هوش مصنوعی (هوش ماشینی) چیست؟
هوش مصنوعی چیست؟
هوش مصنوعی یا هوش ماشینی را باید عرصهٔ پهناور تلاقی و ملاقات بسیاری از دانشها، علوم، و فنون قدیم و جدید دانست. ریشهها و ایدههای اصلی آن را باید در فلسفه، زبانشناسی، ریاضیات، روانشناسی، نورولوژی، و فیزیولوژی نشان گرفت و شاخهها، فروع، و کاربردهای گوناگون و فراوان آن را در علوم رایانه، علوم مهندسی، علوم زیستشناسی و پزشکی، علوم ارتباطات و زمینههای بسیار دیگر.
هوش مصنوعی به هوشی که یک ماشین از خود نشان میدهد و یا به دانشی در کامپیوتر که سعی در ایجاد آن دارد گفته میشود. بیشتر نوشتهها و مقالههای مربوط به هوش مصنوعی آن را «دانش شناخت و طراحی عاملهای هوشمند» تعریف کردهاند. یک عامل هوشمند سیستمی است که با شناخت محیط اطراف خود، شانس موفقیت خود را بالا میبرد.[۲] جان مکارتی که واژه هوش مصنوعی را در سال ۱۹۵۶ استفاده نمود، آن را «دانش و مهندسی ساخت ماشینهای هوشمند» تعریف کردهاست. تحقیقات و جستجوهایی انجام شده برای رسیدن به ساخت چنین ماشینهایی مرتبط با بسیاری از رشتههای علمی دیگر میباشد، مانند علوم رایانه، روانشناسی، فلسفه، عصب شناسی، علوم ادراکی، تئوری کنترل، احتمالات، بهینه سازی و منطق.
پیش از بوجود آمدن علوم الکترونیک، هوش مصنوعی توسط فلاسفه و ریاضیدانانی نظیر بول که اقدام به ارائه قوانین و نظریههایی در باب منطق نمودند، مطرح شده بود. با اختراع رایانههای الکترونیکی در سال ۱۹۴۳، هوش مصنوعی دانشمندان را به چالشی بزرگ فراخواند. در بادى امر، چنین بهنظر میرسید که این فناوری در نهایت قادر به شبیهسازی رفتارهای هوشمندانه خواهد بود.
با وجود مخالفت گروهی از متفکرین با هوش مصنوعی که با دیده تردید به کارآمدی آن مینگریستند تنها پس از چهار دهه، شاهد تولد ماشینهای شطرنج باز و دیگر سامانه های هوشمند در صنایع گوناگون هستیم.
نام هوش مصنوعی در سال ۱۹۶۵ میلادی به عنوان یک دانش جدید ابداع گردید. البته فعالیت درزمینه این علم از سال ۱۹۶۰ میلادی شروع شدهبود.
بیشتر کارهای پژوهشی اولیه در هوش مصنوعی بر روی انجام ماشینی بازیها و نیز اثبات قضیههایریاضی با کمک رایانهها بود. در آغاز چنین به نظر میآمد که رایانهها قادر خواهند بود چنین اموری را تنها با بهره گرفتن از تعداد بسیار زیادی کشف و جستجو برای مسیرهای حل مسئله و سپس انتخاب بهترین آنها به انجام رسانند.
منبع
این اصطلاح (هوش مصنوعی) برای اولین بار توسط جان مکارتی (John Mccorthy) که از آن بهعنوان پدر «علم و دانش تولید ماشینهای هوشمند» یاد میشود استفاده شد.آقای جان مکارتی مخترع یکی از زبانهای برنامه نویسی هوش مصنوعی به نام (lisp) نیز هستند. با این عنوان میتوان به هویت هوشمند یک ابزار مصنوعی اشاره کرد. (ساختهٔ دست بشر، غیر طبیعی، مصنوعی)
حال آنکه AI به عنوان یک اصطلاح عمومی پذیرفته شده که شامل محاسبات هوشمندانه و ترکیبی (مرکب از مواد مصنوعی) میباشد.
از اصطلاح strong and weak AI میتوان تا حدودی برای معرفی ردهبندی سیستمها استفاده کرد. AIها در رشتههای مشترکی چون علم کامپیوتر، روانشناسی و فلسفه مورد مطالعه قرار میگیرند، که مطابق آن باعث ایجاد یک رفتار هوشمندانه، یادگیری و سازش میشود و معمولاً نوع پیشرفتهٔ آن در ماشینها و کامپیوترها استفاده میشود.
