نوشته‌ها

بررسی سامانه های تشخیص خودکار پلاک خودرو

در این نوشته سعی شده به بررسی کلی سیستم های تشخیص خودکار پلاک خودرو و بررسی یکی از روش های تشخیص و خواندن پلاک پرداخته شود. شرکت بهسان اندیش تولید کننده سامانه های هوشمند مفتخر به تولید یکی از دقیقترین و سریعترین سامانه های جامع کنترل تردد خودرو می باشد که می توانید جهت آشنایی با این محصول به لینک :سامانه جامع کنترل تردد خودرو بهسان(پلاک خوان) مراجعه بفرمایید.

 

نویسنده: آقایان علی اوحدی و محسن امیدوار

تعداد صفحات : ۴۲

کلیمه عبور فایل : behsan-andish.ir

دانلود : بررسی سامانه های تشخیص خودکار پلاک

شناسایی چهره انسان به کمک روش های پردازش تصویر

در تشخیص چهره انسان شما با دیدن تصویر یک فرد باید بگویید که این تصویر مربوط به کدام یک از افرادی است که قبلا دیده‌اید. این مسئله دو بخش دارد:

  • بخش آموزش: در این بخش شما افرادی را که می‌خواهید سیستم بشناسد با تصویر به سیستم می‌دهید.
  • بخش آزمایش: در این بخش اگر تصویری از یکی از افرادی که می‌شناسد را به سیستم بدهیم، سیستم باید او را به درستی به یاد بیاورد.

این مسئله کاربردهای زیادی دارد. برای مثال اگر تعداد افرادی که آموزش می‌دهیم یک فرد باشد، می‌توان از این سیستم به عنوان جایگزین رمز عبور برای رایانه استفاده کرد.

 

بازشناسی چهره انسان به کمک روش های پردازش تصویر1

 

اگر برای مثال تصویر چهره مجرم‌ها را به سامانه آموزش دهیم، می‌توان از دوربین‌های سطح شهر برای پیدا کردن مجرم‌ها استفاده کرد.

 

بازشناسی چهره انسان به کمک روش های پردازش تصویر2

 

کارایی تشخیص چهره علاوه بر کاربردهای مرتبط با تعیین و مقایسه هویت نظیر کنترل دسترسی, امور قضایی, صدور مجوزها و مدارک هویتی و نظارت, در زمینه هایی نظیر تعامل انسان و کامپیوتر, واقعیت مجازی بازیابی اطلاعات از پایگاه های داده, مالتی مدیا و سرگرمی های کامپیوتری به اثبات رسیده است.

یک سیستم تشخیص چهره متداول شامل سه مرحله زیر است:

  1. کشف چهره (Face Detection)
  2. استخراج الگوها (Feature Extraction)
  3. تشخیص چهره (Face Recognition)

چالش های پیش رو

شرایط ثبت تصویر نظیر وضعیت چهره نسبت به دوربین, نورپردازی, حالتهای چهره و تعداد پیکسلها در ناحیه چهره و همچنین روند پیر شدن انسان می تواند تغییرات زیادی را بر چهره انسان تحمیل کند. تغییرات دیگری هم ممکن است از طریق قیافه, پوشش هایی نظیر کلاه یا عینک آفتابی و موی صورت به وجود آید. همچنین افزایش سن, در برخی افراد باعث افزایش یا کاهش وزن می شود.

الگوریتم ها

الگوریتمهای مختلفی برای تشخیص چهره وجود دارند که معمول ترین آنها عبارتند از: PCA – ICA – LFDA – EBGM – SVM – …

الگوریتمی که در این پست مورد بررسی واقع می گردد برای هدف برنامه PCA خواهد بود.

کارهای مرتبط

تا قبل از ارائه ی PCA برای تشخیص چهره, بیشتر کارها روی شناسایی ویژگی های بخشهای صورت مانند چشمها, بینی, دهان و … و تعریف روابط بین این اعضا متمرکز بود. اما تحقیقات روی قدرت انسان در تشخیص چهره نشان داد که ویژگی های اعضای منفرد صورت و ارتباطات لحظه ای بین آنها برای شناخت مناسب چهره کافی نیست.

در سال ۱۹۶۶ Bledsoe اولین کسی بود که یک روش نیمه اتوماتیک برای تشخیص چهره ارائه کرد. در این روش چهره ها بر اساس ویژگی هایی که به وسیله ی انسان علامت زده شده بود دسته بندی می شدند. اندکی بعد با کارهای انجام شده در آزمایشگاههای Bell, یک بردار با بیش از ۲۱ ویژگی (مانند عرض دهان, ضخامت لبها و …) تو سعه داده شد. ویژگی های انتخاب شده عمدتاً حاصل ارزیابی های ذهن انسان بودند و پیاده سازی آنها کار مشکلی بود.

در سال ۱۹۸۹, Kirby و Sirovich یک روش جبری برای محاسبه ساده ی eigenface ها ارائه کردند.

در سال ۱۹۹۱ , Turk و Pentland اثبات کردند که خطای مانده هنگام کدینگ eigenface ها می تواند برای دو منظوراستفاده شود:

  1. تشخیص وجود چهره در یک عکس
  2. تعیین محل تقریبی چهره در عکس

این دو نفر نشان دادند که با ترکیب دو مورد بالا, تشخیص بلادرنگ چهره ممکن است. این مطلب جرقه ی یک انفجار در تحقیقات تشخیص چهره بود. بعد از ارائه ی این روش مقالات زیادی بر مبنای آن به رشته ی تحریر درآمده که در ادامه به برخی از آنها اشاره میکنیم :

در مقاله ای از Rajkiran Gottumukkal, Vijayan K.Asari روشی به نام Modular PCA ارائه شده است. با مقایسه ی این روش با روش PCA متداول, مشخص می شود که این روش با وجود تغییرات زیادی در جهت تابش نور وحالت چهره, نرخ بازشناسی بیشتری نسبت به PCA دارد. در این روش عکسها به چند قسمت کوچکتر تقسیم می شوند و PCA روی هرکدام از این قطعات به طور جداگانه اعمال می شود. این موضوع باعث می شود که تغییرات چهره از جمله تغییر در جهت تابش نور و حالت چهره, باعث تغییر ویژگی های موضعی چهره یک فرد نشود.

در مقاله ای از  Trupti M. Kodinariya با ترکیب الگوریتم PCA با چند الگوریتم دیگر یک روش ترکیبی ارائه شده است.

در این مقاله سیستم تشخیص چهره در دو حالت کار می کند : تمرین و دسته بندی :

حالت تمرین شامل نرمال سازی و استخراج ویژگی از تصاویر با استفاده از الگوریتم PCA, ICA می باشد. . سپس ویژگی های استخراج شده, با استفاده از BPNN ها (back propagation neural network) تمرین داده می شوند تا فضای ویژگی ها به کلاسهای متفاوت دسته بندی شوند.

در حالت دسته بندی,عکسهای جدید به نتایج حاصل از حالت تمرین اضافه می شوند. یک روش ترکیب کننده, روی نتایج بخش تمرین اعمال می شوند تاعکسهای جدید برحسب کلاسهای ایجاد شده دسته بندی شوند.

در مقاله ای از احمد محمودی, روشی با نام PCA چند لایه ارائه شده است. در این روش برای محاسبه ی مولفه های اصلی از یک شبکه عصبی خطی استفاده شده است, که علاوه بر کاهش حجم مورد نیاز برای محاسبات, طراحی سخت افزار آن بسیارساده تر خواهد بود. همچنین با توجه به قابلیت های شبکه عصبی در پردازش موازی, سرعت انجام محاسبات افزایش چشم گیری داشته است.

منظور از واژه ی چند لایه در این پست این است که برای بازشناخت چهره ی یک فرد, ابتدا چند چهره که بیشترین شباهت به این چهره را دارند استخراج شده, آنگاه در مرحله ی بعد فرایند پیشنهادی در بین چهره هایی که بیشترین امتیاز شباهت را دارا میباشند ادامه داده شود. با توجه به این که دامنه ی جستجو محدودتر شده, انتظار می رود که نتایج بدست آمده دقیق تر باشد.

