چرا از فضای رنگی مختلف استفاده می کنیم؟

از فضای رنگی مختلف استفاده می کنیم چون این امکان در آن فضای رنگی به ما داده میشه تا بتوینم رنگ دلخواه مان را به راحتی از محدوده دیگر رنگ ها جدا کنیم .فرض کنید که شما قصد دارید رنگ سبز را در تصویر فیلتر نمایید این بازه شامل طیفی می باشد که یک سمت آن سبز تیره و در سمت دیگر آن سبز روشن می باشد برای جدا کردن آن در فضای رنگی RGB این امکان وجود ندارد که شما بتوان به صورت خطی یعنی هر کانال با یک شرط بازه رنگ دلخواه را انتخاب نمائید پس به خاطر چنین مشکلاتی تصویر را به فضای رنگی HSV انتقال می دهیم که این فضا از اجزای Hue (رنگدانه) ،Saturation(اشباع) و Value(روشنایی) تشکیل شده.برای تفکیک رنگ سبز در این فضای رنگی کافیست محدوده Hue خود که مربوط به رنگ مورد نظر را انتخاب کرده و سپس کل محدوه اشباع و در نهایت انتخاب محدوده دلخواه برای روشنایی پس در این فضای رنگی به راحتی تونستید رنگ دلخواه خودتون را انتخاب کنید.

تبدیل فضای رنگی در opencv

در کتابخانه Opencv می تونیم از تابع cvtColor استفاده کنیم.

مثال:


/*------------------------------------------------------------------------------------------*\
This file contains material supporting chapter 3 of the cookbook:
Computer Vision Programming using the OpenCV Library
Second Edition
by Robert Laganiere, Packt Publishing, 2013.

This program is free software; permission is hereby granted to use, copy, modify,
and distribute this source code, or portions thereof, for any purpose, without fee,
subject to the restriction that the copyright notice may not be removed
or altered from any source or altered source distribution.
The software is released on an as-is basis and without any warranties of any kind.
In particular, the software is not guaranteed to be fault-tolerant or free from failure.
The author disclaims all warranties with regard to this software, any use,
and any consequent failure, is purely the responsibility of the user.

Copyright (C) 2013 Robert Laganiere, www.laganiere.name
\*------------------------------------------------------------------------------------------*/

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

#include <iostream>
#include <vector>

void detectHScolor(const cv::Mat& image, // input image
double minHue, double maxHue, // Hue interval
double minSat, double maxSat, // saturation interval
cv::Mat& mask) { // output mask

// convert into HSV space
cv::Mat hsv;
cv::cvtColor(image, hsv, CV_BGR2HSV);

// split the 3 channels into 3 images
std::vector<cv::Mat> channels;
cv::split(hsv, channels);
// channels[0] is the Hue
// channels[1] is the Saturation
// channels[2] is the Value

// Hue masking
cv::Mat mask1; // under maxHue
cv::threshold(channels[0], mask1, maxHue, 255, cv::THRESH_BINARY_INV);
cv::Mat mask2; // over minHue
cv::threshold(channels[0], mask2, minHue, 255, cv::THRESH_BINARY);

cv::Mat hueMask; // hue mask
if (minHue < maxHue)
hueMask = mask1 & mask2;
else // if interval crosses the zero-degree axis
hueMask = mask1 | mask2;

// Saturation masking
// under maxSat
cv::threshold(channels[1], mask1, maxSat, 255, cv::THRESH_BINARY_INV);
// over minSat
cv::threshold(channels[1], mask2, minSat, 255, cv::THRESH_BINARY);

cv::Mat satMask; // saturation mask
satMask = mask1 & mask2;

// combined mask
mask = hueMask&satMask;
}

int main()
{
// read the image
cv::Mat image= cv::imread("boldt.jpg");
if (!image.data)
return 0;

// show original image
cv::namedWindow("Original image");
cv::imshow("Original image",image);

// convert into HSV space
cv::Mat hsv;
cv::cvtColor(image, hsv, CV_BGR2HSV);

// split the 3 channels into 3 images
std::vector<cv::Mat> channels;
cv::split(hsv,channels);
// channels[0] is the Hue
// channels[1] is the Saturation
// channels[2] is the Value

// display value
cv::namedWindow("Value");
cv::imshow("Value",channels[2]);

// display saturation
cv::namedWindow("Saturation");
cv::imshow("Saturation",channels[1]);

// display hue
cv::namedWindow("Hue");
cv::imshow("Hue",channels[0]);

// image with fixed value
cv::Mat newImage;
cv::Mat tmp(channels[2].clone());
// Value channel will be 255 for all pixels
channels[2]= 255;
// merge back the channels
cv::merge(channels,hsv);
// re-convert to BGR
cv::cvtColor(hsv,newImage,CV_HSV2BGR);

cv::namedWindow("Fixed Value Image");
cv::imshow("Fixed Value Image",newImage);

// image with fixed saturation
channels[1]= 255;
channels[2]= tmp;
cv::merge(channels,hsv);
cv::cvtColor(hsv,newImage,CV_HSV2BGR);

cv::namedWindow("Fixed saturation");
cv::imshow("Fixed saturation",newImage);

// image with fixed value and fixed saturation
channels[1]= 255;
channels[2]= 255;
cv::merge(channels,hsv);
cv::cvtColor(hsv,newImage,CV_HSV2BGR);

cv::namedWindow("Fixed saturation/value");
cv::imshow("Fixed saturation/value",newImage);

// Testing skin detection

// read the image
image= cv::imread("girl.jpg");
if (!image.data)
return 0;

// show original image
cv::namedWindow("Original image");
cv::imshow("Original image",image);

// detect skin tone
cv::Mat mask;
detectHScolor(image,
160, 10, // hue from 320 degrees to 20 degrees
25, 166, // saturation from ~0.1 to 0.65
mask);

// show masked image
cv::Mat detected(image.size(), CV_8UC3, cv::Scalar(0, 0, 0));
image.copyTo(detected, mask);
cv::imshow("Detection result",detected);

// A test comparing luminance and brightness

// create linear intensity image
cv::Mat linear(100,256,CV_8U);
for (int i=0; i<256; i++) {

linear.col(i)= i;
}

// create a Lab image
linear.copyTo(channels[0]);
cv::Mat constante(100,256,CV_8U,cv::Scalar(128));
constante.copyTo(channels[1]);
constante.copyTo(channels[2]);
cv::merge(channels,image);

// convert back to BGR
cv::Mat brightness;
cv::cvtColor(image,brightness, CV_Lab2BGR);
cv::split(brightness, channels);

// create combined image
cv::Mat combined(200,256, CV_8U);
cv::Mat half1(combined,cv::Rect(0,0,256,100));
linear.copyTo(half1);
cv::Mat half2(combined,cv::Rect(0,100,256,100));
channels[0].copyTo(half2);

cv::namedWindow("Luminance vs Brightness");
cv::imshow("Luminance vs Brightness",combined);

cv::waitKey();
}

منبع

کد برنامه تشخیص و شمارش خودروهای در حال حرکت در زبان Matlab

در این پروژه سعی داریم با استفاده از روش «رهگیری اهداف چندگانه» اقدام به شناسایی اشیاء در حال حرکت نموده و آنها را شمارش نمائیم. این برنامه می تواند جهت شمارش تعداد خودروهای عبوری، تعداد افراد در حال تردد و… مورد استفاده قرار بگیرد. این الگوریتم توسط شرکت mathwork پیاده سازی گردیده و جهت استفاده علاقه مندان ادامه ارائه می گردد.

باتوجه به توضیحات کامل این پروژه از ذکر توضیحات اضافه اجتناب میکنیم و فقط شرحی مختصر از عماکرد برنامه ارائه می نماییم. ابتدا با استفاده از چند فریم به عنوان نمونه، زمینه(background) را شناسایی می کنیم و سپس به اقدام به تشخیص آبجکت های(foreground) می نماییم. سپس با استفاده از روش کالمن (Kalman) اقدام به رهگیری آبجکت هایی که از مقداری مشخص (اصلاحا blob) بزرگتر هستند می نمائیم.  در ادامه آبجکت ها را رهگیری می کنیم تا هنگامی که از صفحه خارج شوند. نکته جالب توجه این هست که اگر آبجکتی موقتا ناپیدا شود(مثلا زیر پل یا درخت قرار بگیرد) به عنوان «Predicted» برچسب خورده و پس از پیدا شدن مجددا به عنوان همان آبجکت قبلی شناسایی می شود.

 

تشخیص و شمارش خودروهای در حال حرکت

سورس کد برنامه تشخیص و شمارش خودرو:

 

%% Multiple Object Tracking Tutorial
% This example shows how to perform automatic detection and motion-based
% tracking of moving objects in a video. It simplifies the example
% <matlab:helpview(fullfile(docroot,'toolbox','vision','vision.map'),'MotionBasedMultiObjectTrackingExample')
% Motion-Based Multiple Object Tracking> and uses the |multiObjectTracker|
% available in Automated Driving System Toolbox.
%
% Copyright 2016 The MathWorks, Inc.
 
%%
% Detection of moving objects and motion-based tracking are important 
% components of many computer vision applications, including activity
% recognition, traffic monitoring, and automotive safety. The problem of
% motion-based object tracking can be divided into two parts:
%
% # Detecting moving objects in each frame 
% # Tracking the moving objects from frame to frame 
%
% The detection of moving objects uses a background subtraction algorithm
% based on Gaussian mixture models. Morphological operations are applied to
% the resulting foreground mask to eliminate noise. Finally, blob analysis
% detects groups of connected pixels, which are likely to correspond to
% moving objects. 
%
% The tracking of moving objects from frame to frame is done by the
% |multiObjectTracker| object that is responsible for the following:
%
% # Assigning detections to tracks. 
% # Initializing new tracks based on unassigned detections. All tracks are
% initialized as |'Tentative'|, accounting for the possibility that they
% resulted from a false detection.
% # Confirming tracks if they have more than _M_ assigned detections in _N_
% frames.
% # Updating existing tracks based on assigned detections.
% # Coasting (predicting) existing unassigned tracks.
% # Deleting tracks if they have remained unassigned (coasted) for too long.
%
% The assignment of detections to the same object is based solely on
% motion. The motion of each track is estimated by a Kalman filter. The
% filter predicts the track's location in each frame, and determines the
% likelihood of each detection being assigned to each track. To initialize
% the filter that you design, use the |FilterInitializationFcn| property of
% the |multiObjectTracker|.
%
% For more information, see
% <matlab:helpview(fullfile(docroot,'toolbox','vision','vision.map'),'multipleObjectTracking') Multiple Object Tracking>.
%
% This example is a function, with the main body at the top and helper 
% routines in the form of 
% <matlab:helpview(fullfile(docroot,'toolbox','matlab','matlab_prog','matlab_prog.map'),'nested_functions') nested functions> 
% below.
 
function p12_on_video_using_tracking_matlab_sample()
% Create objects used for reading video and displaying the results.
videoObjects = setupVideoObjects('6.mp4');
 
% Create objects used for detecting objects in the foreground of the video.
minBlobArea = 10000; % Minimum blob size, in pixels, to be considered as a detection
detectorObjects = setupDetectorObjects(minBlobArea);
 
%% Create the Multi-Object Tracker
% When creating a |multiObjectTracker|, consider the following: 
%
% # |FilterInitializationFcn|: The likely motion and measurement models. 
% In this case, the objects are expected to have a constant speed motion.
% The |initDemoFilter| function configures a linear Kalman filter to 
% track the motion. See the 'Define a Kalman filter' section for details.
% # |AssignmentThreshold|: How far detections may fall from tracks. 
% The default value for this parameter is 30. If there are detections
% that are not assigned to tracks, but should be, increase this value. If
% there are detections that get assigned to tracks that are too far,
% decrease this value.
% # |NumCoastingUpdates|: How long a track is maintained before deletion.
% In this case, since the video has 30 frames per second, a reasonable
% value is about 0.75 seconds (22 frames).
% # |ConfirmationParameters|: The parameters controlling track confirmation.
% A track is initialized with every unassigned detection. Some of these
% detections might be false, so initially, all tracks are |'Tentative'|. 
% To confirm a track, it has to be detected at least _M_ out of _N_
% frames. The choice of _M_ and _N_ depends on the visibility of the
% objects. This example assumes a visibility of 6 out of 10 frames.
tracker = multiObjectTracker(...
 'FilterInitializationFcn', @initDemoFilter, ...
 'AssignmentThreshold', 30, ...
 'NumCoastingUpdates', 22, ...
 'ConfirmationParameters', [6 10] ...
 );
 
%% Define a Kalman Filter
% When defining a tracking filter for the motion, complete the following
% steps:
%
% *Step 1: Define the motion model and state*
%
% In this example, use a constant velocity model in a 2-D rectangular
% frame.
%
% # The state is |[x;vx;y;vy]|.
% # The state transition model matrix is |A = [1 dt 0 0; 0 1 0 0; 0 0 1 dt; 0 0 0 1]|.
% # Assume that |dt = 1|.
%
% *Step 2: Define the process noise*
%
% The process noise represents the parts of the process that are not taken
% into account in the model. For example, in a constant velocity model, the
% acceleration is neglected.
%
% *Step 3: Define the measurement model*
%
% In this example, only the position (|[x;y]|) is measured. So, the
% measurement model is |H = [1 0 0 0; 0 0 1 0]|.
%
% Note: To preconfigure these parameters, define the |'MotionModel'|
% property as |'2D Constant Velocity'|.
%
% *Step 4: Initialize the state vector based on the sensor measurement*
%
% In this example, because the measurement is |[x;y]| and the state is
% |[x;vx;y;vy]|, initializing the state vector is straightforward. Because
% there is no measurement of the velocity, initialize the |vx| and |vy|
% components to 0.
%
% *Step 5: Define an initial state covariance*
%
% In this example, the measurements are quite noisy, so define the initial 
% state covariance to be quite large: |stateCov = diag([50, 50, 50, 50])|
%
% *Step 6: Create the correct filter*
% 
% In this example, all the models are linear, so use |trackingKF| as the
% tracking filter.
 function filter = initDemoFilter(detection)
 % Initialize a Kalman filter for this example.
 
 % Define the initial state.
 state = [detection.Measurement(1); 0; detection.Measurement(2); 0];
 
 % Define the initial state covariance.
 stateCov = diag([50, 50, 50, 50]);
 
 % Create the tracking filter.
 filter = trackingKF('MotionModel', '2D Constant Velocity', ... 
 'State', state, ...
 'StateCovariance', stateCov, ... 
 'MeasurementNoise', detection.MeasurementNoise(1:2,1:2) ... 
 );
 end
 
%%% 
% The following loop runs the video clip, detects moving objects in the
% video, and tracks them across video frames. 
 
% Count frames to create a sense of time.
frameCount = 0;
while hasFrame(videoObjects.reader)
 % Read a video frame and detect objects in it.
 frameCount = frameCount + 1; % Promote frame count
 frame = readFrame(videoObjects.reader); % Read frame 
 [detections, mask] = detectObjects(detectorObjects, frame); % Detect objects in video frame 
 
 % Run the tracker on the preprocessed detections.
 confirmedTracks = updateTracks(tracker, detections, frameCount);
 
 % Display the tracking results on the video.
 displayTrackingResults(videoObjects, confirmedTracks, frame, mask);
end
%% Create Video Objects
% Create objects used for reading and displaying the video frames.
 
 function videoObjects = setupVideoObjects(filename)
 % Initialize video I/O
 % Create objects for reading a video from a file, drawing the tracked
 % objects in each frame, and playing the video.
 
 % Create a video file reader.
 videoObjects.reader = VideoReader(filename);
 
 % Create two video players: one to display the video,
 % and one to display the foreground mask. 
 videoObjects.maskPlayer = vision.VideoPlayer('Position', [20, 400, 700, 400]);
 videoObjects.videoPlayer = vision.VideoPlayer('Position', [740, 400, 700, 400]);
 end
 
%% Create Detector Objects
% Create objects used for detecting foreground objects.
% Use |minBlobArea| to define the size of the blob, in pixels, that is
% considered to be a detection. 
%
% * Increase |minBlobArea| to avoid detecting small blobs, which are more
% likely to be false detections, or if several detections are created for 
% the same object due to partial occlusion.
% * Decrease |minBlobArea| if objects are detected too late or not at all.
 
 function detectorObjects = setupDetectorObjects(minBlobArea)
 % Create System objects for foreground detection and blob analysis
 
 % The foreground detector segments moving objects from the
 % background. It outputs a binary mask, where the pixel value of 1
 % corresponds to the foreground and the value of 0 corresponds to
 % the background.
 
 detectorObjects.detector = vision.ForegroundDetector('NumGaussians', 3, ...
 'NumTrainingFrames', 40, 'MinimumBackgroundRatio', 0.7);
 
 % Connected groups of foreground pixels are likely to correspond to
 % moving objects. The blob analysis System object finds such
 % groups (called 'blobs' or 'connected components') and computes
 % their characteristics, such as their areas, centroids, and the
 % bounding boxes.
 
 detectorObjects.blobAnalyzer = vision.BlobAnalysis('BoundingBoxOutputPort', true, ...
 'AreaOutputPort', true, 'CentroidOutputPort', true, ...
 'MinimumBlobArea', minBlobArea);
 end
 
%% Detect Objects
% The |detectObjects| function returns the centroids and the bounding boxes
% of the detected objects as a list of |objectDetection| objects. You can
% supply this list as an input to the |multiObjectTracker|. The
% |detectObjects| function also returns the binary mask, which has the same
% size as the input frame. Pixels with a value of 1 correspond to the
% foreground. Pixels with a value of 0 correspond to the background.
%
% The function performs motion segmentation using the foreground detector. 
% It then performs morphological operations on the resulting binary mask to
% remove noisy pixels and to fill the holes in the remaining blobs.
%
% When creating the |objectDetection| list, the |frameCount| serves as the
% time input, and the centroids of the detected blobs serve as the
% measurement. The list also has two optional name-value pairs:
%
% * |MeasurementNoise| - Blob detection is noisy, and this example defines 
% a large measurement noise value.
% * |ObjectAttributes| - The detected bounding boxes that get passed to the
% track display are added to this argument.
 
 function [detections, mask] = detectObjects(detectorObjects, frame)
 % Expected uncertainty (noise) for the blob centroid.
 measurementNoise = 100*eye(2); 
 % Detect foreground.
 mask = detectorObjects.detector.step(frame);
 
 % Apply morphological operations to remove noise and fill in holes.
 mask = imopen(mask, strel('rectangle', [9, 9]));
 mask = imclose(mask, strel('rectangle', [10, 10])); 
 mask=bwareaopen(mask,1500);
 mask = imfill(mask, 'holes');
 
 % Perform blob analysis to find connected components.
 [~, centroids, bboxes] = detectorObjects.blobAnalyzer.step(mask);
 
 % Formulate the detections as a list of objectDetection objects.
 numDetections = size(centroids, 1);
 detections = cell(numDetections, 1);
 for i = 1:numDetections
 detections{i} = objectDetection(frameCount, centroids(i,:), ...
 'MeasurementNoise', measurementNoise, ...
 'ObjectAttributes', {bboxes(i,:)});
 end
 end
 
%% Display Tracking Results
% The |displayTrackingResults| function draws a bounding box and label ID
% for each track on the video frame and foreground mask. It then displays
% the frame and the mask in their respective video players.
 
 function displayTrackingResults(videoObjects, confirmedTracks, frame, mask)
 % Convert the frame and the mask to uint8 RGB.
 frame = im2uint8(frame);
 mask = uint8(repmat(mask, [1, 1, 3])) .* 255;
 
 if ~isempty(confirmedTracks) 
 % Display the objects. If an object has not been detected
 % in this frame, display its predicted bounding box.
 numRelTr = numel(confirmedTracks);
 boxes = zeros(numRelTr, 4);
 ids = zeros(numRelTr, 1, 'int32');
 predictedTrackInds = zeros(numRelTr, 1);
 for tr = 1:numRelTr
 % Get bounding boxes.
 boxes(tr, : ) = confirmedTracks(tr).ObjectAttributes{1}{1};
 
 % Get IDs.
 ids(tr) = confirmedTracks(tr).TrackID;
 
 if confirmedTracks(tr).IsCoasted
 predictedTrackInds(tr) = tr;
 end
 end
 
 predictedTrackInds = predictedTrackInds(predictedTrackInds > 0);
 
 % Create labels for objects that display the predicted rather 
 % than the actual location.
 labels = cellstr(int2str(ids));
 
 isPredicted = cell(size(labels));
 isPredicted(predictedTrackInds) = {' predicted'};
 labels = strcat(labels, isPredicted);
 
 % Draw the objects on the frame.
 frame = insertObjectAnnotation(frame, 'rectangle', boxes, labels);
 
 % Draw the objects on the mask.
 mask = insertObjectAnnotation(mask, 'rectangle', boxes, labels);
 end
 
 % Display the mask and the frame.
 videoObjects.maskPlayer.step(mask); 
 videoObjects.videoPlayer.step(frame);
 end
displayEndOfDemoMessage(mfilename)
end
%% Summary
% In this example, you created a motion-based system for detecting and
% tracking multiple moving objects. Try using a different video to see if
% you can detect and track objects. Try modifying the parameters of the
% |multiObjectTracker|.
%
% The tracking in this example was based solely on motion, with the
% assumption that all objects move in a straight line with constant speed.
% When the motion of an object significantly deviates from this model, the
% example can produce tracking errors. Notice the mistake in tracking the
% person occluded by the tree.
%
% You can reduce the likelihood of tracking errors by using a more complex
% motion model, such as constant acceleration or constant turn. To do that,
% try defining a different tracking filter, such as |trackingEKF| or
% |trackingUKF|. 

تشخیص و شمارش خودروهای در حال حرکت

 

منبع:

https://www.mathworks.com/

 

جهت دانلود بر روی لینک زیر کلیک نمایید.

تشخیص و شمارش خودروهای درحال حرکت

ویدئوی پیوست برنامه تشخیص و شمارش خودورهای در حال حرکت

رمز فایل : behsanandish.com

 

 

مرحله 4: سرکوب لبه های غیر حداکثر

آخرین مرحله، پیدا کردن لبه های ضعیف که موازی با لبه های قوی هستند و از بین بردن آنهاست. این عمل، با بررسی پیکسل های عمود بر یک پیکسل لبه خاص و حذف لبه های غیر حداکثرانجام شده است. کد مورد استفاده بسیار مشابه کد ردیابی لبه است.

 

&lt;/pre&gt;
&lt;pre&gt;#include "stdafx.h"
#include "tripod.h"
#include "tripodDlg.h"

#include "LVServerDefs.h"
#include "math.h"
#include &lt;fstream&gt;
#include &lt;string&gt;
#include &lt;iostream&gt;
#include &lt;stdlib.h&gt;
#include &lt;stdio.h&gt;


#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

using namespace std;

/////////////////////////////////////////////////////////////////////////////
// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:
	CAboutDlg();

// Dialog Data
	//{{AFX_DATA(CAboutDlg)
	enum { IDD = IDD_ABOUTBOX };
	//}}AFX_DATA

	// ClassWizard generated virtual function overrides
	//{{AFX_VIRTUAL(CAboutDlg)
	protected:
	virtual void DoDataExchange(CDataExchange* pDX);    // DDX/DDV support
	//}}AFX_VIRTUAL

// Implementation
protected:
	//{{AFX_MSG(CAboutDlg)
	//}}AFX_MSG
	DECLARE_MESSAGE_MAP()
};

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
{
	//{{AFX_DATA_INIT(CAboutDlg)
	//}}AFX_DATA_INIT
}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
	CDialog::DoDataExchange(pDX);
	//{{AFX_DATA_MAP(CAboutDlg)
	//}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
	//{{AFX_MSG_MAP(CAboutDlg)
		// No message handlers
	//}}AFX_MSG_MAP
END_MESSAGE_MAP()

/////////////////////////////////////////////////////////////////////////////
// CTripodDlg dialog

CTripodDlg::CTripodDlg(CWnd* pParent /*=NULL*/)
	: CDialog(CTripodDlg::IDD, pParent)
{
	//{{AFX_DATA_INIT(CTripodDlg)
		// NOTE: the ClassWizard will add member initialization here
	//}}AFX_DATA_INIT
	// Note that LoadIcon does not require a subsequent DestroyIcon in Win32
	m_hIcon = AfxGetApp()-&gt;LoadIcon(IDR_MAINFRAME);

	//////////////// Set destination BMP to NULL first 
	m_destinationBitmapInfoHeader = NULL;

}

////////////////////// Additional generic functions

static unsigned PixelBytes(int w, int bpp)
{
    return (w * bpp + 7) / 8;
}

static unsigned DibRowSize(int w, int bpp)
{
    return (w * bpp + 31) / 32 * 4;
}

static unsigned DibRowSize(LPBITMAPINFOHEADER pbi)
{
    return DibRowSize(pbi-&gt;biWidth, pbi-&gt;biBitCount);
}

static unsigned DibRowPadding(int w, int bpp)
{
    return DibRowSize(w, bpp) - PixelBytes(w, bpp);
}

static unsigned DibRowPadding(LPBITMAPINFOHEADER pbi)
{
    return DibRowPadding(pbi-&gt;biWidth, pbi-&gt;biBitCount);
}

static unsigned DibImageSize(int w, int h, int bpp)
{
    return h * DibRowSize(w, bpp);
}

static size_t DibSize(int w, int h, int bpp)
{
    return sizeof (BITMAPINFOHEADER) + DibImageSize(w, h, bpp);
}

/////////////////////// end of generic functions


void CTripodDlg::DoDataExchange(CDataExchange* pDX)
{
	CDialog::DoDataExchange(pDX);
	//{{AFX_DATA_MAP(CTripodDlg)
	DDX_Control(pDX, IDC_PROCESSEDVIEW, m_cVideoProcessedView);
	DDX_Control(pDX, IDC_UNPROCESSEDVIEW, m_cVideoUnprocessedView);
	//}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CTripodDlg, CDialog)
	//{{AFX_MSG_MAP(CTripodDlg)
	ON_WM_SYSCOMMAND()
	ON_WM_PAINT()
	ON_WM_QUERYDRAGICON()
	ON_BN_CLICKED(IDEXIT, OnExit)
	//}}AFX_MSG_MAP
END_MESSAGE_MAP()

/////////////////////////////////////////////////////////////////////////////
// CTripodDlg message handlers

BOOL CTripodDlg::OnInitDialog()
{
	CDialog::OnInitDialog();

	// Add "About..." menu item to system menu.

