نوشته‌ها

۱٫A GABOR FILTER TEXTURE ANALYSIS APPROACH FOR HISTOPATHOLOGICAL BRAIN TUMOUR SUBTYPE DISCRIMINATION

Abstract Meningioma brain tumour discrimination is challenging as many histological patterns are mixed between the different subtypes. In clinical practice, dominant patterns are investigated for signs of specific meningioma pathology; however the simple observation could result in inter- and intra-observer variation due to the complexity of the histopathological patterns. Also employing a computerised feature extraction approach applied at a single resolution scale might not suffice in accurately delineating the mixture of histopathological patterns. In this work we propose a novel multiresolution feature extraction approach for characterising the textural properties of the different pathological patterns (i.e. mainly cell nuclei shape, orientation and spatial arrangement within the cytoplasm). The patterns’ textural properties are characterised at various scales and orientations for an improved separability between the different extracted features. The Gabor filter energy output of each magnitude response was combined with four other fixed-resolution texture signatures (2 model-based and 2 statistical-based) with and without cell nuclei segmentation. The highest classification accuracy of 95% was reported when combining the Gabor filters’ energy and the meningioma subimage fractal signature as a feature vector without performing any prior cell nuceli segmentation. This indicates that characterising the cell-nuclei self-similarity properties via Gabor filters can assists in achieving an improved meningioma subtype classification, which can assist in overcoming variations in reported diagnosis.
Keywords – texture analysis, Gabor filter, fractal dimension, meningioma histopathology, brain tumours

فایل PDF – در ۱۴ صفحه- نویسنده : Omar Sultan Al-Kadi

A GABOR FILTER TEXTURE ANALYSIS APPROACH FOR HISTOPATHOLOGICAL BRAIN TUMOUR SUBTYPE DISCRIMINATION

پسورد فایل : behsan-andish.ir


۲٫A Review Paper on Gabor Filter Algorithm & Its Applications

Abstract— In applications of image analysis and computer vision, Gabor filters have maintained their popularity in feature extraction. The reason behind this is that the resemblance between Gabor filter and receptive field of simple cells in visual cortex. Being successful in applications like face detection, iris recognition, fingerprint matching; where, Gabor feature based processes are amongst the best performers. The Gabor features can be derived by applying signal processing techniques both in time and frequency domain. The models like human preattentive texture perception have been proposed which involves steps like convolution, inhibition and texture boundary detection. Texture features are based on the local power spectrum obtained by a bank of Gabor filters. The concept of sparseness to generate novel contextual multiresolution texture descriptors are described. In this paper we present the detailed study about the Gabor filter and its application.
Index Terms— Gabor filter, Gabor energy, image quality assessment, Gabor features, multiresolution techniques, segmentation, textured images..

فایل PDF – در ۵ صفحه- نویسنده : Neelu Arora , Mrs. G. Sarvani

A Review Paper on Gabor Filter Algorithm & Its Applications

پسورد فایل : behsan-andish.ir


۳٫Comparison of texture features based on Gabor filters

 

Abstract -The performance of a number of texture feature operators is evaluated. The features are all based on the local spectrum which is obtained by a bank of Gabor filters. The comparison is made using a quantitative method which is based on Fisher’s criterion. It is shown that, in general, the discrimination effectiveness of the features increases with the amount of post-Gabor processing.

فایل PDF – در ۶ صفحه- نویسنده : P. Kruizinga, N. Petkov and S.E. Grigorescu

Comparison of texture features based on Gabor filters

پسورد فایل : behsan-andish.ir


۴٫Evolutionary Gabor Filter Optimization with Application to Vehicle Detection

 

Abstract—Despite the considerable amount of research work on the application of Gabor filters in pattern classification, their design and selection have been mostly done on a trial and error basis. Existing techniques are either only suitable for a small number of filters or less problem-oriented. A systematic and general evolutionary Gabor filter optimization (EGFO) approach that yields a more optimal, problem-specific, set of filters is proposed in this study. The EGFO approach unifies filter design with filter selection by integrating Genetic Algorithms (GAs) with an incremental clustering approach. Specifically, filter design is performed using GAs, a global optimization approach that encodes the parameters of the Gabor filters in a chromosome and uses genetic operators to optimize them. Filter selection is performed by grouping together filters having similar characteristics (i.e., similar parameters) using incremental clustering in the parameter space. Each group of filters is represented by a single filter whose parameters correspond to the average parameters of the filters in the group. This step eliminates redundant filters, leading to a compact, optimized set of filters. The average filters are evaluated using an application-oriented fitness criterion based on Support Vector Machines (SVMs). To demonstrate the effectiveness of the proposed framework, we have considered the challenging problem of vehicle detection from gray-scale images. Our experimental results illustrate that the set of Gabor filters, specifically optimized for the problem of vehicle detection, yield better performance than using traditional filter banks.