آزمون تورینگ
آزمون تورینگ آزمونی است که توسط آلن تورینگ در سال ۱۹۵۰ در نوشتهای به نام «محاسبات ماشینی و هوشمندی» مطرح شد. در اين آزمون شرايطي فراهم مي شود كه شخصي با ماشين تعامل برقرار كند و پرسش هاي كافي براي بررسي هوشمندي او بپرسد. چنانچه در پايان آزمايش نتواند تعيين كند كه با انسان در تعامل بوده است يا با ماشين، تست تورينگ با موفقيت انجام شده است. تا كنون هيچ ماشيني از اين آزمون با موفقيت بيرون نيامده است. کوشش این آزمون برای تشخیص درستی هوشمندی یک سیستم است که سعی در شبیه سازی انسان دارد.
منبع
تعریف و طبیعت هوش مصنوعی
هنوز تعریف دقیقی که مورد قبول همهٔ دانشمندان این علم باشد برای هوش مصنوعی ارائه نشدهاست، و این امر، به هیچ وجه مایهٔ تعجّب نیست. چرا که مقولهٔ مادر و اساسیتر از آن، یعنی خود هوش هم هنوز بطور همهجانبه و فراگیر تن به تعریف ندادهاست. در واقع، میتوان نسلهایی از دانشمندان را سراغ گرفت که تمام دوران زندگی خود را صرف مطالعه و تلاش در راه یافتن جوابی به این سؤال عمده نمودهاند که: هوش چیست؟
اما اکثر تعریفهایی که در این زمینه ارایه شدهاند بر پایه یکی از ۴ باور زیر قرار میگیرند:
1. سیستمهایی که به طور منطقی فکر میکنند
2. سیستمهایی که به طور منطقی عمل میکنند
3. سیستمهایی که مانند انسان فکر میکنند
4. سیستمهایی که مانند انسان عمل میکنند
شاید بتوان هوش مصنوعی را این گونه توصیف کرد: «هوش مصنوعی عبارت است از مطالعه این که چگونه کامپیوترها را میتوان وادار به کارهایی کرد که در حال حاضر انسانها آنها را بهتر انجام میدهند».
محققین هوش مصنوعی علاقهمند به تولید ماشینی هستند که دستورات مورد نیاز را به صورت هوشمندانه انجام دهد. به عنوان مثال قابلیت کنترل، برنامهریزی و زمانبندی، توانایی تشخیص جواب به سوال مصرف کننده، دست نویسها، زبان شناسی، سخنرانی و شناسایی چهره را داشته باشد. مطالعه بر روی یک AI دارد به یک رشتهٔ مهندسی تبدیل میشود که کانون مشروط است بر حل مشکلات زندگی واقعی، علم معدن کاری، نرم افزارهای کاربردی، استراتژی بازیها مثل بازی شطرنج و بازیهای ویدئویی یکی از بزرگترین مشکلات (سختیها) با AIها، قوهٔ درک آنها است.
تاحدی دستگاههای تولیدشده میتوانند شگفتانگیز باشند، اما کارشناسان هوش مصنوعی ادعا میکنند که ماشینهای هوشمند ساختهشده دارای درک واقعی و حقیقی نیستند.
–مشاهده رفتاري هوشمندانه و صحيح از يك سيستم را نمي توان دليلي كافي بر هوشمندي آن سيستم تصوركرد بلكه بايستي به ساختار داخلي و مكانيزم انتخاب راه توسط سيستم توجه شود كه آيا مبتني بر آگاهي خود سيستم است يا نه و اين آگاهي زماني ميسر خواهد بود كه سيستم خود قابليت تحليل اطلاعات در يافتي از محيط را داشته باشد و بتواند رابطه هاي معني داري بين علت و معلول ما بين اتفاقات محيطي ايجاد كند و در واقع قادر به ايجاد مدلي هر چند غير دقيق بر پايه مشاهدات خود از محيط باشد سپس سيستم ايده ارزشمندي از نظرگاه خود توليد بكند و بعنوان خواسته و هدفي سعي در پياده سازي آن بكند يعني در پي پيدا كردن و اتصال ابزارهاي مناسبي به آن هدف باشد تا بتواند آلگوريتم عملياتي براي برآورد آن خواسته توليد نمايد.
منبع
فلسفهٔ هوش مصنوعی
بطور کلی ماهیت وجودی هوش به مفهوم جمع آوری اطلاعات، استقرا و تحلیل تجربیات به منظور رسیدن به دانش و یا ارایه تصمیم میباشد. در واقع هوش به مفهوم به کارگیری تجربه به منظور حل مسائل دریافت شده تلقی میشود. هوش مصنوعی علم و مهندسی ایجاد ماشینهایی با هوش با به کارگیری از کامپیوتر و الگوگیری از درک هوش انسانی و یا حیوانی و نهایتاً دستیابی به مکانیزم هوش مصنوعی در سطح هوش انسانی میباشد.
