• درخواست دمو
  • ۰۳۱-۹۱۰۰۱۸۸۱
بهسان اندیش
  • صفحه اصلی
  • محصولات
    • نرم افزار پلاک خوان
      • نرم افزار ثبت تردد جاده ای
      • نرم افزار مدیریت پارکینگ
      • نرم افزار تعمیرگاه ، کارواش و تعویض روغن
    • نرم افزار باسکول
    • راهکارهای سازمانی
      • نرم افزارانبار و حساب داری
    • محصولات جانبی
      • دوربین پلاک خوان
      • ماژول رله کنترل راهبند
  • نمونه کارها
    • سامانه جامع پلاکخوان خودرو
    • سامانه جامع مدیریت باسکول
    • سامانه قرائت فرم های چند گزینه ای
  • وبلاگ
  • ارتباط با ما
    • تماس با ما
    • درباره ما
    • دعوت به همکاری
  • جستجو
  • منو منو

بایگانی برچسب برای: af;i ihd uwfd

حذف نویز تصاویر با شبکه های عصبی و فیلتر میانی قسمت 1

آموزش عمومی پردازش تصویر و بینایی ماشین

ارائه الگوریتمی جدید برای حذف نویز از تصاویر دیجیتالی با استفاده از شبکه های عصبی و فیلتر میانی:

مقدمه

در عصر مدرن انتقال اطلاعات بصری در فرمت تصاویر دیجیتال به یکی از رایج ترین متدهای اشتراک اطلاعات تبدیل شده است. با این حال تصویر دریافت شده توسط گیرنده ی ارتباط، اغلب آغشته به نویز است. تصویر دریافت شده قبل از هرگونه استفاده ای در یک کاربرد، نیاز به پردازش جهت خذف یا کاهش اثر تخریب کنندگی نویز دارد. علاوه بر این به دلیل نادرست عمل کردن اجزاء سخت افزاری همچنین پیکسل های حسگر دوربین و یا حافظه و یا تبدیل تصویر از یک قالب به قالب دیگر، کپی کردن، اسکن کردن، چاپ و فشرده سازی نیز احتمال افزوده شدن انواع مختلفی از نویز به تصویر وجود دارد. حضور نویز هم از لحاظ ظاهری برای بیننده آزار دهنده است و هم انجام پردازش های بعدی همچون بخش بندی، لبه یابی، تفسیر و تشخیص را با مشکل مواجه می کند. لذا افزایش کیفیت تصویر و حذف نویز موجود در آن یک پیش پردازش اساسی و مهم قبل از هر گونه عملیات دیگر است. کاهش یا حذف نویز به عملیاتی گفته می شود که طی آن پردازش و دست کاری هایی بر روی تصویر ورودی انجام می شود تا تصویر با کیفیت بالاتر جهت استفاده های بعدی به دست آید.

تعیین یک آستامه برای سیستم عصبی برای اینکه سیستم حذف کننده نویز همه پیکسل ها را مورد بررسی قرار ندهد و فقط پیکسل هایی که از این آستانه عبور کنند مورد بررسی و بازیابی قرار گیرند. به همین منظور ابتدا به روش های حذف نویز موجود پرداخته می شود و در انتها این الگوریتم با آستانه مشخص اضافه می شود تا سرعت حذف نویز از تصاویر بیشتر شود.

پردازش تصویر

پردازش تصویر شاخه ای از علم رایانه است که هدف آن پردازش تصاویر برداشته شده توسط دوربین دیجیتال و یا تصاویر اسکن شده توسط اسکنر است. پردازش تصویر از دو جنبه به بهبود اطلاعات بصری برای تفسیر بصری توسط انسان و دیگری ارائه یک تصویر با جزئیات مناسب و کارآمد برای تعبیر توسط ماشین مورد توجه است. (McAndrew, 2004)

سیستمهای پردازش تصویر را می توان در سه سطح پردازشی دسته بندی کرد:

–         سطح پایین: عملیات اولیه(مانند حذف نویز، افزایش میزان کنتراست) که در آن ها هم ورودی و هم خروجی سیستم تصویر هستند.

–         سطح متوسط: استخراج ویژگی ها (مانند لبه ها، کانتورها، نواحی) از یک تصویر که معمولا این پردازش ها در حیطه بینایی ماشین موجود است.

–         سطح بالا: تحلیل و تفسیر محتوایی یک صحنه که اغلب از الگوریتم های یادگیری ماشین در این سطح استفاده می شود.