 

فایل PDF – در ۸ صفحه- نویسنده : Zehang Sun, George Bebis and Ronald Miller

Evolutionary Gabor Filter Optimization with Application to Vehicle Detection

پسورد فایل : behsan-andish.ir


۵٫Expression-Invariant Face Recognition via 3D Face Reconstruction Using Gabor Filter Bank from a 2D Single Image

Abstract— In this paper, a novel method for expression- insensitive face recognition is proposed from only a 2D single image in a gallery including any facial expressions. A 3D Generic Elastic Model (3D GEM) is used to reconstruct a 3D model of each human face in the present database using only a single 2D frontal image with/without facial expressions. Then, the rigid parts of the face are extracted from both the texture and reconstructed depth based on 2D facial land-marks. Afterwards, the Gabor filter bank was applied to the extracted rigid-part of the face to extract the feature vectors from both texture and reconstructed depth images. Finally, by combining 2D and 3D feature vectors, the final feature vectors are generated and classified by the Support Vector Machine (SVM). Favorable outcomes were acquired to handle expression changes on the available image database based on the proposed method compared to several state-of-the-arts in expression-insensitive face recognition.

Keywords—Face recognition; 3D shape recovery; Gesture and Behavior Analysis.

 

فایل PDF – در ۶ صفحه- نویسنده : Ali Moeini, Hossein Moeini, Karim Faez

Expression-Invariant Face Recognition via 3D Face Reconstruction Using Gabor Filter Bank from a 2D Single Image

پسورد فایل : behsan-andish.ir


۶٫IMAGE RETRIEVAL BASED ON HIERARCHICAL GABOR FILTERS

Content Based Image Retrieval (CBIR) is now a widely investigated issue that aims at allowing users of multimedia information systems to automatically retrieve images coherent with a sample image. A way to achieve this goal is the computation of image features such as the color, texture, shape, and position of objects within images, and the use of those features as query terms. We propose to use Gabor filtration properties in order to find such appropriate features. The article presents multichannel Gabor filtering and a hierarchical image representation. Then a salient (characteristic) point detection algorithm is presented so that texture parameters are computed only in a neighborhood of salient points. We use Gabor texture features as image content descriptors and efficiently emply them to retrieve images.
Keywords: Gabor filters, image retrieval, texture feature extraction, hierarchical representation

فایل PDF – در ۱۰ صفحه- نویسنده : TOMASZ ANDRYSIAK, MICHAŁ CHORA´ S

IMAGE RETRIEVAL BASED ON HIERARCHICAL GABOR FILTERS

پسورد فایل : behsan-andish.ir


۷٫Iris Recognition Based On Adaptive Gabor Filter

Abstract. Aiming at the problem of multi-category iris recognition, there proposes a method of iris recognition algorithm based on adaptive Gabor filter. Use DE-PSO to adaptive optimize the Gabor filter parameters. DE-PSO is composed of particle swarm optimization and differential evolution algorithm. Use 16 groups of 2D-Gabor filters with different frequencies and directions to process iris images. According to the direction and frequency of maximum response amplitude, transform iris features into 512-bit binary feature encoding. Calculate the Hamming distance of feature code and compare with the classification threshold, determine iris the type of iris. Experiment on a variety of iris databases with multiple Gabor filter algorithms, the results showed that this algorithm has higher recognition rate, the ROC curve is closer to the coordinate axis and the robustness is better, compare with other Gabor filter algorithm.