در مقایسه هوش مصنوعی با هوش انسانی میتوان گفت که انسان قادر به مشاهده و تجزیه و تحلیل مسایل در جهت قضاوت و اخذ تصمیم میباشد در حالی که هوش مصنوعی مبتنی بر قوانین و رویههایی از قبل تعبیه شده بر روی کامپیوتر میباشد. در نتیجه علی رغم وجود کامپیوترهای بسیار کارا و قوی در عصر حاضر ما هنوز قادر به پیاده کردن هوشی نزدیک به هوش انسان در ایجاد هوشهای مصنوعی نبودهایم.
بطور کلّی، هوش مصنوعی را میتوان از زوایای متفاوتی مورد بررسی و مطالعه قرار داد. مابین هوش مصنوعی به عنوان یک هدف، هوش مصنوعی به عنوان یک رشته تحصیلی دانشگاهی، و یا هوش مصنوعی به عنوان مجموعهٔ فنون و راه کارهایی که توسط مراکز علمی مختلف و صنایع گوناگون تنظیم و توسعه یافتهاست باید تفاوت قائل بود.
منبع
اتاق چینی
اتاق چینی بحثی است که توسط «جان سیرل» در ۱۹۸۰ مطرح شد در این راستا که یک ماشین سمبل گرا هرگز نمیتواند دارای ویژگیهایی مانند «مغز» و یا «فهمیدن» باشد، صرف نظر از اینکه چقدر از خود هوشمندی نشان دهد.
منبع
مدیریت پیچیدگی
ایجاد و ابداع فنون و تکنیکهای لازم برای مدیریّت پیچیدگی را باید به عنوان هستهٔ بنیادین تلاشهای علمی و پژوهشی گذشته، حال، و آینده، در تمامی زمینههای علوم رایانه، و به ویژه، در هوش مصنوعی معرّفی کرد. شیوهها و تکنیکهای هوش مصنوعی، در واقع، برای حلّ آن دسته از مسائل به وجود آمدهاست که به طور سهل و آسان توسط برنامهنویسی تابعی (Functional programming)، یا شیوههای ریاضی قابل حلّ نبودهاند.
در بسیاری از موارد، با پوشانیدن و پنهان ساختن جزئیّات فاقد اهمّیّت است که بر پیچیدگی فائق میآییم و میتوانیم بر روی بخشهایی از مسئله متمرکز شویم که مهمتر است. تلاش اصلی در واقع، ایجاد و دستیابی به لایهها و ترازهای بالاتر از هوشمندی تجرید را نشانه میرود، تا آنجا که، سرانجام برنامههای کامپوتری درست در همان سطحی کار خواهند کرد که خود انسانها رسیدهاند.
به یاری پژوهشهای گسترده دانشمندان علوم مرتبط، هوش مصنوعی تاکنون راه بسیاری پیمودهاست. در این راستا، تحقیقاتی که بر روی توانایی آموختن زبانها انجام گرفت و همچنین درک عمیق از احساسات، دانشمندان را در پیشبرد این دانش کمک زیادی کردهاست. یکی از اهداف متخصصین، تولید ماشینهایی است که دارای احساسات بوده و دست کم نسبت به وجود خود و احساسات خود آگاه باشند. این ماشین باید توانایی تعمیم تجربیات قدیمی خود در شرایط مشابه جدید را داشته و به این ترتیب اقدام به گسترش دامنه دانش و تجربیاتش کند.
برای نمونه روباتیی هوشمند که بتواند اعضای بدن خود را به حرکت درآورد، این روبات نسبت به این حرکت خود آگاه بوده و با آزمون و خطا، دامنه حرکت خود را گسترش میدهد و با هر حرکت موفقیت آمیز یا اشتباه، دامنه تجربیات خود را وسعت بخشیده و سر انجام راه رفته و یا حتی میدود و یا به روشی برای جابجا شدن دست مییابد، که سازندگانش برای او متصور نبودهاند.
هر چند نمونه بالا ممکن است کمی آرمانی به نگر برسد، ولی به هیچ عنوان دور از دسترس نمیباشد. دانشمندان, عموماً برای تولید چنین ماشینهایی، از وجود مدلهای زندهای که در طبیعت وجود، به ویژه آدمی نیز سود بردهاند.