هر سیستم پردازش تصویر معمولا بر حسب نوع کاربرد و هدف نهایی پردازش شامل بخش های مختلفی است. در گام اول یک تصویر توسط یکی از ابزار های تصویر برداری همچون دوربین دیجیتال یا اسکنر بدست می آید. کیفیت تصویر خروجی بلوک تصویر برداری به شدت بر روی کل سیستم تاثیر گذار است. در گام بعد، پیش پردازشی بر روی تصویر ورودی انجام می شود. هدف این پیش پردازش بهبود ظاهری تصویر، بالا بردن کنتراست، حذف نویز، تصحیح درخشندگی، تمیز کردن تصویر یا از بین بردن تاری ناشی از قرار گرفتن سوژه خارج از فاصله کانونی است. در گام بعدی تصویر بر مبنای معیار های مختلفی از جمله ویژگی های بافتی، مولفه های هم بندی، اشکال هندسی و موارد دیگر بخش بندی می شود. و در نهایت در گام نهایی هر یک از بخش ها بر مبنای همین ویژگی ها مورد تجزیه و تحلیل قرار می گیرد و به هر ناحیه یک برچسب نسبت داده می شود. در تمام این مراحل از یک پایگاه دانش بسته به نوع سیستم استفاده می شود. پایگاه دانش علاوه بر محیا کردن دانش لازم برای هر واحد به تعامل بین بخش ها نیز نظارت دارد.(van bemmel and musen, 1997)

پردازش تصویر دارای طیف وسیعی از کاربرد ها است. از آن جمله می توان به موارد زیر اشاره کرد:

–         کاربرد های پزشکی

–         تفسیر خود کار تصاویر پزشکی سونوگرافی، رادیولوژی و مامو گرافی

–         تحلیل تصاویر سلولی از گونه های کروموزوم

–         کشاورزی

–         پردازش تصاویر ماهواره های جهت تعیین محل مناسب برای کشت محصول

–         کنترل کیفیت خود کار محصولات کشاورزی و دسته بندی آن ها در دسته های مختلف

–         صنعت

–         خودکار سازی خط تولید در کارخانه ها

–         تحلیل وضعیت ترافیکی جاده ها

–         دسته بندی محصولات کارخانه ای

–         قضایی

–         تحلیل و بررسی اثر انگشت

–         تعیین هویت شخص از روی نشانه های بیومتریک

–         تعیین هویت تصاویر(جعلی یا واقعی بودن آن ها)

انواع تصاویر دیجیتال

تصویر در واقع یک تابع دو بعدب مانند (F(x,y است که در آن آرگومان های ورودی x,y مختصات مکانی در هر نقطه به صورت شماره سطر و شماره ستون است. و مقدار تابع شدت روشنایی آن نقطه از تصویر است. از آن جا که مقادیر (F(x,y و x,y مقادیر گسسته اند، تصویر را یک تصویر دیجیتال می نامند. یک تصویر دیجیتال از تعدادی از عناصر با مقدار و موقعیت مشخص تشکیل شده است که به هر یک از این عناصر پیکسل گفته می شود. برای نمایش یک تصویر با ابعاد M*N از یک ماتریس دو بعدی با M  سطر و N ستون استفاده می شود. مقدار هر یک از این عناصر این آرایه شدت روشنایی آن پیکسل را نشان می دهد. بسته به نوع داده ای این آرایه دو بعدی، انواع مختلف از تصاویر بوجود می آیند که در ادامه هر یک از انواع تصاویر به طور خلاصه بررسی می شوند.

تصاویر دودویی

در تصاویر دودویی هر کدام از پیکسل ها می توانند یکی از دو مقدار روشن 1 و خاموش 0 را داشته باشند. لذا برای نگهداری هر پیکسل تنها به یک بیت دودویی نیاز است. یکی از اصلی ترین مزایای این گونه تصاویر حجم کم آن ها است و معمولا برای نگهداری نوشته های چاپی و یا دست نویس، اثر انگشت و نقشه های مهندسی از آن استفاده می شود.(Gonzalez and woods, 2005)

تصاویر شدت روشنایی

تصاویر شدت با نام تصاویر خاکستری نیز شناخته می شوند. در این تصاویر مقدار هر یک ار عناصر آرایه دوبعدی تصویر یک عدد 8 بیتی است که می تواند نقداری بین 0 (معادل رنگ مشکی) و 255 (معادل رنگ سفید) را در خود ذخیره کند. دامنه تغییرات عناصر در این گونه تصاویر، اعداد صحیح بین 0 تا 255 است.

تصاویر رنگی

در تصاویر رنگی هر پیکسل دارای یک رنگ مشخص است که خود ترکیبی از سه مولفه رنگی اصلی قرمز، سبز و آبی است و لذا برای ذخیره کردن یک تصویر رنگی با ابعاد M*N نیاز به سه ماتریس با ابعاد M*N است که هر کدام شدت روشنایی هر کدام از مولفه ها را در خود ذخیره می کنند. به عنوان مثال اگر رنگ یک پیکسل قرمز خالص باشد لایه های رنگی آن به صورت [0و0و255] می باشند. برای نمایش سفید خالص هر سه مولفه رنگی برابر 255 و برای مشکی خالص هر سه مولفه برابر صفر است. تصاویر RGB دارای سه لایه رنگی 8 بیتی هستند و لذا بانام تصاویر 24 بیتی نیز شناخته می شوند. این تصاویر سه برابر تصاویر سطح خاکستری هم اندازه خود فضا اشغال می کنند. (Gonzalez and woods, 2005)