	// IDM_ABOUTBOX must be in the system command range.
	ASSERT((IDM_ABOUTBOX &amp; 0xFFF0) == IDM_ABOUTBOX);
	ASSERT(IDM_ABOUTBOX &lt; 0xF000);

	CMenu* pSysMenu = GetSystemMenu(FALSE);
	if (pSysMenu != NULL)
	{
		CString strAboutMenu;
		strAboutMenu.LoadString(IDS_ABOUTBOX);
		if (!strAboutMenu.IsEmpty())
		{
			pSysMenu-&gt;AppendMenu(MF_SEPARATOR);
			pSysMenu-&gt;AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);
		}
	}

	// Set the icon for this dialog.  The framework does this automatically
	//  when the application's main window is not a dialog
	SetIcon(m_hIcon, TRUE);			// Set big icon
	SetIcon(m_hIcon, FALSE);		// Set small icon
	
	// TODO: Add extra initialization here

	// For Unprocessed view videoportal (top one)
	char sRegUnprocessedView[] = "HKEY_LOCAL_MACHINE\\Software\\UnprocessedView";
	m_cVideoUnprocessedView.PrepareControl("UnprocessedView", sRegUnprocessedView, 0 );	
	m_cVideoUnprocessedView.EnableUIElements(UIELEMENT_STATUSBAR,0,TRUE);
	m_cVideoUnprocessedView.ConnectCamera2();
	m_cVideoUnprocessedView.SetEnablePreview(TRUE);

	// For binary view videoportal (bottom one)
	char sRegProcessedView[] = "HKEY_LOCAL_MACHINE\\Software\\ProcessedView";
	m_cVideoProcessedView.PrepareControl("ProcessedView", sRegProcessedView, 0 );	
	m_cVideoProcessedView.EnableUIElements(UIELEMENT_STATUSBAR,0,TRUE);
	m_cVideoProcessedView.ConnectCamera2();
	m_cVideoProcessedView.SetEnablePreview(TRUE);

	// Initialize the size of binary videoportal
	m_cVideoProcessedView.SetPreviewMaxHeight(240);
	m_cVideoProcessedView.SetPreviewMaxWidth(320);

	// Uncomment if you wish to fix the live videoportal's size
	// m_cVideoUnprocessedView.SetPreviewMaxHeight(240);
	// m_cVideoUnprocessedView.SetPreviewMaxWidth(320);

	// Find the screen coodinates of the binary videoportal
	m_cVideoProcessedView.GetWindowRect(m_rectForProcessedView);
	ScreenToClient(m_rectForProcessedView);
	allocateDib(CSize(320, 240));

	// Start grabbing frame data for Procssed videoportal (bottom one)
	m_cVideoProcessedView.StartVideoHook(0);

	return TRUE;  // return TRUE  unless you set the focus to a control
}

void CTripodDlg::OnSysCommand(UINT nID, LPARAM lParam)
{
	if ((nID &amp; 0xFFF0) == IDM_ABOUTBOX)
	{
		CAboutDlg dlgAbout;
		dlgAbout.DoModal();
	}
	else
	{
		CDialog::OnSysCommand(nID, lParam);
	}
}

// If you add a minimize button to your dialog, you will need the code below
//  to draw the icon.  For MFC applications using the document/view model,
//  this is automatically done for you by the framework.

void CTripodDlg::OnPaint() 
{
	if (IsIconic())
	{
		CPaintDC dc(this); // device context for painting

		SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);

		// Center icon in client rectangle
		int cxIcon = GetSystemMetrics(SM_CXICON);
		int cyIcon = GetSystemMetrics(SM_CYICON);
		CRect rect;
		GetClientRect(&amp;rect);
		int x = (rect.Width() - cxIcon + 1) / 2;
		int y = (rect.Height() - cyIcon + 1) / 2;

		// Draw the icon
		dc.DrawIcon(x, y, m_hIcon);
	}
	else
	{
		CDialog::OnPaint();
	}
}

// The system calls this to obtain the cursor to display while the user drags
//  the minimized window.
HCURSOR CTripodDlg::OnQueryDragIcon()
{
	return (HCURSOR) m_hIcon;
}

void CTripodDlg::OnExit() 
{
	// TODO: Add your control notification handler code here

	// Kill live view videoportal (top one)
	m_cVideoUnprocessedView.StopVideoHook(0);
    m_cVideoUnprocessedView.DisconnectCamera();	
	
	// Kill binary view videoportal (bottom one)
	m_cVideoProcessedView.StopVideoHook(0);
    m_cVideoProcessedView.DisconnectCamera();	

	// Kill program
	DestroyWindow();	

	

}

BEGIN_EVENTSINK_MAP(CTripodDlg, CDialog)
    //{{AFX_EVENTSINK_MAP(CTripodDlg)
	ON_EVENT(CTripodDlg, IDC_PROCESSEDVIEW, 1 /* PortalNotification */, OnPortalNotificationProcessedview, VTS_I4 VTS_I4 VTS_I4 VTS_I4)
	//}}AFX_EVENTSINK_MAP
END_EVENTSINK_MAP()

void CTripodDlg::OnPortalNotificationProcessedview(long lMsg, long lParam1, long lParam2, long lParam3) 
{
	// TODO: Add your control notification handler code here
	
	// This function is called at the camera's frame rate
    
#define NOTIFICATIONMSG_VIDEOHOOK	10

	// Declare some useful variables
	// QCSDKMFC.pdf (Quickcam MFC documentation) p. 103 explains the variables lParam1, lParam2, lParam3 too 
	
	LPBITMAPINFOHEADER lpBitmapInfoHeader; // Frame's info header contains info like width and height
	LPBYTE lpBitmapPixelData; // This pointer-to-long will point to the start of the frame's pixel data
    unsigned long lTimeStamp; // Time when frame was grabbed

	switch(lMsg) {
		case NOTIFICATIONMSG_VIDEOHOOK:
			{
				lpBitmapInfoHeader = (LPBITMAPINFOHEADER) lParam1; 
				lpBitmapPixelData = (LPBYTE) lParam2;
				lTimeStamp = (unsigned long) lParam3;

				grayScaleTheFrameData(lpBitmapInfoHeader, lpBitmapPixelData);
				doMyImageProcessing(lpBitmapInfoHeader); // Place where you'd add your image processing code
				displayMyResults(lpBitmapInfoHeader);

			}
			break;

		default:
			break;
	}	
}

void CTripodDlg::allocateDib(CSize sz)
{
	// Purpose: allocate information for a device independent bitmap (DIB)
	// Called from OnInitVideo

	if(m_destinationBitmapInfoHeader) {
		free(m_destinationBitmapInfoHeader);
		m_destinationBitmapInfoHeader = NULL;
	}

	if(sz.cx | sz.cy) {
		m_destinationBitmapInfoHeader = (LPBITMAPINFOHEADER)malloc(DibSize(sz.cx, sz.cy, 24));
		ASSERT(m_destinationBitmapInfoHeader);
		m_destinationBitmapInfoHeader-&gt;biSize = sizeof(BITMAPINFOHEADER);
		m_destinationBitmapInfoHeader-&gt;biWidth = sz.cx;
		m_destinationBitmapInfoHeader-&gt;biHeight = sz.cy;
		m_destinationBitmapInfoHeader-&gt;biPlanes = 1;
		m_destinationBitmapInfoHeader-&gt;biBitCount = 24;
		m_destinationBitmapInfoHeader-&gt;biCompression = 0;
		m_destinationBitmapInfoHeader-&gt;biSizeImage = DibImageSize(sz.cx, sz.cy, 24);
		m_destinationBitmapInfoHeader-&gt;biXPelsPerMeter = 0;
		m_destinationBitmapInfoHeader-&gt;biYPelsPerMeter = 0;
		m_destinationBitmapInfoHeader-&gt;biClrImportant = 0;
		m_destinationBitmapInfoHeader-&gt;biClrUsed = 0;
	}
}

void CTripodDlg::displayMyResults(LPBITMAPINFOHEADER lpThisBitmapInfoHeader)
{
	// displayMyResults: Displays results of doMyImageProcessing() in the videoport
	// Notes: StretchDIBits stretches a device-independent bitmap to the appropriate size

	CDC				*pDC;	// Device context to display bitmap data
	
	pDC = GetDC();	
	int nOldMode = SetStretchBltMode(pDC-&gt;GetSafeHdc(),COLORONCOLOR);

	StretchDIBits( 
		pDC-&gt;GetSafeHdc(),
		m_rectForProcessedView.left,				// videoportal left-most coordinate
		m_rectForProcessedView.top,					// videoportal top-most coordinate
		m_rectForProcessedView.Width(),				// videoportal width
		m_rectForProcessedView.Height(),			// videoportal height
		0,											// Row position to display bitmap in videoportal
		0,											// Col position to display bitmap in videoportal
		lpThisBitmapInfoHeader-&gt;biWidth,			// m_destinationBmp's number of columns
		lpThisBitmapInfoHeader-&gt;biHeight,			// m_destinationBmp's number of rows
		m_destinationBmp,							// The bitmap to display; use the one resulting from doMyImageProcessing
		(BITMAPINFO*)m_destinationBitmapInfoHeader, // The bitmap's header info e.g. width, height, number of bits etc
		DIB_RGB_COLORS,								// Use default 24-bit color table
		SRCCOPY										// Just display
	);
 
	SetStretchBltMode(pDC-&gt;GetSafeHdc(),nOldMode);

	ReleaseDC(pDC);

	// Note: 04/24/02 - Added the following:
	// Christopher Wagner cwagner@fas.harvard.edu noticed that memory wasn't being freed

	// Recall OnPortalNotificationProcessedview, which gets called everytime
	// a frame of data arrives, performs 3 steps:
	// (1) grayScaleTheFrameData - which mallocs m_destinationBmp
	// (2) doMyImageProcesing
	// (3) displayMyResults - which we're in now
	// Since we're finished with the memory we malloc'ed for m_destinationBmp
	// we should free it: 
	
	free(m_destinationBmp);

	// End of adds
}

void CTripodDlg::grayScaleTheFrameData(LPBITMAPINFOHEADER lpThisBitmapInfoHeader, LPBYTE lpThisBitmapPixelData)
{

	// grayScaleTheFrameData: Called by CTripodDlg::OnPortalNotificationBinaryview
	// Task: Read current frame pixel data and computes a grayscale version

	unsigned int	W, H;			  // Width and Height of current frame [pixels]
	BYTE            *sourceBmp;		  // Pointer to current frame of data
	unsigned int    row, col;
	unsigned long   i;
	BYTE			grayValue;

	BYTE			redValue;
	BYTE			greenValue;
	BYTE			blueValue;

    W = lpThisBitmapInfoHeader-&gt;biWidth;  // biWidth: number of columns
    H = lpThisBitmapInfoHeader-&gt;biHeight; // biHeight: number of rows

	// Store pixel data in row-column vector format
	// Recall that each pixel requires 3 bytes (red, blue and green bytes)
	// m_destinationBmp is a protected member and declared in binarizeDlg.h

	m_destinationBmp = (BYTE*)malloc(H*3*W*sizeof(BYTE));

	// Point to the current frame's pixel data
	sourceBmp = lpThisBitmapPixelData;

	for (row = 0; row &lt; H; row++) {
		for (col = 0; col &lt; W; col++) {

			// Recall each pixel is composed of 3 bytes
			i = (unsigned long)(row*3*W + 3*col);
        
			// The source pixel has a blue, green andred value:
			blueValue  = *(sourceBmp + i);
			greenValue = *(sourceBmp + i + 1);
			redValue   = *(sourceBmp + i + 2);

			// A standard equation for computing a grayscale value based on RGB values
			grayValue = (BYTE)(0.299*redValue + 0.587*greenValue + 0.114*blueValue);

			// The destination BMP will be a grayscale version of the source BMP
			*(m_destinationBmp + i)     = grayValue;
			*(m_destinationBmp + i + 1) = grayValue;
			*(m_destinationBmp + i + 2) = grayValue;
			
		}
	}
}


void CTripodDlg::doMyImageProcessing(LPBITMAPINFOHEADER lpThisBitmapInfoHeader)
{
	// doMyImageProcessing:  This is where you'd write your own image processing code
	// Task: Read a pixel's grayscale value and process accordingly

	unsigned int	W, H;			// Width and Height of current frame [pixels]
	unsigned int    row, col;		// Pixel's row and col positions
	unsigned long   i;				// Dummy variable for row-column vector
	int	    upperThreshold = 60;	// Gradient strength nessicary to start edge
	int		lowerThreshold = 30;	// Minimum gradient strength to continue edge
	unsigned long iOffset;			// Variable to offset row-column vector during sobel mask
	int rowOffset;					// Row offset from the current pixel
	int colOffset;					// Col offset from the current pixel
	int rowTotal = 0;				// Row position of offset pixel
	int colTotal = 0;				// Col position of offset pixel
	int Gx;							// Sum of Sobel mask products values in the x direction
	int Gy;							// Sum of Sobel mask products values in the y direction
	float thisAngle;				// Gradient direction based on Gx and Gy
	int newAngle;					// Approximation of the gradient direction
	bool edgeEnd;					// Stores whether or not the edge is at the edge of the possible image
	int GxMask[3][3];				// Sobel mask in the x direction
	int GyMask[3][3];				// Sobel mask in the y direction
	int newPixel;					// Sum pixel values for gaussian
	int gaussianMask[5][5];			// Gaussian mask

	W = lpThisBitmapInfoHeader-&gt;biWidth;  // biWidth: number of columns
    H = lpThisBitmapInfoHeader-&gt;biHeight; // biHeight: number of rows
	
	for (row = 0; row &lt; H; row++) {
		for (col = 0; col &lt; W; col++) {
			edgeDir[row][col] = 0;
		}
	}

	/* Declare Sobel masks */
	GxMask[0][0] = -1; GxMask[0][1] = 0; GxMask[0][2] = 1;
	GxMask[1][0] = -2; GxMask[1][1] = 0; GxMask[1][2] = 2;
	GxMask[2][0] = -1; GxMask[2][1] = 0; GxMask[2][2] = 1;
	
	GyMask[0][0] =  1; GyMask[0][1] =  2; GyMask[0][2] =  1;
	GyMask[1][0] =  0; GyMask[1][1] =  0; GyMask[1][2] =  0;
	GyMask[2][0] = -1; GyMask[2][1] = -2; GyMask[2][2] = -1;

	/* Declare Gaussian mask */
	gaussianMask[0][0] = 2;		gaussianMask[0][1] = 4;		gaussianMask[0][2] = 5;		gaussianMask[0][3] = 4;		gaussianMask[0][4] = 2;	
	gaussianMask[1][0] = 4;		gaussianMask[1][1] = 9;		gaussianMask[1][2] = 12;	gaussianMask[1][3] = 9;		gaussianMask[1][4] = 4;	
	gaussianMask[2][0] = 5;		gaussianMask[2][1] = 12;	gaussianMask[2][2] = 15;	gaussianMask[2][3] = 12;	gaussianMask[2][4] = 2;	
	gaussianMask[3][0] = 4;		gaussianMask[3][1] = 9;		gaussianMask[3][2] = 12;	gaussianMask[3][3] = 9;		gaussianMask[3][4] = 4;	
	gaussianMask[4][0] = 2;		gaussianMask[4][1] = 4;		gaussianMask[4][2] = 5;		gaussianMask[4][3] = 4;		gaussianMask[4][4] = 2;	
	

	/* Gaussian Blur */
	for (row = 2; row &lt; H-2; row++) {
		for (col = 2; col &lt; W-2; col++) {
			newPixel = 0;
			for (rowOffset=-2; rowOffset&lt;=2; rowOffset++) {
				for (colOffset=-2; colOffset&lt;=2; colOffset++) {
					rowTotal = row + rowOffset;
					colTotal = col + colOffset;
					iOffset = (unsigned long)(rowTotal*3*W + colTotal*3);
					newPixel += (*(m_destinationBmp + iOffset)) * gaussianMask[2 + rowOffset][2 + colOffset];
				}
			}
			i = (unsigned long)(row*3*W + col*3);
			*(m_destinationBmp + i) = newPixel / 159;
		}
	}

	/* Determine edge directions and gradient strengths */
	for (row = 1; row &lt; H-1; row++) {
		for (col = 1; col &lt; W-1; col++) {
			i = (unsigned long)(row*3*W + 3*col);
			Gx = 0;
			Gy = 0;
			/* Calculate the sum of the Sobel mask times the nine surrounding pixels in the x and y direction */
			for (rowOffset=-1; rowOffset&lt;=1; rowOffset++) {
				for (colOffset=-1; colOffset&lt;=1; colOffset++) {
					rowTotal = row + rowOffset;
					colTotal = col + colOffset;
					iOffset = (unsigned long)(rowTotal*3*W + colTotal*3);
					Gx = Gx + (*(m_destinationBmp + iOffset) * GxMask[rowOffset + 1][colOffset + 1]);
					Gy = Gy + (*(m_destinationBmp + iOffset) * GyMask[rowOffset + 1][colOffset + 1]);
				}
			}

			gradient[row][col] = sqrt(pow(Gx,2.0) + pow(Gy,2.0));	// Calculate gradient strength			
			thisAngle = (atan2(Gx,Gy)/3.14159) * 180.0;		// Calculate actual direction of edge
			
			/* Convert actual edge direction to approximate value */
			if ( ( (thisAngle &lt; 22.5) &amp;&amp; (thisAngle &gt; -22.5) ) || (thisAngle &gt; 157.5) || (thisAngle &lt; -157.5) )
				newAngle = 0;
			if ( ( (thisAngle &gt; 22.5) &amp;&amp; (thisAngle &lt; 67.5) ) || ( (thisAngle &lt; -112.5) &amp;&amp; (thisAngle &gt; -157.5) ) )
				newAngle = 45;
			if ( ( (thisAngle &gt; 67.5) &amp;&amp; (thisAngle &lt; 112.5) ) || ( (thisAngle &lt; -67.5) &amp;&amp; (thisAngle &gt; -112.5) ) )
				newAngle = 90;
			if ( ( (thisAngle &gt; 112.5) &amp;&amp; (thisAngle &lt; 157.5) ) || ( (thisAngle &lt; -22.5) &amp;&amp; (thisAngle &gt; -67.5) ) )
				newAngle = 135;
				
			edgeDir[row][col] = newAngle;		// Store the approximate edge direction of each pixel in one array
		}
	}

	/* Trace along all the edges in the image */
	for (row = 1; row &lt; H - 1; row++) {
		for (col = 1; col &lt; W - 1; col++) {
			edgeEnd = false;
			if (gradient[row][col] &gt; upperThreshold) {		// Check to see if current pixel has a high enough gradient strength to be part of an edge
				/* Switch based on current pixel's edge direction */
				switch (edgeDir[row][col]){		
					case 0:
						findEdge(0, 1, row, col, 0, lowerThreshold);
						break;
					case 45:
						findEdge(1, 1, row, col, 45, lowerThreshold);
						break;
					case 90:
						findEdge(1, 0, row, col, 90, lowerThreshold);
						break;
					case 135:
						findEdge(1, -1, row, col, 135, lowerThreshold);
						break;
					default :
						i = (unsigned long)(row*3*W + 3*col);
						*(m_destinationBmp + i) = 
						*(m_destinationBmp + i + 1) = 
						*(m_destinationBmp + i + 2) = 0;
						break;
					}
				}
			else {
				i = (unsigned long)(row*3*W + 3*col);
					*(m_destinationBmp + i) = 
					*(m_destinationBmp + i + 1) = 
					*(m_destinationBmp + i + 2) = 0;
			}	
		}
	}
	
	/* Suppress any pixels not changed by the edge tracing */
	for (row = 0; row &lt; H; row++) {
		for (col = 0; col &lt; W; col++) {	
			// Recall each pixel is composed of 3 bytes
			i = (unsigned long)(row*3*W + 3*col);
			// If a pixel's grayValue is not black or white make it black
			if( ((*(m_destinationBmp + i) != 255) &amp;&amp; (*(m_destinationBmp + i) != 0)) || ((*(m_destinationBmp + i + 1) != 255) &amp;&amp; (*(m_destinationBmp + i + 1) != 0)) || ((*(m_destinationBmp + i + 2) != 255) &amp;&amp; (*(m_destinationBmp + i + 2) != 0)) ) 
				*(m_destinationBmp + i) = 
				*(m_destinationBmp + i + 1) = 
				*(m_destinationBmp + i + 2) = 0; // Make pixel black
		}
	}

	/* Non-maximum Suppression */
	for (row = 1; row &lt; H - 1; row++) {
		for (col = 1; col &lt; W - 1; col++) {
			i = (unsigned long)(row*3*W + 3*col);
			if (*(m_destinationBmp + i) == 255) {		// Check to see if current pixel is an edge
				/* Switch based on current pixel's edge direction */
				switch (edgeDir[row][col]) {		
					case 0:
						suppressNonMax( 1, 0, row, col, 0, lowerThreshold);
						break;
					case 45:
						suppressNonMax( 1, -1, row, col, 45, lowerThreshold);
						break;
					case 90:
						suppressNonMax( 0, 1, row, col, 90, lowerThreshold);
						break;
					case 135:
						suppressNonMax( 1, 1, row, col, 135, lowerThreshold);
						break;
					default :
						break;
				}
			}	
		}
	}
	
}

void CTripodDlg::findEdge(int rowShift, int colShift, int row, int col, int dir, int lowerThreshold)
{
	int W = 320;
	int H = 240;
	int newRow;
	int newCol;
	unsigned long i;
	bool edgeEnd = false;

	/* Find the row and column values for the next possible pixel on the edge */
	if (colShift &lt; 0) {
		if (col &gt; 0)
			newCol = col + colShift;
		else
			edgeEnd = true;
	} else if (col &lt; W - 1) {
		newCol = col + colShift;
	} else
		edgeEnd = true;		// If the next pixel would be off image, don't do the while loop
	if (rowShift &lt; 0) {
		if (row &gt; 0)
			newRow = row + rowShift;
		else
			edgeEnd = true;
	} else if (row &lt; H - 1) {
		newRow = row + rowShift;
	} else
		edgeEnd = true;	
		
	/* Determine edge directions and gradient strengths */
	while ( (edgeDir[newRow][newCol]==dir) &amp;&amp; !edgeEnd &amp;&amp; (gradient[newRow][newCol] &gt; lowerThreshold) ) {
		/* Set the new pixel as white to show it is an edge */
		i = (unsigned long)(newRow*3*W + 3*newCol);
		*(m_destinationBmp + i) =
		*(m_destinationBmp + i + 1) =
		*(m_destinationBmp + i + 2) = 255;
		if (colShift &lt; 0) {
			if (newCol &gt; 0)
				newCol = newCol + colShift;
			else
				edgeEnd = true;	
		} else if (newCol &lt; W - 1) {
			newCol = newCol + colShift;
		} else
			edgeEnd = true;	
		if (rowShift &lt; 0) {
			if (newRow &gt; 0)
				newRow = newRow + rowShift;
			else
				edgeEnd = true;
		} else if (newRow &lt; H - 1) {
			newRow = newRow + rowShift;
		} else
			edgeEnd = true;	
	}	
}

void CTripodDlg::suppressNonMax(int rowShift, int colShift, int row, int col, int dir, int lowerThreshold)
{
	int W = 320;
	int H = 240;
	int newRow = 0;
	int newCol = 0;
	unsigned long i;
	bool edgeEnd = false;
	float nonMax[320][3];			// Temporarily stores gradients and positions of pixels in parallel edges
	int pixelCount = 0;					// Stores the number of pixels in parallel edges
	int count;						// A for loop counter
	int max[3];						// Maximum point in a wide edge
	
	if (colShift &lt; 0) {
		if (col &gt; 0)
			newCol = col + colShift;
		else
			edgeEnd = true;
	} else if (col &lt; W - 1) {
		newCol = col + colShift;
	} else
		edgeEnd = true;		// If the next pixel would be off image, don't do the while loop
	if (rowShift &lt; 0) {
		if (row &gt; 0)
			newRow = row + rowShift;
		else
			edgeEnd = true;
	} else if (row &lt; H - 1) {
		newRow = row + rowShift;
	} else
		edgeEnd = true;	
	i = (unsigned long)(newRow*3*W + 3*newCol);
	/* Find non-maximum parallel edges tracing up */
	while ((edgeDir[newRow][newCol] == dir) &amp;&amp; !edgeEnd &amp;&amp; (*(m_destinationBmp + i) == 255)) {
		if (colShift &lt; 0) {
			if (newCol &gt; 0)
				newCol = newCol + colShift;
			else
				edgeEnd = true;	
		} else if (newCol &lt; W - 1) {
			newCol = newCol + colShift;
		} else
			edgeEnd = true;	
		if (rowShift &lt; 0) {
			if (newRow &gt; 0)
				newRow = newRow + rowShift;
			else
				edgeEnd = true;
		} else if (newRow &lt; H - 1) {
			newRow = newRow + rowShift;
		} else
			edgeEnd = true;	
		nonMax[pixelCount][0] = newRow;
		nonMax[pixelCount][1] = newCol;
		nonMax[pixelCount][2] = gradient[newRow][newCol];
		pixelCount++;
		i = (unsigned long)(newRow*3*W + 3*newCol);
	}

	/* Find non-maximum parallel edges tracing down */
	edgeEnd = false;
	colShift *= -1;
	rowShift *= -1;
	if (colShift &lt; 0) {
		if (col &gt; 0)
			newCol = col + colShift;
		else
			edgeEnd = true;
	} else if (col &lt; W - 1) {
		newCol = col + colShift;
	} else
		edgeEnd = true;	
	if (rowShift &lt; 0) {
		if (row &gt; 0)
			newRow = row + rowShift;
		else
			edgeEnd = true;
	} else if (row &lt; H - 1) {
		newRow = row + rowShift;
	} else
		edgeEnd = true;	
	i = (unsigned long)(newRow*3*W + 3*newCol);
	while ((edgeDir[newRow][newCol] == dir) &amp;&amp; !edgeEnd &amp;&amp; (*(m_destinationBmp + i) == 255)) {
		if (colShift &lt; 0) {
			if (newCol &gt; 0)
				newCol = newCol + colShift;
			else
				edgeEnd = true;	
		} else if (newCol &lt; W - 1) {
			newCol = newCol + colShift;
		} else
			edgeEnd = true;	
		if (rowShift &lt; 0) {
			if (newRow &gt; 0)
				newRow = newRow + rowShift;
			else
				edgeEnd = true;
		} else if (newRow &lt; H - 1) {
			newRow = newRow + rowShift;
		} else
			edgeEnd = true;	
		nonMax[pixelCount][0] = newRow;
		nonMax[pixelCount][1] = newCol;
		nonMax[pixelCount][2] = gradient[newRow][newCol];
		pixelCount++;
		i = (unsigned long)(newRow*3*W + 3*newCol);
	}

	/* Suppress non-maximum edges */
	max[0] = 0;
	max[1] = 0;
	max[2] = 0;
	for (count = 0; count &lt; pixelCount; count++) {
		if (nonMax[count][2] &gt; max[2]) {
			max[0] = nonMax[count][0];
			max[1] = nonMax[count][1];
			max[2] = nonMax[count][2];
		}
	}
	for (count = 0; count &lt; pixelCount; count++) {
		i = (unsigned long)(nonMax[count][0]*3*W + 3*nonMax[count][1]);
		*(m_destinationBmp + i) = 
		*(m_destinationBmp + i + 1) = 
		*(m_destinationBmp + i + 2) = 0;
	}
}

 

دانلود کد فوق از طریق لینک زیر:

Canny in C++ -No2

رمز فایل : behsanandish.com

الگوریتم Canny در سی پلاس پلاس قسمت 1
الگوریتم Canny در سی پلاس پلاس قسمت 2
الگوریتم Canny در سی پلاس پلاس قسمت 3
الگوریتم Canny در سی پلاس پلاس قسمت 4

 

مرحله 3: ردیابی در امتداد لبه ها

گام بعدی در واقع این است که در امتداد لبه ها بر اساس نقاط قوت و جهت های لبه که قبلا محاسبه شده است ردیابی شود. هر پیکسل از طریق استفاده از دو تودرتو برای حلقه ها چرخه می زند. اگر پیکسل فعلی دارای قدرت شیب بیشتر از مقدار upperThreshold تعریف شده باشد، یک سوئیچ اجرا می شود. این سوئیچ توسط جهت لبه پیکسل فعلی تعیین می شود. این ردیف و ستون، پیکسل ممکن بعدی را در این جهت ذخیره می کند و سپس جهت لبه و استحکام شیب آن پیکسل را آزمایش می کند. اگر آن همان جهت لبه و  قدرت گرادیان بزرگتر از lowerThreshold را دارد، آن پیکسل به سفید و پیکسل بعدی در امتداد آن لبه آزمایش می شود. به این ترتیب هر لبه قابل توجه تیز تشخیص داده شده و به سفید تنظیم می شود در حالیکه تمام پیکسل های دیگر به سیاه تنظیم می شود.