Keywords: Iris recognition Gabor filter Particle swarm optimization Differential evolutionFeature encodingHamming distance

 

فایل PDF – در ۸ صفحه- نویسنده : Shuai Liu, Yuanning Liu, Xiaodong Zhu, Guang Huo, Jingwei Cui, and Yihao Chen

 

Iris Recognition Based On Adaptive Gabor Filter

پسورد فایل : behsan-andish.ir


۸٫USE OF GABOR FILTERS FOR TEXTURE CLASSIFICATION OF AIRBORNE IMAGES AND LIDAR DATA

KEY WORDS: Texture analysis, LIDAR, Algorithm, Urban and Vegetation Detection, Automated Classification
ABSTRACT: In this paper, a texture approach is presented for building and vegetation extraction from LIDAR and aerial images. The texture is very important attribute in many image analysis or computer vision applications. The procedures developed for texture problem can be subdivided into four categories: structural approach, statistical approach, model based approach and filter based approach. In this paper, different definitions of texture are described, but complete emphasis is given on filter based methods. Examples of filtering methods are Fourier transform, Gabor and wavelet transforms. Here, Gabor filter is studied and its implementation for texture analysis is explored. This approach is inspired by a multi-channel filtering theory for processing visual information in the human visual system. This theory holds that visual system decomposes the image into a number of filtered images of a specified frequency, amplitude and orientation.  The main objective of the article is to use Gabor filters for automatic urban object and tree detection. The first step is a definition of Gabor filter parameters: frequency, standard deviation and orientation. By varying these parameters, a filter bank is obtained that covers the frequency domain almost completely. These filters are used to aerial images and LIDAR data. The filtered images that possess  a significant information about analyzed objects are selected, and the rest are discarded.  Then, an energy measure is defined on the filtered images in order to compute different texture features. The Gabor features are used to image segmentation using thresholding.  The tests were performed using set of images containing very different landscapes: urban area and vegetation of varying configurations, sizes and shapes of objects. The performed studies revealed that textural algorithms have the ability to detect buildings and trees. This article is the attempt to use texture methods also to LIDAR data, resampling into regular grid cells. The obtained preliminary results are interesting.

 

فایل PDF – در ۱۲ صفحه- نویسنده : Urszula Marmol


USE OF GABOR FILTERS FOR TEXTURE CLASSIFICATION OF AIRBORNE IMAGES AND LIDAR DATA

پسورد فایل : behsan-andish.ir

مجموعه مقالات فیلتر گابور (Gabor Filter) قسمت ۱
مجموعه مقالات فیلتر گابور (Gabor Filter) قسمت ۲

شبکه عصبی مصنوعی به زبان ساده

یک شبکه عصبی مصنوعی (Artificial Neural Network – ANN) ایده ای برای پردازش اطلاعات است که از سیستم عصبی زیستی الهام گرفته و مانند مغز به پردازش اطلاعات می‌پردازد. عنصر کلیدی این ایده، ساختار جدید سیستم پردازش اطلاعات است. این سیستم از شمار زیادی عناصر پردازشی فوق العاده بهم پیوسته به نام نورون‌ها (neurons) تشکیل شده که برای حل یک مسئله با هم هماهنگ عمل می‌کنند.

شبکه های عصبی مصنوعی نیز مانند انسان‌ها با مثال یاد می گیرند و یک شبکه عصبی برای انجام وظیفه‌های مشخص مانند شناسایی الگوها و دسته بندی اطلاعات، در طول یک پروسه یاد گیری تنظیم می‌شود. در سیستم‌های زیستی، یاد گیری با تنظیماتی در اتصالات سیناپسی که بین اعصاب قرار دارد همراه است. از این روش در شبکه های عصبی نیز استفاده می‌شود.

شبکه های عصبی مصنوعی (ANN) که به اختصار به آن شبکه عصبی نیز گفته می‌شود، نوع خاصی از مدل یادگیری است که روش کارکرد سیناپس‌ها در مغز انسان را تقلید می‌کند.

شبکه های عصبی مصنوعی با پردازش داده‌های تجربی، دانش یا قانون نهفته در ورای داده‌ها را به ساختار شبکه منتقل می‌کند که به این عمل یادگیری می‌گویند. اصولاً توانایی یادگیری مهمترین ویژگی یک سیستم هوشمند است. سیستمی کهقابلیت یادگیری داشته باشد، منعطف تر است وساده تر برنامه‌ریزی می‌شود، بنابراین بهتر می‌تواند در مورد مسایل و معادلات جدید پاسخگو باشد.