در مقاله ای از داود ساریخانی, روشی با استفاده از الگوریتم های PCA, LDA و شبکه های عصبی پیشنهاد شده است.روش ارایه شده دارای چهارقسمت پردازشی زیراست:

  1. بخش پیش پردازش شامل یکنواخت سازی هیستوگرام و نرمالیزه کردن تصاویر
  2. بخش کاهش بعد فضا به کمک PCA
  3. استخراج ویژگیها با استفاده از LDA برای جداسازی کلاس ها و تفکیک پذیری چهره ها
  4. استفاده از شبکه عصبی به منظور طبقه بندی چهره ها و اعلام هویت چهره

الگوریتم Principal Component Analysis) PCA):

این روش در سال ۱۹۹۱ توسط Turk و Pentland پیشنهاد شد که از تحلیل المانهای اصلی یا همان PCA برای کاهش بعد استفاده کرده‎ تا بتواند زیرفضایی با بردارهای متعامد پیدا کند که در آن زیرفضا پراکندگی داده ها را به بهترین حالت نشان دهد. این زیرفضا را هنگامی که بر روی داده های چهره اعمال شوند، فضای چهره میگویند. پس از مشخص شدن بردارها تمامی تصاویر به این زیر فضا منتقل می‏‏شوند تا وزنهایی که بیانگر تصویر در آن زیرفضا هستند بدست آیند. با مقایسه شباهت وزنهای موجود با وزن تصویر جدیدی که به این زیر فضا منتقل شده می‏‏توان تصویر ورودی را شناسایی کرد.

با نمایش بردار ی چهره ی انسان که توسط کنار هم قرار دادن سطرهای ماتریس تصو یر حاصل می شود می توان چهره ی انسان را برداری در فضایی با ابعاد بالا در نظر گرفت. با توجه به خصوصیات مشابه چهره ها، می توان نتیجه گرفت که بردار چهره ها در ز یرفضایی با ابعاد پایین تر واقع شده اند. با نگاشت چهره به این زیر فضا می توان تصاو یر پایه ی جدیدی به دست آورد که هر چهره با کمک این بر دارهای پایه توصیف می شود. در واقع هر چهره ترکیب خطی این تصاو یر پایه می باشد .ضرایب این ترکیب خطی به عنوان بردار خصیصه مورد استفاده قرار می گیرند.

در این روش یک تصویر با ابعاد n*m به یک بردار با nm مولفه تبدیل می شود. یعنی می توان عکس را به صورت نقطه ای در فضای nm بعدی تصور کرد.
هدف PCA یافتن بردارهایی است که به بهتر ین نحو ممکن کار شناسایی ز یر فضا را انجام دهند. این بردارها فضای چهره را تعریف می کنند. از آن جایی که این بردارها، بردار ویژه ی ماتر یس همبستگی مربوط به تصاویر چهره می باشند و همچنین به دلیل شباهت به چهره یانسان، آن ها را eigenface می نامند.

محاسبه ی eigenface ها

اگر مجموعه ی عکس های ورودی را ماتریسهای

http://nn4e.com/images/amozeshi/3.gif

در نظر بگیریم, میانگین چهره ها به صورت زیر محاسبه می شود:

http://nn4e.com/images/amozeshi/4.gif

البته همان طور که در بخش قبل گفته شد در این روش یک تصویر با ابعاد n*m به یک بردار با nm مولفه تبدیل می شود. یعنی ما یک عکس را به صورت یک بردار سطری یا ستونی با nm مولفه در نظر می گیریم. تمامی فرمول های ذکر شده در این الگوریتم با این فرض است که ماتریس تصویر را به صورت یک بردار ستونی درنظر گرفته ایم.

 

بازشناسی چهره انسان به کمک روش های پردازش تصویر3

تفاوت هر تصویر از میانگین به صورت زیر محاسبه می شود:

http://nn4e.com/images/amozeshi/6.gif

بردار Uk به نحوی انتخاب می شود که مقدار λk ماکزیمم شود:

http://nn4e.com/images/amozeshi/7.gif

البته با فرض زیر:

http://nn4e.com/images/amozeshi/8.gif

بردارهای Uk و λk به ترتیب بردارهای ویژه و مقادیر ویژه ی ماتریس همبستگی می باشند.ماتریس همبستگی از رابطه ی زیر محاسبه می شود :

http://nn4e.com/images/amozeshi/9.gif

http://nn4e.com/images/amozeshi/10.gif

یعنی می توان با استفاده از ماتریس کوواریانس نیز به بردار و مقدار ویژه رسید.

بردار U همان بردار eigenface میباشد. نمونه ای از آنرا در تصویر زیر مشاهده می کنید :

 

بازشناسی چهره انسان به کمک روش های پردازش تصویر4

 

همان طور که مشاهده می کنید, بردار ویژه در واقع شامل عکسهایی با همان ابعاد عکس های ورودی می باشد که شبیه به شبح هستند.

بخش تشخیص چهره

برای تشخیص اینکه یک عکس جدید مربوط به کدام یک از عکسهایی که سیستم با آن تمرین داده شده است, می باشد باید تمام عکسهایی که سیستم با آن تمرین داده شده است و همچنین عکس جدید را به فضای چهره نگاشت کنیم.
اگر هر یک از این عکسها را Γ بنامیم آنگاه طبق فرمول زیر می توان عکس را به فضای چهره نگاشت کرد:

http://nn4e.com/images/amozeshi/12.gif

سپس بردار وزنها را تشکیل می دهیم:

http://nn4e.com/images/amozeshi/13.gif

حالا می توانیم تعیین کنیم که عکس ورودی متعلق به کدام کلاس است. یکی از راههایی که برای این کار وجود دارد این است که بردار وزنهای عکس ورودی را با بردار وزنهای عکسهایی که قبلاً به سیستم آموزش داده شده بودند مقایسه کنیم. برای این کار می توانیم از فاصله ی اقلیدسی مانند زیر استفاده کنیم :

http://nn4e.com/images/amozeshi/14.gif

یعنی ما به تعداد عکسهایی که سیستم با آن تمرین داده شده اند, ϵ داریم.
اگر مقدار ϵ از یک مقدار از پیش تعیین شده کمتر بود, آنگاه تصویر ورودی یک تصویر شناخته شده است.اگر بیشتر بود و از یک مقدار دوم کمتر بود آنگاه تصویر ورودی یک شخص ناشناس است. اما اگر از هر دو مقدار بزرگتر بود تصویر ورودی چهره نیست!
اما پس از تشخیص اینکه تصویر ورودی یک تصویر شناخته شده است, برای اینکه تشخیص بدهیم که این عکس مربوط به چه کسی است باید مقدار ϵ ها را با هم مقایسه کنیم. بدیهی است که عکس ورودی مربوط به عکسی است که فاصله ی آنها (ϵ) کمتر از سایر عکسها باشد.

بهبود محاسبه ی بردارهای ویژه ی ماتریس کوواریانس

فرض کنید n عکس با اندازه ی xy داریم. پس از تغییر شکل عکسها به یک بردار, اندازه ی ماتریس شامل بردارها, nxy خواهد بود. پس از بدست آوردن اختلاف هر عکس با میانگین عکس ها, بردار A با اندازه یnxy به وجود می آید.
طبق رابطه ی کوواریانس, اندازه ی ماتریس کوواریانس xyxy خواهد بود. برای درک این اندازه, فرض کنید که ابعاد عکس ورودی, ۱۰۰×۱۰۰ پیکسل باشد. طبق محاسبات بالا اندازه ی ماتریس کوواریانس ۱۰۰۰۰×۱۰۰۰۰ خواهد بود. یعنی باید ۱۰۰ میلیون نقطه را ذخیره کرد که این کار به حدود ۰٫۸ گیگا بایت حافظه نیاز دارد! درضمن محاسبه ی یک ماتریس با این حجم به زمان زیادی نیز نیاز دارد.

برای حل این مشکل از یک قضیه ی ریاضی استفاده می کنیم. این قضیه بیان می کند که بردارهای ویژه ی ماتریس AAT با بردارهای ویژه ی ماتریس ATA یکسان است. یعنی ما می توانیم از ماتریسATA استفاده کنیم که یک ماتریس nn (n تعداد عکسهای ورودی است) می باشد و حجم محاسبات آن به شدت کمتر از یک ماتریس xyxy می باشد.

آزمایش‌ها

برای آزمایش این سیستم نیاز به یک مجموعه عکس استاندارد داریم. برای این کار از مجموعه داده یAT&T متعلق به دانشگاه کمبریج استفاده می کنیم. این مجموعه عکس شامل عکسهای ۴۰ فرد و از هر فرد ۱۰ عکس مختلف می باشد. یعنی در مجموع شامل ۴۰۰ عکس می باشد.

آزمایش اول: کد مربوط به این بخش را می توانید از اینجا دریافت کنید.
برای آزمایش ۲۵ عکس از این مجموعه انتخاب می کنیم:

بازشناسی چهره انسان به کمک روش های پردازش تصویر5

 

همانطور که توضیح داده شد یکی از مراحل الگوریتم محاسبه ی میانگین تصاویر وروری است. میانگین ۲۵ تصویر بالا را در عکس زیر می بینید:

 

بازشناسی چهره انسان به کمک روش های پردازش تصویر6

بردارهای ویژه (eigenface) ی بدست آمده از عکسهای بالا را در تصویر زیر می بینید:

 

بازشناسی چهره انسان به کمک روش های پردازش تصویر7

برای آزمایش نرخ تشخیص چهره, ۲۵ عکس جدید که مربوط به همان افرادی می شدند که در بالا مشاهده کردید به سیستم داده شد. که حدود ۵۰ درصد از آنها به درستی شناسایی شدند که با توجه به اینکه از هر فرد تنها یک عکس برای تمرین به سیستم داده شده بود, قابل قبول به نظر می رسد.