 

#include "stdafx.h"
#include "tripod.h"
#include "tripodDlg.h"

#include "LVServerDefs.h"
#include "math.h"
#include &lt;fstream&gt;
#include &lt;string&gt;
#include &lt;iostream&gt;
#include &lt;stdlib.h&gt;
#include &lt;stdio.h&gt;


#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

using namespace std;

/////////////////////////////////////////////////////////////////////////////
// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:
	CAboutDlg();

// Dialog Data
	//{{AFX_DATA(CAboutDlg)
	enum { IDD = IDD_ABOUTBOX };
	//}}AFX_DATA

	// ClassWizard generated virtual function overrides
	//{{AFX_VIRTUAL(CAboutDlg)
	protected:
	virtual void DoDataExchange(CDataExchange* pDX);    // DDX/DDV support
	//}}AFX_VIRTUAL

// Implementation
protected:
	//{{AFX_MSG(CAboutDlg)
	//}}AFX_MSG
	DECLARE_MESSAGE_MAP()
};

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
{
	//{{AFX_DATA_INIT(CAboutDlg)
	//}}AFX_DATA_INIT
}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
	CDialog::DoDataExchange(pDX);
	//{{AFX_DATA_MAP(CAboutDlg)
	//}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
	//{{AFX_MSG_MAP(CAboutDlg)
		// No message handlers
	//}}AFX_MSG_MAP
END_MESSAGE_MAP()

/////////////////////////////////////////////////////////////////////////////
// CTripodDlg dialog

CTripodDlg::CTripodDlg(CWnd* pParent /*=NULL*/)
	: CDialog(CTripodDlg::IDD, pParent)
{
	//{{AFX_DATA_INIT(CTripodDlg)
		// NOTE: the ClassWizard will add member initialization here
	//}}AFX_DATA_INIT
	// Note that LoadIcon does not require a subsequent DestroyIcon in Win32
	m_hIcon = AfxGetApp()-&gt;LoadIcon(IDR_MAINFRAME);

	//////////////// Set destination BMP to NULL first 
	m_destinationBitmapInfoHeader = NULL;

}

////////////////////// Additional generic functions

static unsigned PixelBytes(int w, int bpp)
{
    return (w * bpp + 7) / 8;
}

static unsigned DibRowSize(int w, int bpp)
{
    return (w * bpp + 31) / 32 * 4;
}

static unsigned DibRowSize(LPBITMAPINFOHEADER pbi)
{
    return DibRowSize(pbi-&gt;biWidth, pbi-&gt;biBitCount);
}

static unsigned DibRowPadding(int w, int bpp)
{
    return DibRowSize(w, bpp) - PixelBytes(w, bpp);
}

static unsigned DibRowPadding(LPBITMAPINFOHEADER pbi)
{
    return DibRowPadding(pbi-&gt;biWidth, pbi-&gt;biBitCount);
}

static unsigned DibImageSize(int w, int h, int bpp)
{
    return h * DibRowSize(w, bpp);
}

static size_t DibSize(int w, int h, int bpp)
{
    return sizeof (BITMAPINFOHEADER) + DibImageSize(w, h, bpp);
}

/////////////////////// end of generic functions


void CTripodDlg::DoDataExchange(CDataExchange* pDX)
{
	CDialog::DoDataExchange(pDX);
	//{{AFX_DATA_MAP(CTripodDlg)
	DDX_Control(pDX, IDC_PROCESSEDVIEW, m_cVideoProcessedView);
	DDX_Control(pDX, IDC_UNPROCESSEDVIEW, m_cVideoUnprocessedView);
	//}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CTripodDlg, CDialog)
	//{{AFX_MSG_MAP(CTripodDlg)
	ON_WM_SYSCOMMAND()
	ON_WM_PAINT()
	ON_WM_QUERYDRAGICON()
	ON_BN_CLICKED(IDEXIT, OnExit)
	//}}AFX_MSG_MAP
END_MESSAGE_MAP()

/////////////////////////////////////////////////////////////////////////////
// CTripodDlg message handlers

BOOL CTripodDlg::OnInitDialog()
{
	CDialog::OnInitDialog();

	// Add "About..." menu item to system menu.

	// IDM_ABOUTBOX must be in the system command range.
	ASSERT((IDM_ABOUTBOX &amp; 0xFFF0) == IDM_ABOUTBOX);
	ASSERT(IDM_ABOUTBOX &lt; 0xF000);

	CMenu* pSysMenu = GetSystemMenu(FALSE);
	if (pSysMenu != NULL)
	{
		CString strAboutMenu;
		strAboutMenu.LoadString(IDS_ABOUTBOX);
		if (!strAboutMenu.IsEmpty())
		{
			pSysMenu-&gt;AppendMenu(MF_SEPARATOR);
			pSysMenu-&gt;AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);
		}
	}

	// Set the icon for this dialog.  The framework does this automatically
	//  when the application's main window is not a dialog
	SetIcon(m_hIcon, TRUE);			// Set big icon
	SetIcon(m_hIcon, FALSE);		// Set small icon
	
	// TODO: Add extra initialization here

	// For Unprocessed view videoportal (top one)
	char sRegUnprocessedView[] = "HKEY_LOCAL_MACHINE\\Software\\UnprocessedView";
	m_cVideoUnprocessedView.PrepareControl("UnprocessedView", sRegUnprocessedView, 0 );	
	m_cVideoUnprocessedView.EnableUIElements(UIELEMENT_STATUSBAR,0,TRUE);
	m_cVideoUnprocessedView.ConnectCamera2();
	m_cVideoUnprocessedView.SetEnablePreview(TRUE);

	// For binary view videoportal (bottom one)
	char sRegProcessedView[] = "HKEY_LOCAL_MACHINE\\Software\\ProcessedView";
	m_cVideoProcessedView.PrepareControl("ProcessedView", sRegProcessedView, 0 );	
	m_cVideoProcessedView.EnableUIElements(UIELEMENT_STATUSBAR,0,TRUE);
	m_cVideoProcessedView.ConnectCamera2();
	m_cVideoProcessedView.SetEnablePreview(TRUE);

	// Initialize the size of binary videoportal
	m_cVideoProcessedView.SetPreviewMaxHeight(240);
	m_cVideoProcessedView.SetPreviewMaxWidth(320);

	// Uncomment if you wish to fix the live videoportal's size
	// m_cVideoUnprocessedView.SetPreviewMaxHeight(240);
	// m_cVideoUnprocessedView.SetPreviewMaxWidth(320);

	// Find the screen coodinates of the binary videoportal
	m_cVideoProcessedView.GetWindowRect(m_rectForProcessedView);
	ScreenToClient(m_rectForProcessedView);
	allocateDib(CSize(320, 240));

	// Start grabbing frame data for Procssed videoportal (bottom one)
	m_cVideoProcessedView.StartVideoHook(0);

	return TRUE;  // return TRUE  unless you set the focus to a control
}

void CTripodDlg::OnSysCommand(UINT nID, LPARAM lParam)
{
	if ((nID &amp; 0xFFF0) == IDM_ABOUTBOX)
	{
		CAboutDlg dlgAbout;
		dlgAbout.DoModal();
	}
	else
	{
		CDialog::OnSysCommand(nID, lParam);
	}
}

// If you add a minimize button to your dialog, you will need the code below
//  to draw the icon.  For MFC applications using the document/view model,
//  this is automatically done for you by the framework.

void CTripodDlg::OnPaint() 
{
	if (IsIconic())
	{
		CPaintDC dc(this); // device context for painting

		SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);

		// Center icon in client rectangle
		int cxIcon = GetSystemMetrics(SM_CXICON);
		int cyIcon = GetSystemMetrics(SM_CYICON);
		CRect rect;
		GetClientRect(&amp;rect);
		int x = (rect.Width() - cxIcon + 1) / 2;
		int y = (rect.Height() - cyIcon + 1) / 2;

		// Draw the icon
		dc.DrawIcon(x, y, m_hIcon);
	}
	else
	{
		CDialog::OnPaint();
	}
}

// The system calls this to obtain the cursor to display while the user drags
//  the minimized window.
HCURSOR CTripodDlg::OnQueryDragIcon()
{
	return (HCURSOR) m_hIcon;
}

void CTripodDlg::OnExit() 
{
	// TODO: Add your control notification handler code here

	// Kill live view videoportal (top one)
	m_cVideoUnprocessedView.StopVideoHook(0);
    m_cVideoUnprocessedView.DisconnectCamera();	
	
	// Kill binary view videoportal (bottom one)
	m_cVideoProcessedView.StopVideoHook(0);
    m_cVideoProcessedView.DisconnectCamera();	

	// Kill program
	DestroyWindow();	

	

}

BEGIN_EVENTSINK_MAP(CTripodDlg, CDialog)
    //{{AFX_EVENTSINK_MAP(CTripodDlg)
	ON_EVENT(CTripodDlg, IDC_PROCESSEDVIEW, 1 /* PortalNotification */, OnPortalNotificationProcessedview, VTS_I4 VTS_I4 VTS_I4 VTS_I4)
	//}}AFX_EVENTSINK_MAP
END_EVENTSINK_MAP()

void CTripodDlg::OnPortalNotificationProcessedview(long lMsg, long lParam1, long lParam2, long lParam3) 
{
	// TODO: Add your control notification handler code here
	
	// This function is called at the camera's frame rate
    
#define NOTIFICATIONMSG_VIDEOHOOK	10

	// Declare some useful variables
	// QCSDKMFC.pdf (Quickcam MFC documentation) p. 103 explains the variables lParam1, lParam2, lParam3 too 
	
	LPBITMAPINFOHEADER lpBitmapInfoHeader; // Frame's info header contains info like width and height
	LPBYTE lpBitmapPixelData; // This pointer-to-long will point to the start of the frame's pixel data
    unsigned long lTimeStamp; // Time when frame was grabbed

	switch(lMsg) {
		case NOTIFICATIONMSG_VIDEOHOOK:
			{
				lpBitmapInfoHeader = (LPBITMAPINFOHEADER) lParam1; 
				lpBitmapPixelData = (LPBYTE) lParam2;
				lTimeStamp = (unsigned long) lParam3;

				grayScaleTheFrameData(lpBitmapInfoHeader, lpBitmapPixelData);
				doMyImageProcessing(lpBitmapInfoHeader); // Place where you'd add your image processing code
				displayMyResults(lpBitmapInfoHeader);

			}
			break;

		default:
			break;
	}	
}

void CTripodDlg::allocateDib(CSize sz)
{
	// Purpose: allocate information for a device independent bitmap (DIB)
	// Called from OnInitVideo

	if(m_destinationBitmapInfoHeader) {
		free(m_destinationBitmapInfoHeader);
		m_destinationBitmapInfoHeader = NULL;
	}

	if(sz.cx | sz.cy) {
		m_destinationBitmapInfoHeader = (LPBITMAPINFOHEADER)malloc(DibSize(sz.cx, sz.cy, 24));
		ASSERT(m_destinationBitmapInfoHeader);
		m_destinationBitmapInfoHeader-&gt;biSize = sizeof(BITMAPINFOHEADER);
		m_destinationBitmapInfoHeader-&gt;biWidth = sz.cx;
		m_destinationBitmapInfoHeader-&gt;biHeight = sz.cy;
		m_destinationBitmapInfoHeader-&gt;biPlanes = 1;
		m_destinationBitmapInfoHeader-&gt;biBitCount = 24;
		m_destinationBitmapInfoHeader-&gt;biCompression = 0;
		m_destinationBitmapInfoHeader-&gt;biSizeImage = DibImageSize(sz.cx, sz.cy, 24);
		m_destinationBitmapInfoHeader-&gt;biXPelsPerMeter = 0;
		m_destinationBitmapInfoHeader-&gt;biYPelsPerMeter = 0;
		m_destinationBitmapInfoHeader-&gt;biClrImportant = 0;
		m_destinationBitmapInfoHeader-&gt;biClrUsed = 0;
	}
}

void CTripodDlg::displayMyResults(LPBITMAPINFOHEADER lpThisBitmapInfoHeader)
{
	// displayMyResults: Displays results of doMyImageProcessing() in the videoport
	// Notes: StretchDIBits stretches a device-independent bitmap to the appropriate size

	CDC				*pDC;	// Device context to display bitmap data
	
	pDC = GetDC();	
	int nOldMode = SetStretchBltMode(pDC-&gt;GetSafeHdc(),COLORONCOLOR);

	StretchDIBits( 
		pDC-&gt;GetSafeHdc(),
		m_rectForProcessedView.left,				// videoportal left-most coordinate
		m_rectForProcessedView.top,					// videoportal top-most coordinate
		m_rectForProcessedView.Width(),				// videoportal width
		m_rectForProcessedView.Height(),			// videoportal height
		0,											// Row position to display bitmap in videoportal
		0,											// Col position to display bitmap in videoportal
		lpThisBitmapInfoHeader-&gt;biWidth,			// m_destinationBmp's number of columns
		lpThisBitmapInfoHeader-&gt;biHeight,			// m_destinationBmp's number of rows
		m_destinationBmp,							// The bitmap to display; use the one resulting from doMyImageProcessing
		(BITMAPINFO*)m_destinationBitmapInfoHeader, // The bitmap's header info e.g. width, height, number of bits etc
		DIB_RGB_COLORS,								// Use default 24-bit color table
		SRCCOPY										// Just display
	);
 
	SetStretchBltMode(pDC-&gt;GetSafeHdc(),nOldMode);

	ReleaseDC(pDC);

	// Note: 04/24/02 - Added the following:
	// Christopher Wagner cwagner@fas.harvard.edu noticed that memory wasn't being freed

	// Recall OnPortalNotificationProcessedview, which gets called everytime
	// a frame of data arrives, performs 3 steps:
	// (1) grayScaleTheFrameData - which mallocs m_destinationBmp
	// (2) doMyImageProcesing
	// (3) displayMyResults - which we're in now
	// Since we're finished with the memory we malloc'ed for m_destinationBmp
	// we should free it: 
	
	free(m_destinationBmp);

	// End of adds
}

void CTripodDlg::grayScaleTheFrameData(LPBITMAPINFOHEADER lpThisBitmapInfoHeader, LPBYTE lpThisBitmapPixelData)
{

	// grayScaleTheFrameData: Called by CTripodDlg::OnPortalNotificationBinaryview
	// Task: Read current frame pixel data and computes a grayscale version

	unsigned int	W, H;			  // Width and Height of current frame [pixels]
	BYTE            *sourceBmp;		  // Pointer to current frame of data
	unsigned int    row, col;
	unsigned long   i;
	BYTE			grayValue;

	BYTE			redValue;
	BYTE			greenValue;
	BYTE			blueValue;

    W = lpThisBitmapInfoHeader-&gt;biWidth;  // biWidth: number of columns
    H = lpThisBitmapInfoHeader-&gt;biHeight; // biHeight: number of rows

	// Store pixel data in row-column vector format
	// Recall that each pixel requires 3 bytes (red, blue and green bytes)
	// m_destinationBmp is a protected member and declared in binarizeDlg.h

	m_destinationBmp = (BYTE*)malloc(H*3*W*sizeof(BYTE));

	// Point to the current frame's pixel data
	sourceBmp = lpThisBitmapPixelData;

	for (row = 0; row &lt; H; row++) {
		for (col = 0; col &lt; W; col++) {

			// Recall each pixel is composed of 3 bytes
			i = (unsigned long)(row*3*W + 3*col);
        
			// The source pixel has a blue, green andred value:
			blueValue  = *(sourceBmp + i);
			greenValue = *(sourceBmp + i + 1);
			redValue   = *(sourceBmp + i + 2);

			// A standard equation for computing a grayscale value based on RGB values
			grayValue = (BYTE)(0.299*redValue + 0.587*greenValue + 0.114*blueValue);

			// The destination BMP will be a grayscale version of the source BMP
			*(m_destinationBmp + i)     = grayValue;
			*(m_destinationBmp + i + 1) = grayValue;
			*(m_destinationBmp + i + 2) = grayValue;
			
		}
	}
}


void CTripodDlg::doMyImageProcessing(LPBITMAPINFOHEADER lpThisBitmapInfoHeader)
{
	// doMyImageProcessing:  This is where you'd write your own image processing code
	// Task: Read a pixel's grayscale value and process accordingly

	unsigned int	W, H;			// Width and Height of current frame [pixels]
	unsigned int    row, col;		// Pixel's row and col positions
	unsigned long   i;				// Dummy variable for row-column vector
	int	    upperThreshold = 60;	// Gradient strength nessicary to start edge
	int		lowerThreshold = 30;	// Minimum gradient strength to continue edge
	unsigned long iOffset;			// Variable to offset row-column vector during sobel mask
	int rowOffset;					// Row offset from the current pixel
	int colOffset;					// Col offset from the current pixel
	int rowTotal = 0;				// Row position of offset pixel
	int colTotal = 0;				// Col position of offset pixel
	int Gx;							// Sum of Sobel mask products values in the x direction
	int Gy;							// Sum of Sobel mask products values in the y direction
	float thisAngle;				// Gradient direction based on Gx and Gy
	int newAngle;					// Approximation of the gradient direction
	bool edgeEnd;					// Stores whether or not the edge is at the edge of the possible image
	int GxMask[3][3];				// Sobel mask in the x direction
	int GyMask[3][3];				// Sobel mask in the y direction
	int newPixel;					// Sum pixel values for gaussian
	int gaussianMask[5][5];			// Gaussian mask

	W = lpThisBitmapInfoHeader-&gt;biWidth;  // biWidth: number of columns
    H = lpThisBitmapInfoHeader-&gt;biHeight; // biHeight: number of rows
	
	for (row = 0; row &lt; H; row++) {
		for (col = 0; col &lt; W; col++) {
			edgeDir[row][col] = 0;
		}
	}

	/* Declare Sobel masks */
	GxMask[0][0] = -1; GxMask[0][1] = 0; GxMask[0][2] = 1;
	GxMask[1][0] = -2; GxMask[1][1] = 0; GxMask[1][2] = 2;
	GxMask[2][0] = -1; GxMask[2][1] = 0; GxMask[2][2] = 1;
	
	GyMask[0][0] =  1; GyMask[0][1] =  2; GyMask[0][2] =  1;
	GyMask[1][0] =  0; GyMask[1][1] =  0; GyMask[1][2] =  0;
	GyMask[2][0] = -1; GyMask[2][1] = -2; GyMask[2][2] = -1;

	/* Declare Gaussian mask */
	gaussianMask[0][0] = 2;		gaussianMask[0][1] = 4;		gaussianMask[0][2] = 5;		gaussianMask[0][3] = 4;		gaussianMask[0][4] = 2;	
	gaussianMask[1][0] = 4;		gaussianMask[1][1] = 9;		gaussianMask[1][2] = 12;	gaussianMask[1][3] = 9;		gaussianMask[1][4] = 4;	
	gaussianMask[2][0] = 5;		gaussianMask[2][1] = 12;	gaussianMask[2][2] = 15;	gaussianMask[2][3] = 12;	gaussianMask[2][4] = 2;	
	gaussianMask[3][0] = 4;		gaussianMask[3][1] = 9;		gaussianMask[3][2] = 12;	gaussianMask[3][3] = 9;		gaussianMask[3][4] = 4;	
	gaussianMask[4][0] = 2;		gaussianMask[4][1] = 4;		gaussianMask[4][2] = 5;		gaussianMask[4][3] = 4;		gaussianMask[4][4] = 2;	
	

	/* Gaussian Blur */
	for (row = 2; row &lt; H-2; row++) {
		for (col = 2; col &lt; W-2; col++) {
			newPixel = 0;
			for (rowOffset=-2; rowOffset&lt;=2; rowOffset++) {
				for (colOffset=-2; colOffset&lt;=2; colOffset++) {
					rowTotal = row + rowOffset;
					colTotal = col + colOffset;
					iOffset = (unsigned long)(rowTotal*3*W + colTotal*3);
					newPixel += (*(m_destinationBmp + iOffset)) * gaussianMask[2 + rowOffset][2 + colOffset];
				}
			}
			i = (unsigned long)(row*3*W + col*3);
			*(m_destinationBmp + i) = newPixel / 159;
		}
	}

	/* Determine edge directions and gradient strengths */
	for (row = 1; row &lt; H-1; row++) {
		for (col = 1; col &lt; W-1; col++) {
			i = (unsigned long)(row*3*W + 3*col);
			Gx = 0;
			Gy = 0;
			/* Calculate the sum of the Sobel mask times the nine surrounding pixels in the x and y direction */
			for (rowOffset=-1; rowOffset&lt;=1; rowOffset++) {
				for (colOffset=-1; colOffset&lt;=1; colOffset++) {
					rowTotal = row + rowOffset;
					colTotal = col + colOffset;
					iOffset = (unsigned long)(rowTotal*3*W + colTotal*3);
					Gx = Gx + (*(m_destinationBmp + iOffset) * GxMask[rowOffset + 1][colOffset + 1]);
					Gy = Gy + (*(m_destinationBmp + iOffset) * GyMask[rowOffset + 1][colOffset + 1]);
				}
			}

			gradient[row][col] = sqrt(pow(Gx,2.0) + pow(Gy,2.0));	// Calculate gradient strength			
			thisAngle = (atan2(Gx,Gy)/3.14159) * 180.0;		// Calculate actual direction of edge
			
			/* Convert actual edge direction to approximate value */
			if ( ( (thisAngle &lt; 22.5) &amp;&amp; (thisAngle &gt; -22.5) ) || (thisAngle &gt; 157.5) || (thisAngle &lt; -157.5) )
				newAngle = 0;
			if ( ( (thisAngle &gt; 22.5) &amp;&amp; (thisAngle &lt; 67.5) ) || ( (thisAngle &lt; -112.5) &amp;&amp; (thisAngle &gt; -157.5) ) )
				newAngle = 45;
			if ( ( (thisAngle &gt; 67.5) &amp;&amp; (thisAngle &lt; 112.5) ) || ( (thisAngle &lt; -67.5) &amp;&amp; (thisAngle &gt; -112.5) ) )
				newAngle = 90;
			if ( ( (thisAngle &gt; 112.5) &amp;&amp; (thisAngle &lt; 157.5) ) || ( (thisAngle &lt; -22.5) &amp;&amp; (thisAngle &gt; -67.5) ) )
				newAngle = 135;
				
			edgeDir[row][col] = newAngle;		// Store the approximate edge direction of each pixel in one array
		}
	}

	/* Trace along all the edges in the image */
	for (row = 1; row &lt; H - 1; row++) {
		for (col = 1; col &lt; W - 1; col++) {
			edgeEnd = false;
			if (gradient[row][col] &gt; upperThreshold) {		// Check to see if current pixel has a high enough gradient strength to be part of an edge
				/* Switch based on current pixel's edge direction */
				switch (edgeDir[row][col]){		
					case 0:
						findEdge(0, 1, row, col, 0, lowerThreshold);
						break;
					case 45:
						findEdge(1, 1, row, col, 45, lowerThreshold);
						break;
					case 90:
						findEdge(1, 0, row, col, 90, lowerThreshold);
						break;
					case 135:
						findEdge(1, -1, row, col, 135, lowerThreshold);
						break;
					default :
						i = (unsigned long)(row*3*W + 3*col);
						*(m_destinationBmp + i) = 
						*(m_destinationBmp + i + 1) = 
						*(m_destinationBmp + i + 2) = 0;
						break;
					}
				}
			else {
				i = (unsigned long)(row*3*W + 3*col);
					*(m_destinationBmp + i) = 
					*(m_destinationBmp + i + 1) = 
					*(m_destinationBmp + i + 2) = 0;
			}	
		}
	}
	