ساختار شبکه عصبی

انسان‌ها از زمان‌های بسیار دور سعی بر آن داشتند که بیوفیزیولوژی مغز را دریابند زیرا که همواره مسئله هوشمندی انسان و قابلیت یادگیری، تعمیم، خلاقیت، انعطاف پذیری و پردازش موازی در مغز برای بشر جالب بوده و بکارگیری این قابلیت‌ها در ماشین‌ها بسیار مطلوب می‌نمود. روش‌های الگوریتمیک برای پیاده سازی این خصایص در ماشین‌ها مناسب نمی‌باشند، در نتیجه می‌بایست روش‌هایی مبتنی بر همان مدل‌های بیولوژیکی ابداع شوند.

شبکه عصبی-05

 

به عبارت دیگر شبکه‌ی عصبی  یک سامانه پردازش داده‌ها است که از مغز انسان ایده گرفته و پردازش داده‌ها را به عهدهپردازنده‌های کوچک و بسیار زیادی می‌سپارد که به صورت شبکه‌ای به هم پیوسته و موازی با یکدیگر برای حل یک مسئله رفتار می‌کنند. در این شبکه‌ها به کمک دانش برنامه نویسی، ساختار داده‌ای طراحی می‌شود که می‌تواند همانندنورون عمل کند. به این ساختار داده گره گفته می‌شود.

در این ساختار با ایجاد شبکه‌ای بین این گره‌ها و اعمال یک الگوریتم آموزشی به آن، شبکه را آموزش می‌دهند. در این حافظه یا شبکه عصبی گره‌ها دارای دو حالت فعال (روشن یا ۱) و غیرفعال (خاموش یا ۰) اند و هر یال (سیناپس یا ارتباط بین گره‌ها) دارای یک وزن می‌باشد. یال‌های با وزن مثبت، موجب تحریک یا فعال کردن گره غیر فعال بعدی می‌شوند و یال‌های با وزن منفی، گره متصل بعدی را غیر فعال یا مهار (در صورتی که فعال بوده باشد) می‌کنند.

مثالی برای  شبکه عصبی

در روش‌های محاسباتی سنتی، از یک سری عبارات منطقی برای اجرای یک عمل استفاده می‌شود؛ اما در مقابل، شبکه های عصبی از مجموعه نودها (به عنوان نرون) و یال‌ها (در نقش سیناپس) برای پردازش داده بهره می‌گیرند. در این سیستم، ورودی‌ها در شبکه به جریان افتاده و یک سری خروجی تولید می‌گردد.

 

شبکه عصبی-02

 

سپس خروجی‌ها با داده‌های معتبر مقایسه می‌گردند. مثلا فرض کنید می‌خواهید کامپیوتر خود را به گونه‌ای آموزش دهید که تصویر گربه را تشخیص دهد. برای این کار میلیون‌ها تصویر از گربه‌های مختلف را وارد شبکه کرده و آنهایی که از سوی سیستم به عنوان خروجی انتخاب می‌شوند را دریافت می‌کنید.

در این مرحله کاربر انسانی می‌تواند به سیستم بگوید که کدام یک از خروجی‌ها دقیقا تصویر گربه هستند. بدین ترتیب مسیرهایی که به تشخیص موارد درست منجر شده، از طرف شبکه تقویت خواهند شد. با تکرار این فرایند در دفعات زیاد، شبکه نهایتا قادر است به دقت بسیار خوبی در اجرای وظیفه موردنظر دست یابد.

البته شبکه های عصبی را نمی‌توان پاسخ تمام مسائل محاسباتی پیش روی انسان دانست، اما در مواجهه با داده‌های پیچیده، بهترین گزینه به شمار می‌روند.

اخیرا گوگل و مایکروسافت هر دو اعلام کردند یادگیری مبتنی بر شبکه های عصبی را به نرم‌افزار‌های مترجمشان افزوده‌اند.

گوگل و مایکروسافت از شبکه های عصبی برای تقویت اپلیکیشن‌های ترجمه خود بهره گرفته‌اند و به نتایج بسیار خوبی دست یافته‌اند، زیرا عمل ترجمه از جمله فرایندهای بسیار پیچیده محسوب می‌گردد.