تصاویر شاخص

یکی از مهم ترین معایب تصاویر 24 بیتی عدم سازگاری با سخت افزار های قدیمی بود که قادر به نمایش هم زمان 16 میلیون رنگ نبودند. علاوه بر این به حجم بالای ذخیره سازی نیاز داشتند. راه اصلی که همزمان دو مشکل را حل می کند استفاده از یک بازنمایی شاخص دار است که در آن از یک آرایه دوبعدی هم اندازه با تصویر استفاده می شود. لذا برای نمایش هر تصویر شاخص دار از یک آرایه دو بعدی 8 بیتی تصویر و یک نقشه رنگی 256 مدخلی استفاده می شود.

الگوریتم مبتنی بر تصمیم گیری

در (srinirasan and Ebenezer 2007) روشی با نام الگوریتم مبتنی بر تصمصم گیری ارائه شده است. در صورتی که مقدار هر پیکسل بین مینیمم و ماکزیمم مقدار درون پنجره فیلتر قرار گیرد، پیکسل سالم معرفی شده و بدون تغییر باقی می ماند. اگر پیکسل نویزی باشد و مقدار میانه پنجره فیلتر در بازه مینیمم و ماکزیمم پنجره باشد مقدار میانه جایگزین پیکسل خواهد شد و در غیر این صورت مقدار پیکسل با پیکسل همسایه اش جایگزین می شود. الگوریتم DBA در چگالی نویز بالا نیز کارامد است.

متدهای مبتنی بر محاسبات نرم

در سال های اخیر، تکنیک های پیشرفته محاسبات نرم برای عملیات فیلتر گذاری تصاویر با در نظر گرفتن آن به عنوان یک مسئله غیر خطی بکار گرفته شده اند. هم شبکه های عصبی و هم شبکه های با منطق فازی ابزارهای قدرتمندی برای حل طیف وسیعی از مسائل پردازش تصویر هستند. در منبع یک شبمه عصبی نقشه خود سازماندهی برای آشکار سازی پیکسل های نویزی به همراه یک فیلتر تطبیقی برای فیلتر کردن پیکسل نویزی استفاده شده است. شبکه از انحرافات میانه یعنی تفاضل پیکسل های همسایه با میانه پبجره فیلتر به عنوان ورودی استفاده کرده و پیکسل مرکزی را به دو دسته نویزی و سالم طبقه بندی می کند. این فیلتر قابلیت خوبی در حفظ جزئیات تصویر دارد. مهمترین عیب این فیلتر ابعاد بالای ورودی شبکه و انتخاب تصاویر آموزشی است.

در (zvonarev and khryashchev 2005) از ترکیب فیلتر میانه و شبکه عصبی برای بهبود عملکرد حذف نویز استفاده شده است. سیستم پیشنهاد شده، برای جدا سازی پیکسل نویزی از پیکسل سالم از الگوریتم دو مرحله ای استفاده می کند. در تشخیص اولیه، اگر مقدار هر پیکسل درون بازه [min,max] باشد پیکسل سالم و در غیر این صورت نویز تشخیص داده می شود. پیکسل های کاندید برای نویزی بودن به شبکه عصبی فرستاده می شود تا طبقه بندی انجام شود. از ویژگی های محلی آماری برای ورودی شبکه استفاده شده است. مفهوم منطق فازی در سال 1965  توسط آقای زاده به عنوان یک ابزار ریاضی برای مدل سازی عضویت نسبی در مجموعه های معرفی شد. بر خلاف تکنیک های کلاسیک مجموعه ای که تنها عضویت قطعی در آن ها وجود دارد، در منطق فازی امکان تعریف عضویت نسبی وجود دارد.

در منبع (yuksel and besdok 2004)  از یک سیستم فازی عصبی تطبیقی برای آشکار سازی پیکسل نویزی استفاده شده است که شامل دو زیر آشکار گر مبتنی بر شبکه فازی عصبی با منطق فازی نوع سوگنو است که هر کدام از سه ورودی استفاده می کنند. این سه ورودی پیکسل های عمودی و افقی در یک پنجره 3*3 هستند. هر زیر آشکارگر برای هر ورودی سه تابع و سه تابع زنگوله ای برای هر ورودی، 27 قاعده برای تصمیم گیری است.که وزن ها بر اساس شدت آتش هر قاعده تعیین می شود. در نهایت میانگین خروجی دو زیر آشکارگر محاسبه می شود و از یک آستانه نهایی برای تشخیص پیکسل نویزی استفاده می شود.