	/* Suppress any pixels not changed by the edge tracing */
	for (row = 0; row &lt; H; row++) {
		for (col = 0; col &lt; W; col++) {	
			// Recall each pixel is composed of 3 bytes
			i = (unsigned long)(row*3*W + 3*col);
			// If a pixel's grayValue is not black or white make it black
			if( ((*(m_destinationBmp + i) != 255) &amp;&amp; (*(m_destinationBmp + i) != 0)) || ((*(m_destinationBmp + i + 1) != 255) &amp;&amp; (*(m_destinationBmp + i + 1) != 0)) || ((*(m_destinationBmp + i + 2) != 255) &amp;&amp; (*(m_destinationBmp + i + 2) != 0)) ) 
				*(m_destinationBmp + i) = 
				*(m_destinationBmp + i + 1) = 
				*(m_destinationBmp + i + 2) = 0; // Make pixel black
		}
	}

	/* Non-maximum Suppression */
	for (row = 1; row &lt; H - 1; row++) {
		for (col = 1; col &lt; W - 1; col++) {
			i = (unsigned long)(row*3*W + 3*col);
			if (*(m_destinationBmp + i) == 255) {		// Check to see if current pixel is an edge
				/* Switch based on current pixel's edge direction */
				switch (edgeDir[row][col]) {		
					case 0:
						suppressNonMax( 1, 0, row, col, 0, lowerThreshold);
						break;
					case 45:
						suppressNonMax( 1, -1, row, col, 45, lowerThreshold);
						break;
					case 90:
						suppressNonMax( 0, 1, row, col, 90, lowerThreshold);
						break;
					case 135:
						suppressNonMax( 1, 1, row, col, 135, lowerThreshold);
						break;
					default :
						break;
				}
			}	
		}
	}
	
}

void CTripodDlg::findEdge(int rowShift, int colShift, int row, int col, int dir, int lowerThreshold)
{
	int W = 320;
	int H = 240;
	int newRow;
	int newCol;
	unsigned long i;
	bool edgeEnd = false;

	/* Find the row and column values for the next possible pixel on the edge */
	if (colShift &lt; 0) {
		if (col &gt; 0)
			newCol = col + colShift;
		else
			edgeEnd = true;
	} else if (col &lt; W - 1) {
		newCol = col + colShift;
	} else
		edgeEnd = true;		// If the next pixel would be off image, don't do the while loop
	if (rowShift &lt; 0) {
		if (row &gt; 0)
			newRow = row + rowShift;
		else
			edgeEnd = true;
	} else if (row &lt; H - 1) {
		newRow = row + rowShift;
	} else
		edgeEnd = true;	
		
	/* Determine edge directions and gradient strengths */
	while ( (edgeDir[newRow][newCol]==dir) &amp;&amp; !edgeEnd &amp;&amp; (gradient[newRow][newCol] &gt; lowerThreshold) ) {
		/* Set the new pixel as white to show it is an edge */
		i = (unsigned long)(newRow*3*W + 3*newCol);
		*(m_destinationBmp + i) =
		*(m_destinationBmp + i + 1) =
		*(m_destinationBmp + i + 2) = 255;
		if (colShift &lt; 0) {
			if (newCol &gt; 0)
				newCol = newCol + colShift;
			else
				edgeEnd = true;	
		} else if (newCol &lt; W - 1) {
			newCol = newCol + colShift;
		} else
			edgeEnd = true;	
		if (rowShift &lt; 0) {
			if (newRow &gt; 0)
				newRow = newRow + rowShift;
			else
				edgeEnd = true;
		} else if (newRow &lt; H - 1) {
			newRow = newRow + rowShift;
		} else
			edgeEnd = true;	
	}	
}

void CTripodDlg::suppressNonMax(int rowShift, int colShift, int row, int col, int dir, int lowerThreshold)
{
	int W = 320;
	int H = 240;
	int newRow = 0;
	int newCol = 0;
	unsigned long i;
	bool edgeEnd = false;
	float nonMax[320][3];			// Temporarily stores gradients and positions of pixels in parallel edges
	int pixelCount = 0;					// Stores the number of pixels in parallel edges
	int count;						// A for loop counter
	int max[3];						// Maximum point in a wide edge
	
	if (colShift &lt; 0) {
		if (col &gt; 0)
			newCol = col + colShift;
		else
			edgeEnd = true;
	} else if (col &lt; W - 1) {
		newCol = col + colShift;
	} else
		edgeEnd = true;		// If the next pixel would be off image, don't do the while loop
	if (rowShift &lt; 0) {
		if (row &gt; 0)
			newRow = row + rowShift;
		else
			edgeEnd = true;
	} else if (row &lt; H - 1) {
		newRow = row + rowShift;
	} else
		edgeEnd = true;	
	i = (unsigned long)(newRow*3*W + 3*newCol);
	/* Find non-maximum parallel edges tracing up */
	while ((edgeDir[newRow][newCol] == dir) &amp;&amp; !edgeEnd &amp;&amp; (*(m_destinationBmp + i) == 255)) {
		if (colShift &lt; 0) {
			if (newCol &gt; 0)
				newCol = newCol + colShift;
			else
				edgeEnd = true;	
		} else if (newCol &lt; W - 1) {
			newCol = newCol + colShift;
		} else
			edgeEnd = true;	
		if (rowShift &lt; 0) {
			if (newRow &gt; 0)
				newRow = newRow + rowShift;
			else
				edgeEnd = true;
		} else if (newRow &lt; H - 1) {
			newRow = newRow + rowShift;
		} else
			edgeEnd = true;	
		nonMax[pixelCount][0] = newRow;
		nonMax[pixelCount][1] = newCol;
		nonMax[pixelCount][2] = gradient[newRow][newCol];
		pixelCount++;
		i = (unsigned long)(newRow*3*W + 3*newCol);
	}

	/* Find non-maximum parallel edges tracing down */
	edgeEnd = false;
	colShift *= -1;
	rowShift *= -1;
	if (colShift &lt; 0) {
		if (col &gt; 0)
			newCol = col + colShift;
		else
			edgeEnd = true;
	} else if (col &lt; W - 1) {
		newCol = col + colShift;
	} else
		edgeEnd = true;	
	if (rowShift &lt; 0) {
		if (row &gt; 0)
			newRow = row + rowShift;
		else
			edgeEnd = true;
	} else if (row &lt; H - 1) {
		newRow = row + rowShift;
	} else
		edgeEnd = true;	
	i = (unsigned long)(newRow*3*W + 3*newCol);
	while ((edgeDir[newRow][newCol] == dir) &amp;&amp; !edgeEnd &amp;&amp; (*(m_destinationBmp + i) == 255)) {
		if (colShift &lt; 0) {
			if (newCol &gt; 0)
				newCol = newCol + colShift;
			else
				edgeEnd = true;	
		} else if (newCol &lt; W - 1) {
			newCol = newCol + colShift;
		} else
			edgeEnd = true;	
		if (rowShift &lt; 0) {
			if (newRow &gt; 0)
				newRow = newRow + rowShift;
			else
				edgeEnd = true;
		} else if (newRow &lt; H - 1) {
			newRow = newRow + rowShift;
		} else
			edgeEnd = true;	
		nonMax[pixelCount][0] = newRow;
		nonMax[pixelCount][1] = newCol;
		nonMax[pixelCount][2] = gradient[newRow][newCol];
		pixelCount++;
		i = (unsigned long)(newRow*3*W + 3*newCol);
	}

	/* Suppress non-maximum edges */
	max[0] = 0;
	max[1] = 0;
	max[2] = 0;
	for (count = 0; count &lt; pixelCount; count++) {
		if (nonMax[count][2] &gt; max[2]) {
			max[0] = nonMax[count][0];
			max[1] = nonMax[count][1];
			max[2] = nonMax[count][2];
		}
	}
	for (count = 0; count &lt; pixelCount; count++) {
		i = (unsigned long)(nonMax[count][0]*3*W + 3*nonMax[count][1]);
		*(m_destinationBmp + i) = 
		*(m_destinationBmp + i + 1) = 
		*(m_destinationBmp + i + 2) = 0;
	}
}

الگوریتم Canny در سی پلاس پلاس قسمت 1
الگوریتم Canny در سی پلاس پلاس قسمت 2
الگوریتم Canny در سی پلاس پلاس قسمت 3
الگوریتم Canny در سی پلاس پلاس قسمت 4

مرحله 2: پیدا کردن قدرت و جهت گرادیان لبه.

گام بعدی استفاده از Mask های Sobel برای پیدا کردن قدرت و جهت گرادیان لبه برای هر پیکسل است. ابتدا ماسک های Sobel به محدوده پیکسل 3×3 پیکسل فعلی در هر دو جهت x و y اعمال می شود. سپس مجموع مقدار هر ماسک ضربدر پیکسل مربوطه به ترتیب به عنوان مقادیر Gx و Gy محاسبه می شود. ریشه دوم مربع Gx به اضافه Gy مربع برابر قدرت لبه است. Tangent معکوس Gx / Gy جهت لبه را تولید می کند. سپس جهت لبه تقریب شده است به یکی از چهار مقادیر ممکن که ایجاد می کند جهت های ممکن را که  یک لبه می تواند در یک تصویر از یک شبکه پیکسل مربع باشد. این جهت لبه در edgeDir [row] [col] ذخیره می شود و قدرت گرادیان در  array gradient[row] [col] ذخیره می شود.

 

CannyEdgeWeel

هر زاویه لبه در 11.25 درجه از یکی از  زاویه های ممکن به آن مقدار تغییر می کند.

 

#include "stdafx.h"
#include "tripod.h"
#include "tripodDlg.h"

#include "LVServerDefs.h"
#include "math.h"
#include &lt;fstream&gt;
#include &lt;string&gt;
#include &lt;iostream&gt;
#include &lt;stdlib.h&gt;
#include &lt;stdio.h&gt;


#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

using namespace std;

/////////////////////////////////////////////////////////////////////////////
// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:
	CAboutDlg();

// Dialog Data
	//{{AFX_DATA(CAboutDlg)
	enum { IDD = IDD_ABOUTBOX };
	//}}AFX_DATA

	// ClassWizard generated virtual function overrides
	//{{AFX_VIRTUAL(CAboutDlg)
	protected:
	virtual void DoDataExchange(CDataExchange* pDX);    // DDX/DDV support
	//}}AFX_VIRTUAL

// Implementation
protected:
	//{{AFX_MSG(CAboutDlg)
	//}}AFX_MSG
	DECLARE_MESSAGE_MAP()
};

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
{
	//{{AFX_DATA_INIT(CAboutDlg)
	//}}AFX_DATA_INIT
}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
	CDialog::DoDataExchange(pDX);
	//{{AFX_DATA_MAP(CAboutDlg)
	//}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
	//{{AFX_MSG_MAP(CAboutDlg)
		// No message handlers
	//}}AFX_MSG_MAP
END_MESSAGE_MAP()

/////////////////////////////////////////////////////////////////////////////
// CTripodDlg dialog

CTripodDlg::CTripodDlg(CWnd* pParent /*=NULL*/)
	: CDialog(CTripodDlg::IDD, pParent)
{
	//{{AFX_DATA_INIT(CTripodDlg)
		// NOTE: the ClassWizard will add member initialization here
	//}}AFX_DATA_INIT
	// Note that LoadIcon does not require a subsequent DestroyIcon in Win32
	m_hIcon = AfxGetApp()-&gt;LoadIcon(IDR_MAINFRAME);

	//////////////// Set destination BMP to NULL first 
	m_destinationBitmapInfoHeader = NULL;

}

////////////////////// Additional generic functions

static unsigned PixelBytes(int w, int bpp)
{
    return (w * bpp + 7) / 8;
}

static unsigned DibRowSize(int w, int bpp)
{
    return (w * bpp + 31) / 32 * 4;
}

static unsigned DibRowSize(LPBITMAPINFOHEADER pbi)
{
    return DibRowSize(pbi-&gt;biWidth, pbi-&gt;biBitCount);
}

static unsigned DibRowPadding(int w, int bpp)
{
    return DibRowSize(w, bpp) - PixelBytes(w, bpp);
}

static unsigned DibRowPadding(LPBITMAPINFOHEADER pbi)
{
    return DibRowPadding(pbi-&gt;biWidth, pbi-&gt;biBitCount);
}

static unsigned DibImageSize(int w, int h, int bpp)
{
    return h * DibRowSize(w, bpp);
}

static size_t DibSize(int w, int h, int bpp)
{
    return sizeof (BITMAPINFOHEADER) + DibImageSize(w, h, bpp);
}

/////////////////////// end of generic functions


void CTripodDlg::DoDataExchange(CDataExchange* pDX)
{
	CDialog::DoDataExchange(pDX);
	//{{AFX_DATA_MAP(CTripodDlg)
	DDX_Control(pDX, IDC_PROCESSEDVIEW, m_cVideoProcessedView);
	DDX_Control(pDX, IDC_UNPROCESSEDVIEW, m_cVideoUnprocessedView);
	//}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CTripodDlg, CDialog)
	//{{AFX_MSG_MAP(CTripodDlg)
	ON_WM_SYSCOMMAND()
	ON_WM_PAINT()
	ON_WM_QUERYDRAGICON()
	ON_BN_CLICKED(IDEXIT, OnExit)
	//}}AFX_MSG_MAP
END_MESSAGE_MAP()

/////////////////////////////////////////////////////////////////////////////
// CTripodDlg message handlers

BOOL CTripodDlg::OnInitDialog()
{
	CDialog::OnInitDialog();

	// Add "About..." menu item to system menu.

	// IDM_ABOUTBOX must be in the system command range.
	ASSERT((IDM_ABOUTBOX &amp; 0xFFF0) == IDM_ABOUTBOX);
	ASSERT(IDM_ABOUTBOX &lt; 0xF000);

	CMenu* pSysMenu = GetSystemMenu(FALSE);
	if (pSysMenu != NULL)
	{
		CString strAboutMenu;
		strAboutMenu.LoadString(IDS_ABOUTBOX);
		if (!strAboutMenu.IsEmpty())
		{
			pSysMenu-&gt;AppendMenu(MF_SEPARATOR);
			pSysMenu-&gt;AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);
		}
	}

	// Set the icon for this dialog.  The framework does this automatically
	//  when the application's main window is not a dialog
	SetIcon(m_hIcon, TRUE);			// Set big icon
	SetIcon(m_hIcon, FALSE);		// Set small icon
	
	// TODO: Add extra initialization here

	// For Unprocessed view videoportal (top one)
	char sRegUnprocessedView[] = "HKEY_LOCAL_MACHINE\\Software\\UnprocessedView";
	m_cVideoUnprocessedView.PrepareControl("UnprocessedView", sRegUnprocessedView, 0 );	
	m_cVideoUnprocessedView.EnableUIElements(UIELEMENT_STATUSBAR,0,TRUE);
	m_cVideoUnprocessedView.ConnectCamera2();
	m_cVideoUnprocessedView.SetEnablePreview(TRUE);

	// For binary view videoportal (bottom one)
	char sRegProcessedView[] = "HKEY_LOCAL_MACHINE\\Software\\ProcessedView";
	m_cVideoProcessedView.PrepareControl("ProcessedView", sRegProcessedView, 0 );	
	m_cVideoProcessedView.EnableUIElements(UIELEMENT_STATUSBAR,0,TRUE);
	m_cVideoProcessedView.ConnectCamera2();
	m_cVideoProcessedView.SetEnablePreview(TRUE);

	// Initialize the size of binary videoportal
	m_cVideoProcessedView.SetPreviewMaxHeight(240);
	m_cVideoProcessedView.SetPreviewMaxWidth(320);

	// Uncomment if you wish to fix the live videoportal's size
	// m_cVideoUnprocessedView.SetPreviewMaxHeight(240);
	// m_cVideoUnprocessedView.SetPreviewMaxWidth(320);

	// Find the screen coodinates of the binary videoportal
	m_cVideoProcessedView.GetWindowRect(m_rectForProcessedView);
	ScreenToClient(m_rectForProcessedView);
	allocateDib(CSize(320, 240));

	// Start grabbing frame data for Procssed videoportal (bottom one)
	m_cVideoProcessedView.StartVideoHook(0);

	return TRUE;  // return TRUE  unless you set the focus to a control
}

void CTripodDlg::OnSysCommand(UINT nID, LPARAM lParam)
{
	if ((nID &amp; 0xFFF0) == IDM_ABOUTBOX)
	{
		CAboutDlg dlgAbout;
		dlgAbout.DoModal();
	}
	else
	{
		CDialog::OnSysCommand(nID, lParam);
	}
}

// If you add a minimize button to your dialog, you will need the code below
//  to draw the icon.  For MFC applications using the document/view model,
//  this is automatically done for you by the framework.

void CTripodDlg::OnPaint() 
{
	if (IsIconic())
	{
		CPaintDC dc(this); // device context for painting

		SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);

		// Center icon in client rectangle
		int cxIcon = GetSystemMetrics(SM_CXICON);
		int cyIcon = GetSystemMetrics(SM_CYICON);
		CRect rect;
		GetClientRect(&amp;rect);
		int x = (rect.Width() - cxIcon + 1) / 2;
		int y = (rect.Height() - cyIcon + 1) / 2;

		// Draw the icon
		dc.DrawIcon(x, y, m_hIcon);
	}
	else
	{
		CDialog::OnPaint();
	}
}

// The system calls this to obtain the cursor to display while the user drags
//  the minimized window.
HCURSOR CTripodDlg::OnQueryDragIcon()
{
	return (HCURSOR) m_hIcon;
}

void CTripodDlg::OnExit() 
{
	// TODO: Add your control notification handler code here

	// Kill live view videoportal (top one)
	m_cVideoUnprocessedView.StopVideoHook(0);
    m_cVideoUnprocessedView.DisconnectCamera();	
	
	// Kill binary view videoportal (bottom one)
	m_cVideoProcessedView.StopVideoHook(0);
    m_cVideoProcessedView.DisconnectCamera();	

	// Kill program
	DestroyWindow();	

	

}

BEGIN_EVENTSINK_MAP(CTripodDlg, CDialog)
    //{{AFX_EVENTSINK_MAP(CTripodDlg)
	ON_EVENT(CTripodDlg, IDC_PROCESSEDVIEW, 1 /* PortalNotification */, OnPortalNotificationProcessedview, VTS_I4 VTS_I4 VTS_I4 VTS_I4)
	//}}AFX_EVENTSINK_MAP
END_EVENTSINK_MAP()

void CTripodDlg::OnPortalNotificationProcessedview(long lMsg, long lParam1, long lParam2, long lParam3) 
{
	// TODO: Add your control notification handler code here
	
	// This function is called at the camera's frame rate
    
#define NOTIFICATIONMSG_VIDEOHOOK	10

	// Declare some useful variables
	// QCSDKMFC.pdf (Quickcam MFC documentation) p. 103 explains the variables lParam1, lParam2, lParam3 too 
	
	LPBITMAPINFOHEADER lpBitmapInfoHeader; // Frame's info header contains info like width and height
	LPBYTE lpBitmapPixelData; // This pointer-to-long will point to the start of the frame's pixel data
    unsigned long lTimeStamp; // Time when frame was grabbed

	switch(lMsg) {
		case NOTIFICATIONMSG_VIDEOHOOK:
			{
				lpBitmapInfoHeader = (LPBITMAPINFOHEADER) lParam1; 
				lpBitmapPixelData = (LPBYTE) lParam2;
				lTimeStamp = (unsigned long) lParam3;

				grayScaleTheFrameData(lpBitmapInfoHeader, lpBitmapPixelData);
				doMyImageProcessing(lpBitmapInfoHeader); // Place where you'd add your image processing code
				displayMyResults(lpBitmapInfoHeader);

			}
			break;

		default:
			break;
	}	
}

void CTripodDlg::allocateDib(CSize sz)
{
	// Purpose: allocate information for a device independent bitmap (DIB)
	// Called from OnInitVideo

	if(m_destinationBitmapInfoHeader) {
		free(m_destinationBitmapInfoHeader);
		m_destinationBitmapInfoHeader = NULL;
	}

	if(sz.cx | sz.cy) {
		m_destinationBitmapInfoHeader = (LPBITMAPINFOHEADER)malloc(DibSize(sz.cx, sz.cy, 24));
		ASSERT(m_destinationBitmapInfoHeader);
		m_destinationBitmapInfoHeader-&gt;biSize = sizeof(BITMAPINFOHEADER);
		m_destinationBitmapInfoHeader-&gt;biWidth = sz.cx;
		m_destinationBitmapInfoHeader-&gt;biHeight = sz.cy;
		m_destinationBitmapInfoHeader-&gt;biPlanes = 1;
		m_destinationBitmapInfoHeader-&gt;biBitCount = 24;
		m_destinationBitmapInfoHeader-&gt;biCompression = 0;
		m_destinationBitmapInfoHeader-&gt;biSizeImage = DibImageSize(sz.cx, sz.cy, 24);
		m_destinationBitmapInfoHeader-&gt;biXPelsPerMeter = 0;
		m_destinationBitmapInfoHeader-&gt;biYPelsPerMeter = 0;
		m_destinationBitmapInfoHeader-&gt;biClrImportant = 0;
		m_destinationBitmapInfoHeader-&gt;biClrUsed = 0;
	}
}

void CTripodDlg::displayMyResults(LPBITMAPINFOHEADER lpThisBitmapInfoHeader)
{
	// displayMyResults: Displays results of doMyImageProcessing() in the videoport
	// Notes: StretchDIBits stretches a device-independent bitmap to the appropriate size

	CDC				*pDC;	// Device context to display bitmap data
	
	pDC = GetDC();	
	int nOldMode = SetStretchBltMode(pDC-&gt;GetSafeHdc(),COLORONCOLOR);

	StretchDIBits( 
		pDC-&gt;GetSafeHdc(),
		m_rectForProcessedView.left,				// videoportal left-most coordinate
		m_rectForProcessedView.top,					// videoportal top-most coordinate
		m_rectForProcessedView.Width(),				// videoportal width
		m_rectForProcessedView.Height(),			// videoportal height
		0,											// Row position to display bitmap in videoportal
		0,											// Col position to display bitmap in videoportal
		lpThisBitmapInfoHeader-&gt;biWidth,			// m_destinationBmp's number of columns
		lpThisBitmapInfoHeader-&gt;biHeight,			// m_destinationBmp's number of rows
		m_destinationBmp,							// The bitmap to display; use the one resulting from doMyImageProcessing
		(BITMAPINFO*)m_destinationBitmapInfoHeader, // The bitmap's header info e.g. width, height, number of bits etc
		DIB_RGB_COLORS,								// Use default 24-bit color table
		SRCCOPY										// Just display
	);
 
	SetStretchBltMode(pDC-&gt;GetSafeHdc(),nOldMode);

	ReleaseDC(pDC);

	// Note: 04/24/02 - Added the following:
	// Christopher Wagner cwagner@fas.harvard.edu noticed that memory wasn't being freed

	// Recall OnPortalNotificationProcessedview, which gets called everytime
	// a frame of data arrives, performs 3 steps:
	// (1) grayScaleTheFrameData - which mallocs m_destinationBmp
	// (2) doMyImageProcesing
	// (3) displayMyResults - which we're in now
	// Since we're finished with the memory we malloc'ed for m_destinationBmp
	// we should free it: 
	
	free(m_destinationBmp);

	// End of adds
}

void CTripodDlg::grayScaleTheFrameData(LPBITMAPINFOHEADER lpThisBitmapInfoHeader, LPBYTE lpThisBitmapPixelData)
{

	// grayScaleTheFrameData: Called by CTripodDlg::OnPortalNotificationBinaryview
	// Task: Read current frame pixel data and computes a grayscale version

	unsigned int	W, H;			  // Width and Height of current frame [pixels]
	BYTE            *sourceBmp;		  // Pointer to current frame of data
	unsigned int    row, col;
	unsigned long   i;
	BYTE			grayValue;

	BYTE			redValue;
	BYTE			greenValue;
	BYTE			blueValue;

    W = lpThisBitmapInfoHeader-&gt;biWidth;  // biWidth: number of columns
    H = lpThisBitmapInfoHeader-&gt;biHeight; // biHeight: number of rows

	// Store pixel data in row-column vector format
	// Recall that each pixel requires 3 bytes (red, blue and green bytes)
	// m_destinationBmp is a protected member and declared in binarizeDlg.h

	m_destinationBmp = (BYTE*)malloc(H*3*W*sizeof(BYTE));

	// Point to the current frame's pixel data
	sourceBmp = lpThisBitmapPixelData;

	for (row = 0; row &lt; H; row++) {
		for (col = 0; col &lt; W; col++) {

			// Recall each pixel is composed of 3 bytes
			i = (unsigned long)(row*3*W + 3*col);
        
			// The source pixel has a blue, green andred value:
			blueValue  = *(sourceBmp + i);
			greenValue = *(sourceBmp + i + 1);
			redValue   = *(sourceBmp + i + 2);

			// A standard equation for computing a grayscale value based on RGB values
			grayValue = (BYTE)(0.299*redValue + 0.587*greenValue + 0.114*blueValue);

			// The destination BMP will be a grayscale version of the source BMP
			*(m_destinationBmp + i)     = grayValue;
			*(m_destinationBmp + i + 1) = grayValue;
			*(m_destinationBmp + i + 2) = grayValue;
			
		}
	}
}


void CTripodDlg::doMyImageProcessing(LPBITMAPINFOHEADER lpThisBitmapInfoHeader)
{
	// doMyImageProcessing:  This is where you'd write your own image processing code
	// Task: Read a pixel's grayscale value and process accordingly

	unsigned int	W, H;			// Width and Height of current frame [pixels]
	unsigned int    row, col;		// Pixel's row and col positions
	unsigned long   i;				// Dummy variable for row-column vector
	int	    upperThreshold = 60;	// Gradient strength nessicary to start edge
	int		lowerThreshold = 30;	// Minimum gradient strength to continue edge
	unsigned long iOffset;			// Variable to offset row-column vector during sobel mask
	int rowOffset;					// Row offset from the current pixel
	int colOffset;					// Col offset from the current pixel
	int rowTotal = 0;				// Row position of offset pixel
	int colTotal = 0;				// Col position of offset pixel
	int Gx;							// Sum of Sobel mask products values in the x direction
	int Gy;							// Sum of Sobel mask products values in the y direction
	float thisAngle;				// Gradient direction based on Gx and Gy
	int newAngle;					// Approximation of the gradient direction
	bool edgeEnd;					// Stores whether or not the edge is at the edge of the possible image
	int GxMask[3][3];				// Sobel mask in the x direction
	int GyMask[3][3];				// Sobel mask in the y direction
	int newPixel;					// Sum pixel values for gaussian
	int gaussianMask[5][5];			// Gaussian mask

