آن نوعی از برنامه هوش مصنوعی که به سطحی از خبرگی میرسند که میتوانند بهجای یک متخصص در یک زمینه خاص تصمیم گیری کنند، سیستم خبره میگویند.
جهانی شدن در هر مکانی سازمانها را در مقابل موقعیت های جدید رقابتی قرار داده است، مکانی که توانمندیهای علمی و رفتارهای کارآ را بهسوی فراهم کردن حاشیه رقابتی سوق میدهد. این روزها بسیاری از سازمانها سعی میکنند تا موقعیت رقابتیشان را از طریق استفاده بهتر از دانش و جستجو برای روشهای جدید، بهمنظور آماده کردن و ارتقای تجربیات و سرمایههای عقلانی که برای خود در نظر گرفتهاند، بهبود دهند. بهعبارت دیگر، محیطهای تجاری پیچیدهتر و رقابتیتر شدهاند و نیاز به ابزارها برای کمک به تصمیمگیران که قادر به تصمیمگیری دقیق نیستند، بیشتر شده است. موفقیت یک سازمان به بسیاری از عوامل بستگی دارد. بسیاری از این عوامل، در خارج از کنترل سازمانها است؛ عواملی از قبیل قوانین و مقررات دولتی و غیره که تأثیر نسبتا شدیدی را بر تصمیمهای سازمانی دارند؛ اما اکثر عواملی که بر تصمیمهای سازمان اثرگذارند، در حیطه کنترل و اختیار سازمانها است. تکنولوژی سختافزارها و نرمافزارهای کامپیوتری در سالهای اخیر، تغییرات مشخصی را ایجاد کردهاند.
مزیت این قبیل تکنولوژیها تولید، جمع آوری، ذخیره سازی، مدیریت و توزیع اطلاعات بهصورتی راحتتر و اثربخشتر است. کامپیوترها رشد چشمگیری داشتهاند و قابلیت در دسترس بودن آنها، موجب رشد استفاده از سیستمهای اطلاعاتی را فراهم آورده است. سیستم خبره بهعنوان سیستم اطلاعاتی که بهمنظور توجه به امکانپذیری و انتخاب مناسب در شرایط معین طراحی شده است، جهت گیری متفاوت و برجسته ای در مقایسه با سیستمهای اطلاعاتی که مبنای آن مبادله ای است، دارند. سیستم اطلاعاتی مبادله ای، ابزاری کارآ در رابطه با فرآیند ذخیرهسازی مبادلات است؛ بدین دلیل، این سیستمها ساختار ویژهای را ارائه میدهند که بهطور خلاصه بر مبنای پایگاه منظمی قرارگرفته است. بنابراین در حالیکه سیستمهای اطلاعاتی مبادلهگرا، دارای تمرکز اطلاعاتی هستند، سیستم خبره دارای تمرکز خاصی برتصمیم گیری ها است.
با توسعه تحقیقات هوش مصنوعی که هدف آن مشابهسازی ویژگیهای انسان از طریق سیستمهای کامپیوتر است، سیستمهای خبره بهعنوان سیستمهایی که بتوانند بهجای انسان در فرایند تصمیمگیری به انتخاب بپردازند، در اواخر دهه 90 مطرح گردید. اما نخستین سیستم خبره اتوماتیک در سال 1965 میلادی در دانشگاه استنفورد بهنام DENDRAL طراحی شد؛ که در شیمی کاربرد داشت و هدف آن کمک به جستجوی ساختار ترکیبات ارگانیکی بود که از راه محاسبه بر روی فرمولهای شیمیایی بهدست میآمد.
سیستمهای پشتیبانی تصمیم (DSS Design Support System)
سیستمهای خبره یکی از شاخه ها و زیرمجموعه های مهم سیستمهای پشتیبانی تصمیم هستند؛ که با کمک به متخصصان انسانی و با شبیه سازی تفکر خاص یک متخصص به فرآیند تصمیم گیری و تصمیمسازی در سازمانها کمک های فراونی میکنند. میتوان DSS یا سیستمهای پشتیبانی تصمیم را بهعنوان یک سیستم پشتیبانی مدیران، جهت حل مسائل نیمه ساختاریافته بهوسیله فراهم کردن اطلاعات و پیشنهادات تعریف کرد .این پیشنهاد میتواند بهشکل تصمیم های توصیهشده و همچنین فرآیندهای توصیه ای برای به جریان انداختن امور جاریه سازمان باشد؛ ظرفیت فرآیند توصیه ای در این مقوله، DSS را بهعنوان یک سیستم خبره معرفی مینماید.
DSS سیستمهای هدفمندی هستند که مدلهای تحلیلی را بادادههای عملیاتی برای مدیرانی که با موقعیتهای تصمیم نیمه ساختاریافته مواجه هستند، ترکیب مینمایند. این سیستمها، به تحلیل و مدلسازی مشکلات و مسائل غیر ساختاریافته کمک شایانی میکنند؛ یکی از مواردی که مکرر از سیستمهای DSS استفاده میشود، بسته یا نرمافزارهای صفحهگستر هستند؛ که توسط این صفحهگسترها کاربران میتوانند مدلهای مختلف را ساخته و متغیرها و فرضیات مختلف را بررسی کنند.
اجزای سیستمهای خبره
کاربر؛ شخصی است که با سیستم ارتباط متقابل دارد؛ که دسته بندیهای مختلفی از آن وجود دارد. در بین این دستهبندیها، کاربری که از هرجهت درگیر با پروژه سیستم باشد، نقش مهمی در موفقیت ایجاد سیستمهای خبره دارد. ایجاد سیستمهای خبره تا زمانیکه مورد پذیرش کاربر قرارنگرفته باشند، سودی نخواهد داشت.