اما یکی از کارهایی که باعث می شود نرخ تشخیص چهره افزایش پیدا کند, مطمئناً تمرین دادن سیستم با عکس های بیشتر است. به این معنی که ما از هر فرد, چند عکس مختلف به سیستم بدهیم و سیستم فضای چهره را با استفاده از این عکس ها ایجاد کند. کد پیاده سازی شده برای این بخش را می توانید از اینجا دریافت نمایید.
برای آزمایش نرخ تشخیص چهره با این روش, ۶ عکس از ۲۵ مجموعه عکس (هر مجموعه متعلق به چهره ی یک فرد) از مجموعه داده ی AT&T, یعنی در مجموع ۱۵۰ عکس, به سیستم داده شد, تا سیستم با آنها تمرین داده شود. سپس ۲۵ عکس مربوط به همان افرادی که سیستم با عکس آنها تمرین داده شده بود, برای تشخیص به سیستم داده شد که ۸۴ درصد از آنها به درستی شناسایی شدند. مشاهده می شود که نرخ تشخیص چهره نسبت به زمانی که از هر فرد فقط یک عکس برای تمرین به سیستم داده شده بود, بیش از ۳۰ درصد افزایش یافته است.

 

تشخیص چهره انسان به کمک پردازش تصویر قسمت ۱
تشخیص چهره انسان به کمک پردازش تصویر قسمت ۲

تشخیص خودکار پلاک خودرو سامانه‌ای برای خواندن پلاک وسیله نقلیه با استفاده از نویسه‌خوان نوری است. شماره پلاک خودرو یکی از مناسب‌ترین اقلام اطلاعاتی جهت احراز هویت خودروها می‌باشد. تشخیص خودکار شماره پلاک خودرو سامانه‌ای کاملاً مکانیزه است که با استفاده ازپردازش تصویر خودروهای عبوری از یک مکان، شماره پلاک آنها را استخراج می‌کند. برای استفاده از این سامانه، نیازی به نصب و تجهیز خودروها به وسیلهٔ دیگری (مانند GPS یا برچسب‌های رادیویی- RFID Tag) وجود ندارد. این سامانه با استفاده از دوربین‌های مخصوص، تصویری از خودرو در حال عبور اخذ می‌کند و آن تصویر را جهت پردازش توسط نرم‌افزار تشخیص پلاک خودرو به رایانه ارسال می‌کند. از این سامانه می‌توان در زمینه‌های امنیتی و ترافیکی بسیار بهره گرفت.

             

 

امکانات سیستم های تشخیص پلاک خودرو به روش پردازش تصویر

امکان تشخیص تمامی اعداد و حروف پلاک و شناسایی منطقه پلاک صادرشده امکان تشخیص تمامی پلاکهای موجود در کشور امکان دریافت عکس از دوربین های رنگی و سیاه و سفید و IR تحت شبکه تشخیص محل پلاک در عکس امکان تشخیص چندین پلاک در یک عکس امکان ارتباط با بانک اطلاعاتی سیستم پارکینگ جهت کنترل تردد خودروهای تعریف شده امکان ارسال اطلاعات خودروهای ممنوعه در بانک اطلاعاتی سیستم از طریق شبکه، GPRS ، SMS و MMS

اطلاعات فنی سیستم تشخیص پلاک خودرو

امکان تشخیص پلاک از فیلم زنده در دوربین های تحت شبکه و DVR سرعت بسیار بالا در تشخیص پلاک (کمتر از ۲۰۰ میلی ثانیه) دقت بالا و امکان تشخیص چندین پلاک در یک عکس

 

کاربردهای سامانهٔ تشخیص پلاک

کنترل و اخذ عوارض ورود به محدوده طرح ترافیک

امروزه شهرهای بسیاری ورود خودروها به منطقه مرکزی شهر را به منظور کنترل ترافیکِ آن محدود ساخته‌اند. از آنجا که استفاده از روش‌های سنتی (قرار دادن نیروهای پلیس در تمامی مبادی محدوده) هم پر هزینه و هم کم دقت است، راه حل‌های جدیدی برای کنترل و اخذ عوارض ورود به محدوده پرتردد شهرها پیشنهاد شده است. یکی از این راه حل‌ها (که برای مثال در استکهلم[۳] و لندن[۴] استفاده می‌شود) استفاده از فناوری تشخیص پلاک خودرو است. در این راه حل، دوربین‌های تشخیص پلاک خودرو در تمامی مبادی طرح نصب می‌شوند و ورود هر خودرو به محدوده طرح ثبت می‌شود. سپس مانند روش اخذ عوارض، فرصتی به راننده داده می‌شود تا عوارض ورود به طرح را تا زمان مقرر پرداخت کند. در غیر اینصورت، راننده طبق قانون جریمه خواهد شد.

اخذ عوارض جاده‌ها و بزرگراه‌ها به صورت خودکار

از آنجا که وجود مانع بر سر راه خودروها در عوارضی‌ها باعث کند شدن حرکت، ایجاد ترافیک، و به تبع آن آلودگی محیط زیست می‌شود، راه‌های مختلفی برای حذف موانعِ موجود در عوارضی‌ها پیشنهاد شده است. یکی از این راه‌ها استفاده از سامانهٔ تشخیص پلاک خودرو می‌باشد. در این راه حل، خودروها بدون نیاز به توقف از عوارضی‌ها عبور می‌کنند و سامانهٔ تشخیص پلاک خودرو شماره پلاک آنها را ثبت می‌کند. بر اساس شماره پلاک، عوارض مربوطه محاسبه می‌شود و راننده ملزم به پرداخت عوارض در زمان مشخصی خواهد بود. در صورت عدم پرداخت عوارض در زمان مقرر، خودرو طبق قانون جریمه خواهد شد. به این روش عوارض ویدئویی (به انگلیسی: Video Tolling) گفته می‌شود.

محاسبه مدت سفر

تخمین مدتِ زمان سفر یکی از کاربردهای مهم سیستم‌های ترافیک هوشمند می‌باشد. در این کاربرد، مسافران می‌توانند پیش از سفر به آمارها و اطلاعات مربوطه مراجعه کنند و تخمینی از مدتِ زمان سفر میان مبدا و مقصد خود داشته باشند. سامانه تشخیص پلاک خودرو یکی از راه حل‌های مناسب جهت این کاربرد به شمار می‌رود. در این راه حل، سامانهٔ تشخیص پلاک خودرو در نقاط مختلف یک جاده نصب می‌شود (برای مثال در مبدا و مقصد) و بنابراین مدت زمان سفر را به صورت تفکیک شده برای هر خودرو محاسبه می‌کند. با تحلیل آماری این مدت برای تمامی خودروها می‌توان با دقتِ مطلوبی، متوسط و تغییراتِ آن در زمان‌های مختلف روز و هفته را در جاده اندازه گرفت و برای تصمیم‌گیری در اختیار عموم قرار داد.

اندازه‌گیری سرعت متوسط خودروها

علاوه بر روش‌های معمولِ اندازه‌گیری سرعت که در یک نقطهٔ خاص سرعت خودروها را محاسبه می‌کنند، روش‌هایی نیز جهت محاسبه سرعت متوسط خودروها در یک مسیر وجود دارد. جهت اندازه‌گیریِ سرعتِ متوسط نیاز به تشخیص هویت خودروها در ابتدا و انتهای مسیر می‌باشد. تشخیص پلاک خودرو یکی از راه‌های مناسب جهت تشخیص هویت خودروها و به تبعِ آن اندازه‌گیریِ سرعت متوسط آنها می‌باشد. در این راه حل، دوربین‌های تشخیص پلاک در چندین نقطه از مسیر نصب می‌شوند و با ثبتِ زمان تردد خودرو از مقابل هر یک از آنها، امکان محاسبه سرعت متوسط خودرو میان هر دو نقطه متوالی وجود دارد. در این راه حل، حتی اگر رانندگان در مقابل این دوربین‌ها ترمز کنند تأثیر چندانی در سرعت متوسط محاسبه شده در مسیر نخواهند گذاشت و بنابراین تا حدی در مقایسه با روش‌های مبتنی بر سرعتِ نقطه‌ای برتری دارد.