	W = lpThisBitmapInfoHeader-&gt;biWidth;  // biWidth: number of columns
    H = lpThisBitmapInfoHeader-&gt;biHeight; // biHeight: number of rows
	
	for (row = 0; row &lt; H; row++) {
		for (col = 0; col &lt; W; col++) {
			edgeDir[row][col] = 0;
		}
	}

	/* Declare Sobel masks */
	GxMask[0][0] = -1; GxMask[0][1] = 0; GxMask[0][2] = 1;
	GxMask[1][0] = -2; GxMask[1][1] = 0; GxMask[1][2] = 2;
	GxMask[2][0] = -1; GxMask[2][1] = 0; GxMask[2][2] = 1;
	
	GyMask[0][0] =  1; GyMask[0][1] =  2; GyMask[0][2] =  1;
	GyMask[1][0] =  0; GyMask[1][1] =  0; GyMask[1][2] =  0;
	GyMask[2][0] = -1; GyMask[2][1] = -2; GyMask[2][2] = -1;

	/* Declare Gaussian mask */
	gaussianMask[0][0] = 2;		gaussianMask[0][1] = 4;		gaussianMask[0][2] = 5;		gaussianMask[0][3] = 4;		gaussianMask[0][4] = 2;	
	gaussianMask[1][0] = 4;		gaussianMask[1][1] = 9;		gaussianMask[1][2] = 12;	gaussianMask[1][3] = 9;		gaussianMask[1][4] = 4;	
	gaussianMask[2][0] = 5;		gaussianMask[2][1] = 12;	gaussianMask[2][2] = 15;	gaussianMask[2][3] = 12;	gaussianMask[2][4] = 2;	
	gaussianMask[3][0] = 4;		gaussianMask[3][1] = 9;		gaussianMask[3][2] = 12;	gaussianMask[3][3] = 9;		gaussianMask[3][4] = 4;	
	gaussianMask[4][0] = 2;		gaussianMask[4][1] = 4;		gaussianMask[4][2] = 5;		gaussianMask[4][3] = 4;		gaussianMask[4][4] = 2;	
	

	/* Gaussian Blur */
	for (row = 2; row &lt; H-2; row++) {
		for (col = 2; col &lt; W-2; col++) {
			newPixel = 0;
			for (rowOffset=-2; rowOffset&lt;=2; rowOffset++) {
				for (colOffset=-2; colOffset&lt;=2; colOffset++) {
					rowTotal = row + rowOffset;
					colTotal = col + colOffset;
					iOffset = (unsigned long)(rowTotal*3*W + colTotal*3);
					newPixel += (*(m_destinationBmp + iOffset)) * gaussianMask[2 + rowOffset][2 + colOffset];
				}
			}
			i = (unsigned long)(row*3*W + col*3);
			*(m_destinationBmp + i) = newPixel / 159;
		}
	}

	/* Determine edge directions and gradient strengths */
	for (row = 1; row &lt; H-1; row++) {
		for (col = 1; col &lt; W-1; col++) {
			i = (unsigned long)(row*3*W + 3*col);
			Gx = 0;
			Gy = 0;
			/* Calculate the sum of the Sobel mask times the nine surrounding pixels in the x and y direction */
			for (rowOffset=-1; rowOffset&lt;=1; rowOffset++) {
				for (colOffset=-1; colOffset&lt;=1; colOffset++) {
					rowTotal = row + rowOffset;
					colTotal = col + colOffset;
					iOffset = (unsigned long)(rowTotal*3*W + colTotal*3);
					Gx = Gx + (*(m_destinationBmp + iOffset) * GxMask[rowOffset + 1][colOffset + 1]);
					Gy = Gy + (*(m_destinationBmp + iOffset) * GyMask[rowOffset + 1][colOffset + 1]);
				}
			}

			gradient[row][col] = sqrt(pow(Gx,2.0) + pow(Gy,2.0));	// Calculate gradient strength			
			thisAngle = (atan2(Gx,Gy)/3.14159) * 180.0;		// Calculate actual direction of edge
			
			/* Convert actual edge direction to approximate value */
			if ( ( (thisAngle &lt; 22.5) &amp;&amp; (thisAngle &gt; -22.5) ) || (thisAngle &gt; 157.5) || (thisAngle &lt; -157.5) )
				newAngle = 0;
			if ( ( (thisAngle &gt; 22.5) &amp;&amp; (thisAngle &lt; 67.5) ) || ( (thisAngle &lt; -112.5) &amp;&amp; (thisAngle &gt; -157.5) ) )
				newAngle = 45;
			if ( ( (thisAngle &gt; 67.5) &amp;&amp; (thisAngle &lt; 112.5) ) || ( (thisAngle &lt; -67.5) &amp;&amp; (thisAngle &gt; -112.5) ) )
				newAngle = 90;
			if ( ( (thisAngle &gt; 112.5) &amp;&amp; (thisAngle &lt; 157.5) ) || ( (thisAngle &lt; -22.5) &amp;&amp; (thisAngle &gt; -67.5) ) )
				newAngle = 135;
				
			edgeDir[row][col] = newAngle;		// Store the approximate edge direction of each pixel in one array
		}
	}

	/* Trace along all the edges in the image */
	for (row = 1; row &lt; H - 1; row++) {
		for (col = 1; col &lt; W - 1; col++) {
			edgeEnd = false;
			if (gradient[row][col] &gt; upperThreshold) {		// Check to see if current pixel has a high enough gradient strength to be part of an edge
				/* Switch based on current pixel's edge direction */
				switch (edgeDir[row][col]){		
					case 0:
						findEdge(0, 1, row, col, 0, lowerThreshold);
						break;
					case 45:
						findEdge(1, 1, row, col, 45, lowerThreshold);
						break;
					case 90:
						findEdge(1, 0, row, col, 90, lowerThreshold);
						break;
					case 135:
						findEdge(1, -1, row, col, 135, lowerThreshold);
						break;
					default :
						i = (unsigned long)(row*3*W + 3*col);
						*(m_destinationBmp + i) = 
						*(m_destinationBmp + i + 1) = 
						*(m_destinationBmp + i + 2) = 0;
						break;
					}
				}
			else {
				i = (unsigned long)(row*3*W + 3*col);
					*(m_destinationBmp + i) = 
					*(m_destinationBmp + i + 1) = 
					*(m_destinationBmp + i + 2) = 0;
			}	
		}
	}
	
	/* Suppress any pixels not changed by the edge tracing */
	for (row = 0; row &lt; H; row++) {
		for (col = 0; col &lt; W; col++) {	
			// Recall each pixel is composed of 3 bytes
			i = (unsigned long)(row*3*W + 3*col);
			// If a pixel's grayValue is not black or white make it black
			if( ((*(m_destinationBmp + i) != 255) &amp;&amp; (*(m_destinationBmp + i) != 0)) || ((*(m_destinationBmp + i + 1) != 255) &amp;&amp; (*(m_destinationBmp + i + 1) != 0)) || ((*(m_destinationBmp + i + 2) != 255) &amp;&amp; (*(m_destinationBmp + i + 2) != 0)) ) 
				*(m_destinationBmp + i) = 
				*(m_destinationBmp + i + 1) = 
				*(m_destinationBmp + i + 2) = 0; // Make pixel black
		}
	}

	/* Non-maximum Suppression */
	for (row = 1; row &lt; H - 1; row++) {
		for (col = 1; col &lt; W - 1; col++) {
			i = (unsigned long)(row*3*W + 3*col);
			if (*(m_destinationBmp + i) == 255) {		// Check to see if current pixel is an edge
				/* Switch based on current pixel's edge direction */
				switch (edgeDir[row][col]) {		
					case 0:
						suppressNonMax( 1, 0, row, col, 0, lowerThreshold);
						break;
					case 45:
						suppressNonMax( 1, -1, row, col, 45, lowerThreshold);
						break;
					case 90:
						suppressNonMax( 0, 1, row, col, 90, lowerThreshold);
						break;
					case 135:
						suppressNonMax( 1, 1, row, col, 135, lowerThreshold);
						break;
					default :
						break;
				}
			}	
		}
	}
	
}

void CTripodDlg::findEdge(int rowShift, int colShift, int row, int col, int dir, int lowerThreshold)
{
	int W = 320;
	int H = 240;
	int newRow;
	int newCol;
	unsigned long i;
	bool edgeEnd = false;

	/* Find the row and column values for the next possible pixel on the edge */
	if (colShift &lt; 0) {
		if (col &gt; 0)
			newCol = col + colShift;
		else
			edgeEnd = true;
	} else if (col &lt; W - 1) {
		newCol = col + colShift;
	} else
		edgeEnd = true;		// If the next pixel would be off image, don't do the while loop
	if (rowShift &lt; 0) {
		if (row &gt; 0)
			newRow = row + rowShift;
		else
			edgeEnd = true;
	} else if (row &lt; H - 1) {
		newRow = row + rowShift;
	} else
		edgeEnd = true;	
		
	/* Determine edge directions and gradient strengths */
	while ( (edgeDir[newRow][newCol]==dir) &amp;&amp; !edgeEnd &amp;&amp; (gradient[newRow][newCol] &gt; lowerThreshold) ) {
		/* Set the new pixel as white to show it is an edge */
		i = (unsigned long)(newRow*3*W + 3*newCol);
		*(m_destinationBmp + i) =
		*(m_destinationBmp + i + 1) =
		*(m_destinationBmp + i + 2) = 255;
		if (colShift &lt; 0) {
			if (newCol &gt; 0)
				newCol = newCol + colShift;
			else
				edgeEnd = true;	
		} else if (newCol &lt; W - 1) {
			newCol = newCol + colShift;
		} else
			edgeEnd = true;	
		if (rowShift &lt; 0) {
			if (newRow &gt; 0)
				newRow = newRow + rowShift;
			else
				edgeEnd = true;
		} else if (newRow &lt; H - 1) {
			newRow = newRow + rowShift;
		} else
			edgeEnd = true;	
	}	
}

void CTripodDlg::suppressNonMax(int rowShift, int colShift, int row, int col, int dir, int lowerThreshold)
{
	int W = 320;
	int H = 240;
	int newRow = 0;
	int newCol = 0;
	unsigned long i;
	bool edgeEnd = false;
	float nonMax[320][3];			// Temporarily stores gradients and positions of pixels in parallel edges
	int pixelCount = 0;					// Stores the number of pixels in parallel edges
	int count;						// A for loop counter
	int max[3];						// Maximum point in a wide edge
	
	if (colShift &lt; 0) {
		if (col &gt; 0)
			newCol = col + colShift;
		else
			edgeEnd = true;
	} else if (col &lt; W - 1) {
		newCol = col + colShift;
	} else
		edgeEnd = true;		// If the next pixel would be off image, don't do the while loop
	if (rowShift &lt; 0) {
		if (row &gt; 0)
			newRow = row + rowShift;
		else
			edgeEnd = true;
	} else if (row &lt; H - 1) {
		newRow = row + rowShift;
	} else
		edgeEnd = true;	
	i = (unsigned long)(newRow*3*W + 3*newCol);
	/* Find non-maximum parallel edges tracing up */
	while ((edgeDir[newRow][newCol] == dir) &amp;&amp; !edgeEnd &amp;&amp; (*(m_destinationBmp + i) == 255)) {
		if (colShift &lt; 0) {
			if (newCol &gt; 0)
				newCol = newCol + colShift;
			else
				edgeEnd = true;	
		} else if (newCol &lt; W - 1) {
			newCol = newCol + colShift;
		} else
			edgeEnd = true;	
		if (rowShift &lt; 0) {
			if (newRow &gt; 0)
				newRow = newRow + rowShift;
			else
				edgeEnd = true;
		} else if (newRow &lt; H - 1) {
			newRow = newRow + rowShift;
		} else
			edgeEnd = true;	
		nonMax[pixelCount][0] = newRow;
		nonMax[pixelCount][1] = newCol;
		nonMax[pixelCount][2] = gradient[newRow][newCol];
		pixelCount++;
		i = (unsigned long)(newRow*3*W + 3*newCol);
	}

	/* Find non-maximum parallel edges tracing down */
	edgeEnd = false;
	colShift *= -1;
	rowShift *= -1;
	if (colShift &lt; 0) {
		if (col &gt; 0)
			newCol = col + colShift;
		else
			edgeEnd = true;
	} else if (col &lt; W - 1) {
		newCol = col + colShift;
	} else
		edgeEnd = true;	
	if (rowShift &lt; 0) {
		if (row &gt; 0)
			newRow = row + rowShift;
		else
			edgeEnd = true;
	} else if (row &lt; H - 1) {
		newRow = row + rowShift;
	} else
		edgeEnd = true;	
	i = (unsigned long)(newRow*3*W + 3*newCol);
	while ((edgeDir[newRow][newCol] == dir) &amp;&amp; !edgeEnd &amp;&amp; (*(m_destinationBmp + i) == 255)) {
		if (colShift &lt; 0) {
			if (newCol &gt; 0)
				newCol = newCol + colShift;
			else
				edgeEnd = true;	
		} else if (newCol &lt; W - 1) {
			newCol = newCol + colShift;
		} else
			edgeEnd = true;	
		if (rowShift &lt; 0) {
			if (newRow &gt; 0)
				newRow = newRow + rowShift;
			else
				edgeEnd = true;
		} else if (newRow &lt; H - 1) {
			newRow = newRow + rowShift;
		} else
			edgeEnd = true;	
		nonMax[pixelCount][0] = newRow;
		nonMax[pixelCount][1] = newCol;
		nonMax[pixelCount][2] = gradient[newRow][newCol];
		pixelCount++;
		i = (unsigned long)(newRow*3*W + 3*newCol);
	}

	/* Suppress non-maximum edges */
	max[0] = 0;
	max[1] = 0;
	max[2] = 0;
	for (count = 0; count &lt; pixelCount; count++) {
		if (nonMax[count][2] &gt; max[2]) {
			max[0] = nonMax[count][0];
			max[1] = nonMax[count][1];
			max[2] = nonMax[count][2];
		}
	}
	for (count = 0; count &lt; pixelCount; count++) {
		i = (unsigned long)(nonMax[count][0]*3*W + 3*nonMax[count][1]);
		*(m_destinationBmp + i) = 
		*(m_destinationBmp + i + 1) = 
		*(m_destinationBmp + i + 2) = 0;
	}
}

الگوریتم Canny در سی پلاس پلاس قسمت 1
الگوریتم Canny در سی پلاس پلاس قسمت 2
الگوریتم Canny در سی پلاس پلاس قسمت 3
الگوریتم Canny در سی پلاس پلاس قسمت 4

الگوریتم Canny در ++C

لبه یاب کنی توسط جان اف کنی در سال 1986 ایجاد شد و هنوز یک لبه یاب استاندارد و با دقت و کیفیت بالا میباشد.الگوریتم لبه یابی کنی یکی از بهترین لبه یابها تا به امروز است. در ادامه روش کار این الگوریتم و هم چنین کد الگوریتم Canny در ++C را بررسی خواهیم کرد. این الگوریتم لبه یابی از سه بخش اصلی زیر تشکیل شده است:

  • تضعیف نویز
  • پیدا کردن نقاطی که بتوان آنها را به عنوان لبه در نظر گرفت
  • حذب نقاطی که احتمال لبه بودن آنها کم است

 

معیارهایی که در لبه یاب کنی مطرح است:
1 -پایین آوردن نرخ خطا- یعنی تا حد امکان هیچ لبه ای در تصویر نباید گم شود و هم چنین هیچ چیزی که لبه نیست نباید به جای لبه فرض شود. لبه هان پیدا شده تا حد ممکن به لبه ها اصلی
نزدیک باشند.

2 -لبه در مکان واقعی خود باشد- یعنی تا حد ممکن لبه ها کمترین فاصله را با مکان واقعی خود داشته باشند.
3 -بران هر لبه فقط یک پاسخ داشته باشیم.

4 -لبه ها کمترین ضخامت را داشته باشند- (در صورت امکان یک پیکسل).
لبه یاب کنی بخاطر توانایی در تولید لبه های نازک تا حد یک ییکسل برای لبه های پیوسته معروف شده است. این لبه یاب شامل چهار مرحله و چهار ورودی زیر است:
یک تصویر ورودی
یک پارامتر به نام سیگما جهت مقدار نرم کنندگی تصویر
یک حد آستانه بالا (Th)
یک حد آستانه پایین (Tl)

 

مراحل الگوریتم Canny:

1- در ابتدا باید تصویر رنگی را به جهت لبه یابی بهتر به یک تصویر سطح خاکسترن تبدیب کرد.

2- نویز را از تصویر دریافتی حذف کرد. بدلیل اینکه فیلتر گاوسین از یک ماسک ساده برای حذف نویز استفاده می کند لبه یاب کنی در مرحله اول برای حذف نویز آن را بکار میگیرد.

3- در یک تصویر سطح خاکستر جایی را که بیشترین تغییرات را داشته باشند به عنوان لبه در نظر گرفته می شوند و این مکانها با گرفتن گرادیان تصویر با استفاده عملگر سوبل بدست می آیند. سپس لبه های مات یافت شده به لبه های تیزتر تبدیل می شوند.

4- برخی از لبه های کشف شده واقعا لبه نیستند و در واقع نویز هستند که باید آنها توسط حد آستانه هیسترزیس فیلتر شوند.هیسترزیس از دو حد آستانه بالاتر (Th) و حد آستانه پایین تر (Tl) استفاده کرده و کنی پیشنهاد می کند که نسبت استانه بالا به پایین سه به یک باشد.

 این روش بیشتر به کشف لبه های ضعیف به درستی می پردازد و کمتر فریب نویز را می خورد و از بقیه روش ها بهتر است.

 

الگوریتم Canny    عملکرد الگوریتم Canny

 

 

 

کد الگوریتم Canny در ++C:

برای الگوریتم Canny دو کد زیر ارائه می شود که کد شماره 2 کد کاملتری است.

کد شماره  الگوریتم 1 الگوریتم Canny در ++C:

در زیر استفاده از الگوریتم کنی در ++C است. توجه داشته باشید که تصویر ابتدا به تصویر سیاه و سفید تبدیل می شود، سپس فیلتر گاوسی برای کاهش نویز در تصویر استفاده می شود. سپس الگوریتم Canny برای تشخیص لبه استفاده می شود.

 

// CannyTutorial.cpp : Defines the entry point for the console application. 
// Environment: Visual studio 2015, Windows 10
// Assumptions: Opecv is installed configured in the visual studio project
// Opencv version: OpenCV 3.1

#include "stdafx.h"
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/imgproc/imgproc.hpp>
#include<string>
#include<iostream>


int main()
{

    //Modified from source: https://github.com/MicrocontrollersAndMore/OpenCV_3_Windows_10_Installation_Tutorial
    cv::Mat imgOriginal;        // input image
    cv::Mat imgGrayscale;        // grayscale of input image
    cv::Mat imgBlurred;            // intermediate blured image
    cv::Mat imgCanny;            // Canny edge image

    std::cout << "Please enter an image filename : ";     std::string img_addr;     std::cin >> img_addr;

    std::cout << "Searching for " + img_addr << std::endl;

    imgOriginal = cv::imread(img_addr);            // open image

    if (imgOriginal.empty()) {                                    // if unable to open image
        std::cout << "error: image not read from file\n\n";        // show error message on command line
        return(0);                                                // and exit program
    }

    cv::cvtColor(imgOriginal, imgGrayscale, CV_BGR2GRAY);        // convert to grayscale

    cv::GaussianBlur(imgGrayscale,            // input image
        imgBlurred,                            // output image
        cv::Size(5, 5),                        // smoothing window width and height in pixels
        1.5);                                // sigma value, determines how much the image will be blurred

    cv::Canny(imgBlurred,            // input image
        imgCanny,                    // output image
        100,                        // low threshold
        200);                        // high threshold


    // Declare windows
    // Note: you can use CV_WINDOW_NORMAL which allows resizing the window
    // or CV_WINDOW_AUTOSIZE for a fixed size window matching the resolution of the image
    // CV_WINDOW_AUTOSIZE is the default
    cv::namedWindow("imgOriginal", CV_WINDOW_AUTOSIZE);        
    cv::namedWindow("imgCanny", CV_WINDOW_AUTOSIZE);

    //Show windows
    cv::imshow("imgOriginal", imgOriginal);        
    cv::imshow("imgCanny", imgCanny);

    cv::waitKey(0);                    // hold windows open until user presses a key
    return 0;
}

 

دانلود کد فوق از طریق لینک زیر:

رمز فایل : behsanandish.com

 

 

کد شماره 2:

مرحله 1: یک blur(تار کننده) گاوسی را اعمال کنید.

اول متغیرهای ضروری اعلام شده اند و بعضی از آنها اولیه هستند. سپس Blur گاوسی اعمال می شود. برای انجام این کار یک ماسک 5×5 بر روی تصویر منتقل می شود. هر پیکسل به صورت مجموع مقادیر پیکسل در محدوده 5×5 آن ضربدر وزن گاوسی متناظر تقسیم شده توسط وزن مجموع کل ماسک تعریف می شود.

 

ماسک گاوسی

ماسک گاوسی

 

#include "stdafx.h"
#include "tripod.h"
#include "tripodDlg.h"

#include "LVServerDefs.h"
#include "math.h"
#include <fstream>
#include <string>
#include <iostream>
#include <stdlib.h>
#include <stdio.h>


#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

using namespace std;

/////////////////////////////////////////////////////////////////////////////
// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:
	CAboutDlg();

// Dialog Data
	//{{AFX_DATA(CAboutDlg)
	enum { IDD = IDD_ABOUTBOX };
	//}}AFX_DATA

	// ClassWizard generated virtual function overrides
	//{{AFX_VIRTUAL(CAboutDlg)
	protected:
	virtual void DoDataExchange(CDataExchange* pDX);    // DDX/DDV support
	//}}AFX_VIRTUAL

// Implementation
protected:
	//{{AFX_MSG(CAboutDlg)
	//}}AFX_MSG
	DECLARE_MESSAGE_MAP()
};

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
{
	//{{AFX_DATA_INIT(CAboutDlg)
	//}}AFX_DATA_INIT
}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
	CDialog::DoDataExchange(pDX);
	//{{AFX_DATA_MAP(CAboutDlg)
	//}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
	//{{AFX_MSG_MAP(CAboutDlg)
		// No message handlers
	//}}AFX_MSG_MAP
END_MESSAGE_MAP()

/////////////////////////////////////////////////////////////////////////////
// CTripodDlg dialog

CTripodDlg::CTripodDlg(CWnd* pParent /*=NULL*/)
	: CDialog(CTripodDlg::IDD, pParent)
{
	//{{AFX_DATA_INIT(CTripodDlg)
		// NOTE: the ClassWizard will add member initialization here
	//}}AFX_DATA_INIT
	// Note that LoadIcon does not require a subsequent DestroyIcon in Win32
	m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);

	//////////////// Set destination BMP to NULL first 
	m_destinationBitmapInfoHeader = NULL;

}

////////////////////// Additional generic functions

static unsigned PixelBytes(int w, int bpp)
{
    return (w * bpp + 7) / 8;
}

static unsigned DibRowSize(int w, int bpp)
{
    return (w * bpp + 31) / 32 * 4;
}

static unsigned DibRowSize(LPBITMAPINFOHEADER pbi)
{
    return DibRowSize(pbi->biWidth, pbi->biBitCount);
}

static unsigned DibRowPadding(int w, int bpp)
{
    return DibRowSize(w, bpp) - PixelBytes(w, bpp);
}

static unsigned DibRowPadding(LPBITMAPINFOHEADER pbi)
{
    return DibRowPadding(pbi->biWidth, pbi->biBitCount);
}

static unsigned DibImageSize(int w, int h, int bpp)
{
    return h * DibRowSize(w, bpp);
}

static size_t DibSize(int w, int h, int bpp)
{
    return sizeof (BITMAPINFOHEADER) + DibImageSize(w, h, bpp);
}

/////////////////////// end of generic functions


void CTripodDlg::DoDataExchange(CDataExchange* pDX)
{
	CDialog::DoDataExchange(pDX);
	//{{AFX_DATA_MAP(CTripodDlg)
	DDX_Control(pDX, IDC_PROCESSEDVIEW, m_cVideoProcessedView);
	DDX_Control(pDX, IDC_UNPROCESSEDVIEW, m_cVideoUnprocessedView);
	//}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CTripodDlg, CDialog)
	//{{AFX_MSG_MAP(CTripodDlg)
	ON_WM_SYSCOMMAND()
	ON_WM_PAINT()
	ON_WM_QUERYDRAGICON()
	ON_BN_CLICKED(IDEXIT, OnExit)
	//}}AFX_MSG_MAP
END_MESSAGE_MAP()

/////////////////////////////////////////////////////////////////////////////
// CTripodDlg message handlers

BOOL CTripodDlg::OnInitDialog()
{
	CDialog::OnInitDialog();

	// Add "About..." menu item to system menu.