فرد خبره؛ شخصی که متخصص در یک زمینه خاص نه در تمام زمینهها بوده و طی سالها تجربه در حل مسائل مربوط به یک زمینه خاص، تخصص یافته است.
مهندس دانش؛ شخصی است که سیستمهای خبره را طراحی کرده و میسازد؛ یک متخصص کامپیوتر که بر روشهای هوش مصنوعی اشراف دارد و میتواند روشهای متفاوت هوش مصنوعی را بهطور مقتضی در حل مسائل واقعی بهکار گیرد.
پایگاه داده؛ مجموع دادههایی درباره موضوعها و وقایعی است که در پایگاه دانش، بهمنظور دستیابی بهنتایج مورد نظر بهکار خواهد رفت.
پایگاه دانش؛ مشتمل بر دانش متخصص و شیوههای داد و ستد با پایگاه داده برای دستیابی به نتایج مورد نظر است.
موتور استنتاج؛ امکان استنتاج و نتیجهگیری از ارتباط بین پایگاه داده و پایگاه دانش را فراهم میکند.
سیستم توضیح؛ چگونگی دستیابی سیستم به یک نتیجه خاصی را برای کاربر تشریح مینماید. این موضوع از اهمیت ویژهای برخوردار است؛ زیرا پذیرش و تأیید کاربر را افزایش میدهد و به شناسایی و تصحیح خطا واشکالهای ساده سیستم نیز کمک میکند.
قسمت اکتساب دانش؛ که فرایند استخراج، طراحی و ارائه دانش است. در اغلب موارد، استخراج دانش متخصص از طریق تکنیک مصاحبه صورت میگیرد.
مزایا و محدودیتهای سیستمهای خبره
از دستاوردهای سیستمهای خبره میتوان صرفهجویی در هزینه ها و نیز تصمیم گیری بهتر و دقیقتر را نام برد. استفاده از سیستمهای خبره، برای شرکتها میتواند صرفه جویی بههمراه داشته باشد، در زمینه تصمیم گیری نیز گاهی میتوان در شرایط پیچیده با بهره گیری از چنین سیستم هایی تصمیمهای بهتری را اتخاذ کرد و جنبه های پیچیده ای را در مدت زمان بسیار کمی مورد بررسی قرار داد که تحلیل آن به روزها زمان احتیاج دارد.
از سوی دیگر، بهکارگیری سیستم های خبره، محدودیتهای خاصی را بهدنبال دارد؛ بهعنوان نمونه، این سیستم ها نسبت به آنچه انجام میدهند، هیچ حسی ندارند. چنین سیستم هایی نمیتوانند خبرگی خود را به گستردگی وسیعی تعمیم دهند؛ چراکه تنها برای یک منظور خاص طراحی شده اند و پایگاه دانش آنان از دانش متخصصان آن حوزه نشات گرفته است؛ بههمین علت، محدود هستند. این سیستمها از آنجا که توسط دانش متخصصان، تغذیه اطلاعاتی شده اند، درصورت بروز برخی از موارد پیشبینی نشده نمیتوانند شرایط جدید را بهدرستی تجزیه و تحلیل کنند.
ریموند دو مشخصه برای محدودیت پتانسیل سسیستمهای خبره بهعنوان یک وسیله حل مسئله امور بازرگانی برمیشمارد: نخست اینکه، آنها علم متناقض را نمیتوانند کنترل نمایند. دوم، سیستمهای خبره نمیتوانند مهارتهای غیر استدلالی که بهعنوان مشخصه شخص حلکننده مسئله است، را بهکار برند.
مشکلات استقرار سیستمهای خبره
یکی از موانع اصلی بر سر استقرار سیستمهای اطلاعاتی و بهخصوص سیستمهای هوشمند تصمیم گیری، نیروی انسانی موجود در سازمان است. مقاومت در برابر تغییر یکی از نشانههای اهمیت نیروی انسانی سازمان است. بیشتر افراد با شدتهای متفاوت به تغییرپذیری بیعلاقه اند. انسانها متشکل از عادات خود هستند هرچه انسانها میدانند، حتی اگر مطلبی را به اشتباه یاد گرفته باشند، آنرا بهعنوان ارزش قابل احترامی برای خود میدانند. تغییر و اصلاح این ارزشها هرچند در افراد مختلف متفاوت است، ولی تغییرپذیری انسانها مترادف با بیارزش شدن دانسته هایشان تلقی میشود و مقاومت ناخودآگاه با آن امری اجتنابناپذیر است.
از جمله کاربردهای سیستم های خبره می توان به موارد زیر اشاره کرد:
- کنترل ترافیک شهرهای بزرگ
- هواپیما و فرودگاه ها
- کتابخانه ها
- سامانه های تحلیل مالی
- سامانه های آماری
- سامانه های آسان کننده تصمیم گیری
سیستم خبره قسمت 1
سیستم خبره قسمت 2
سیستم خبره قسمت 3
سیستم خبره قسمت 4
سیستم خبره قسمت 5
سیستم خبره قسمت 6
تلفن های تماس:
تلفن: ۹۱۰۰۱۸۸۱(۰۳۱)
بازرگانی و فروش:۰۹۱۳۶۵۳۱۸۸۱
پشتیبانی: ۰۹۱۱۷۶۱۰۲۷۵
ساعات کاری
از شنبه تا چهارشنبه : ۰۹:۰۰ تا ۱۷:۰۰
پنچ شنبه ها : از ۰۹:۰۰ تا ۱۳:۳۰