  • دیده بانی معابر، گلوگاه‌ها و مرزها و گزارش سریع خودروهای سرقتی عبور کرده از آنها
  • ثبت اطلاعات ترافیکی دقیق و جامع از تردد خودروها در معابر

امکانات جانبی سامانه تشخیص خودکار شماره پلاک خودرو

در سامانه پلاک خوان امکانات جانبی بیشتر بنابر خواست خریدار نصب و به سیستم افزوده خواهد شد. امکاناتی نظیر: سنسور نوری تشخیص مانع، کارت های حافظه دار یا بارکد دو بعدی، دوربین نظارتی، دوربین ثبت چهره راننده، تابلوی نمایشگر، UPS یا باتری پشتیبان

منبع


هم چنین نوشته هایی با عناوین پروژه + آموزش تشخیص پلاک خودرو با پردازش تصویر (پلاک خوان رایگان) و مقاله بررسی سامانه های تشخیص خودکار پلاک خودرو  و مقالات داخلی و خارجی در زمینه تشخیص پلاک خودرو جهت دسترسی علاقمندان در سایت قرارداده شده است.

می توانید به منظور آشنایی با یکی از دقیقترین و سریعترین سامانه های جامع کنترل تردد خودرو (پلاک خوان) به لینک :سامانه جامع کنترل تردد خودرو بهسان(پلاک خوان) مراجعه فرمایید.

بینایی ماشین و تضاد آن با بینایی کامپیوتر در چگونگی ایجاد تصویر و پردازش آن است. بینایی کامپیوتر هر روزه در فیلمبرداری و عکسبرداری دنیای واقعی انجام می شود. بینایی ماشین در حالت های بسیار ساده انجام می شود. قابلیت اعتماد افزایش می یابد، در حالی که هزینه ی تجهیزات و پیچیدگی الگوریتم کاهش می یابد.

در نتیجه در کارخانه ها بینایی ماشین برا ی ربات ها استفاده می شود، در حالی که بینایی کامپیوتر بیشتر برای ربات هایی که در محیط های انسانی عمل می کنند، مناسب است. بینایی ماشین ابتدایی تر است ولی کاربردی تر است، در حالی که بینایی کامپیوتر به هوش مصنوعی بستگی دارد.
منبع 

بینایی کامپیوتر

Computer Vision
Field of robotics in which programs attempt to identify objects represented in digitized images provided by video cameras, thus enabling robots to “see.” Much work has been done on stereo vision as an aid to object identification and location within a three-dimensional field of view. Recognition of objects in real time, as would be needed for active robots in complex environments, usually requires computing power beyond the capabilities of present-day technology. See also pattern recognition.

بینایی کامپیوتر گرایشی از رباتیک است که در آن ، با شناسایی اشیاء موجود در تصاویر دیجیتالی بدست آمده از دوربین های فیلم برداری ، امکان “دیدن” را برای ربات ها فراهم می سازد. تا کنون کار های زیادی بر روی دید دوگانه (استریو ویژن) جهت کمک به شناسایی و مکان جسم در سه بعد انجام شده است. جهت شناسایی اشیا به صورت بلادرنگ که ربات ها در محیط های پیچیده بدان نیازمندند ، معمولا احتیاج به قدرت محاسباتی فراتر از تکنولوژی روز داریم.
منبع : Britannica Encyclopedia

پردازش تصویر

image processing
به مجموعه عملیاتی که یک ماشین الکترونیکی(مثلا کامپیوتر) به منظور ویرایش تصاویر انجام میدهد پردازش تصویر گفته می شود.
مثال: به تمامی عملیاتی که در برنامه فوتوشاپ بر روی تصاویر انجام میشود پردازش تصویر گفته می شود.
بین سه عبارت “پردازش تصویر” و “بینایی کامپیوتر” و “بینایی ماشین” تفاوت وجود دارد. که متاسفانه در ایران خیلی ها فرق این ها را نمی دانند و به همه ی آن ها می گویند پردازش تصویر !
منبع

استفاده از حس گرها برای دریافت سیگنال هایی که تشکیل دهنده تصویر یک شی هستند که توسط کامپیوتر و یا سایر وسایل پردازش سیگنال برای تفسیر و تحلیل سیگنال‌های دریافت شده از قطعه مورد استفاده قرار می گیرد.

Machine vision به عنوان یک ابزار مهندسی در ابزارهای دیجیتال و در شبکه‌های کامپیوتری، برای کنترل ابزارهای صنعتی دیگر از قبیل کنترل بازوهای روبات و یا خارج کردن تجهیزات معیوب به کار می رود. در حقیقت Machine vision شاخه ای از علم مهندسی است که به رشته‌های علوم کامپیوتری (Computer science) و علم نورشناسی و مهندسی مکانیک و اتوماسیون صنعتی ارتباط دارد. یکی از مهمترین پر استفاده‌ترین کاربردهای آن در بازبینی و بررسی کالاهای صنعتی از جمله نیمه هادیها، اتومبیل ها، مواد خوراکی و دارو می باشد.

همانند نیروی انسانی که با چشم غیر مسلح در خط تولید کالاها را برای تعیین کیفیت و نوع ساخت آنها بازبینی می کنند، Machine vision از دوربین‌های دیجیتال و دوربین‌های هوشمند و نرم‌افزارهای image processing (پردازش تصویر) برای این کار استفاده می کند. دستگاههای مربوطه (Machine vision) برای انجام دادن وظایفی خاص از جمله شمردن اشیاء در بالابرها، خواندن شماره سریالها (Serial numbers)، جستجوی سطح‌های معیوب به کار می روند.

در حال حاضر صنعت استفاده زیادی از سیستم ماشین بینایی برای بازبینی تصویری اشیاء (Visual inspection) که نیاز به سرعت بالا و دقت بالا و کار ۲۴ ساعته و تکرار محابات بالا دارد، وجود دارد. اگرچه انسان عملکرد بهتر و قابلیت تطبیق دهی بیبشتری برای خطاهای تازه در زمان کوتاه دارد ولی با توجه به ویژگی‌های ذکر شده این دستگاهها به مرور جای نیروی انسانی را که به دلیل انحراف و شرایط بد دارای خطا می باشند، در صنعت پر می کند. کامپیوترها به همان صورتی که انسان می بیند نمی توانند ببینند.

دوربین‌ها همانند سیستم بینایی انسان نیستند و در حالی که انسان می تواند بر استنباط و فرضیات اتکا کند، تجهیزات کامپیوتری باید به وسیله آزمودن و تجزیه و تحلیل کردن جداگانه پیکسل‌ها و تلاش کردن برای انجام نتیجه گیری با توجه به پشتوانه اطلاعاتی و روش هایی مانند شناسایی الگو مشاهده کنند. علی رغم اینکه بعضی الگوریتم‌های machine vision برای تقلید کردن از سیستم بینایی انسان توسعه یافته اند، تعداد معدودی روش برای تحلیل و شناسایی ویژگیهای مرتبط تصاویر به صورت مؤثر و ثابت توسعه یافته اند.

سیستم‌های Machine vision و computer vision قادر هستند به صورت ثابت تصاویر را تجزیه و تحلیل کنند، ولی image processing بر پایهٔ کامپیوتر به صورت کلی برای انجام کارهای تکراری طراحی می شوند و علی رغم پیشرفت‌های صورت گرفته در این زمینه، هیچ سیستم machine vision و computer vision قادر نیست با برخی از ویژگی‌های سیستم بینایی انسان در قالب درک تصویر، تلرانس به تغییرات نور، تضعیف قدرت تصویر و تغییرات اجزا و… تطبیق پیدا کند.
منبع

اجزای یک سیستم ماشین بینایی :

اگرچه “Machine vision” بیشتر به عنوان یک پروسهٔ به کار بستنٍ “Machine vision” در کاربردهای صنعتی شناخته شده است، برای لیست کردن اجزای سخت‌افزاری و نرم‌افزاری به کار برده شده نیز مفید می باشد. معمولاً یک Machine vision از اجزای زیر ساخته می شود :

۱٫ یک و یا چند دوربین دیجیتال یا آنالوگ ( سیاه-سفید یا رنگی ) با اپتیک مناسب برای گرفتن عکس.
۲٫ واسطه ای که عکس‌ها را برای پردازش آماده می سازد. برای دوربین‌های آنالوگ این واسطه شامل یک دیجیتال کننده عکس است. هنگامی که این واسطه یک سخت‌افزارٍ جدا باشد، به آن Frame grabber ( کارتی که برای دریافت سیگنال تصویری و فرستادن آن به کامپیوتر استفاده می شود)می گویند.
۳٫ یک پردازشگر ( گاهی یک PC یا پردازنده تعبیه شده ( Embedded Processor ) مانند DSP
۴٫ نرم‌افزار Machine vision : این نرم‌افزار امکاناتی برای توسعه یک برنامه نرم‌افزاری که برای کاربردی مشخص است را فراهم می کند.
۵٫ سخت‌افزار ورودی / خروجی ( مثلا I/O دیجیتال ) یا حلقه‌های ارتباطی ( مثلا ارتباط شبکه ای یا RS-232 ) برای گزارش نتایج.
۶٫ یک دوربین هوشمند : یک وسیله ساده که همه موارد فوق را داراست.
۷٫ لنزهایی که بتواند به مقدار مطلوبی روی سنسور تصویر زوم کند.
۸٫ منابع نوری مناسب و گاهی خیلی مخصوص ( مثلا چراغهای LED، فلورسنت، لامپهای هالوژن و . . . )
۹٫ یک برنامهٔ مشخص که بتواند تصاویر را پردازش کرده و مشخصه‌های مربوط و مناسب را شناسایی کند.
۱۰٫ یک سنسور همزمان ساز برای شناسایی اجزا ( گاهی یک سنسور نوری و یا یک سنسور مغناطیسی ) : این سنسور برای راه اندازی سیستمٍ استخراج و پردازش تصویر می باشد.