	// IDM_ABOUTBOX must be in the system command range.
	ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);
	ASSERT(IDM_ABOUTBOX < 0xF000); CMenu* pSysMenu = GetSystemMenu(FALSE); if (pSysMenu != NULL) { CString strAboutMenu; strAboutMenu.LoadString(IDS_ABOUTBOX); if (!strAboutMenu.IsEmpty()) { pSysMenu->AppendMenu(MF_SEPARATOR);
			pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);
		}
	}

	// Set the icon for this dialog.  The framework does this automatically
	//  when the application's main window is not a dialog
	SetIcon(m_hIcon, TRUE);			// Set big icon
	SetIcon(m_hIcon, FALSE);		// Set small icon
	
	// TODO: Add extra initialization here

	// For Unprocessed view videoportal (top one)
	char sRegUnprocessedView[] = "HKEY_LOCAL_MACHINE\\Software\\UnprocessedView";
	m_cVideoUnprocessedView.PrepareControl("UnprocessedView", sRegUnprocessedView, 0 );	
	m_cVideoUnprocessedView.EnableUIElements(UIELEMENT_STATUSBAR,0,TRUE);
	m_cVideoUnprocessedView.ConnectCamera2();
	m_cVideoUnprocessedView.SetEnablePreview(TRUE);

	// For binary view videoportal (bottom one)
	char sRegProcessedView[] = "HKEY_LOCAL_MACHINE\\Software\\ProcessedView";
	m_cVideoProcessedView.PrepareControl("ProcessedView", sRegProcessedView, 0 );	
	m_cVideoProcessedView.EnableUIElements(UIELEMENT_STATUSBAR,0,TRUE);
	m_cVideoProcessedView.ConnectCamera2();
	m_cVideoProcessedView.SetEnablePreview(TRUE);

	// Initialize the size of binary videoportal
	m_cVideoProcessedView.SetPreviewMaxHeight(240);
	m_cVideoProcessedView.SetPreviewMaxWidth(320);

	// Uncomment if you wish to fix the live videoportal's size
	// m_cVideoUnprocessedView.SetPreviewMaxHeight(240);
	// m_cVideoUnprocessedView.SetPreviewMaxWidth(320);

	// Find the screen coodinates of the binary videoportal
	m_cVideoProcessedView.GetWindowRect(m_rectForProcessedView);
	ScreenToClient(m_rectForProcessedView);
	allocateDib(CSize(320, 240));

	// Start grabbing frame data for Procssed videoportal (bottom one)
	m_cVideoProcessedView.StartVideoHook(0);

	return TRUE;  // return TRUE  unless you set the focus to a control
}

void CTripodDlg::OnSysCommand(UINT nID, LPARAM lParam)
{
	if ((nID & 0xFFF0) == IDM_ABOUTBOX)
	{
		CAboutDlg dlgAbout;
		dlgAbout.DoModal();
	}
	else
	{
		CDialog::OnSysCommand(nID, lParam);
	}
}

// If you add a minimize button to your dialog, you will need the code below
//  to draw the icon.  For MFC applications using the document/view model,
//  this is automatically done for you by the framework.

void CTripodDlg::OnPaint() 
{
	if (IsIconic())
	{
		CPaintDC dc(this); // device context for painting

		SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);

		// Center icon in client rectangle
		int cxIcon = GetSystemMetrics(SM_CXICON);
		int cyIcon = GetSystemMetrics(SM_CYICON);
		CRect rect;
		GetClientRect(&rect);
		int x = (rect.Width() - cxIcon + 1) / 2;
		int y = (rect.Height() - cyIcon + 1) / 2;

		// Draw the icon
		dc.DrawIcon(x, y, m_hIcon);
	}
	else
	{
		CDialog::OnPaint();
	}
}

// The system calls this to obtain the cursor to display while the user drags
//  the minimized window.
HCURSOR CTripodDlg::OnQueryDragIcon()
{
	return (HCURSOR) m_hIcon;
}

void CTripodDlg::OnExit() 
{
	// TODO: Add your control notification handler code here

	// Kill live view videoportal (top one)
	m_cVideoUnprocessedView.StopVideoHook(0);
    m_cVideoUnprocessedView.DisconnectCamera();	
	
	// Kill binary view videoportal (bottom one)
	m_cVideoProcessedView.StopVideoHook(0);
    m_cVideoProcessedView.DisconnectCamera();	

	// Kill program
	DestroyWindow();	

	

}

BEGIN_EVENTSINK_MAP(CTripodDlg, CDialog)
    //{{AFX_EVENTSINK_MAP(CTripodDlg)
	ON_EVENT(CTripodDlg, IDC_PROCESSEDVIEW, 1 /* PortalNotification */, OnPortalNotificationProcessedview, VTS_I4 VTS_I4 VTS_I4 VTS_I4)
	//}}AFX_EVENTSINK_MAP
END_EVENTSINK_MAP()

void CTripodDlg::OnPortalNotificationProcessedview(long lMsg, long lParam1, long lParam2, long lParam3) 
{
	// TODO: Add your control notification handler code here
	
	// This function is called at the camera's frame rate
    
#define NOTIFICATIONMSG_VIDEOHOOK	10

	// Declare some useful variables
	// QCSDKMFC.pdf (Quickcam MFC documentation) p. 103 explains the variables lParam1, lParam2, lParam3 too 
	
	LPBITMAPINFOHEADER lpBitmapInfoHeader; // Frame's info header contains info like width and height
	LPBYTE lpBitmapPixelData; // This pointer-to-long will point to the start of the frame's pixel data
    unsigned long lTimeStamp; // Time when frame was grabbed

	switch(lMsg) {
		case NOTIFICATIONMSG_VIDEOHOOK:
			{
				lpBitmapInfoHeader = (LPBITMAPINFOHEADER) lParam1; 
				lpBitmapPixelData = (LPBYTE) lParam2;
				lTimeStamp = (unsigned long) lParam3;

				grayScaleTheFrameData(lpBitmapInfoHeader, lpBitmapPixelData);
				doMyImageProcessing(lpBitmapInfoHeader); // Place where you'd add your image processing code
				displayMyResults(lpBitmapInfoHeader);

			}
			break;

		default:
			break;
	}	
}

void CTripodDlg::allocateDib(CSize sz)
{
	// Purpose: allocate information for a device independent bitmap (DIB)
	// Called from OnInitVideo

	if(m_destinationBitmapInfoHeader) {
		free(m_destinationBitmapInfoHeader);
		m_destinationBitmapInfoHeader = NULL;
	}

	if(sz.cx | sz.cy) {
		m_destinationBitmapInfoHeader = (LPBITMAPINFOHEADER)malloc(DibSize(sz.cx, sz.cy, 24));
		ASSERT(m_destinationBitmapInfoHeader);
		m_destinationBitmapInfoHeader->biSize = sizeof(BITMAPINFOHEADER);
		m_destinationBitmapInfoHeader->biWidth = sz.cx;
		m_destinationBitmapInfoHeader->biHeight = sz.cy;
		m_destinationBitmapInfoHeader->biPlanes = 1;
		m_destinationBitmapInfoHeader->biBitCount = 24;
		m_destinationBitmapInfoHeader->biCompression = 0;
		m_destinationBitmapInfoHeader->biSizeImage = DibImageSize(sz.cx, sz.cy, 24);
		m_destinationBitmapInfoHeader->biXPelsPerMeter = 0;
		m_destinationBitmapInfoHeader->biYPelsPerMeter = 0;
		m_destinationBitmapInfoHeader->biClrImportant = 0;
		m_destinationBitmapInfoHeader->biClrUsed = 0;
	}
}

void CTripodDlg::displayMyResults(LPBITMAPINFOHEADER lpThisBitmapInfoHeader)
{
	// displayMyResults: Displays results of doMyImageProcessing() in the videoport
	// Notes: StretchDIBits stretches a device-independent bitmap to the appropriate size

	CDC				*pDC;	// Device context to display bitmap data
	
	pDC = GetDC();	
	int nOldMode = SetStretchBltMode(pDC->GetSafeHdc(),COLORONCOLOR);

	StretchDIBits( 
		pDC->GetSafeHdc(),
		m_rectForProcessedView.left,				// videoportal left-most coordinate
		m_rectForProcessedView.top,					// videoportal top-most coordinate
		m_rectForProcessedView.Width(),				// videoportal width
		m_rectForProcessedView.Height(),			// videoportal height
		0,											// Row position to display bitmap in videoportal
		0,											// Col position to display bitmap in videoportal
		lpThisBitmapInfoHeader->biWidth,			// m_destinationBmp's number of columns
		lpThisBitmapInfoHeader->biHeight,			// m_destinationBmp's number of rows
		m_destinationBmp,							// The bitmap to display; use the one resulting from doMyImageProcessing
		(BITMAPINFO*)m_destinationBitmapInfoHeader, // The bitmap's header info e.g. width, height, number of bits etc
		DIB_RGB_COLORS,								// Use default 24-bit color table
		SRCCOPY										// Just display
	);
 
	SetStretchBltMode(pDC->GetSafeHdc(),nOldMode);

	ReleaseDC(pDC);

	// Note: 04/24/02 - Added the following:
	// Christopher Wagner cwagner@fas.harvard.edu noticed that memory wasn't being freed

	// Recall OnPortalNotificationProcessedview, which gets called everytime
	// a frame of data arrives, performs 3 steps:
	// (1) grayScaleTheFrameData - which mallocs m_destinationBmp
	// (2) doMyImageProcesing
	// (3) displayMyResults - which we're in now
	// Since we're finished with the memory we malloc'ed for m_destinationBmp
	// we should free it: 
	
	free(m_destinationBmp);

	// End of adds
}

void CTripodDlg::grayScaleTheFrameData(LPBITMAPINFOHEADER lpThisBitmapInfoHeader, LPBYTE lpThisBitmapPixelData)
{

	// grayScaleTheFrameData: Called by CTripodDlg::OnPortalNotificationBinaryview
	// Task: Read current frame pixel data and computes a grayscale version

	unsigned int	W, H;			  // Width and Height of current frame [pixels]
	BYTE            *sourceBmp;		  // Pointer to current frame of data
	unsigned int    row, col;
	unsigned long   i;
	BYTE			grayValue;

	BYTE			redValue;
	BYTE			greenValue;
	BYTE			blueValue;

    W = lpThisBitmapInfoHeader->biWidth;  // biWidth: number of columns
    H = lpThisBitmapInfoHeader->biHeight; // biHeight: number of rows

	// Store pixel data in row-column vector format
	// Recall that each pixel requires 3 bytes (red, blue and green bytes)
	// m_destinationBmp is a protected member and declared in binarizeDlg.h

	m_destinationBmp = (BYTE*)malloc(H*3*W*sizeof(BYTE));

	// Point to the current frame's pixel data
	sourceBmp = lpThisBitmapPixelData;

	for (row = 0; row < H; row++) {
		for (col = 0; col < W; col++) { // Recall each pixel is composed of 3 bytes i = (unsigned long)(row*3*W + 3*col); // The source pixel has a blue, green andred value: blueValue = *(sourceBmp + i); greenValue = *(sourceBmp + i + 1); redValue = *(sourceBmp + i + 2); // A standard equation for computing a grayscale value based on RGB values grayValue = (BYTE)(0.299*redValue + 0.587*greenValue + 0.114*blueValue); // The destination BMP will be a grayscale version of the source BMP *(m_destinationBmp + i) = grayValue; *(m_destinationBmp + i + 1) = grayValue; *(m_destinationBmp + i + 2) = grayValue; } } } void CTripodDlg::doMyImageProcessing(LPBITMAPINFOHEADER lpThisBitmapInfoHeader) { // doMyImageProcessing: This is where you'd write your own image processing code // Task: Read a pixel's grayscale value and process accordingly unsigned int W, H; // Width and Height of current frame [pixels] unsigned int row, col; // Pixel's row and col positions unsigned long i; // Dummy variable for row-column vector int upperThreshold = 60; // Gradient strength nessicary to start edge int lowerThreshold = 30; // Minimum gradient strength to continue edge unsigned long iOffset; // Variable to offset row-column vector during sobel mask int rowOffset; // Row offset from the current pixel int colOffset; // Col offset from the current pixel int rowTotal = 0; // Row position of offset pixel int colTotal = 0; // Col position of offset pixel int Gx; // Sum of Sobel mask products values in the x direction int Gy; // Sum of Sobel mask products values in the y direction float thisAngle; // Gradient direction based on Gx and Gy int newAngle; // Approximation of the gradient direction bool edgeEnd; // Stores whether or not the edge is at the edge of the possible image int GxMask[3][3]; // Sobel mask in the x direction int GyMask[3][3]; // Sobel mask in the y direction int newPixel; // Sum pixel values for gaussian int gaussianMask[5][5]; // Gaussian mask W = lpThisBitmapInfoHeader->biWidth;  // biWidth: number of columns
    H = lpThisBitmapInfoHeader->biHeight; // biHeight: number of rows
	
	for (row = 0; row < H; row++) {
		for (col = 0; col < W; col++) {
			edgeDir[row][col] = 0;
		}
	}

	/* Declare Sobel masks */
	GxMask[0][0] = -1; GxMask[0][1] = 0; GxMask[0][2] = 1;
	GxMask[1][0] = -2; GxMask[1][1] = 0; GxMask[1][2] = 2;
	GxMask[2][0] = -1; GxMask[2][1] = 0; GxMask[2][2] = 1;
	
	GyMask[0][0] =  1; GyMask[0][1] =  2; GyMask[0][2] =  1;
	GyMask[1][0] =  0; GyMask[1][1] =  0; GyMask[1][2] =  0;
	GyMask[2][0] = -1; GyMask[2][1] = -2; GyMask[2][2] = -1;

	/* Declare Gaussian mask */
	gaussianMask[0][0] = 2;		gaussianMask[0][1] = 4;		gaussianMask[0][2] = 5;		gaussianMask[0][3] = 4;		gaussianMask[0][4] = 2;	
	gaussianMask[1][0] = 4;		gaussianMask[1][1] = 9;		gaussianMask[1][2] = 12;	gaussianMask[1][3] = 9;		gaussianMask[1][4] = 4;	
	gaussianMask[2][0] = 5;		gaussianMask[2][1] = 12;	gaussianMask[2][2] = 15;	gaussianMask[2][3] = 12;	gaussianMask[2][4] = 2;	
	gaussianMask[3][0] = 4;		gaussianMask[3][1] = 9;		gaussianMask[3][2] = 12;	gaussianMask[3][3] = 9;		gaussianMask[3][4] = 4;	
	gaussianMask[4][0] = 2;		gaussianMask[4][1] = 4;		gaussianMask[4][2] = 5;		gaussianMask[4][3] = 4;		gaussianMask[4][4] = 2;	
	

	/* Gaussian Blur */
	for (row = 2; row < H-2; row++) {
		for (col = 2; col < W-2; col++) {
			newPixel = 0;
			for (rowOffset=-2; rowOffset<=2; rowOffset++) {
				for (colOffset=-2; colOffset<=2; colOffset++) {
					rowTotal = row + rowOffset;
					colTotal = col + colOffset;
					iOffset = (unsigned long)(rowTotal*3*W + colTotal*3);
					newPixel += (*(m_destinationBmp + iOffset)) * gaussianMask[2 + rowOffset][2 + colOffset];
				}
			}
			i = (unsigned long)(row*3*W + col*3);
			*(m_destinationBmp + i) = newPixel / 159;
		}
	}

	/* Determine edge directions and gradient strengths */
	for (row = 1; row < H-1; row++) {
		for (col = 1; col < W-1; col++) {
			i = (unsigned long)(row*3*W + 3*col);
			Gx = 0;
			Gy = 0;
			/* Calculate the sum of the Sobel mask times the nine surrounding pixels in the x and y direction */
			for (rowOffset=-1; rowOffset<=1; rowOffset++) {
				for (colOffset=-1; colOffset<=1; colOffset++) {
					rowTotal = row + rowOffset;
					colTotal = col + colOffset;
					iOffset = (unsigned long)(rowTotal*3*W + colTotal*3);
					Gx = Gx + (*(m_destinationBmp + iOffset) * GxMask[rowOffset + 1][colOffset + 1]);
					Gy = Gy + (*(m_destinationBmp + iOffset) * GyMask[rowOffset + 1][colOffset + 1]);
				}
			}

			gradient[row][col] = sqrt(pow(Gx,2.0) + pow(Gy,2.0));	// Calculate gradient strength			
			thisAngle = (atan2(Gx,Gy)/3.14159) * 180.0;		// Calculate actual direction of edge
			
			/* Convert actual edge direction to approximate value */
			if ( ( (thisAngle < 22.5) && (thisAngle > -22.5) ) || (thisAngle > 157.5) || (thisAngle < -157.5) ) newAngle = 0; if ( ( (thisAngle > 22.5) && (thisAngle < 67.5) ) || ( (thisAngle < -112.5) && (thisAngle > -157.5) ) )
				newAngle = 45;
			if ( ( (thisAngle > 67.5) && (thisAngle < 112.5) ) || ( (thisAngle < -67.5) && (thisAngle > -112.5) ) )
				newAngle = 90;
			if ( ( (thisAngle > 112.5) && (thisAngle < 157.5) ) || ( (thisAngle < -22.5) && (thisAngle > -67.5) ) )
				newAngle = 135;
				
			edgeDir[row][col] = newAngle;		// Store the approximate edge direction of each pixel in one array
		}
	}

	/* Trace along all the edges in the image */
	for (row = 1; row < H - 1; row++) {
		for (col = 1; col < W - 1; col++) { edgeEnd = false; if (gradient[row][col] > upperThreshold) {		// Check to see if current pixel has a high enough gradient strength to be part of an edge
				/* Switch based on current pixel's edge direction */
				switch (edgeDir[row][col]){		
					case 0:
						findEdge(0, 1, row, col, 0, lowerThreshold);
						break;
					case 45:
						findEdge(1, 1, row, col, 45, lowerThreshold);
						break;
					case 90:
						findEdge(1, 0, row, col, 90, lowerThreshold);
						break;
					case 135:
						findEdge(1, -1, row, col, 135, lowerThreshold);
						break;
					default :
						i = (unsigned long)(row*3*W + 3*col);
						*(m_destinationBmp + i) = 
						*(m_destinationBmp + i + 1) = 
						*(m_destinationBmp + i + 2) = 0;
						break;
					}
				}
			else {
				i = (unsigned long)(row*3*W + 3*col);
					*(m_destinationBmp + i) = 
					*(m_destinationBmp + i + 1) = 
					*(m_destinationBmp + i + 2) = 0;
			}	
		}
	}
	
	/* Suppress any pixels not changed by the edge tracing */
	for (row = 0; row < H; row++) {
		for (col = 0; col < W; col++) {	
			// Recall each pixel is composed of 3 bytes
			i = (unsigned long)(row*3*W + 3*col);
			// If a pixel's grayValue is not black or white make it black
			if( ((*(m_destinationBmp + i) != 255) && (*(m_destinationBmp + i) != 0)) || ((*(m_destinationBmp + i + 1) != 255) && (*(m_destinationBmp + i + 1) != 0)) || ((*(m_destinationBmp + i + 2) != 255) && (*(m_destinationBmp + i + 2) != 0)) ) 
				*(m_destinationBmp + i) = 
				*(m_destinationBmp + i + 1) = 
				*(m_destinationBmp + i + 2) = 0; // Make pixel black
		}
	}

	/* Non-maximum Suppression */
	for (row = 1; row < H - 1; row++) {
		for (col = 1; col < W - 1; col++) {
			i = (unsigned long)(row*3*W + 3*col);
			if (*(m_destinationBmp + i) == 255) {		// Check to see if current pixel is an edge
				/* Switch based on current pixel's edge direction */
				switch (edgeDir[row][col]) {		
					case 0:
						suppressNonMax( 1, 0, row, col, 0, lowerThreshold);
						break;
					case 45:
						suppressNonMax( 1, -1, row, col, 45, lowerThreshold);
						break;
					case 90:
						suppressNonMax( 0, 1, row, col, 90, lowerThreshold);
						break;
					case 135:
						suppressNonMax( 1, 1, row, col, 135, lowerThreshold);
						break;
					default :
						break;
				}
			}	
		}
	}
	
}

void CTripodDlg::findEdge(int rowShift, int colShift, int row, int col, int dir, int lowerThreshold)
{
	int W = 320;
	int H = 240;
	int newRow;
	int newCol;
	unsigned long i;
	bool edgeEnd = false;

	/* Find the row and column values for the next possible pixel on the edge */
	if (colShift < 0) { if (col > 0)
			newCol = col + colShift;
		else
			edgeEnd = true;
	} else if (col < W - 1) {
		newCol = col + colShift;
	} else
		edgeEnd = true;		// If the next pixel would be off image, don't do the while loop
	if (rowShift < 0) { if (row > 0)
			newRow = row + rowShift;
		else
			edgeEnd = true;
	} else if (row < H - 1) { newRow = row + rowShift; } else edgeEnd = true; /* Determine edge directions and gradient strengths */ while ( (edgeDir[newRow][newCol]==dir) && !edgeEnd && (gradient[newRow][newCol] > lowerThreshold) ) {
		/* Set the new pixel as white to show it is an edge */
		i = (unsigned long)(newRow*3*W + 3*newCol);
		*(m_destinationBmp + i) =
		*(m_destinationBmp + i + 1) =
		*(m_destinationBmp + i + 2) = 255;
		if (colShift < 0) { if (newCol > 0)
				newCol = newCol + colShift;
			else
				edgeEnd = true;	
		} else if (newCol < W - 1) {
			newCol = newCol + colShift;
		} else
			edgeEnd = true;	
		if (rowShift < 0) { if (newRow > 0)
				newRow = newRow + rowShift;
			else
				edgeEnd = true;
		} else if (newRow < H - 1) {
			newRow = newRow + rowShift;
		} else
			edgeEnd = true;	
	}	
}

void CTripodDlg::suppressNonMax(int rowShift, int colShift, int row, int col, int dir, int lowerThreshold)
{
	int W = 320;
	int H = 240;
	int newRow = 0;
	int newCol = 0;
	unsigned long i;
	bool edgeEnd = false;
	float nonMax[320][3];			// Temporarily stores gradients and positions of pixels in parallel edges
	int pixelCount = 0;					// Stores the number of pixels in parallel edges
	int count;						// A for loop counter
	int max[3];						// Maximum point in a wide edge
	
	if (colShift < 0) { if (col > 0)
			newCol = col + colShift;
		else
			edgeEnd = true;
	} else if (col < W - 1) {
		newCol = col + colShift;
	} else
		edgeEnd = true;		// If the next pixel would be off image, don't do the while loop
	if (rowShift < 0) { if (row > 0)
			newRow = row + rowShift;
		else
			edgeEnd = true;
	} else if (row < H - 1) {
		newRow = row + rowShift;
	} else
		edgeEnd = true;	
	i = (unsigned long)(newRow*3*W + 3*newCol);
	/* Find non-maximum parallel edges tracing up */
	while ((edgeDir[newRow][newCol] == dir) && !edgeEnd && (*(m_destinationBmp + i) == 255)) {
		if (colShift < 0) { if (newCol > 0)
				newCol = newCol + colShift;
			else
				edgeEnd = true;	
		} else if (newCol < W - 1) {
			newCol = newCol + colShift;
		} else
			edgeEnd = true;	
		if (rowShift < 0) { if (newRow > 0)
				newRow = newRow + rowShift;
			else
				edgeEnd = true;
		} else if (newRow < H - 1) {
			newRow = newRow + rowShift;
		} else
			edgeEnd = true;	
		nonMax[pixelCount][0] = newRow;
		nonMax[pixelCount][1] = newCol;
		nonMax[pixelCount][2] = gradient[newRow][newCol];
		pixelCount++;
		i = (unsigned long)(newRow*3*W + 3*newCol);
	}

	/* Find non-maximum parallel edges tracing down */
	edgeEnd = false;
	colShift *= -1;
	rowShift *= -1;
	if (colShift < 0) { if (col > 0)
			newCol = col + colShift;
		else
			edgeEnd = true;
	} else if (col < W - 1) {
		newCol = col + colShift;
	} else
		edgeEnd = true;	
	if (rowShift < 0) { if (row > 0)
			newRow = row + rowShift;
		else
			edgeEnd = true;
	} else if (row < H - 1) {
		newRow = row + rowShift;
	} else
		edgeEnd = true;	
	i = (unsigned long)(newRow*3*W + 3*newCol);
	while ((edgeDir[newRow][newCol] == dir) && !edgeEnd && (*(m_destinationBmp + i) == 255)) {
		if (colShift < 0) { if (newCol > 0)
				newCol = newCol + colShift;
			else
				edgeEnd = true;	
		} else if (newCol < W - 1) {
			newCol = newCol + colShift;
		} else
			edgeEnd = true;	
		if (rowShift < 0) { if (newRow > 0)
				newRow = newRow + rowShift;
			else
				edgeEnd = true;
		} else if (newRow < H - 1) {
			newRow = newRow + rowShift;
		} else
			edgeEnd = true;	
		nonMax[pixelCount][0] = newRow;
		nonMax[pixelCount][1] = newCol;
		nonMax[pixelCount][2] = gradient[newRow][newCol];
		pixelCount++;
		i = (unsigned long)(newRow*3*W + 3*newCol);
	}

	/* Suppress non-maximum edges */
	max[0] = 0;
	max[1] = 0;
	max[2] = 0;
	for (count = 0; count < pixelCount; count++) { if (nonMax[count][2] > max[2]) {
			max[0] = nonMax[count][0];
			max[1] = nonMax[count][1];
			max[2] = nonMax[count][2];
		}
	}
	for (count = 0; count < pixelCount; count++) {
		i = (unsigned long)(nonMax[count][0]*3*W + 3*nonMax[count][1]);
		*(m_destinationBmp + i) = 
		*(m_destinationBmp + i + 1) = 
		*(m_destinationBmp + i + 2) = 0;
	}
}

الگوریتم Canny در سی پلاس پلاس قسمت 1
الگوریتم Canny در سی پلاس پلاس قسمت 2
الگوریتم Canny در سی پلاس پلاس قسمت 3
الگوریتم Canny در سی پلاس پلاس فسمت 4

الگوریتم Canny

لبه یاب کنی توسط جان اف کنی در سال 1986 ایجاد شد و هنوز یک لبه یاب استاندارد و با دقت و کیفیت بالا میباشد.الگوریتم لبه یابی کنی یکی از بهترین لبه یابها تا به امروز است. در ادامه روش کار این الگوریتم و هم چنین کد الگوریتم Canny در C را بررسی خواهیم کرد. این الگوریتم لبه یابی از سه بخش اصلی زیر تشکیل شده است:

  • تضعیف نویز
  • پیدا کردن نقاطی که بتوان آنها را به عنوان لبه در نظر گرفت
  • جذب نقاطی که احتمال لبه بودن آنها کم است

 

معیارهایی که در لبه یاب کنی مطرح می باشد:
1 -پایین آوردن نرخ خطا- یعنی تا حد امکان هیچ لبه ای در تصویر نباید گم شود و هم چنین هیچ چیزی که لبه نیست نباید به جای لبه فرض شود. لبه هان پیدا شده تا حد ممکن به لبه ها اصلی
نزدیک باشند.

