معایب و مزایای خوشه‌بندی k-میانگین

از آنجایی که در این روش خوشه‌بندی، محاسبه فاصله بین نقاط توسط تابع فاصله اقلیدسی انجام می‌شود، از این الگوریتم‌ها به صورت استاندارد، فقط برای مقدارهای عددی (و نه ویژگی‌های کیفی) می‌توان استفاده کرد. از طرف دیگر با توجه به محاسبات ساده و سریع آن‌ها،‌ پرکاربرد و موثر است. از طرف دیگر نسخه‌های تعمیم یافته از روش خوشه بندی k-میانگین نیز وجود دارد که با توابع فاصله دیگر مانند فاصله منهتن و یا فاصله‌هایی که برای داده‌های باینری قابل استفاده است، مراحل خوشه‌بندی را انجام می‌دهد.

به منظور ارزیابی نتایج خوشه‌بندی از معیارهای متفاوتی کمک گرفته می‌شود. ممکن است از قبل برچسب خوشه‌ها مشخص باشد و بخواهیم کارایی الگوریتم را با توجه به مقایسه برچسب‌های واقعی و حاصل از خوشه‌بندی، اندازه‌گیری کنیم. در این حالت، شاخص‌های ارزیابی بیرونی، بهترین راهنما و معیار برای سنجش صحت نتایج خوشه‌بندی محسوب می‌شوند. معمولا به این برچسب‌ها، استاندارد طلایی (Golden Standard) و در کل چنین عملی را ارزیابی Benchmark می‌گویند. برای مثال شاخص رَند (Rand Index) یکی از این معیارها و شاخص‌های بیرونی است که از محبوبیت خاصی نیز برخوردار است.

از طرف دیگر اگر هیچ اطلاعات اولیه از ساختار و دسته‌بندی مشاهدات وجود نداشته باشد، فقط ملاک ارزیابی، می‌تواند اندازه‌هایی باشد که میزان شباهت درون خوشه‌ها و یا عدم شباهت یا فاصله بین خوشه‌ها را اندازه می‌گیرند. بنابراین برای انتخاب بهتر و موثرترین روش خوشه‌بندی از میزان شباهت درون خوشه‌ها و شباهت بین خوشه‌ها استفاده می‌شود. روشی که دارای میزان شباهت بین خوشه‌ای کم و شباهت درون خوشه‌ای زیاد باشد مناسب‌ترین روش خواهد بود. این معیارها را به نام شاخص‌های ارزیابی درونی می‌شناسیم. به عنوان مثال شاخص نیم‌رخ (silhouette) یکی از این معیارها است که شاخصی برای سنجش مناسب بودن تعلق هر مشاهده به خوشه‌اش ارائه می‌دهد. به این ترتیب معیاری برای اندازه‌گیری کارایی الگوریتم خوشه‌بندی بدست می‌آید.

منبع


KMeans شاید ساده‌ترین الگوریتمِ خوشه‌بندی باشد که در بسیاری از مواقع جزوِ بهترین الگوریتم‌های خوشه‌بندی نیز هست. این الگوریتم از دسته الگوریتم‌هایی است که بایستی تعداد خوشه‌ها (گروه ها) را از قبل به او گفته باشیم. فرض کنید یک سری داده داریم و مانندِ درسِ شبکه های عصبی دو دسته داده داریم (پراید و اتوبوس) با این تفاوت که در یک مسئله‌ی خوشه‌بندی، نمی‌دانیم که کدام پراید است کدام اتوبوس؟ و فقط یک سری داده با دو ویژگی (طول ماشین و ارتفاع ماشین) در اختیار داریم. اجازه دهید اینبار این دو دسته را بدون دانستنِ برچسبِ آن ها بر روی نمودار رسم کنیم (برای اینکه بدانید چگونه این نمودار رسم می شود و بُعدهای مختلف آن چگونه ساخته می‌شود، درسِ شبکه‌ی عصبی را خوانده باشید) به صورت ساده، ما یک تعداد ماشین (اتومبیل) داریم که هر کدام ارتفاع و طولِ مشخصی را دارند. آن‌ها را به این گونه در دو بُعد در شکلِ زیر نمایش می‌دهیم):