سنسور همزمان ساز تعیین می‌کند که چه زمانی یک بخش ( که معمولاً روی یک حمل کننده حرکت می کند) در موقعیتی قرار گرفته است که باید مورد بررسی واقع شود. این سنسور هنگامیکه از زیر دوربین می گذرد و یک پالس نوری برای ثابت نگهداشتن تصویر ایجاد می‌کند، دوربین را برای گرفتن عکس فعال می کند.

نوری که برای روشن کردن آن بخش به کار می رود در واقع برای آن است که مشخصه‌های مطلوب را برجسته و مشخصات نامطلوب ( مثل سایه‌ها و یا انعکاس ها) را به حداقل برساند. معمولاً پنل‌های LED با اندازه و طراحی مناسب برای این هدف مورد استفاده قرار می گیرند.

تصویر دوربین یا توسط یک frame grabber و یا توسط یک حافظه کامپیوتری (که در آن از frame grabber استفاده نشده است) گرفته می شود. frame grabber یک وسیله دیجیتال کننده است ( یا در داخل دوربین هوشمند و یا بطور جداگانه) که خروجی دوربین را به فرمت دیجیتال تبدیل کرده ( معمولاً این فرمت از یک آرایه دو بعدی از اعداد تشکیل شده که هر عدد متناظر شدت روشنایی نقطه متناظر در آن تصویر می باشد. به این نقاط پیکسل می گویند.) و سپس تصویر را به منظور پردازش توسط نرم‌افزارٍ Machine vision در حافظه کامپیوتر ذخیره می کند.

به طور معمول نرم‌افزار، اقدامات متفاوتی را برای پردازش تصویر انجام می دهد. گاهی در ابتدا تصویر برای کاهش نویز و یا تبدیل سایه‌های خاکستری به ترکیب ساده ای از رنگهای سیاه و سفید دستکاری می‌شود ( Binarization ). در قدم بعدی نرم‌افزار عمل شمردن، اندازه گیری و شناسایی اجسام، ابعاد، کاستی‌ها و مشخصات دیگر تصویر را انجام می دهد.

در نهایت با توجه به ضوابط و معیارهای برنامه ریزی شده ممکن است بخشی را بپذیرد و یا رد کند. اگر یک بخش رد شد، نرم‌افزار به یک دستگاه مکانیکی فرمان می دهد تا آن بخش را خارج کند و همچنین سیستم خط تولید را قطع کرده و به کارگر هشدار می دهد تا مشکلی که باعث ایجاد خطا شده را رفع نماید. اگرچه اکثر Machine vision‌ها بر مبنای دوربین‌های سیاه–سفید بنا نهاده شده اند، استفاده از دوربین‌های رنگی در حال رایج شدن است.

همچنین امروزه شاهد شیوع فراوان استفاده از تجهیزات دوربین‌های دیجیتال به جای یک دوربین و یک frame grabber جداگانه در Machine vision هستیم. استفاده از یک دوربین دیجیتال به منظور برقراری ارتباط مستقیم، باعث صرفه جویی در هزینه و نیز سادگی سیستم خواهد شد. دوربین‌های هوشمند که در داخل آنها embedded processor‌ها تعبیه شده اند، در حال تسخیر سهم بالایی از بازار Machine vision‌ها هستند.

استفاده از یک embedded processor ( و یا یک پردازنده بهینه ) نیاز ما به frame grabber و یک کامپیوتر خارجی را از بین می برد. به همین خاطر این پردازنده‌ها باعث کاهش هزینه، کاهش پیچیدگی سیستم و همچنین اختصاص توان پردازشی مشخص به هر دوربین می شود. دوربین‌های هوشمند معمولاً ارزان تر از سیستمهای شامل یک دوربین و یک برد و یک کامپیوتر خارجی هستند. همچنین توان بالای embedded processor و DSP‌ها منجر به بالا رفتن عملکرد و توانایی آنها نسبت به سیستمهای مرسوم ( که بر مبنای PC هستند ) شده است.
منبع

روش‌های پردازش :

شمارش پیکسل :

شمردن تعداد پیکسل‌های روشن و تاریک.

تعیین آستانه :

تبدیل یک عکس با قسمت‌های خاکستری به یک عکس سیاه و سفید به این طریق که با قرار دادن آستانه ای پیکسل‌های روشن تر از آن را سفید و پیکسل‌های تیره تر از آن را سیاه در نظر می گیریم.

بخش بندی کردن (Segmentation) :

تبدیل تصویر ورودی به بخش‌های مختلف برای موقعیت یابی و شمارش پیکسل ها.

تشخیص و شناسایی لکه‌ها و دستکاری :

بررسی یک عکس برای یافتن گسسته از بین تمامی پیکسل ها.(به عنوان مثال یک حفره سیاه رنگ در درون یک جسم خاکستری) این لکه‌ها به عنوان نشان اختصاصی عکس خواهند بود.

تشخیص و شناسایی توسط اجزاء موجود :

استخراج اجزاءی خاص از یک تصویر ورودی مثلا عکس.

تشخیص وشناسایی الگو به طور مقاوم در برابر تغییرات :

به این معنا که موقعیت جسمی که ممکن است چرخانده شود یا اندازه اش تغییر کند یا قسمتی از این جسم توسط جسم دیگر پوشانده شود، را به طور دقیق شناسایی کند.

خواندن بارکد :

شناسایی و تعیین کدهای یک بعدی (۱D) و دو بعدی (۲D) اسکن شده توسط ماشین‌ها طراحی شده است.

تشخیص و شناسایی کاراکتر نوری :

خواندن خودکار یک متن (مثال : یک رشته اعداد پشت سر هم).

اندازه گیری :

اندازه گیری ابعاد یک جسم (بر حسب میلی متر یا اینچ).

تشخیص و شناسایی لبه ها :

پیدا کردن لبه‌های یک جسم در یک تصویر.

تشخیص و شناسایی از طریق تطبیق الگو :

پیدا کردن، مطابقت دادن و شمارش اشکال خاص در یک تصویر.

در اکثرموارد یک سیستم Machine vision به منظور بررسی کامل یک تصویر، از زنجیره مرکبی از این تکنیکهای پردازش استفاده می کند. به عنوان مثال می توان به سیستمی اشاره کرد که بارکد را می خواند و هم سطح جسم را برای خراش احتمالی مورد بررسی قرار می دهد و هم ممکن است طول و عرض آن وسیله را اندازه گیری کند.
منبع

کاربردهای ماشین بینایی :

دستگاهای ماشین بینایی دارای کاربردهای متنوعی هستند که از آن جمله به طور خلاصه می توان به موارد زیر اشاره نمود :

۱٫ تولید صنعتی در مقیاس بزرگ.
۲٫ ساخت اجزایی که نیاز به زمان تولید مشخصی دارند.
۳٫ سیستمهای ایمنی موجود در محیط‌های صنعتی.
۴٫ بررسی مواد اولیه تولید ( مثلا کنترل کیفیت و بررسی وقوع خطا )
۵٫ کنترل موجودی انبار و سیستمهای مدیریتی ( شمارش، بارکد خواندن و ذخیره اطلاعات در سیستمهای دیجیتال )
۶٫ کنترل رباتهای تعقیب خطی که برای حمل بار در کارخانه‌های صنعتی استفاده می شوند.
۷٫ کنترل کیفیت و بهبود محصولات غذایی.
۸٫ ماشینی کردن اجزای کوچک صنعتی.
سیستم‌های ماشین بینایی به طور گسترده در صنعت تولید نیمه هادی ها کاربرد دارند. به راستی بدون وجود این سیستم‌ها تولید قطعات کامپیوتری کاهش می یابد. این دستگاهها برای بازبینی دقیق ویفرهای سیلیکونی و بردازش گرها به کار می روند. در صنعت خودروسازی، Machine vision برای هدایت روبات‌های صنعتی، سنجیدن مناسب بودن کالاهای مشخص شده برای اهدافی خاص و بازبینی سطح‌های رنگ شده ماشین جهت یافتن عیب. اگرچه تکنیک‌های مربوط به سیستمهای ماشین بینایی برای طیف‌های مرئی از اشیاء گسترش یافته اند ولی ممکن است مشابه با روش‌ها برای طیف‌های نامرئی نور مانند اشعه مادون قرمز یا اشعه به کار برده شوند.