در فیلتر های حذف نویز، طبقه بندی هر پیکسل با برچسب نویزی یا سالم معمولا از طریق مشاهدات همسایگی پیکسل انجام می شود. یک راه ساده برای طبقه بندی اندازه گیری میزان اختلاف پیکسل مرکزی و خروجی فیلتر میانه است. در صورتی که میزان اختلاف از یک حد آستانه بیشتر باشد، پیکسل به عنوان پیکسل نویزی و در غیر این صورت پیکسل به عنوان سالم بر چسب می خورد. این راه حل در نگاه اول ساده به نظر می رسد، اما تعیین مقدار مناسب آستانه بحث بر انگیز است و تعیین چنین آستانه هایی معمولا امری مشکل است. در یک رویکرد فازی، با استفاده از شروط فازی و توابع عضویت، میزان نویزی بودن هر پیکسل تعیین می شود و می توان از این طبقه بندی هم در بخش طبقه بندی اولیه در سیستم حذف نویز و هم در تخمین مقدار نهایی برای پیکسل نویزی استفاده کرد.

در قسمت های قبل مفاهیم پایه و انواع تصاویر و همچنین مدل های مختلف نویز بررسی شد و تاثیر هر کدام از انواع نویز بر روی تصاویر سطح خاکستری نشان داده شد. هر کدام از انواع نویز تاثیر متفاوتی بر روی کیفیت تصویر اصلی می گذارند و بر همین اساس از رویکرد های متفائتی برای کاهش اثر هر کدام از انواع نویز استفاده می شود. متد های فوق و پایه ای در حذف نویز ضربه در این قسمت مرور شد. در ادامه متدی برای کاهش اثر نویز ضربه بر روی تصاویر دیجیتال بررسی می شود.

 

نوامبر 30, 2019/0 دیدگاه /توسط daliri
https://behsanandish.com/wp-content/uploads/2018/12/download-2.jpg 250 340 daliri https://behsanandish.com/wp-content/uploads/2020/09/logo-farsi-englisi-300x195-1.png daliri2019-11-30 10:00:142019-11-30 10:00:14حذف نویز تصاویر با شبکه های عصبی و فیلتر میانی قسمت 1

پردازش و قطعه بندی تصاویر رنگی

آموزش عمومی پردازش تصویر و بینایی ماشین

چکیده

پردازش اطلاعات چند کاناله در رنج های متفاوتی از کانال اطلاعات است که در آن پردازش اطلاعات دارای زمان زیاد و پیچیدکی فضایی بالایی بعلت تنوع و گستردگی داده ها می باشد. در این راستا بیشتر رویکردهای کلاسیک از فیلترینگ و روشهای کلاسیک استفاده می کنند. برخی از این روشها مدل تصادفی مارکوف ، فیلترینگ بردار جهت دار و مدل های ترکیبی آماری شبیه گوسین و دیریکله هستند . رویکردهای غیر کلاسیک  شامل عصبی،فازی و ژنتیک می شوند.در این مقاله رویکر دهای نامبرده شده را برای ارتقای تصاویر رنگی و قطعه بندی بهتر آنها شرح می دهیم.

کلمات کلیدی: ارتقای تصاویر رنگی ، قطعه بندی تصاویر رنگی ، رویکردهای غیر کلاسیک، رویکرهای غیر کلاسیک

مقدمه

پردازش اطلاعات چند کاناله یکی از مفروضات مهم برای ارزیابی فیلدهای نمایش از راه دور  GIS، تصویر برداری بیو مدیکال ، مدیریت دادهای چند طیفی ، بازیابی و تحلیل ویژگیها ی اشیاء از قبیل رنج های مختلف کانال اطلاعات که بطور اساسی پیچیده هستند. و این پیچیدگی بدلیل گسترده گی داده های ارسالی و اصلی آن می باشد . به بیانی ساده تر پردازش و قطعه بندی رنگی تصاویر به صورت مثالهای کلاسیک از پردازش اطلاعات چند مجرایی هستند. یک چالش ابتدایی در پردازش تصاویر تنوع و گستردگی از شدت رنگهای گاموت با پردازش مشخصه های چند طیفی از اجزای رنگی متفاوت آنها می باشد.

نسبت ها ی محاسباتی وابسته به اجزای رنگها ، همبستگی ورودی و نمایش مشخصه های غیر خطی می باشد.

گام اصلی در پردازش تصاویر دیجیتالی 1-پیش پردازش داده ها برای آماده سازی داده ها برای ارتقای کنتراست ، کاهش نویز و یا فیلترینگ است. 2- استخراج ویژگیها برای بازیابی اطلاعات غیر زائد و با ارزش از یک تصویر.

این عملیات هدفی برای بدست آوردن زمان بهینه و کاهش نمونه داده هاست که توسط کشف، تمرکز و معین کردن موقعیت ها و جایگاهی و تطبیقی از اشیاء است. اهداف بسیاری از الگوریتم های موجود اشیاء مورد اشاره هستند که هر از چند گاهی قابلیت استنتاج را پیدا می کنند .