2 -لبه در مکان واقعی خود باشد- یعنی تا حد ممکن لبه ها کمترین فاصله را با مکان واقعی خود داشته باشند.
3 -بران هر لبه فقط یک پاسخ داشته باشیم.

4 -لبه ها کمترین ضخامت را داشته باشند- (در صورت امکان یک پیکسل).
لبه یاب کنی بخاطر توانایی در تولید لبه های نازک تا حد یک ییکسل برای لبه های پیوسته معروف شده است. این لبه یاب شامل چهار مرحله و چهار ورودی زیر است:
یک تصویر ورودی
یک پارامتر به نام سیگما جهت مقدار نرم کنندگی تصویر
یک حد آستانه بالا (Th)
یک حد آستانه پایین (Tl)

 

مراحل الگوریتم Canny:

1- در ابتدا باید تصویر رنگی را به جهت لبه یابی بهتر به یک تصویر سطح خاکسترن تبدیب کرد.

2- نویز را از تصویر دریافتی حذف کرد. بدلیل اینکه فیلتر گاوسین از یک ماسک ساده برای حذف نویز استفاده می کند لبه یاب کنی در مرحله اول برای حذف نویز آن را بکار می گیرد.

3- در یک تصویر سطح خاکستر جایی را که بیشترین تغییرات را داشته باشند به عنوان لبه در نظر گرفته می شوند و این مکانها با گرفتن گرادیان تصویر با استفاده عملگر سوبل بدست می آیند. سپس لبه های مات یافت شده به لبه های تیزتر تبدیل می شوند.

4- برخی از لبه های کشف شده واقعا لبه نیستند و در واقع نویز هستند که باید آنها توسط حد آستانه هیسترزیس فیلتر شوند.هیسترزیس از دو حد آستانه بالاتر (Th) و حد آستانه پایین تر (Tl) استفاده کرده و کنی پیشنهاد می کند که نسبت استانه بالا به پایین سه به یک باشد.

 این روش بیشتر به کشف لبه های ضعیف به درستی می پردازد و کمتر فریب نویز را می خورد و از بقیه روش ها بهتر است.

 

الگوریتم Canny    عملکرد الگوریتم Canny

 

 

کد الگوریتم Canny در C :

برنامه زیر یک فایل BMP سیاه و سفید 8 بیت در هر پیکسل را می خواند و نتیجه را در ‘out.bmp’ ذخیره می کند.با `-lm ‘ کامپایل می شود.

 

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <float.h>
#include <math.h>
#include <string.h>
#include <stdbool.h>
#include <assert.h>
 
#define MAX_BRIGHTNESS 255
 
// C99 doesn't define M_PI (GNU-C99 does)
#define M_PI 3.14159265358979323846264338327
 
/*
 * Loading part taken from
 * http://www.vbforums.com/showthread.php?t=261522
 * BMP info:
 * http://en.wikipedia.org/wiki/BMP_file_format
 *
 * Note: the magic number has been removed from the bmpfile_header_t
 * structure since it causes alignment problems
 * bmpfile_magic_t should be written/read first
 * followed by the
 * bmpfile_header_t
 * [this avoids compiler-specific alignment pragmas etc.]
 */
 
typedef struct {
 uint8_t magic[2];
} bmpfile_magic_t;
 
typedef struct {
 uint32_t filesz;
 uint16_t creator1;
 uint16_t creator2;
 uint32_t bmp_offset;
} bmpfile_header_t;
 
typedef struct {
 uint32_t header_sz;
 int32_t width;
 int32_t height;
 uint16_t nplanes;
 uint16_t bitspp;
 uint32_t compress_type;
 uint32_t bmp_bytesz;
 int32_t hres;
 int32_t vres;
 uint32_t ncolors;
 uint32_t nimpcolors;
} bitmap_info_header_t;
 
typedef struct {
 uint8_t r;
 uint8_t g;
 uint8_t b;
 uint8_t nothing;
} rgb_t;
 
// Use short int instead `unsigned char' so that we can
// store negative values.
typedef short int pixel_t;
 
pixel_t *load_bmp(const char *filename,
 bitmap_info_header_t *bitmapInfoHeader)
{
 FILE *filePtr = fopen(filename, "rb");
 if (filePtr == NULL) {
 perror("fopen()");
 return NULL;
 }
 
 bmpfile_magic_t mag;
 if (fread(&mag, sizeof(bmpfile_magic_t), 1, filePtr) != 1) {
 fclose(filePtr);
 return NULL;
 }
 
 // verify that this is a bmp file by check bitmap id
 // warning: dereferencing type-punned pointer will break
 // strict-aliasing rules [-Wstrict-aliasing]
 if (*((uint16_t*)mag.magic) != 0x4D42) {
 fprintf(stderr, "Not a BMP file: magic=%c%c\n",
 mag.magic[0], mag.magic[1]);
 fclose(filePtr);
 return NULL;
 }
 
 bmpfile_header_t bitmapFileHeader; // our bitmap file header
 // read the bitmap file header
 if (fread(&bitmapFileHeader, sizeof(bmpfile_header_t),
 1, filePtr) != 1) {
 fclose(filePtr);
 return NULL;
 }
 
 // read the bitmap info header
 if (fread(bitmapInfoHeader, sizeof(bitmap_info_header_t),
 1, filePtr) != 1) {
 fclose(filePtr);
 return NULL;
 }
 
 if (bitmapInfoHeader->compress_type != 0)
 fprintf(stderr, "Warning, compression is not supported.\n");
 
 // move file point to the beginning of bitmap data
 if (fseek(filePtr, bitmapFileHeader.bmp_offset, SEEK_SET)) {
 fclose(filePtr);
 return NULL;
 }
 
 // allocate enough memory for the bitmap image data
 pixel_t *bitmapImage = malloc(bitmapInfoHeader->bmp_bytesz *
 sizeof(pixel_t));
 
 // verify memory allocation
 if (bitmapImage == NULL) {
 fclose(filePtr);
 return NULL;
 }
 
 // read in the bitmap image data
 size_t pad, count=0;
 unsigned char c;
 pad = 4*ceil(bitmapInfoHeader->bitspp*bitmapInfoHeader->width/32.) - bitmapInfoHeader->width;
 for(size_t i=0; i<bitmapInfoHeader->height; i++){
 for(size_t j=0; j<bitmapInfoHeader->width; j++){
 if (fread(&c, sizeof(unsigned char), 1, filePtr) != 1) {
 fclose(filePtr);
 return NULL;
 }
 bitmapImage[count++] = (pixel_t) c;
 }
 fseek(filePtr, pad, SEEK_CUR);
 }
 
 // If we were using unsigned char as pixel_t, then:
 // fread(bitmapImage, 1, bitmapInfoHeader->bmp_bytesz, filePtr);
 
 // close file and return bitmap image data
 fclose(filePtr);
 return bitmapImage;
}
 
// Return: true on error.
bool save_bmp(const char *filename, const bitmap_info_header_t *bmp_ih,
 const pixel_t *data)
{
 FILE* filePtr = fopen(filename, "wb");
 if (filePtr == NULL)
 return true;
 
 bmpfile_magic_t mag = {{0x42, 0x4d}};
 if (fwrite(&mag, sizeof(bmpfile_magic_t), 1, filePtr) != 1) {
 fclose(filePtr);
 return true;
 }
 
 const uint32_t offset = sizeof(bmpfile_magic_t) +
 sizeof(bmpfile_header_t) +
 sizeof(bitmap_info_header_t) +
 ((1U << bmp_ih->bitspp) * 4);
 
 const bmpfile_header_t bmp_fh = {
 .filesz = offset + bmp_ih->bmp_bytesz,
 .creator1 = 0,
 .creator2 = 0,
 .bmp_offset = offset
 };
 
 if (fwrite(&bmp_fh, sizeof(bmpfile_header_t), 1, filePtr) != 1) {
 fclose(filePtr);
 return true;
 }
 if (fwrite(bmp_ih, sizeof(bitmap_info_header_t), 1, filePtr) != 1) {
 fclose(filePtr);
 return true;
 }
 
 // Palette
 for (size_t i = 0; i < (1U << bmp_ih->bitspp); i++) {
 const rgb_t color = {(uint8_t)i, (uint8_t)i, (uint8_t)i};
 if (fwrite(&color, sizeof(rgb_t), 1, filePtr) != 1) {
 fclose(filePtr);
 return true;
 }
 }
 
 // We use int instead of uchar, so we can't write img
 // in 1 call any more.
 // fwrite(data, 1, bmp_ih->bmp_bytesz, filePtr);
 
 // Padding: http://en.wikipedia.org/wiki/BMP_file_format#Pixel_storage
 size_t pad = 4*ceil(bmp_ih->bitspp*bmp_ih->width/32.) - bmp_ih->width;
 unsigned char c;
 for(size_t i=0; i < bmp_ih->height; i++) {
 for(size_t j=0; j < bmp_ih->width; j++) {
 c = (unsigned char) data[j + bmp_ih->width*i];
 if (fwrite(&c, sizeof(char), 1, filePtr) != 1) {
 fclose(filePtr);
 return true;
 }
 }
 c = 0;
 for(size_t j=0; j<pad; j++)
 if (fwrite(&c, sizeof(char), 1, filePtr) != 1) {
 fclose(filePtr);
 return true;
 }
 }
 
 fclose(filePtr);
 return false;
}
 
// if normalize is true, map pixels to range 0..MAX_BRIGHTNESS
void convolution(const pixel_t *in, pixel_t *out, const float *kernel,
 const int nx, const int ny, const int kn,
 const bool normalize)
{
 assert(kn % 2 == 1);
 assert(nx > kn && ny > kn);
 const int khalf = kn / 2;
 float min = FLT_MAX, max = -FLT_MAX;
 
 if (normalize)
 for (int m = khalf; m < nx - khalf; m++)
 for (int n = khalf; n < ny - khalf; n++) {
 float pixel = 0.0;
 size_t c = 0;
 for (int j = -khalf; j <= khalf; j++)
 for (int i = -khalf; i <= khalf; i++) {
 pixel += in[(n - j) * nx + m - i] * kernel;
 c++;
 }
 if (pixel < min)
 min = pixel;
 if (pixel > max)
 max = pixel;
 }
 
 for (int m = khalf; m < nx - khalf; m++)
 for (int n = khalf; n < ny - khalf; n++) {
 float pixel = 0.0;
 size_t c = 0;
 for (int j = -khalf; j <= khalf; j++)
 for (int i = -khalf; i <= khalf; i++) {
 pixel += in[(n - j) * nx + m - i] * kernel;
 c++;
 }
 
 if (normalize)
 pixel = MAX_BRIGHTNESS * (pixel - min) / (max - min);
 out[n * nx + m] = (pixel_t)pixel;
 }
}
 
/*
 * gaussianFilter:
 * http://www.songho.ca/dsp/cannyedge/cannyedge.html
 * determine size of kernel (odd #)
 * 0.0 <= sigma < 0.5 : 3
 * 0.5 <= sigma < 1.0 : 5
 * 1.0 <= sigma < 1.5 : 7
 * 1.5 <= sigma < 2.0 : 9
 * 2.0 <= sigma < 2.5 : 11
 * 2.5 <= sigma < 3.0 : 13 ...
 * kernelSize = 2 * int(2*sigma) + 3;
 */
void gaussian_filter(const pixel_t *in, pixel_t *out,
 const int nx, const int ny, const float sigma)
{
 const int n = 2 * (int)(2 * sigma) + 3;
 const float mean = (float)floor(n / 2.0);
 float kernel[n * n]; // variable length array
 
 fprintf(stderr, "gaussian_filter: kernel size %d, sigma=%g\n",
 n, sigma);
 size_t c = 0;
 for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++) {
 kernel = exp(-0.5 * (pow((i - mean) / sigma, 2.0) +
 pow((j - mean) / sigma, 2.0)))
 / (2 * M_PI * sigma * sigma);
 c++;
 }
 
 convolution(in, out, kernel, nx, ny, n, true);
}
 
/*
 * Links:
 * http://en.wikipedia.org/wiki/Canny_edge_detector
 * http://www.tomgibara.com/computer-vision/CannyEdgeDetector.java
 * http://fourier.eng.hmc.edu/e161/lectures/canny/node1.html
 * http://www.songho.ca/dsp/cannyedge/cannyedge.html
 *
 * Note: T1 and T2 are lower and upper thresholds.
 */
pixel_t *canny_edge_detection(const pixel_t *in,
 const bitmap_info_header_t *bmp_ih,
 const int tmin, const int tmax,
 const float sigma)
{
 const int nx = bmp_ih->width;
 const int ny = bmp_ih->height;
 
 pixel_t *G = calloc(nx * ny * sizeof(pixel_t), 1);
 pixel_t *after_Gx = calloc(nx * ny * sizeof(pixel_t), 1);
 pixel_t *after_Gy = calloc(nx * ny * sizeof(pixel_t), 1);
 pixel_t *nms = calloc(nx * ny * sizeof(pixel_t), 1);
 pixel_t *out = malloc(bmp_ih->bmp_bytesz * sizeof(pixel_t));
 
 if (G == NULL || after_Gx == NULL || after_Gy == NULL ||
 nms == NULL || out == NULL) {
 fprintf(stderr, "canny_edge_detection:"
 " Failed memory allocation(s).\n");
 exit(1);
 }
 
 gaussian_filter(in, out, nx, ny, sigma);
 
 const float Gx[] = {-1, 0, 1,
 -2, 0, 2,
 -1, 0, 1};
 
 convolution(out, after_Gx, Gx, nx, ny, 3, false);
 
 const float Gy[] = { 1, 2, 1,
 0, 0, 0,
 -1,-2,-1};
 
 convolution(out, after_Gy, Gy, nx, ny, 3, false);
 
 for (int i = 1; i < nx - 1; i++)
 for (int j = 1; j < ny - 1; j++) {
 const int c = i + nx * j;
 // G = abs(after_Gx) + abs(after_Gy);
 G = (pixel_t)hypot(after_Gx, after_Gy);
 }
 
 // Non-maximum suppression, straightforward implementation.
 for (int i = 1; i < nx - 1; i++)
 for (int j = 1; j < ny - 1; j++) {
 const int c = i + nx * j;
 const int nn = c - nx;
 const int ss = c + nx;
 const int ww = c + 1;
 const int ee = c - 1;
 const int nw = nn + 1;
 const int ne = nn - 1;
 const int sw = ss + 1;
 const int se = ss - 1;
 
 const float dir = (float)(fmod(atan2(after_Gy,
 after_Gx) + M_PI,
 M_PI) / M_PI) * 8;
 
 if (((dir <= 1 || dir > 7) && G > G[ee] &&
 G > G[ww]) || // 0 deg
 ((dir > 1 && dir <= 3) && G > G[nw] &&
 G > G[se]) || // 45 deg
 ((dir > 3 && dir <= 5) && G > G[nn] &&
 G > G[ss]) || // 90 deg
 ((dir > 5 && dir <= 7) && G > G[ne] &&
 G > G[sw])) // 135 deg
 nms = G;
 else
 nms = 0;
 }
 
 // Reuse array
 // used as a stack. nx*ny/2 elements should be enough.
 int *edges = (int*) after_Gy;
 memset(out, 0, sizeof(pixel_t) * nx * ny);
 memset(edges, 0, sizeof(pixel_t) * nx * ny);
 
 // Tracing edges with hysteresis . Non-recursive implementation.
 size_t c = 1;
 for (int j = 1; j < ny - 1; j++)
 for (int i = 1; i < nx - 1; i++) {
 if (nms >= tmax && out == 0) { // trace edges
 out = MAX_BRIGHTNESS;
 int nedges = 1;
 edges[0] = c;
 
 do {
 nedges--;
 const int t = edges[nedges];
 
 int nbs[8]; // neighbours
 nbs[0] = t - nx; // nn
 nbs[1] = t + nx; // ss
 nbs[2] = t + 1; // ww
 nbs[3] = t - 1; // ee
 nbs[4] = nbs[0] + 1; // nw
 nbs[5] = nbs[0] - 1; // ne
 nbs[6] = nbs[1] + 1; // sw
 nbs[7] = nbs[1] - 1; // se
 
 for (int k = 0; k < 8; k++)
 if (nms[nbs[k]] >= tmin && out[nbs[k]] == 0) {
 out[nbs[k]] = MAX_BRIGHTNESS;
 edges[nedges] = nbs[k];
 nedges++;
 }
 } while (nedges > 0);
 }
 c++;
 }
 
 free(after_Gx);
 free(after_Gy);
 free(G);
 free(nms);
 
 return out;
}
 
int main(const int argc, const char ** const argv)
{
 if (argc < 2) {
 printf("Usage: %s image.bmp\n", argv[0]);
 return 1;
 }
 
 static bitmap_info_header_t ih;
 const pixel_t *in_bitmap_data = load_bmp(argv[1], &ih);
 if (in_bitmap_data == NULL) {
 fprintf(stderr, "main: BMP image not loaded.\n");
 return 1;
 }
 
 printf("Info: %d x %d x %d\n", ih.width, ih.height, ih.bitspp);
 
 const pixel_t *out_bitmap_data =
 canny_edge_detection(in_bitmap_data, &ih, 45, 50, 1.0f);
 if (out_bitmap_data == NULL) {
 fprintf(stderr, "main: failed canny_edge_detection.\n");
 return 1;
 }
 
 if (save_bmp("out.bmp", &ih, out_bitmap_data)) {
 fprintf(stderr, "main: BMP image not saved.\n");
 return 1;
 }
 
 free((pixel_t*)in_bitmap_data);
 free((pixel_t*)out_bitmap_data);
 return 0;
}

 

دانلود کد فوق از طریق لینک زیر:

Canny in C

رمز فایل : behsanandish.com

الگوریتم Canny

لبه یاب کنی توسط جان اف کنی در سال 1986 ایجاد شد و هنوز یک لبه یاب استاندارد و با دقت و کیفیت بالا میباشد.الگوریتم لبه یابی کنی یکی از بهترین لبه یابها تا به امروز است. در ادامه روش کار این الگوریتم و هم چنین کد الگوریتم Canny در OpenCV را بررسی خواهیم کرد. این الگوریتم لبه یابی از سه بخش اصلی زیر تشکیل شده:

  • تضعیف نویز
  • پیدا کردن نقاطی که بتوان آنها را به عنوان لبه در نظر گرفت
  • حذب نقاطی که احتمال لبه بودن آنها کم است

 

معیارهایی که در لبه یاب کنی مطرح است:
1 -پایین آوردن نرخ خطا- یعنی تا حد امکان هیچ لبه ای در تصویر نباید گم شود و هم چنین هیچ چیزی که لبه نیست نباید به جای لبه فرض شود. لبه هان پیدا شده تا حد ممکن به لبه ها اصلی
نزدیک باشند.

2 -لبه در مکان واقعی خود باشد- یعنی تا حد ممکن لبه ها کمترین فاصله را با مکان واقعی خود داشته باشند.
3 -بران هر لبه فقط یک پاسخ داشته باشیم.

4 -لبه ها کمترین ضخامت را داشته باشند- (در صورت امکان یک پیکسل).
لبه یاب کنی بخاطر توانایی در تولید لبه های نازک تا حد یک ییکسل برای لبه های پیوسته معروف شده است. این لبه یاب شامل چهار مرحله و چهار ورودی زیر است:
یک تصویر ورودی
یک پارامتر به نام سیگما جهت مقدار نرم کنندگی تصویر
یک حد آستانه بالا (Th)
یک حد آستانه پایین (Tl)

 

مراحل الگوریتم Canny:

1- در ابتدا باید تصویر رنگی را به جهت لبه یابی بهتر به یک تصویر سطح خاکسترن تبدیب کرد.

2- نویز را از تصویر دریافتی حذف کرد. بدلیل اینکه فیلتر گاوسین از یک ماسک ساده برای حذف نویز استفاده می کند لبه یاب کنی در مرحله اول برای حذف نویز آن را بکار میگیرد.

3- در یک تصویر سطح خاکستر جایی را که بیشترین تغییرات را داشته باشند به عنوان لبه در نظر گرفته می شوند و این مکانها با گرفتن گرادیان تصویر با استفاده عملگر سوبل بدست می آیند. سپس لبه های مات یافت شده به لبه های تیزتر تبدیل می شوند.

4- برخی از لبه های کشف شده واقعا لبه نیستند و در واقع نویز هستند که باید آنها توسط حد آستانه هیسترزیس فیلتر شوند.هیسترزیس از دو حد آستانه بالاتر (Th) و حد آستانه پایین تر (Tl) استفاده کرده و کنی پیشنهاد می کند که نسبت استانه بالا به پایین سه به یک باشد.

 این روش بیشتر به کشف لبه های ضعیف به درستی می پردازد و کمتر فریب نویز را می خورد و از بقیه روش ها بهتر است.

 

 

الگوریتم Canny    عملکرد الگوریتم Canny

 

کد الگوریتم Canny در OpenCV:

 

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <stdlib.h>
#include <stdio.h>

using namespace cv;

/// Global variables

Mat src, src_gray;
Mat dst, detected_edges;

int edgeThresh = 1;
int lowThreshold;
int const max_lowThreshold = 100;
int ratio = 3;
int kernel_size = 3;
char* window_name = "Edge Map";

/**
 * @function CannyThreshold
 * @brief Trackbar callback - Canny thresholds input with a ratio 1:3
 */
void CannyThreshold(int, void*)
{
  /// Reduce noise with a kernel 3x3
  blur( src_gray, detected_edges, Size(3,3) );

  /// Canny detector
  Canny( detected_edges, detected_edges, lowThreshold, lowThreshold*ratio, kernel_size );

  /// Using Canny's output as a mask, we display our result
  dst = Scalar::all(0);

  src.copyTo( dst, detected_edges);
  imshow( window_name, dst );
 }

/** @function main */
int main( int argc, char** argv )
{
  /// Load an image
  src = imread( argv[1] );

  if( !src.data )
  { return -1; }</pre>
<pre>  /// Create a matrix of the same type and size as src (for dst)
  dst.create( src.size(), src.type() );

  /// Convert the image to grayscale
  cvtColor( src, src_gray, CV_BGR2GRAY );

  /// Create a window
  namedWindow( window_name, CV_WINDOW_AUTOSIZE );

  /// Create a Trackbar for user to enter threshold
  createTrackbar( "Min Threshold:", window_name, &lowThreshold, max_lowThreshold, CannyThreshold );

  /// Show the image
  CannyThreshold(0, 0);

  /// Wait until user exit program by pressing a key
  waitKey(0);

  return 0;
  }

 

 

دانلود کد فوق از طریق لینک زیر:

CannyInOpenCV

رمز فایل : behsanandish.com

 

الگوریتم Canny

لبه یاب کنی توسط جان اف کنی در سال 1986 ایجاد شد و هنوز یک لبه یاب استاندارد و با دقت و کیفیت بالا میباشد.الگوریتم لبه یابی کنی یکی از بهترین لبه یابها تا به امروز است. در ادامه روش کار این الگوریتم و هم چنین کد الگوریتم Canny در #C را بررسی خواهیم کرد. این الگوریتم لبه یابی از سه بخش اصلی زیر تشکیل شده:

  • تضعیف نویز
  • پیدا کردن نقاطی که بتوان آنها را به عنوان لبه در نظر گرفت
  • حذب نقاطی که احتمال لبه بودن آنها کم است

 

معیارهایی که در لبه یاب کنی مطرح است:
1 -پایین آوردن نرخ خطا- یعنی تا حد امکان هیچ لبه ای در تصویر نباید گم شود و هم چنین هیچ چیزی که لبه نیست نباید به جای لبه فرض شود. لبه هان پیدا شده تا حد ممکن به لبه ها اصلی
نزدیک باشند.

2 -لبه در مکان واقعی خود باشد- یعنی تا حد ممکن لبه ها کمترین فاصله را با مکان واقعی خود داشته باشند.
3 -بران هر لبه فقط یک پاسخ داشته باشیم.

4 -لبه ها کمترین ضخامت را داشته باشند- (در صورت امکان یک پیکسل).
لبه یاب کنی بخاطر توانایی در تولید لبه های نازک تا حد یک ییکسل برای لبه های پیوسته معروف شده است. این لبه یاب شامل چهار مرحله و چهار ورودی زیر است:
یک تصویر ورودی
یک پارامتر به نام سیگما جهت مقدار نرم کنندگی تصویر
یک حد آستانه بالا (Th)
یک حد آستانه پایین (Tl)

 

مراحل الگوریتم Canny:

1- در ابتدا باید تصویر رنگی را به جهت لبه یابی بهتر به یک تصویر سطح خاکسترن تبدیب کرد.

2- نویز را از تصویر دریافتی حذف کرد. بدلیل اینکه فیلتر گاوسین از یک ماسک ساده برای حذف نویز استفاده می کند لبه یاب کنی در مرحله اول برای حذف نویز آن را بکار میگیرد.

3- در یک تصویر سطح خاکستر جایی را که بیشترین تغییرات را داشته باشند به عنوان لبه در نظر گرفته می شوند و این مکانها با گرفتن گرادیان تصویر با استفاده عملگر سوبل بدست می آیند. سپس لبه های مات یافت شده به لبه های تیزتر تبدیل می شوند.

4- برخی از لبه های کشف شده واقعا لبه نیستند و در واقع نویز هستند که باید آنها توسط حد آستانه هیسترزیس فیلتر شوند.هیسترزیس از دو حد آستانه بالاتر (Th) و حد آستانه پایین تر (Tl) استفاده کرده و کنی پیشنهاد می کند که نسبت استانه بالا به پایین سه به یک باشد.

 این روش بیشتر به کشف لبه های ضعیف به درستی می پردازد و کمتر فریب نویز را می خورد و از بقیه روش ها بهتر است.