زمینه‌های مربوط به ماشین بینایی :

ماشین بینایی به مهندسی سیستمهای تصویر در صنعت و تولید و همچنین به گستره وسیعی از علوم کامپیوتر شامل computer vision، کنترل تجهیزات، شبکه‌های کامپیوتری، مدارهای واسط و فراگیری ماشین مربوط می شود. لازم به ذکر است که دو مفهوم Machine vision و Computer vision نباید با یکدیگر اشتباه گرفته شوند. Computer vision مفهوم گسترده تری در حل مسائل تصویری دارد درحالیکه Machine vision یک روش مهندسی است که عموما در مسائل مهندسی کاربرد دارد.
منبع

كاربردهاي ماشين‌ بينايي در صنايع مختلف

ورق‌هاي فولاد، آلومينيوم، مس و …
ورق پليمري، كامپوزيت، كارتن پلاست و …
ورق‌هاي سلولوزي(كاغذ، مقوا، كارتن)
لوله و پروفيل فلزي
لوله پليمري و كابل
منسوجات (پارچه، موكت، فرش و بافته‌هاي صنعتي)
كاشي، سراميك و كفپوش‌هاي ديگر
مديريت و كنترل هوشمند ترافيك
صنايع هوافضا
بسته‌بندي و چاپ
صنايع خودرو
داروسازي و پزشكي
صنايع الكترونيك
صنايع غذايي

……………………..

[عکس: dp01.jpg]
صنايع فولاد، آلومينيوم، مس و …
• بازرسي و كنترل كيفيت سطح
• اندازه‌گيري عرض
• مانيتورينگ، آرشيو و بازبيني تصاوير محصول
• تهيه نقشه عيوب
• درجه‌بندي محصول

………………………………….
[عکس: dp02.jpg]
ورق پليمري، كامپوزيت، كارتن پلاست و …
• بازرسي و كنترل كيفيت سطح
• مانيتورينگ، آْرشيو و بازبيني تصاوير محصول
• تهيه نقشه عيوب
• درجه‌بندي محصول

……………………………….
[عکس: dp03.jpg]
ورق‌هاي سلولوزي(كاغذ، مقوا، كارتن)
• بازرسي و كنترل كيفيت سطح
• مانيتورينگ، آْرشيو و بازبيني تصاوير محصول
• تهيه نقشه عيوب
• درجه‌بندي محصول

……………………………….
[عکس: dp04.jpg]
لوله و پروفيل فلزي
• بازرسي و كنترل كيفيت سطح
• اندازه‌گيري ابعاد
• تهيه نقشه عيوب
• درجه‌بندي محصول

…………………………

[عکس: dp05.jpg]
لوله پليمري و كابل
• بازرسي و كنترل كيفيت سطح
• اندزه‌گيري قطر
• تهيه نقشه عيوب
• درجه‌بندي محصول

……………………………
[عکس: dp06.jpg]
منسوجات (پارچه، موكت، فرش و بافته‌هاي صنعتي)
• بازرسي الياف
• بازرسي نخ
• بازرسي بافت پارچه
• بازرسي چاپ
• تهيه نقشه عيوب

……………………………..
[عکس: dp07.jpg]
كاشي، سراميك و كفپوش‌هاي ديگر
• بازرسي سطح
• كنترل طرح چاپ
• کنترل سطح رنگ (Shade)
• درجه‌بندي
منبع

[عکس: dp08.jpg]
مديريت و كنترل هوشمند ترافيك
• آمار و اطلاعات ترافيكي
• كنترل هوشمند تقاطع
• كنترل ترافيك تونل‌ها و پل‌ها
• تشخيص سانحه
• ثبت تخلف سرعت

……………………………

[عکس: dp09.jpg]
صنايع هوافضا
• آشكارسازي اپتيكي
• هدايت و كنترل هوشمند
• رديابي اهداف متحرك
• نقشه‌برداري و پردازش تصاوير هوايي

…………………………..

[عکس: dp10.jpg]
بسته‌بندي و چاپ
• بازرسي چاپ
• بازرسي برچسب، باركد و تاريخ مصرف
• بازرسي بطري و ظرف محصول
• كنترل پربودن جعبه

………………………….

[عکس: dp11.jpg]
صنايع خودرو
• كنترل رباتهاي خط توليد
• كنترل ابعادي قطعات
• بازرسي سطح قطعات
• بازرسي رنگ خودرو
• بازرسي مونتاژ خودرو

………………………….

[عکس: dp12.jpg]
داروسازي و پزشكي
• كنترل بسته‌بندي انواع دارو
• بازرسي برچسب، باركد و تاريخ
• آشكارسازي و تشخيص تومورها
• پردازش تصاوير پزشكي(آنژيوگرافي، ماموگرافي و …)

…………………………….
[عکس: dp13.jpg]
صنايع الكترونيك
• بازرسي PCB
• بازرسي قطعات مونتاژشده
• بازرسي چاپ بورد
• بازرسي برچسب و باركد

……………………………..

[عکس: dp14.jpg]
صنايع غذايي
• بازرسي بطري و ظرف محصول
• درجه‌بندي ميوه‌ها، غلات، حبوبات و …
• بازرسي برچسب و باركد و تاريخ مصرف
• كنترل پربودن جعبه
منبع

استاندارد Onvif چیست؟

استاندارد Onvif یا (فروم واسط تصویری بر اساس شبکه باز) یک استاندارد باز است، که به دوربین مدار بسته و دیگر دستگاه های شبکه IP امکان می دهد تا از طریق یک استاندارد پلت فرم باز یکپارچه، کنترل و مدیریت شوند.

هدف از ایجاد این استاندارد ، رسیدن به قابلیت کار کردن بین دوربین های IP و دیگر دستگاه های شبکه است صرف نظر از اینکه چه سازنده ویا تولید کننده آنها را تولید کرده باشد. اساس کار Onvif ، استاندارد نمودن کاربر و واسط شبکه بین دستگاه های شبکه ویدئویی است که یک چارچوب ارتباطی را بر اساس IETF و استانداردهای خدمات وب مربوطه از جمله ملزومات پیکربندی IP و امنیتی تعریف می کند.

مزیت اصلی  این استاندارد، آزادی عمل برای انتخاب سخت افزار از هر سازنده است که با این استاندارد کار می کند. با این استاندارد، دیگر کاربر به یک راه حل و تکنولوژی اختصاصی و منحصر به فرد وابسته نیست. پلت فرم Onvif اکثر مزایایی که دوربین هایIP ارائه می دهند را با خود به همراه دارد و همانطور که دستگاه های Onvif گسترش یافته و به عنوان یک جریان اصلی شناخته شدند ، تامین کنندگان نرم افزارها، وقت کم تری را صرف ادغام برنامه های راه اندازی اختصاصی می کنند و درمقابل قابلیت های جدید را توسعه می دهند.

معایب Onvif

Onvif استاندارد جدیدی می باشد که علاوه بر مزایای خود دارای معایبی نیز است. دو فاکتور مهم در انتخاب دستگاه هایی که با این استاندارد کار می کنند وجود دارد:

  • کیفیت و بهره وری اجرای پروتکل Onvif
  • رعایت کردن قوانینی در طراحی نرم افزار برای ارتباط دهی هرچه بهتر میان دستگاه ها با پروتکل Onvif

ممکن است هنگامی که از نرم افزار استفاده می کنید برخی از ویژگی ها و ارتقاسازی های دوربین IP موجود نباشد. برای استفاده بهینه از این ویژگی ها ممکن است نیاز باشد تا از نرم افزار اختصاصی خود سازندگان استفاده نمایید یا نرم افزاری را انتخاب کنید که این ارتقا سازی را پشتیبانی می کند.

ارتقا سازی انتقالی

ارتقا سازی در یک سیستم بر پایه Onvif می تواند در مراحل مختلف انجام شود. دوربین های آنالوگ می توانند با سیستم های نظارت تصویری Onvif با استفاده از یک رمزگشای مطابق با Onvif ادغام شوند ، یا اینکه شما می توانید دوربین های آنالوگ را با دوربین های مطابق با Onvif که خروجی های آنالوگ دارند جابه جا نمائید، سپس در مرحله بعد می توانید دی وی آر را با یک NVR جابه جا نمائید. اضافه کردن یک دوربین Onvif  به مثابه اضافه کردن یک کامپیوتر جدید محسوب می شود ، تنها نیاز دارید که آن را به یک پورت LAN وصل نمایید.