به طور کلی مشخصه ها و بهینه سازی های یک الگوریتم توسط دامنه ای از داده های ورودی که قابلیت پردازش را دارند معین می شوند. دامنه داده معمولی شامل پیکسل ها، ویژگیهای محلی و لبه های تصاویر، اشیاء ادغام شدنی و مقدار ناچیزی از نامها می شوند.

دامنه داده خروجی به طور ثابت شامل قطعات تصویر به طور همگن، لبه ها  پیدا شده روی اشیاء خاص از ناحیه های قطعات و اشیاء با اندازه ها، اشکال ، رنگ ها و اطلاعات متنی متفاوت می باشند.

مدل های رنگی متفاوت قابل فهم، شرط لازم برای پردازش تصاویر رنگی است. در این مقاله تمایز ها و زیان های قابلیت های فضاهای رنگی موجود را بررسی می کنیم. متغیرهای استاندارد فضای رنگی RGB مینمم پیچدگی فضای رنگی را استخراج می کنند و برای نمایش رنگ بکار می روند. کارایی هر یک از الگوریتم های قطعه بندی تصاویر هم از کلاسیک و غیر کلاسیک  را می توان با چندین رویکرد غیر نظارتی تشخیص داد.

به طور پیش فرض چند اندازه برای نمایش حالتها انتخاب می کنند مانند E که برای نمایش آنتروپی استفاده می شود. اندازه های مفید تجربی برای انعکاس قابلیت های قطعه بندی استفاده می شوند. اندازه های با مقادیر پائین قابلیت های بهتری از قطعه بندی را بدست می آورند.

رویکردهای کلاسیک در قطعه بندی و پردازش تصاویر رنگی

تکنیک های فیلترینگ برای حذف نویز و ارتقا لبه ها در سالهای اخیر به یک مسئله مهم و معروف تبدیل شده است. فلیتر بردار جهت دار (VDF) با در نظر گرفتن مقادیر سیگنال نقش مهمی در پردازش تصاویر عهده دار است. پردازش اندازه و جهت سیگنال در این کلاس از فیلتر های مستقل انجام می شود. فیلتر های چندگانه ارتقا لبه بر اساس بردار میانگین برای ارتقاء لبه های خفیف در تصاویر رنگی ارائه کردند. در این روش از سه زیر فیلتر (sub filter) استفاده می شود و سر انجام خروجی این زیر فیلتر ها با بردار میانگین مقایسه می شودو یک روش دیگر با توجه به نویز برای اطلاعات چندگانه فیلتر های نزدیکترین  همسایگی سازگار است. این فیلتر از ضرائب اطلاعات مستقل براساس یک روش اندازه گیری فاصله جدید که شامل بردار هاوی (جهت) فیلتر واندازه بردار فیلتر می باشد بهره می برد.

یک چهارچوب کاملا متفاوت را برای فیلتره ای رنگی ارائه می کنیم . این روش براساس رمز نگاری تصاویر رنگی و غیر رنگی کار می کنند . تا به حال چند رزولوشن بر اساس نظریه گراف ارائه شده است. این تکنیک بر اساس ویژگی و شباهت و ارتباط بین نواحی مشابه و ارتباط بین نواحی همسایه استفاده می کند و در نهایت برای اشیاء برای قطعه بندی ایده ال نواحی گروه بندی می شوند. ما می توانیم از مسائل خطی بجای مقادیر ویژه در مسائل قطعه بندی گراف استفاده کنیم . الگوریتم آنالیز میانگین شیفت دهی برای تخمین دقیق رنگ مرکز کلاسترهای فضای رنگ استفاده می کند. می توان همین روش را با استفاده از روش های پارتیشن بندی توسعه داد.

مدل های (MRF) برای مدل کردن وآنالیز عکس های چند طیفی استفاده می شود. چند جایگزین برای MRF پیشنهاد می شود تا پیچدگی زمانی آن را کاهش دهند . الگوریتم EM برای تخمین پارامترهای مدل های مخفی مارکوف برای کاهش وابستگی ساختاری در این روش استفاده می شود.  می توان این الگوریتم را برای تخمین پارمترهای مدل دوباره دسته بندی کرد. این تهمین از فاکتور جریمه برای داده های مستقل برای داده های مستقل برای ماکزیمم کردن احتمال کلی مجموعه داده ها و در نتیجه کاهش مرجع محاسبات استفاده می کنند.