 

الگوریتم Canny    عملکرد الگوریتم Canny

 


 

کد الگوریتم Canny در #C:

الگوریتم در 5 مرحله جداگانه اجرا می شود:

1. صاف کردن: تار شدن تصویر برای حذف نویز. پیکربندی توسط فیلتر گاوسی با اندازه مشخص هسته (N) و پارامتر پوشش گاوسی سیگما. پوشاننده فیلتر گاوسی توسط تابع زیر تولید می شود:

private void GenerateGaussianKernel(int N, float S ,out int Weight)
{

float Sigma = S ;
float pi;
pi = (float)Math.PI;
int i, j;
int SizeofKernel=N;

float [,] Kernel = new float [N,N];
GaussianKernel = new int [N,N];
float[,] OP = new float[N, N];
float D1,D2;

D1= 1/(2*pi*Sigma*Sigma);
D2= 2*Sigma*Sigma;

float min=1000;

for (i = -SizeofKernel / 2; i <= SizeofKernel / 2; i++)
{
for (j = -SizeofKernel / 2; j <= SizeofKernel / 2; j++)
{
Kernel[SizeofKernel / 2 + i, SizeofKernel / 2 + j] = ((1 / D1) * (float)Math.Exp(-(i * i + j * j) / D2));
if (Kernel[SizeofKernel / 2 + i, SizeofKernel / 2 + j] < min)
min = Kernel[SizeofKernel / 2 + i, SizeofKernel / 2 + j];

}
}
int mult = (int)(1 / min);
int sum = 0;
if ((min > 0) && (min < 1))
{

for (i = -SizeofKernel / 2; i <= SizeofKernel / 2; i++)
{
for (j = -SizeofKernel / 2; j <= SizeofKernel / 2; j++)
{
Kernel[SizeofKernel / 2 + i, SizeofKernel / 2 + j] = (float)Math.Round(Kernel[SizeofKernel / 2 + i, SizeofKernel / 2 + j] * mult, 0);
GaussianKernel[SizeofKernel / 2 + i, SizeofKernel / 2 + j] = (int)Kernel[SizeofKernel / 2 + i, SizeofKernel / 2 + j];
sum = sum + GaussianKernel[SizeofKernel / 2 + i, SizeofKernel / 2 + j];
}

}

}
else
{
sum = 0;
for (i = -SizeofKernel / 2; i <= SizeofKernel / 2; i++)
{
for (j = -SizeofKernel / 2; j <= SizeofKernel / 2; j++)
{
Kernel[SizeofKernel / 2 + i, SizeofKernel / 2 + j] = (float)Math.Round(Kernel[SizeofKernel / 2 + i, SizeofKernel / 2 + j] , 0);
GaussianKernel[SizeofKernel / 2 + i, SizeofKernel / 2 + j] = (int)Kernel[SizeofKernel / 2 + i, SizeofKernel / 2 + j];
sum = sum + GaussianKernel[SizeofKernel / 2 + i, SizeofKernel / 2 + j];
}

}

}
//Normalizing kernel Weight
Weight= sum;

return;
}

 

زیر روال ذیل نویز را توسط فیلتر گوسی حذف می کند.

 

private int[,] GaussianFilter(int[,] Data)
        {
            GenerateGaussianKernel(KernelSize, Sigma,out KernelWeight);

            int[,] Output = new int[Width, Height];
            int i, j,k,l;
            int Limit = KernelSize /2;

            float Sum=0;

 Output = Data; // Removes Unwanted Data Omission due to kernel bias while convolution

            for (i = Limit; i <= ((Width - 1) - Limit); i++)
            {
                for (j = Limit; j <= ((Height - 1) - Limit); j++)
                {
                    Sum = 0;
                    for (k = -Limit; k <= Limit; k++)
                    {

                       for (l = -Limit; l <= Limit; l++)
                        {
                            Sum = Sum + ((float)Data[i + k, j + l] * GaussianKernel [Limit + k, Limit + l]);                        

                        }
                    }
                    Output[i, j] = (int)(Math.Round(Sum/ (float)KernelWeight));
                }

            }

            return Output;
        }

 

2. پیدا کردن شیب ها: لبه ها باید مشخص شوند، جایی که شیب های تصویر بزرگ می شوند.

ماسک های سوبل  X و Y برای تولید گرادیان های تصویر X و Y استفاده می شود؛ تابع بعدی تمایز را با استفاده از فیلتر ماسک sobel اعمال می کند.

 

private float[,] Differentiate(int[,] Data, int[,] Filter)
        {
            int i, j,k,l, Fh, Fw;

            Fw = Filter.GetLength(0);
            Fh = Filter.GetLength(1);
            float sum = 0;
            float[,] Output = new float[Width, Height];

            for (i = Fw / 2; i <= (Width - Fw / 2) - 1; i++)
            {
                for (j = Fh / 2; j <= (Height  - Fh / 2) - 1; j++)
                {
                  sum=0;
                   for(k=-Fw/2; k<=Fw/2; k++)
                   {
                       for(l=-Fh/2; l<=Fh/2; l++)
                       {
                          sum=sum + Data[i+k,j+l]*Filter[Fw/2+k,Fh/2+l];


                       }
                   }
                    Output[i,j]=sum;

                }

            }
            return Output;

        }

 

3. توقیف غیر حداکثر: فقط حداکثرهای محلی باید به عنوان لبه ها مشخص شود.

ما جهت گرادیان را پیدا می کنیم و با استفاده از این جهت، ما توقیف غیر حداکثر را انجام می دهیم (“پردازش تصویر دیجیتال- آموزش توسط گنزالس-پیرسون ” را بخوانید)

 

// Perform Non maximum suppression:
           // NonMax = Gradient;

            for (i = 0; i <= (Width - 1); i++)
            {
                for (j = 0; j <= (Height - 1); j++)
                {
                    NonMax[i, j] = Gradient[i, j];
                }
            }
     
            int Limit = KernelSize / 2;
            int r, c;
            float Tangent;

                for (i = Limit; i <= (Width - Limit) - 1; i++)
            {
                for (j = Limit; j <= (Height - Limit) - 1; j++)
                {

                    if (DerivativeX[i, j] == 0)
                        Tangent = 90F;
                    else
                        Tangent = (float)(Math.Atan(DerivativeY[i, j] / DerivativeX[i, j]) * 180 / Math.PI); //rad to degree



                    //Horizontal Edge
                    if (((-22.5 < Tangent) && (Tangent <= 22.5)) || ((157.5 < Tangent) && (Tangent <= -157.5)))
                    {
                        if ((Gradient[i, j] < Gradient[i, j + 1]) || (Gradient[i, j] < Gradient[i, j - 1]))
                            NonMax[i, j] = 0;
                    }

                    //Vertical Edge
                    if (((-112.5 < Tangent) && (Tangent <= -67.5)) || ((67.5 < Tangent) && (Tangent <= 112.5)))
                    {
                        if ((Gradient[i, j] < Gradient[i + 1, j]) || (Gradient[i, j] < Gradient[i - 1, j]))
                            NonMax[i, j] = 0;
                    }

                    //+45 Degree Edge
                    if (((-67.5 < Tangent) && (Tangent <= -22.5)) || ((112.5 < Tangent) && (Tangent <= 157.5)))
                    {
                        if ((Gradient[i, j] < Gradient[i + 1, j - 1]) || (Gradient[i, j] < Gradient[i - 1, j + 1]))
                            NonMax[i, j] = 0;
                    }

                    //-45 Degree Edge
                    if (((-157.5 < Tangent) && (Tangent <= -112.5)) || ((67.5 < Tangent) && (Tangent <= 22.5)))
                    {
                        if ((Gradient[i, j] < Gradient[i + 1, j + 1]) || (Gradient[i, j] < Gradient[i - 1, j - 1]))
                            NonMax[i, j] = 0;
                    }

                }

            }

 

4. آستانه دوگانه: لبه های بالقوه توسط آستانه تعیین می شود.

5. ردیابی لبه توسط هیسترسیس: لبه های نهایی توسط توقیف تمام لبه هایی که به یک لبه بسیار قطعی (قوی) متصل نیستند، مشخص می شوند.

 

private void HysterisisThresholding(int[,] Edges)
        {

            int i, j;
            int Limit= KernelSize/2;


            for (i = Limit; i <= (Width - 1) - Limit; i++)
                for (j = Limit; j <= (Height - 1) - Limit; j++)
                {
                    if (Edges[i, j] == 1)
                    {
                        EdgeMap[i, j] = 1;

                    }

                }

            for (i = Limit; i <= (Width - 1) - Limit; i++)
            {
                for (j = Limit; j <= (Height  - 1) - Limit; j++)
                {
                    if (Edges[i, j] == 1)
                    {
                        EdgeMap[i, j] = 1;
                        Travers(i, j);
                        VisitedMap[i, j] = 1;
                    }
                }
            }




            return;
        }

//Recursive Procedure 
private void Travers(int X, int Y)
        {

            
            if (VisitedMap[X, Y] == 1)
            {
                return;
            }

            //1
            if (EdgePoints[X + 1, Y] == 2)
            {
                EdgeMap[X + 1, Y] = 1;
                VisitedMap[X + 1, Y] = 1;
                Travers(X + 1, Y);
                return;
            }
            //2
            if (EdgePoints[X + 1, Y - 1] == 2)
            {
                EdgeMap[X + 1, Y - 1] = 1;
                VisitedMap[X + 1, Y - 1] = 1;
                Travers(X + 1, Y - 1);
                return;
            }

           //3

            if (EdgePoints[X, Y - 1] == 2)
            {
                EdgeMap[X , Y - 1] = 1;
                VisitedMap[X , Y - 1] = 1;
                Travers(X , Y - 1);
                return;
            }

           //4

            if (EdgePoints[X - 1, Y - 1] == 2)
            {
                EdgeMap[X - 1, Y - 1] = 1;
                VisitedMap[X - 1, Y - 1] = 1;
                Travers(X - 1, Y - 1);
                return;
            }
            //5
            if (EdgePoints[X - 1, Y] == 2)
            {
                EdgeMap[X - 1, Y ] = 1;
                VisitedMap[X - 1, Y ] = 1;
                Travers(X - 1, Y );
                return;
            }
            //6
            if (EdgePoints[X - 1, Y + 1] == 2)
            {
                EdgeMap[X - 1, Y + 1] = 1;
                VisitedMap[X - 1, Y + 1] = 1;
                Travers(X - 1, Y + 1);
                return;
            }
            //7
            if (EdgePoints[X, Y + 1] == 2)
            {
                EdgeMap[X , Y + 1] = 1;
                VisitedMap[X, Y + 1] = 1;
                Travers(X , Y + 1);
                return;
            }
            //8

            if (EdgePoints[X + 1, Y + 1] == 2)
            {
                EdgeMap[X + 1, Y + 1] = 1;
                VisitedMap[X + 1, Y + 1] = 1;
                Travers(X + 1, Y + 1);
                return;
            }


            //VisitedMap[X, Y] = 1;
            return;

        } 
          
        //Canny Class Ends

    }

 

این کار با یک تابع بازگشتی انجام می شود که آستانه دوگانه را با دو آستانه بالا (Threshold (TH و (Low Threshold (TL و تجزیه و تحلیل 8-اتصال انجام می دهد.

 

دانلود کد فوق از طریق لینک زیر:

Canny Edge Detection C#

رمز فایل : behsanandish.com


الگوریتم Canny

لبه یاب کنی توسط جان اف کنی در سال 1986 ایجاد شد و هنوز یک لبه یاب استاندارد و با دقت و کیفیت بالا میباشد.الگوریتم لبه یابی کنی یکی از بهترین لبه یابها تا به امروز است. در ادامه روش کار این الگوریتم و هم چنین کد الگوریتم Canny در Visual Basic را بررسی خواهیم کرد. این الگوریتم لبه یابی از سه بخش اصلی زیر تشکیل شده:

  • تضعیف نویز
  • پیدا کردن نقاطی که بتوان آنها را به عنوان لبه در نظر گرفت
  • حذب نقاطی که احتمال لبه بودن آنها کم است

 

معیارهایی که در لبه یا کنی مطرح است:
1 -پایین آوردن نرخ خطا- یعنی تا حد امکان هیچ لبه ای در تصویر نباید گم شود و هم چنین هیچ چیزی که لبه نیست نباید به جای لبه فرض شود. لبه هان پیدا شده تا حد ممکن به لبه ها اصلی
نزدیک باشند.

2 -لبه در مکان واقعی خود باشد- یعنی تا حد ممکن لبه ها کمترین فاصله را با مکان واقعی خود داشته باشند.
3 -بران هر لبه فقط یک پاسخ داشته باشیم.

4 -لبه ها کمترین ضخامت را داشته باشند- (در صورت امکان یک پیکسل).
لبه یاب کنی بخاطر توانایی در تولید لبه های نازک تا حد یک ییکسل برای لبه های پیوسته معروف شده است. این لبه یاب شامل چهار مرحله و چهار ورودی زیر است:
یک تصویر ورودی
یک پارامتر به نام سیگما جهت مقدار نرم کنندگی تصویر
یک حد آستانه بالا (Th)
یک حد آستانه پایین (Tl)

 

مراحل الگوریتم Canny:

1- در ابتدا باید تصویر رنگی را به جهت لبه یابی بهتر به یک تصویر سطح خاکسترن تبدیب کرد.

2- نویز را از تصویر دریافتی حذف کرد. بدلیل اینکه فیلتر گاوسین از یک ماسک ساده برای حذف نویز استفاده می کند لبه یاب کنی در مرحله اول برای حذف نویز آن را بکار میگیرد.

3- در یک تصویر سطح خاکستر جایی را که بیشترین تغییرات را داشته باشند به عنوان لبه در نظر گرفته می شوند و این مکانها با گرفتن گرادیان تصویر با استفاده عملگر سوبل بدست می آیند. سپس لبه های مات یافت شده به لبه های تیزتر تبدیل می شوند.

4- برخی از لبه های کشف شده واقعا لبه نیستند و در واقع نویز هستند که باید آنها توسط حد آستانه هیسترزیس فیلتر شوند.هیسترزیس از دو حد آستانه بالاتر (Th) و حد آستانه پایین تر (Tl) استفاده کرده و کنی پیشنهاد می کند که نسبت استانه بالا به پایین سه به یک باشد.

 این روش بیشتر به کشف لبه های ضعیف به درستی می پردازد و کمتر فریب نویز را می خورد و از بقیه روش ها بهتر است.

 

الگوریتم Canny    عملکرد الگوریتم Canny

 

الگوریتم Canny در Visual Basic:

کد زیر یک کد تکمیل نشده است.تکمیل آن به عنوان تمرین به خواننده واگذار می شود.

 

Imports System.Drawing
Imports System.Drawing.Imaging

Public Class clsEdges

    Public Sub EdgeDetectDifference(ByVal b As Bitmap, ByVal threshold As Byte)
        ' first we create a clone o the image we want to find the edges on
        Dim b2 As Bitmap = b.Clone
        ' we create bitmapdata of the images at the same time locking them
        Dim bmData1 As BitmapData = b.LockBits(New Rectangle(0, 0, b.Width, b.Height), ImageLockMode.ReadWrite, PixelFormat.Format24bppRgb)
        Dim bmData2 As BitmapData = b2.LockBits(New Rectangle(0, 0, b2.Width, b2.Height), ImageLockMode.ReadWrite, PixelFormat.Format24bppRgb)
        ' the stride describes the distance between image bytes
        Dim stride As Integer = bmData2.Stride
        ' scan0 is some sort of OS handle or something to identify the actual data in the memory
        Dim scan01 As IntPtr = bmData1.Scan0
        Dim scan02 As IntPtr = bmData2.Scan0
        ' we need to know how big the data is so that we can create the correct size for the file
        Dim bytes As Integer = b.Height * b.Width * 3
        ' we create the byte arrays so that we can edit them
        Dim p01(bytes - 1) As Byte
        Dim p02(bytes - 1) As Byte
        ' put the images into the byte arrays
        System.Runtime.InteropServices.Marshal.Copy(scan01, p01, 0, bytes)
        System.Runtime.InteropServices.Marshal.Copy(scan02, p02, 0, bytes)

        ' the nWidth describes the width of the actual image multiplied by three for each byte in the pixel (3 bytes per pixel 24 bits ;))
        Dim nWidth As Integer = b2.Width * 3
        ' for some reason although the original code show a formula to come up with the offset this doesn't work very well.
        ' I found that it is just easier to make the offset 0 and so all bits are handled. Basically the problem comes when 
        ' using this on files that don't have
        Dim nOffset As Integer = 0
        Dim nPixel As Integer = 0, npixelmax As Integer = 0
        Dim pos1 As Integer = stride + 3
        Dim pos2 As Integer = stride + 3
        Dim p2minusplus As Integer, p2plusminus As Integer, p2plusplus As Integer, p2minusminus As Integer
        Dim p2minusstride As Integer, p2plusstride As Integer
        Dim p2plus As Integer, p2minus As Integer

        For y As Integer = 1 To b.Height - 1
            For x As Integer = 1 To nWidth - 3

                p2minusplus = pos2 - stride + 3
                p2plusminus = pos2 + stride - 3
                p2plusplus = pos2 + stride + 3
                p2minusminus = pos2 - stride - 3
                p2minusstride = pos2 - stride
                p2plusstride = pos2 + stride
                p2minus = pos2 - 3
                p2plus = pos2 + 3
                If p2minusplus <= p02.Length - 1 And p2minusplus >= 0 And p2plusminus <= p02.Length - 1 And p2plusminus >= 0 And _
                p2plusplus <= p02.Length - 1 And p2plusplus >= 0 And p2minusminus <= p02.Length - 1 And p2minusminus >= 0 And _
                p2minusstride <= p02.Length - 1 And p2minusstride >= 0 And p2plusstride <= p02.Length - 1 And p2plusstride >= 0 And _
                p2plus <= p02.Length - 1 And p2plus >= 0 And p2minus <= p02.Length - 1 And p2minus >= 0 And pos1 < p01.Length Then
                    npixelmax = Math.Abs(CInt(p02(p2minusplus)) - CInt(p02(p2plusminus)))
                    nPixel = Math.Abs(CInt(p02(p2plusplus)) - CInt(p02(p2minusminus)))
                    If nPixel > npixelmax Then npixelmax = nPixel
                    nPixel = Math.Abs(CInt(p02(p2minusstride)) - CInt(p02(p2plusstride)))
                    If nPixel > npixelmax Then npixelmax = nPixel
                    nPixel = Math.Abs(CInt(p02(p2plus)) - CInt(p02(p2minus)))
                    If nPixel > npixelmax Then npixelmax = nPixel
                    If npixelmax < CInt(threshold) Then npixelmax = 0
                    p01(pos1) = CByte(npixelmax)
                End If
                pos1 += 1
                pos2 += 1

            Next
            pos1 += nOffset
            pos2 += nOffset
        Next

        System.Runtime.InteropServices.Marshal.Copy(p01, 0, scan01, bytes)

        b.UnlockBits(bmData1)
        b2.UnlockBits(bmData2)

    End Sub
    Public Sub EdgeDetectHomogenity(ByVal b As Bitmap, ByVal threshold As Byte)
        Dim b2 As Bitmap = b.Clone
        Dim bmData1 As BitmapData = b.LockBits(New Rectangle(0, 0, b.Width, b.Height), ImageLockMode.ReadWrite, PixelFormat.Format24bppRgb)
        Dim bmData2 As BitmapData = b2.LockBits(New Rectangle(0, 0, b2.Width, b2.Height), ImageLockMode.ReadWrite, PixelFormat.Format24bppRgb)
        Dim stride As Integer = bmData2.Stride
        Dim scan01 As IntPtr = bmData1.Scan0
        Dim scan02 As IntPtr = bmData2.Scan0
        Dim bytes As Integer = b.Height * b.Width * 3
        Dim p01(bytes - 1) As Byte
        Dim p02(bytes - 1) As Byte

        System.Runtime.InteropServices.Marshal.Copy(scan01, p01, 0, bytes)
        System.Runtime.InteropServices.Marshal.Copy(scan02, p02, 0, bytes)
        Dim nWidth As Integer = b2.Width * 3
        Dim nOffset As Integer = 0
        Dim nPixel As Integer = 0, npixelmax As Integer = 0
        Dim pos1 As Integer = stride + 3
        Dim pos2 As Integer = stride + 3

        Dim p2plusminus As Integer, p2plusstride As Integer, p2plusplus As Integer, p2minusstride As Integer, _
        p2minusminus As Integer, p2minusplus As Integer

        For y As Integer = 1 To b.Height - 1
            For x As Integer = 1 To nWidth - 3

                p2plusminus = pos2 + stride - 3
                p2plusstride = pos2 + stride
                p2plusplus = pos2 + stride + 3
                p2minusstride = pos2 - stride
                p2minusminus = pos2 - stride - 3
                p2minusplus = pos2 - stride + 3

                If p2plusminus < p02.Length And p2plusminus >= 0 And p2plusstride < p02.Length And p2plusstride >= 0 And _
                p2plusplus < p02.Length And p2plusplus >= 0 And p2minusstride < p02.Length And p2minusstride >= 0 And _
                p2minusstride < p02.Length And p2minusstride >= 0 And p2minusminus < p02.Length And p2minusminus >= 0 And _
                p2minusplus < p02.Length And p2minusplus >= 0 Then

                    npixelmax = Math.Abs(CInt(p02(pos2)) - CInt(p02(p2plusminus)))
                    nPixel = Math.Abs(CInt(p02(pos2)) - CInt(p02(p2plusstride)))
                    If nPixel > npixelmax Then npixelmax = nPixel

                    nPixel = Math.Abs(CInt(p02(pos2)) - CInt(p02(p2plusplus)))
                    If nPixel > npixelmax Then npixelmax = nPixel

                    nPixel = Math.Abs(CInt(p02(pos2)) - CInt(p02(p2minusstride)))
                    If nPixel > npixelmax Then npixelmax = nPixel

                    nPixel = Math.Abs(CInt(p02(pos2)) - CInt(p02(p2plusstride)))
                    If nPixel > npixelmax Then npixelmax = nPixel

                    nPixel = Math.Abs(CInt(p02(pos2)) - CInt(p02(p2minusminus)))
                    If nPixel > npixelmax Then npixelmax = nPixel

                    nPixel = Math.Abs(CInt(p02(pos2)) - CInt(p02(p2minusstride)))
                    If nPixel > npixelmax Then npixelmax = nPixel

                    nPixel = Math.Abs(CInt(p02(pos2)) - CInt(p02(p2minusplus)))
                    If nPixel > npixelmax Then npixelmax = nPixel


                    If npixelmax < threshold Then npixelmax = 0

                    p01(pos1) = CByte(npixelmax)

                End If

                pos1 += 1
                pos2 += 1
            Next
            pos1 += nOffset
            pos2 += nOffset
        Next

        System.Runtime.InteropServices.Marshal.Copy(p01, 0, scan01, bytes)

        b.UnlockBits(bmData1)
        b2.UnlockBits(bmData2)

    End Sub


    Public Function EdgeEnhance(ByVal b As Bitmap, ByVal threshold As Byte) As Boolean
        Dim b2 As Bitmap = b.Clone
        Dim bmData1 As BitmapData = b.LockBits(New Rectangle(0, 0, b.Width, b.Height), ImageLockMode.ReadWrite, PixelFormat.Format24bppRgb)
        Dim bmData2 As BitmapData = b2.LockBits(New Rectangle(0, 0, b2.Width, b2.Height), ImageLockMode.ReadWrite, PixelFormat.Format24bppRgb)
        Dim stride As Integer = bmData2.Stride
        Dim scan01 As IntPtr = bmData1.Scan0
        Dim scan02 As IntPtr = bmData2.Scan0
        Dim bytes As Integer = b.Height * b.Width * 3
        Dim p01(bytes - 1) As Byte
        Dim p02(bytes - 1) As Byte

        System.Runtime.InteropServices.Marshal.Copy(scan01, p01, 0, bytes)
        System.Runtime.InteropServices.Marshal.Copy(scan02, p02, 0, bytes)
        Dim nWidth As Integer = b2.Width * 3
        Dim nOffset As Integer = 0
        Dim nPixel As Integer = 0, npixelmax As Integer = 0
        Dim pos1 As Integer = stride + 3
        Dim pos2 As Integer = stride + 3
        Dim p2minusplus As Integer, p2plusminus As Integer, p2plusplus As Integer, p2minusminus As Integer
        Dim p2minusstride As Integer, p2plusstride As Integer
        Dim p2plus As Integer, p2minus As Integer

        For y As Integer = 1 To b.Height - 1
            For x As Integer = 1 To nWidth - 3

                p2minusplus = pos2 - stride + 3
                p2plusminus = pos2 + stride - 3
                p2plusplus = pos2 + stride + 3
                p2minusminus = pos2 - stride - 3
                p2minusstride = pos2 - stride
                p2plusstride = pos2 + stride
                p2minus = pos2 - 3
                p2plus = pos2 + 3
                If p2minusplus <= p02.Length - 1 And p2minusplus >= 0 And p2plusminus <= p02.Length - 1 And p2plusminus >= 0 And _
                p2plusplus <= p02.Length - 1 And p2plusplus >= 0 And p2minusminus <= p02.Length - 1 And p2minusminus >= 0 And _
                p2minusstride <= p02.Length - 1 And p2minusstride >= 0 And p2plusstride <= p02.Length - 1 And p2plusstride >= 0 And _
                p2plus <= p02.Length - 1 And p2plus >= 0 And p2minus <= p02.Length - 1 And p2minus >= 0 And pos1 < p01.Length Then
                    npixelmax = Math.Abs(CInt(p02(pos2 - stride + 3)) - CInt(p02(pos2 + stride - 3)))
                    nPixel = Math.Abs(CInt(p02(pos2 + stride + 3)) - CInt(p02(pos2 - stride - 3)))
                    If nPixel > npixelmax Then npixelmax = nPixel

                    nPixel = Math.Abs(CInt(p02(pos2 - stride)) - CInt(p02(pos2 + stride)))
                    If nPixel > npixelmax Then npixelmax = nPixel

                    nPixel = Math.Abs(CInt(p02(pos2 + 3)) - CInt(p02(pos2 - 3)))
                    If nPixel > npixelmax Then npixelmax = nPixel

                    If npixelmax > threshold And npixelmax > p01(pos1) Then
                        p01(pos1) = CByte(Math.Max(CInt(p01(pos1)), npixelmax))
                    End If

                End If

                pos1 += 1
                pos2 += 1
            Next
            pos1 += nOffset
            pos2 += nOffset
        Next

        System.Runtime.InteropServices.Marshal.Copy(p01, 0, scan01, bytes)

        b.UnlockBits(bmData1)
        b2.UnlockBits(bmData2)

        Return True
    End Function

End Class

 

 

این کد کامل نیست!

دانلود کد فوق از طریق لینک زیر:

CannyInVisualBasic

رمز فایل : behsanandish.com