 منبع

OCR چیست

OCR سرنام اصطلاحی است كه صورت كامل آن در واژه‌نامه انگلیسی Optical Character Recognition و به معنی بازشناسایی كاراكتر نوری است.
فرض كنید كه ما متنی را روی كاغذ داریم و می‌خواهیم آن را وارد رایانه كنیم. اولین روشی كه به ذهن می‌رسد این است كه متن را به تایپیست بدهیم تا با كامپیوتر تایپ كند. اما آیا می‌شود عین همان متن را وارد رایانه بكنیم تا نیازی به تایپ نباشد؟ البته دستگاه «اسكنر» می‌تواند تصویری از آن متن را وارد رایانه كند، تا اینجا بخشی از مشكل ما حل شده است. اما رایانه كه نه عقلی دارد و نه «زبان» می‌فهمد، نمی‌تواند حروف و كلمات را از هم تشخیص دهد. مثلاً اگر از كامپیوتر بخواهیم به ما بگوید كه در متن اسكن‌شده كلمة «علی» چند بار آمده است، بی‌آنكه شرمنده شود، می‌گوید: «error»، یعنی: «نمی‌توانم تشخیص بدهم!» در واقع این «تصویر دیجیتال‌شده» باید به «تصویر قابل پردازش» تبدیل شود. موضوع اصلی OCR همین است.

فرض كنید كه مثلاً می‌خواهیم متن مقالات روزنامه اطلاعات سال ۱۳۴۰ شمسی را (كه اكنون نه تنها فایل تایپی‌اش موجود نیست ــ چون آن زمان اصلاً تایپ كامپیوتری در كار نبود! ــ بلكه خود نسخه‌های روزنامه را هم به زحمت می‌توان پیدا كرد) تایپ دیجیتالی كنیم، و این متن‌ها را داخل بسته‌های نرم‌افزاری یا اینترنت قرار دهیم. اگر هر شماره از روزنامه را ۲۴ صفحه فرض كنیم، و هر تایپیست بتواند در هر روز حداكثر یك صفحه از آن صفحات كاهی و كهنه شدة قدیمی را دوباره تایپ كند، مجموعاً ۲۴ روز لازم است تا تنها مقالات یك شماره از روزنامه تایپ شود. بنابراین در عرض یك سال یك نفر می‌تواند تنها ۱۵ شماره از روزنامه را تایپ كند.

حال اگر نرم‌افزاری باشد كه بتواند با اسكن كردن هر صفحة روزنامه، به طور خودكار مقالات آن را تایپ كند، تحولی عظیم رخ می‌دهد، یعنی مطالب و مقالات هزاران شماره از روزنامه‌های قدیمی به سرعت وارد فایل‌های رایانه‌ای می‌شود. حال این امكان را تعمیم بدهید به هزاران كتاب و دست نویس‌های قدیمی یا جدید، كه هر كس بخواهد تنها یك صفحه از آنها را تایپ كند، باید كلی وقت صرف كند. می‌بینید كه نرم‌افزار OCR به راستی می‌تواند هزاران هزار روز در وقت ما صرفه‌جویی كند، و البته هزینه‌ها را هم كاهش دهد. البته فقط یك مشكل كوچك به وجود می‌آید و آن بیكار شدن تایپیست‌هاست! قبل از اینکه وارد مبحث  «OCR» شویم، لازم است اشاره مختصری به حوزه های بازشناسی الگو داشته باشیم .

 ﺷﻨﺎﺳﺎﻳﻲ ﺍﻟﮕﻮ 

ﺷﻨﺎﺳﺎﻳﻲ ﺍﻟﮕﻮ ﺷﺎﺧﻪ ای اﺯ ﻫﻮﺵ ﻣﺼﻨﻮﻋﻲ است كه با ﻃﺒﻘﻪ بندی (ﻛﻼﺳﻪ ﺑﻨﺪﻱ) ﻭ ﺗﻮﺻﻴﻒ ﻣﺸﺎﻫﺪﺍﺕ ﺳﺮﻭﻛﺎﺭ ﺩﺍﺭﺩ.  ﺷﻨﺎﺳﺎﻳﻲ ﺍﻟﮕﻮ ﺑﻪ ﻣﺎ ﻛﻤﻚ ﻣﻲ ﻛﻨﺪ ﺗﺎ ﺩﺍﺩﻩ ها ( ﺍﻟﮕﻮﻫﺎ ) ﺭﺍ ﺑﺎ ﺗﻜﻴﻪ ﺑﺮ ﺩﺍﻧﺶ ﻗﺒﻠﻲ ﻳﺎ اطلاعات ﺁﻣﺎﺭﻱ ﺍﺳﺘﺨﺮﺍﺝ ﺷﺪﻩ ﺍﺯ ﺍﻟﮕﻮﻫﺎ، ﻃﺒﻘﻪ ﺑﻨﺪﻱ ﻧﻤﺎﻳﻴﻢ. ﺍﻟﮕﻮﻫﺎﻳﻲ ﻛﻪ ﻣﻲ ﺑﺎﻳﺴﺖ ﻛﻼﺳﻪ ﺑﻨﺪﻱ شوند،  ﻣﻌﻤﻮﻻً گروهی ﺍﺯ ﺳﻨﺠﺸﻬﺎ ﻳﺎ ﻣﺸﺎﻫﺪﺍﺕ ﻫﺴﺘﻨﺪ ﻛﻪ ﻣﺠﻤﻮﻋﻪ ﻧﻘﺎﻃﻲ ﺭﺍ ﺩﺭ ﻳﻚ ﻓﻀﺎﻱ ﭼﻨﺪ ﺑﻌﺪﻱ ﻣﻨﺎﺳﺐ ﺗﻌﺮﻳﻒ ﻣﻲ ﻧﻤﺎﻳﻨﺪ.

ﻳﻚ ﺳﻴﺴﺘﻢ ﺷﻨﺎﺳﺎﻳﻲ ﺍﻟﮕﻮﻱ ﻛﺎﻣﻞ ﻣﺘﺸﻜﻞ ﺍﺳﺖ ﺍﺯ ﻳﻚ ﺣﺴﮕﺮ ﻛﻪ ﻣﺸﺎﻫﺪﺍﺗﻲ ﺭﺍ ﻛﻪ ﻣﻲبایست ﺗﻮﺻﻴﻒ ﻳﺎ ﻛﻼﺳﻪ بندی گردند جمع آوری می نماید، ﻳﻚ ﻣﻜﺎﻧﻴﺰﻡ ﺍﺳﺘﺨﺮﺍﺝ ﻭﻳﮋﮔﻴﻬﺎ كه اطلاعات عددی ﻳﺎ ﻧﻤﺎﺩﻳﻦ ( ﺳﻤﺒﻮﻟﻴﻚ ) ﺭﺍ ﺍﺯ ﻣﺸﺎﻫﺪﺍﺕ ﻣﺤﺎﺳﺒﻪ می كند و  ﻳﻚ ﻧﻈﺎﻡ ﻛﻼﺳﻪ بندی یا ﺗﻮﺻﻴﻒ ﺍﻟﮕﻮﻫﺎ ﺭﺍ ﺑﺎ ﺗﻜﻴﻪ ﺑﺮ ﻭﻳﮋﮔﻴﻬﺎﻱ ﺍﺳﺘﺨﺮﺍﺝ ﺷﺪﻩ ﻋﻬﺪﻩ دار است. شكل زیر ﺑﻠﻮﻙ ﺩﻳﺎﮔﺮﺍﻡ ﻳﻚ ﺳﻴﺴﺘﻢ ﺷﻨﺎﺳﺎﻳﻲ ﺍﻟﮕﻮ ﺭﺍ ﻧﺸﺎﻥ می دهد همانطور كه از ﭘﻴﻜﺎﻧﻬﺎﻱ ﺑﺮﮔﺸﺘﻲ ﻣﺸﺨﺺ ﺍﺳﺖ، ﺍﻳﻦ ﺑﻠﻮﻛﻬﺎ ﻟﺰﻭﻣﺎً ﻣﺴﺘﻘﻞ ﻧﻴﺴﺘﻨﺪ ﻭ ﺑﺴﺘﻪ ﺑﻪ ﻧﺘﺎﻳﺞ ﺣﺎﺻﻠﻪ ﻣﻤﻜﻦ ﺍﺳﺖ ﻻﺯﻡ ﺑﺎﺷﺪ ﻛﻪ ﺑﻠﻮكﻫﺎﻱ ﺍﻭﻟﻴﻪ ﻣﺠﺪﺩﺍً ﻃﺮﺍﺣﻲ ﮔﺮﺩﻧﺪ ﺗﺎ ﺭﺍﻧﺪﻣﺎﻥ ﻛﻠﻲ ﺳﻴﺴﺘﻢ ﺑﻬﺒﻮﺩ ﻳﺎﺑﺪ.
ﺑﺎﺯﺷﻨﺎﺳﻲ ﺍﻟﮕﻮ ﺩﺭ ﺑﺴﻴﺎﺭﻱ ﺍﺯ ﺯﻣﻴﻨﻪها ﻧﻘﺶ ﻛﺎﺭبردی دارد. ﺑﺎﺯﺷﻨﺎﺳﻲ ﺣﺮﻭﻑ، ﺑﺎﺯﺷﻨﺎﺳﻲ  ﻧﻮﻳﺴﻨﺪﻩ ﺗﺼﺪﻳﻖ ﺍﻣﻀﺎﺀ ، ﻃﺒﻘﻪ ﺑﻨﺪﻱ ﺍﺛﺮ ﺍﻧﮕﺸﺖ ﻭ ﺑﺎﺯﺷﻨﺎﺳﻲ ﮔﻔﺘﺎﺭ ﻧﻤﻮﻧﻪ ﻫﺎﻳﻲ ﺍﺯ ﺍﻳﻦ ﻛﺎﺭﺑﺮﺩﻫﺎ ﻫﺴﺘﻨﺪ.