چندین مدل ترکیبی آماری برای تخمین مناسب از توزیع ساختار عکس ارئه می شود. به عنوان مثال از مدل ترکیبی گوسین و مدل ترکیبی دیریکله می توان نام برد . مدل ترکیبی گوسین بدلیل لینکه خواص مشابهی دارد می تواند با توزیع داده ها بوسیله بردار میانگین  و ماتریس کواریانس ارائه شود . برای پیدا کردن راه حل  ماکزیمم  احتمال کلی برای قطعه بندی با استفاده از هسته جداگانه از این روش استفاده کردند. اگر چه این روش یک ساختار غیر گوسی و متقارن  را برای توزیع داده ها پیدا می کند . در این مسئله توزیع دیریکله همانند توزیع های تغییر یافته چند متغیره بتا می تواند به طور دقیق داده ها را انتخاب کند . از این مدل در تخمین هیستوگرام ها، مدل هاهی چند پردازشی تصویر و… استفاده می کنند.

رویکردها دیگر از پردازش و قطعه بندی تصاویر رنگی

بیشتر رویکردهای کلاسیک نیاز به دانش اولیه از داده ها ی تصویر برای پردازش تصویر و قطعه بندی آن و توزیع شدت های رنگ  اصلی و پارامترهای عملیاتی تصاویر دارند. در رویکردهای غیر کلاسیک که شامل  عصبی ،فازی، ژنتیک و wavelet می شوند نیازی به توزیع ها و پارمترهای عملیاتی ندارند. در این قسمت انواع این روشها را شرح می دهیم:

الف- روش های مبتنی بر شبکه های عصبی

در این روش از ساختار شبکه ی عصبی چند سطحی CNN برای پردازش تصاویر رنگی در مدل های رنگی RGB استفاده می شود. در این روش رنگ های اولیه یک سطح منحصر به فرد CNN می باشد که برای پردازش موازی بکار می رود. اخیرا ساختار CNN چند سطحی بر ای تصاویر رنگی در حال بررسی و استفاده می باشد.

از یادگیری رقابتی CL برای خوشه های رنگی مبتنی بر کمترین مجموع مربعات معیارها بکار گیری می شود.

Clهمگن  محلی برای خوشه بندی رنگی بهینه است. در مقایسه کارایی CLبا الگوریتم های خوشه بندی موجود شبیه CMA ,GCMA ,HCL می توان گفت که دو  روش GCMA ,HCL در مقابل شرط ابتدایی حساسیتی را از خود نشان نمی دهند نتایج GCMA اکثر مواقع بهینه است ولی دارای هزینه محاسباتی بالایی می باشد در مقابل HCL دارای هزینه محاسباتی کم می باشد ولی بهینه نیست. در نتیجه در خوشه بندی سریع از CL برای خوشه بندی داده ها استفاده می شود.

Som در بسیاری از موارد استفاده می شود در دامنه نظر به اینکه می تواند بازیابی کند محتوای رنگی برجسته را از تصاویر . به طور کلی از چندین شبکه som برای خوشه بندی مبتنی بر رنگ و ویژگیهای فضایی از پیکسل های تصاویر استفاده می شود. خروجی خوشه بندی، یک رویه مطلوب از قطعه بندی تصویر است.  Som تولید کرد نتایج خوشه بندی اولیه را مبتنی بر آموزش مجموعه ها از بردار 5 بعدی (R,G,B,x,y). تصاویر قطعاتی که توسط الحاق بلوکهای پراکنده و حذف پیکسل های ایزوله شده بوجود آمده اند. در یک مدل چند سطحی سازماندهی شبکه های عصبی (PSONN) بهینه است در استخراج رنگ های اشیاء از نویزهای رنگی تصاویر. بکارگیری معماری (PSONN) برای قطعه بندی رنگ ها  حقیقی تصاویر استفاده می شوند برای  چندین سطح از تابع های فعال سازی  مشخصه های تصاویر  توسط پارامترهای آستانه گیری ثابت و یکسان .

ب- رویکرد های مبتنی بر منطق فازی

تئوری مجموعه فازی و منطق فازی بکار گیری می شود به صورت دستی برای مقادیر وسیع از آشکار سازی خطای تخمینی در شدت گاموت تصاویر رنگی . الگوریتم FCM  یک روش جدید برای نشان دادن مرزهای مبهم بین خوشه ها می باشد.

الگوریتم  قطعه بندی تصاویر تکرار شونده در منطق فازی توسعه پیدا کرد . فضای رنگی  HSV مبتنی بر رویکرد فازی برای شناسایی رنگ ها اشیا در پشت زمینه های پیچیده بکارگیری شد که شامل روشنایی های متفاوت  می با شد. یک رویکرد دینامیکی فازی مبتنی بر خواص پیکسا های تصویر وجود دارد. توطعه پیدا کرد شبکه عصبی min-max بر پایه تکنیک های قعه بندی تصاویر (FMMSIS) برای کشف تصاویر مصنوعی. روش ارائه شده برای پیدا کردن مرزهای مینیمم مربعی (MBR) برای نمایش اشیاء در تصاویر بکار می رود.برچسب عصب فازی یک نمونه قابل توجیه مبتنی بر بردار تدریجی، الگوریتم  عصب گازی در جهت نماهای خوشه بندی است.