هوش مصنوعی اکنون در خدمت توسعه علوم رایانه نیز میباشد. زبانهای برنامه نویسی پیشرفته، که توسعه ابزارهای هوشمند را ممکن ساخته اند، پایگاههای دادهای پیشرفته، موتورهای جستجو، و بسیاری نرمافزارها و ماشینها از نتایج پژوهشهایی در راستای هوش مصنوعی بودهاند.
منبع
تکنیکها وزبانهای برنامه نویسی هوش مصنوعی
عملکرد اولیه برنامه نویسی هوش مصنوعی ایجاد ساختار کنترلی مورد لزوم برای محاسبه سمبولیک است زبانهای برنامه نویسی LISP,PROLOG علاوه بر اینکه از مهمترین زبانهای مورد استفاده در هوش مصنوعی هستند خصوصیات نحوی ومعنایی انها باعث شده که انها شیوهها و راه حلهای قوی برای حل مسئله ارایه کنند. تاثیر قابل توجه این زبانها بر روی توسعه AI از جمله تواناییهای انها بعنوان «ابزارهای فکرکردن» می باشد. در حقیقت همانطور که هوش مصنوعی مراحل رشد خود را طی میکند زبانهای LISP ,PROLOG بیشتر مطرح میشوند این زبانها کار خود را در محدوده توسعه سیستمهای AIدر صنعت ودانشگاهها دنبال میکنند و طبیعتاً اطلاعات در مورد این زبانها بعنوان بخشی از مهارت هر برنامه نویس AIمیباشد. PROLOGیک زبان برنامه نویسی منطقی است. یک برنامه منطقی دارای یک سری ویژگیهای قانون ومنطق است.
در حقیقت خود این نام از برنامه نویسی PROدر LOGIC میآید. در این زبان یک مفسر برنامه را بر اساس یک منطق مینویسد.ایده استفاده توصیفی محاسبهٔ اولیه برای بیان خصوصیات حل مسئله یکی از محوریتهای مشارکت PROLOG می باشد که برای علم کامپیوتر بطور کلی و بطور اخص برای زبان برنامه نویسی هوشمند مورد استفاده قرار میگیرند. LISP اصولاً LISP یک زبان کامل است که دارای عملکردها و لیستهای لازمه برای توصیف عملکردهای جدید، تشخیص تناسب و ارزیابی معانی میباشد. LISP به برنامه نویس قدرت کامل برای اتصال به ساختارهای اطلاعاتی را میدهد گر چه LISP یکی از قدیمی ترین ترین زبانهای محاسباتی است که هنوز فعال است ولی دقت کافی در برنامه نویسی وطراحی توسعه باعث شده که این یک زبان برنامه نویسی فعال باقی بماند. در حقیقت این مدل برنامه نویسی طوری موثر بودهاست که تعدادی از دیگر زبانها براساس عملکرد برنامه نویسی آن بنا شدهاند: مثل FP ،ML ،SCHEME یکی از مهمترین برنامههای مرتبط با LISP برنامه SCHEME میباشد که یک تفکر دوباره در باره زبان در آن وجود دارد که بوسیله توسعه AI وبرای آموزش واصول علم کامپیوتر مورد استفاده قرار میگیرد.
منبع
عاملهای هوشمند
عاملها (Agents) قادر به شناسایی الگوها، و تصمیم گیری بر اساس قوانین فکر کردن خود میباشند. قوانین و چگونگی فکر کردن هر عامل در راستای دستیابی به هدفش، تعریف میشود. این سیستمها بر اساس قوانین خاص خود فکر کرده و کار خودرا به درستی انجام میدهند. پس عاقلانه رفتار میکنند، هر چند الزاما مانند انسان فکر نمیکنند.
منبع
سیستمهای خبره
سیستمهای خبره زمینهای پرکاربرد در هوش مصنوعی و مهندسی دانش است که با توجّه به نیاز روز افزون جوامع بر اتخاذ راه حلها و تصمیمات سریع در مواردی که دانشهای پیچیده و چندگانهٔ انسانی مورد نیاز است، بر اهمیت نقش آنها افزوده هم میشود. سیستمهای خبره به حل مسائلی میپردازند که به طور معمول نیازمند تخصّصهای کاردانان و متخصّصان انسانیست. به منظور توانایی بر حل مسائل در چنین سطحی (ترازی)، دسترسی هرچه بیشتر اینگونه سامانهها به دانش موجود در آن زمینه خاص ضروری میباشد.
منبع
دیدگاه خود را ثبت کنید
تمایل دارید در گفتگوها شرکت کنید؟در گفتگو ها شرکت کنید.