 ﺑﺎﺯﺷﻨﺎﺳﻲ ﻧﻮﺭﻱ ﺣﺮﻭﻑ OCR

ﺩﺭ ﭼﻨﺪ ﺩﻫﺔ ﮔﺬﺷﺘﻪ مسئله ﺑﺎﺯﺷﻨﺎﺳﻲ ﺍﻟﮕﻮﻫﺎﻱ ﻧﻮﺷﺘﺎﺭﻱ ﺷﺎﻣﻞ ﺣﺮﻭﻑ، ﺍﺭﻗﺎﻡ ﻭ ﺳﺎﻳﺮ ﻧﻤﺎﺩﻫﺎﻱ ﻣﺘﺪﺍﻭﻝ ﺩﺭ ﺍﺳﻨﺎﺩ ﻣﻜﺘﻮﺏ ﺷﺪﻩ ﺑﻪ ﺯﺑﺎﻧﻬﺎﻱ ﻣﺨﺘﻠﻒ، ﺗﻮﺳﻂ ﮔﺮﻭﻫﻬﺎﻱ ﻣﺨﺘﻠﻔﻲ ﺍﺯ ﻣﺤﻘﻘﻴﻦ ﻣﻮﺭﺩ ﻣﻄﺎلعه و ﺑﺮﺭﺳﻲ ﻗﺮﺍﺭ ﮔﺮﻓﺘﻪ ﺍﺳﺖ ﻧﺘﻴﺠه ﺍﻳﻦ ﺗﺤﻘﻴﻘﺎﺕ ﻣﻨﺠﺮ ﺑﻪ ﭘﻴﺪﺍﻳﺶ ﻣﺠﻤﻮﻋﻪ ﺍﻱ ﺍﺯ ﺭﻭﺷﻬﺎﻱ ﺳﺮﻳﻊ ﻭ ﺗﺎ ﺣﺪ ﺯﻳﺎﺩﻱ ﻣﻄﻤﺌﻦ ﻣﻮﺳﻮﻡ ﺑﻪ OCR یا « ﺑﺎﺯﺷﻨﺎﺳﻲ ﻧﻮﺭﻱ ﺣﺮﻭﻑ » ﺑﻤﻨﻈﻮﺭ ﻭﺍﺭﺩ ﻧﻤﻮﺩﻥ اطلاعات ﻣﻮﺟﻮﺩ ﺩﺭ  ﺍﺳﻨﺎﺩ، ﻣﺪﺍﺭﻙ، ﻛﺘﺎﺑﻬﺎ ﻭ ﺳﺎﻳﺮ ﻣﻜﺘﻮﺑﺎﺕ ﭼﺎﭘﻲ ﻳﺎ ﺗﺎﻳﭗ ﺷﺪﻩ ﻭ ﺣﺘﻲ ﺩﺳﺘﻨﻮﻳﺲ ﺑﻪ ﺩﺍﺧﻞ ﻛﺎﻣﭙﻴﻮﺗﺮ ﺷﺪﻩ ﺍﺳﺖ  ﻫﻨﮕﺎﻣﻲ ﻛﻪ ﻳﻚ ﺳﻨﺪ ﻣﺘﻨﻲ ﺍﺳﻜﻦ ﻣﻲ ﺷﻮﺩ، ﻛﺎﻣﭙﻴﻮﺗﺮ ﺍﻳﻦ ﻣﺘﻦ ﺭﺍ ﺑﺼﻮﺭﺕ ﻳﻚ ﺗﺼﻮﻳﺮ ﮔﺮﺍﻓﻴﻜﻲ ﺗﺸﺨﻴﺺ ﻣﻲ ﺩﻫﺪ ﺩﺭ ﻧﺘﻴﺠﻪ ﻛﺎﺭﺑﺮﺍﻥ ﻗﺎﺩﺭ ﻧﺨﻮﺍﻫﻨﺪ ﺑﻮﺩ ﻛﻪ ﻣﺘﻦ ﻣﻮﺟﻮﺩ ﺩﺭ ﺗﺼﻮﻳﺮ ﺳﻨﺪ ﺭﺍ ﻭﻳﺮﺍﻳﺶ ﻧﻤﺎﻳﻨﺪ ﻭ ﻳﺎ ﺁﻥ ﺭﺍ ﻣﻮﺭﺩ ﺟﺴﺘﺠﻮ ﻗﺮﺍﺭ ﺩﻫﻨﺪ.   ﻳﻚ ﻧﺮﻡ ﺍﻓﺰﺍﺭ OCR ﺍﻳﻦ ﻣﺘﻦ ﺍﺳﻜﻦ ﺷﺪﻩ ﺭا ﺧﻮﺍﻧﺪﻩ و ﻣﺤﺘﻮﻳﺎﺕ ﺁﻧﺮﺍ  ﺷﻨﺎﺳﺎﻳﻲ ﻧﻤﻮﺩﻩ ﻭ ﺑﺼﻮﺭﺕ ﻳﻚ ﻓﺎﻳﻞ ﺩﺭ ﻛﺎﻣﭙﻴﻮﺗﺮ ﺫﺧﻴﺮﻩ ﻣﻲ ﺳﺎﺯﺩ.

مزیت های سیستم های OCR

استفاده از سیستم های  OCR دو مزیت عمده دارد:
الف) افزایش چشمگیر سرعت دسترسی به اطلاعات؛ زیرا در متن برخلاف تصویر، امکان جستجو و ویرایش وجود دارد.
ب) کاهش فضای ذخیره سازی؛ زیرا حجم فایل متنی استخراج شده از یک تصویر، معمولا بسیار کمتر از حجم خود فایل تصویری است.

ﭼﻨﻴﻦ ﻗﺎﺑﻠﻴﺘﻲ ﺍﻣﻜﺎﻥ ﺍﺳﺘﻔﺎﺩه ﮔﺴﺘﺮﺩﻩ ﺍﺯ ﻛﺎﻣﭙﻴﻮﺗﺮ ﺭﺍ ﺩﺭ ﭘﺮﺩﺍﺯﺵ ﺳﺮﻳﻊ ﺣﺠﻢ ﻭﺳﻴﻌﻲ ﺍﺯ ﺩﺍﺩﻩ ﻫﺎی ﻣﻜﺘﻮﺏ ﺗﻮﻟﻴﺪ ﺷﺪﻩ ﺗﻮﺳﻂ ﺍﺩﺍﺭه ﭘﺴﺖ ﻭ ﺷﺮﻛﺘﻬﺎ ﻭ ﻣﺆﺳﺴﺎﺕ ﻣﺨﺘﻠﻒ ﻧﻈﻴﺮ ﺑﺎﻧﻜﻬﺎ، ﺷﺮﻛﺘﻬﺎی ﺑﻴﻤﻪ و ﻣﺆﺳﺴﺎﺕ ﺧﺪﻣﺎﺕ ﻋﻤﻮﻣﻲ و ﺳﺎﻳﺮ ﻧﻬﺎﺩﻫﺎﻳﻲ ﻛﻪ ﺳﺎﻟﻴﺎﻧﻪ ﺑﺎ ﻣﻴﻠﻴﻮﻧﻬﺎ ﻣﻮﺭﺩ ﭘﺮﺩﺍﺧﺖ، ﺩﺭﻳﺎﻓﺖ ﻭ ﺣﺴﺎﺑﺮﺳﻲ ﺍﻣﻮﺭ ﻣﺸﺘﺮﻳﺎﻥ ﺧﻮﺩ ﻣﻮﺍﺟﻬﻨﺪ، ﻓﺮﺍﻫﻢ ﻣﻲ ﺁﻭﺭﺩ .

منبع