سیستم های فازی عصبی مبتنی بر یک نوع جدید از شبکه های عصبی مصنوعی هستند که  شبکه عصبی افزاینده وزن دار نامیده می شود (WINN). این سیستم ها  در سه گام عمل میکند: در ابتدا مجموعه داده های ورودی وزن دهی می شوند در شبکه . انعکاس پیدا می کنند و  شامل کاهش دهنده ها می شود .

در گام بعدی از نتایج وزن های اتصالات شبکه  برای رویه ی آب پخشان در مسائل تک بعدی استفاده می شود.تعدادی از جداکننده های اتصالات وزن دار زیر شبکه ها خوشه هایی را با یک زیر شبکه برای هر خوشه  بدست می آورد. در هر صورت همه ی گره های زیر شبکه دارای برچسب هستند. در نهایت نتایج خوشه ها بر روی مجموعه داده های مورد استفاده ورودی طبقه بنده های مجاور نگاشت می شود.رویکردها ی کاهش حافظه و  محاسباتی دارای data setهای بزرگی هستند.

ج- رویکردهای مبتنی بر الگوریتم ژنتیک

الگوریتم ژنتیک برای بهینه سازی پارامترهای ورودی در الگوریتم های قطعه بندی موجود مورد استفاده قرار می گیرد طبقه بندی کاربردهای الگوریتم ژنتیک در دو کلاس مهم برای قطعه بندی تصاویر استفاده می شوند:

 1) کاربرد پارامترهای انتخابی قطعه بندی برای استخراج قطعات خروجی

2) کاربرد پیکسل های سطحی قطعه بندی برای استخراج برچسب نواحی

روش های قطعه بندی موجود که نیاز به پارامترهای بهینه در طبقه بندی نخست دارند. الگوریتم ژنتیک برای وفق دادن 4 پارامتر ازالگوریتم قطعه بندی فونیکس استفاده می کند. الگوریتم ژنتیک در تکنیک های قطعه بندی غیر نظارتی راکه آستانه گیری چندگذر گاهی دارد را برای الگوریتم های متفاوت دسته بندی می کند. که این روش برای قطعه بندی اشیاء سه بعدی و دو بعدی مورد استفاده قرار می گیرد.در قطعه بندی سطوح پیکسل دار، الگوریتم ژنتیک را برای پیداکردن برچسب نواحی  مشخصه های پیکسل ها استفاده می کند.

د- wavelet

تحلیل چند کیفیتی (MRA)  برای نمایش سیگنالها و پردازش کیفیت نمایش سیگنالهای تقسیم کننده کیفیت وضوح و فضای مقیاس دهی استفده می شود. و معمولا برای کاهش ابعاد تصویر بکار گرفته می شود . تبدیل wavelet یک ابزار بهینه برای تخمین، فشرده سازی ،حذف نویز و پیدا کردن لبه ها است .می توان از این روش برای قطعه بندی تصاویر متنی نیز استفده نمود. ساختار wavelet بهینه است برای ساختارهای طیفی از داده های ورودی که اغلب برای استخراج ویزگی های تصاویر مورد استفاده قرار می گیرند.

نتیجه گیری

در این مقاله چندین الگوریتم مهم برای پیش پردازش و قطعه بندی تصاویر رنگی مورد بررسی قرار گرفت. روش های کلاسیک برای پردازش تصاویررنگی که دارای رنج تکنیک های فیلترینگ و مدل های آمار ی باشند مناسب هستند. روش های غیر کلاسیک مانند تکنیک های فازی ،عصبی ،ژنتیک وویولت تجدید پذیر هستند . کارایی این روش ها برای فاکتورهای گوناگون روی دادهای توزیع پذیر و پارامترهای عملیاتی و محیهای عملیاتی مورد بررسی قرار گرفتند.

نتیجه کلی که می توان از این مقاله گرفت این است که رنگ ها قابلیت آستانه گیری در قطعه بندی را دارند.

سپتامبر 1, 2019/0 دیدگاه /توسط daliri
https://behsanandish.com/wp-content/uploads/2018/10/Untitled-3.png 300 881 daliri https://behsanandish.com/wp-content/uploads/2020/09/logo-farsi-englisi-300x195-1.png daliri2019-09-01 14:45:102019-09-01 14:45:10پردازش و قطعه بندی تصاویر رنگی