شبکه عصبی-ترجمه

 

بدین ترتیب با استفاده از قابلیت یادگیری شبکه های عصبی، سیستم ترجمه می‌تواند ترجمه‌های صحیح را برای یادگیری به کار گرفته و به مرور زمان به دقت بیشتری دست یابد.

چنین وضعیتی در تشخیص گفتار نیز به وجود آمد. پس از افزودن یادگیری با شبکه های عصبی در Google Voice نرخ خطای این برنامه تا ۴۹% کاهش یافت. البته این قابلیت هیچوقت بدون نقص نخواهد بود، اما به مرور زمان شاهد پیشرفت آن هستیم.

در مجموع با به کار گیری روش‌های یادگیری مبتنی بر شبکه های عصبی، آنالیز داده‌های پیچیده روز به روز پیشرفت می‌کند و در نهایت به قابلیت‌های انعطاف پذیر‌تری در نرم‌افزار‌ها و کاربرد آن‌ها در زندگی روزانه دست خواهیم یافت.

شبکه های عصبی در مقابل کامپیوتر های معمولی

شبکه های عصبی نسبت به کامپیوتر‌های معمولی مسیر متفاوتی را برای حل مسئله طی می‌کنند. کامپیوتر‌های معمولی یکمسیر الگوریتمی را استفاده می‌کنند به این معنی که کامپیوتر یک مجموعه از دستورالعمل‌ها را به قصد حل مسئله پی می‌گیرد. اگر قدم‌های خاصی که کامپیوتر باید بردارد، شناخته شده نباشند، کامپیوتر قادر به حل مسئله نخواهد بود. این حقیقت قابلیت حل مسئله‌ی کامپیوترهای معمولی را به مسائلی محدود می‌کند که ما قادر به درک آن‌ها هستیم و می دانیم چگونه حل می‌شوند.

از طرف دیگر، کامپیوترهای معمولی از یک مسیر مشخص برای حل یک مسئله استفاده می‌کنند. راه حلی که مسئله از آن طریق حل می‌شود باید از قبل شناخته شده و به صورت دستورات کوتاه و غیر مبهمی شرح داده شده باشد. این دستورات به زبان‌های برنامه نویسی سطح بالا برگردانده شده و سپس به کدهایی قابل درک و پردازش برای کامپیوترها تبدیل می‌شوند.

شبکه های عصبی اطلاعات را به روشی مشابه با کاری که مغز انسان انجام می‌دهد پردازش می‌کنند. آن‌ها از تعداد زیادی ازعناصر پردازشی (سلول عصبی) که فوق العاده بهم پیوسته‌اند تشکیل شده است که این عناصر به صورت موازی باهم برای حل یک مسئله مشخص کار می‌کنند. شبکه های عصبی با مثال کار می‌کنند و نمی‌توان آن‌ها را برای انجام یک وظیفه خاص برنامه ریزی کرد. مثال‌ها می‌بایست با دقت انتخاب شوند در غیر این صورت باعث اتلاف وقت و هزینه می‌شود و حتی بدتر از آن، ممکن است شبکه درست کار نکند.

امتیاز شبکه عصبی در آن است که چگونگی حل مسئله را خودش کشف می‌کند!

شبکه های عصبی و کامپیوتر‌های معمولی با هم در حال رقابت نیستند بلکه کامل کننده یکدیگرند. انجام بعضی وظایف مانند عملیات‌های محاسباتی بیشتر مناسب روش‌های الگوریتمی است. همچنین انجام برخی دیگر از وظایف که به یادگیریو آزمون و خطا نیاز دارند را بهتر است به شبکه های عصبی بسپاریم. فراتر که می‌رویم، مسائلی وجود دارد که به سیستمیترکیبی از روش های الگوریتمی و شبکه های عصبی برای حل آن‌ها مورد نیاز است (بطور معمول کامپیوتر های معمولی برای نظارت بر شبکه های عصبی به کار گرفته می‌شوند ) به این منظور که بیشترین کارایی بدست آید.

