بایگانی برچسب برای: یادگیری با ناظر

شبکه های عصبی مصنوعی – از صفر تا صد

پیدایش شبکه های عصبی مصنوعی

مغر انسان، به اذعان بسیاری از دانشمندان، پیچیده ترین سیستمی است که تا کنون در کل گیتی مشاهده شده و مورد مطالعه قرار گرفته است. اما این پیچیده ترین سیستم، نه ابعادی در حد کهشکشان دارد و نه تعداد اجزای سازنده اش، بیشتر از پردازنده های ابر کامپیوترهای امروزی است. پیچیدگی راز آلود این سیستم بی نظیر، به ارتباط های فراوان موجود میان عناصر آن بر می گردد. چیزی که، مغز 1400 گرمی انسان را، از همه سیستم های دیگر، متمایز می کند.

فرایندهای خودآگاه و ناخودآگاهی که در حدود جغرافیایی بدن انسان رخ می دهند، همگی تحت مدیریت مغز هستند. برخی از این فرایندها آن قدر پیچیده هستند، که هیچ کامپیوتر یا اَبَر کامپیوتری در جهان، امکان پردازش و انجام آن را ندارد. با این حال، تحقیقات نشان می دهند که واحدهای سازنده مغز انسان، از نظر سرعت عملکرد، حدود یک میلیون بار، کندتر از ترانزیستورهای مورد استفاده در تراشه های سیلیکونی CPU هستند.

سرعت و قدرت پردازش بسیار بالای مغز انسان، به ارتباط های بسیار انبوهی بر می گردد که در میان سلول های سازنده مغز وجود دارد و اساسا، بدون وجود این لینک های ارتباطی، مغز انسان هم به یک سیستم معمول کاهش می یابد، که قطعا امکانات فعلی را نخواهد داشت.

گذشته از همه این ها، عملکرد عالی مغز در حل انواع مسائل و کارایی بالای آن، شبیه سازی مغز و قابلیت های آن را، به مهم ترین آرمان معماران سخت افزار و نرم افزار تبدیل کرده است. در واقع، اگر روزی فرا برسد (که البته ظاهرا خیلی هم دور نیست)، که ما بتوانیم کامپیوتری در حد و اندازه های مغز انسان را بسازیم، قطعا یک انقلاب بزرگ در علم، صنعت و االبته زندگی انسان ها، رخ خواهد داد.

در راستای شبیه سازی رفتار محاسباتی مغز انسان، از چند دهه گذشته، که کامپیوترها امکان پیاده سازی الگوریتم های محاسباتی را فراهم نمودند، کارهای پژوهشی توسط متخصصین علوم کامپیوتر، مهندسین و ریاضی دان ها شروع شده است، که ما حصل کار آن ها، در شاخه ای از علم هوش مصنوعی، و در زیر شاخه هوش محاسباتی، تحت عنوان موضوع «شبکه های عصبی مصنوعی» یا Artificial Neural Networks (به اختصار: ANNs) طبقه بندی شده است. در مبحث شبکه های عصبی مصنوعی، مدل های ریاضی و نرم افزاری متعددی با الهام گرفتن از مغز انسان پیشنهاد شده اند، که برای حل گستره وسیعی از مسائل علمی، مهندسی و کاربردی، در حوزه های مختلف کاربرد دارند.

 کاربردهای شبکه های عصبی مصنوعی

امروز به قدری استفاده از سیستم های هوشمند، به ویژه شبکه عصبی مصنوعی گسترده شده است، که می توان این ابزارها را، در ردیف عملیات پایه ریاضی و به عنوان ابزارهای عمومی و مشترک طبقه بندی کرد. چرا که کمتر رشته دانشگاهی است که نیازی به تحلیل، تصمیم گیری، تخمین، پیش بینی، طراحی و ساخت داشته باشد، و در آن از موضوع شبکه های عصبی استفاده نشده باشد. فهرستی که در ادامه آمده است، یک فهرست نه چندان کامل است، اما گستردگی کاربردهای شبکه های عصبی مصنوعی را، تا حدود زیادی به تصویر می کشد.

 

زمینه کلی کاربرد
علوم کامپیوتر
  • طبقه بندی اسناد و اطلاعات در شبکه های کامپیوتری و اینترنت
  • توسعه نرم افزارهای نظارتی و ویروس کش ها
علوم فنی و مهندسی
  • مهندسی معکوس و مدل سازی سیستم ها
  • پیش بینی مصرف بار الکتریکی
  • عیب یابی سیستم های صنعتی و فنی
  • طراحی انواع سیستم های کنترل
  • طراحی و بهینه سازی سیستم های فنی و مهندسی
  • تصمیم گیری بهینه در پروژه های مهندسی
علوم پایه و نجوم
  • پیش بینی نتایج