صفحات

  • #9096 (بدون عنوان)
  • #12541 (بدون عنوان)
  • 990729
  • home
  • product-mahdi
  • slider1
  • slider2
  • slider3
  • slider4
  • Video Test
  • آموزش
  • آموزش پردازش تصویر در نرم افزار متلب (Matlab)
  • آموزش های زبان برنامه نویسی سی شارپ (#C)
  • آموزش های زبان سی پلاس پلاس (++C)
  • آموزش های عمومی برنامه نویسی
  • آموزش های عمومی پردازش تصویر و بینایی ماشین
  • آموزش های عمومی هوش مصنوعی
  • ابزار و محصولات جانبی
  • ارتباط با ما
  • استخدام برنامه نویس
  • استخدام برنامه نویس
  • برگه نمونه
  • برگه نمونه
  • برنامه نویسی
  • بینایی ماشین (Machine Vision) و بینایی کامپیوتر
  • پردازش تصویر با کتابخانه متن باز OpenCV
  • پردازش تصویر و بینایی ماشین
  • پروژه ها و سورس کدهای پردازش تصویر و بینایی ماشین
  • پروژه ها و سورس کدهای هوش مصنوعی
  • تست اسلایدر
  • تشخيص پلاک خودرو(Car Plate Recognition)
  • تشخیص نوری کاراکتر و تشخیص دست خط (OCR/HCR)
  • تشخیص هویت زیست سنجی (Biometrics Identification)
  • تماس با ما
  • دانلود نسخه دمو سامانه کنترل تردد بهسان
  • درباره ما
  • درخواست دمو
  • دعوت به همکاری
  • دوربین و ابزارهای تصویربرداری (camera)
  • سامانه جامع پلاکخوان خودرو(کنترل تردد بهسان)
  • سامانه جامع مدیریت باسکول (بهسان توزین)
  • سامانه قرائت فرم های چند گزینه ای
  • سامانه قرائت فرم های چند گزینه ای
  • صفحه اصلی
  • فرم درخواست همکاری
  • محصولات
  • محصولات جانبی
  • مقالات ، سمینارها و کنفرانس های پردازش تصویر
  • مقالات، سمینارها و کنفرانس های هوش مصنوعی
  • نرم افزار باسکول
  • نرم افزار ثبت تردد جاده ای
  • نرم افزار مدیریت تعمیرگاه ، کارواش و تعویض روغن بهسان
  • نرم افزارانبار و حساب داری بهسان اندیش
  • نمونه کارها
  • نمونه کارهای سامانه جامع پلاکخوان خودرو
  • هوش محاسباتی (Computational Intelligence)
  • هوش مصنوعی
  • وبلاگ

دسته ها

  • آموزش پردازش تصویر در نرم افزار متلب (Matlab)
  • آموزش عمومی پردازش تصویر و بینایی ماشین
  • آموزش های زبان برنامه نویسی سی شارپ
  • آموزش های عمومی هوش مصنوعی
  • اخبار
  • بینایی ماشین (Machine Vision) و بینایی کامپیوتر
  • پردازش تصویر با کتابخانه متن باز OpenCV
  • پروژه ها و سورس کدهای پردازش تصویر و بینایی ماشین
  • پروژه ها و سورس کدهای هوش مصنوعی
  • تشخيص پلاک خودرو
  • تشخیص نوری کاراکتر و تشخیص دست خط
  • تشخیص هویت زیست سنجی
  • دسته‌بندی نشده
  • دوربین (camera)
  • مقالات
  • مقالات ، سمینارها و کنفرانس های پردازش تصویر
  • مقالات، سمینارها و کنفرانس های هوش مصنوعی
  • هوش محاسباتی
  • وبلاگ

بایگانی

  • آوریل 2022
  • مارس 2022
  • دسامبر 2021
  • نوامبر 2021
  • سپتامبر 2021
  • جولای 2021
  • می 2021
  • مارس 2021
  • فوریه 2021
  • آوریل 2020
  • مارس 2020
  • فوریه 2020
  • ژانویه 2020
  • دسامبر 2019
  • نوامبر 2019
  • اکتبر 2019
  • سپتامبر 2019
  • آگوست 2019
  • مارس 2019
  • ژانویه 2018
  • دسامبر 2017

تلفن های تماس:

تلفن: ۹۱۰۰۱۸۸۱(۰۳۱)
بازرگانی و فروش:۰۹۱۳۶۵۳۱۸۸۱
پشتیبانی: ۰۹۱۱۷۶۱۰۲۷۵

ساعات کاری

از شنبه تا چهارشنبه : ۰۹:۰۰ تا ۱۷:۰۰

پنچ شنبه ها : از ۰۹:۰۰ تا ۱۳:۳۰

پیوند ها :

  • درخواست دمو
  • مطالب و آموزش ها
  • همکاری با بهسان اندیش
  • درباره ما

 

محصولات :

  • پلاک خوان
  • نرم افزار ثبت تردد جاده ای
  • نرم افزار مدیریت پارکینگ
  • نرم افزار مدیریت کارواش
  • نرم افزار تعمیرگاه خودرو
  • نرم افزار جامع مدیریت باسکول
  • ماژول رله کنترل راهبند
  •  

 

تمامی حقوق مالکیت معنوی این ‌سایت برای شرکت بهسان اندیش سپهر، محفوظ است.
  • Instagram
  • Facebook
  • Youtube
  • LinkedIn
  • Mail
رفتن به بالا