 

شبکه عصبی-03

مزیت‌های شبکه عصبی

شبکه عصبی با قابلیت قابل توجه آن‌ها در جست و جو معانی از داده‌های پیچیده یا مبهم، می‌تواند برای استخراج الگوها و شناسایی روش‌هایی که آگاهی از آن‌ها برای انسان و دیگر تکنیک‌های کامپیوتری بسیار پیچیده و دشوار است به کار گرفته شود. یک شبکه عصبی تربیت یافته می‌تواند به عنوان یک متخصص در مقوله اطلاعاتی که برای تجزیه تحلیل به آن داده شده به حساب آید.

شبکه های عصبی معجزه نمی‌کنند اما اگر خردمندانه به کار گرفته شوند نتایج شگفت آوری خلق می‌کنند.

مزیت‌های دیگر شبکه های عصبی

  • یادگیری انطباق پذیر (Adaptive Learning)

یادگیری انطباق پذیر، قابلیت یادگیری و نحوه انجام وظایف بر پایه اطلاعات داده شده برای تمرین و تجربه‌های مقدماتی.

سازماندهی توسط خود یعنی یک شبکه هوش مصنوعی سازماندهی یا ارائه‌اش را برای اطلاعاتی که در طول دوره یادگیری دریافت می‌کند، خودش ایجاد کند.

در عملکرد بهنگام محاسبات شبکه هوش مصنوعی می‌تواند بصورت موازی انجام شود  و سخت افزارهای مخصوصی طراحی و ساخته شده‌ که می‌تواند از این قابلیت استفاده کنند.

خرابی جزئی یک شبکه منجر به تنزل کارایی متناظر با آن می‌شود، اگر چه تعدادی از قابلیت‌های شبکه حتی با خسارت بزرگی هم به کار خود ادامه می‌دهند.

ما شبکه های عصبی را با تلاش اولیه در جهت یافتن خصوصیات اساسی سلول‌های عصبی و اتصالات آن‌ها هدایت می‌کنیم. سپس بطور معمول یک کامپیوتر را برای شبیه سازی این خصوصیات برنامه‌ریزی می‌کنیم. اگر چه بدلیل اینکه دانش ما از سلول‌های عصبی ناقص است و قدرت محاسبات ما محدود است، مدل‌های ما لزوما آرمان‌های خام و ناقصی از شبکه‌های واقعی سلول‌های عصبی است.

انواع شبکه عصبی مصنوعی

شبکه‌های پیش خور، شبکه‌هایی هستند که مسیر پاسخ در آن‌ها همواره رو به جلو پردازش شده و به نرون‌های لایه‌های قبل خود باز نمی‌گردد. در این نوع شبکه‌ به سیگنال‌ها تنها اجازه عبور از مسیر یکطرفه (از ورودی تا خروجی) داده می‌شود. بنابراین بازخورد یا فیدبک وجود ندارد به این معنی که خروجی هر لایه تنها بر لایه بعد اثر میگذارد و در لایه‌ی خودش تغییری ایجاد نمی‌کند.

شبکه عصبی-شبکه عصبی-پیش‌خور-01

 

تفاوت شبکه هاِی پس خور با شبکه‌های پیش خور در آن است که در شبکه‌های برگشتی حداقل یک سیگنال برگشتی از یک نرون به همان نرون یا نرون‌های همان لایه یا نرون‌های لایه‌های قبل وجود دارد و اگر نرونی دارای فیدبک باشد بدین مفهوم است که خروجی نرون در لحظه حال نه تنها به ورودی در آن لحظه بلکه به مقدار خروجی خود نرون در لحظه ی گذشته نیز وابسته است.

شبکه عصبی-پس خور

 

 یادگیری در شبکه‌ های عصبی

در یادگیری با ناظر  به الگوریتم یادگیری، مجموعه ای از زوج داده‌ها داده می‌شود. هر داده یادگیری شامل ورودی به شبکه و خروجی هدف است. پس از اعمال ورودی به شبکه، خروجی شبکه با خروجی هدف مقایسه می‌گردد و سپس خطای یادگیری محاسبه شده و از آن جهت تنظیم پارامترهای شبکه (وزن ها)، استفاده می‌گردد. به گونه ای که اگر دفعه بعد به شبکه همان ورودی را دادیم، خروجی شبکه به خروجی هدف نزدیک گردد.

یادگیری تشدیدی حالت خاصی از یادگیری با ناظر و یک یادگیری بر‌خط (On-Line) از یک نگاشت ورودی-خروجی است. این کار از طریق یک پروسه سعی و خطا به صورتی انجام می‌پذیرد که شاخصی موسوم به سیگنال تشدید، ماکزیمم شود که در آن بجای فراهم نمودن خروجی هدف، به شبکه عددی که نشان‌دهنده میزان عملکرد شبکه است ارائه می‌گردد.

در یادگیری بدون ناظر یا یادگیری خود سامانده، پارامترهای شبکه عصبی تنها توسط پاسخ سیستم اصلاح و تنظیم می‌شوند. به عبارتی تنها اطلاعات دریافتی از محیط به شبکه را بردارهای ورودی تشکیل می‌دهند.

همان طور که متوجه شدید شبکه عصبی از مهمترین گرایش‌های هوش مصنوعی ، علمی رو‌به رشد و در حال پیشرفت است و شرکت‌های بزرگ نظیر گوگل و مایکروسافت از آن در نرم‌افزارهای خود استفاده می‌کنند.

ساختار شبکه های عصبی مصنوعی به زبان ساده (Artificial Neural Network)

 

ساختار شبکه‌های عصبی مصنوعی به زبان ساده (Artificial Neural Network)

 

شبکه عصبی مصنوعی روشی عملی برای یادگیری توابع گوناگون نظیر توابع با مقادیر حقیقی، توابع با مقادیر گسسته و توابع با مقادیر برداری می‌باشد.

مطالعه شبکه های عصبی مصنوعی تا حد زیادی ملهم از سیستم های یادگیر طبیعی است که در آنها یک مجموعه پیچیده از نرونهای به هم متصل درکار یادگیری دخیل هستند.

گمان می‌رود که مغز انسان از تعداد ‌۱۰۱۱ نرون تشکیل شده باشد که هر نرون با تقریبا ۱۰۴ نرون دیگر در ارتباط است. سرعت سوئیچنگ نرونها در حدود ۳۱۰ ثانیه است که در مقایسه با کامپیوترها ۱۰۱۰ ثانیه  بسیار ناچیز می‌نماید. با این وجود آدمی قادر است در ۰٫۱ ثانیه  تصویر یک انسان را بازشناسائی نماید. ولی برای کامپیتر دقایقی طول می کشد که این بازشناسی انجام شود.

شاید بد نباشد ابتدا به این سوال فکر کنید، چرا با اینکه سرعت سوئیچنگ نرونهای کامپیوتر از مغز انسان بیشتر است ولی انسان‌ها سریعتر چهره یک شخص را به یاد می‌آورند؟

ساختار شبکه عصبی

 

 

هر دو تصویر بالا را مشاهده کنید. چه شباهت‌هایی می‌بینید؟

همانطور که ملاحظه می کنید، تصویر اول یک نرون طبیعی بیولوژیکی است. اطلاعات از طریق ورودی یا همان دندریت وارد نرون می شوند، همان ورودی‌ها در تصویر دوم با مقادیر (x1,…….,xm) قابل مشاهده هستند. در مدل شبکه عصبی مصنوعی به هر ورودی یک وزن (w1,…….,wm) اختصاص می دهیم. این وزن‌ها در واقع اهمیت ورودی‌ها برای ما هستند، یعنی هر چه وزن بیشتر باشد، ورودی برای آموزش شبکه مهمتر است. سپس تمامی ورودی‌ها با هم جمع (Σ) شده و به صورت یک‌لایه به آکسون وارد می شوند. در مرحله بعد Activation Function را بر روی داده‌ها اعمال می‌کنیم.

Activation Function در واقع نسبت به نیاز مسئله و نوع شبکه عصبی ما (در آموزش های بعدی به آن می پردازیم) تعریف می شود. این function شامل یک فرمول ریاضی برای بروزرسانی وزن‌ها در شبکه است.

پس از انجام محاسبات در این مرحله اطلاعات ما از طریق سیناپس های خروجی وارد نرون دیگر می‌شوند، و این مرحله تا جایی ادامه پیدا می‌کند که شبکه اصطلاحا train شده باشد.

منبع

شبکه های عصبی مصنوعی چیست؟ قسمت ۱
شبکه های عصبی مصنوعی چیست؟ قسمت ۲
شبکه های عصبی مصنوعی چیست؟ قسمت ۳
شبکه های عصبی مصنوعی چیست؟ قسمت ۴