برای مثال، ماشین شماره‌ی ۴#، دارای طولِ ۹ و ارتفاع ۴ است. در الگوریتمِ KMeans بایستی تعدادی نقطه در فضا ایجاد کنیم. تعداد این نقاط باید به تعداد خوشه‌هایی که می‌خواهیم در نهایت به آن برسیم، باشد (مثلا فرض کنید می‌خواهیم داده‌ها را به ۲خوشه تقسیم‌بندی کنیم، پس ۲نقطه به صورت تصادفی در فضای ۲بُعدیِ شکلِ بالا رسم می‌کنیم). شکل زیر را نگاه کنید:

الان ما دو نقطه‌ی سبز و قرمز انتخاب کردیم و این دو نقطه را جایی در فضا (به صورت تصادفی) قرار دادیم. حال فاصله‌ی هر کدام از نمونه‌ها را (۷ماشین) با این دو نقطه حساب می‌کنیم. برای این کار می‌توانیم از فاصله منهتن (Manhatan) استفاده کنیم. در واقع برای هر کدام از نمونه‌ها نسبت به دو نقطه‌ی سبز و قرمز در هر بُعد، با هم مقایسه کرده و از هم کم (تفاضل) میکنیم، سپس نتیجه‌ی کم کردنِ هر کدام از بُعد ها را با یکدیگر جمع میکنیم.

بعد از محاسبه‌ی فاصله‌ی هر کدام از نمونه‌ها با دو نقطه‌ی سبز و قرمز، برای هر نمونه، اگر آن نمونه به نقطه‌ی سبز نزدیک‌تر بود، آن نمونه سبز می‌شود (یعنی به خوشه‌ی سبزها می رود) و اگر به قرمز نزدیک‌تر بود به خوشه‌ی قرمزها می رود. مانند شکل زیر برای مثال بالا:

الان یک مرحله از الگوریتم را تمام کرده ایم. یعنی یک دور از الگوریتم تمام شد و می‌توانیم همین جا هم الگوریتم را تمام کنیم و نقاطی که سبز رنگ شده اند را در خوشه‌ی سبزها و نقاطی که قرمز رنگ شده‌اند را در خوشه‌ی قرمز‌ها قرار دهیم. ولی الگوریتمِ KMeans را بایستی چندین مرتبه تکرار کرد. ما هم همین کار را انجام می‌دهیم. برای شروعِ مرحله‌ی بعد، باید نقطه‌ی سبز و قرمز را جا‌به‌جا کنیم و به جایی ببریم که میانگینِ نمونه‌های مختلف در خوشه‌ی مربوط به خودشان قرار دارد. یعنی مثلا برای نقطه قرمز بایستی نقطه را به جایی ببریم که میانگینِ نمونه‌های قرمزِ دیگر (در مرحله‌ی قبلی) باشد. برای نقطه سبز هم همین طور. این کار را در شکل زیر انجام داده‌ایم:

الان دو نقطه قرمز و سبز جا‌به‌جا شدند. حال بایستی دوباره تمامیِ نمونه‌ها را هر کدام با دو نقطه‌ی سبز و قرمز مقایسه کنیم و مانند دور قبلی، آن نمونه‌هایی که به نقطه‌ی قرمز نزدیک‌تر هستند، خوشه‌ی قرمز و آن هایی که به نقطه‌ی سبز نزدیک هستند رنگِ سبز می‌گیرند. مانند شکل زیر:

دورِ دوم نیز به اتمام رسید و به نظرْ الگوریتم خوشه‌های خوبی را تشخیص داد. ولی اجازه بدهید یک دور دیگر نیز الگوریتم را ادامه دهیم. مانند شکل زیر دور سوم را انجام می شود (یعنی نقاطِ قرمز و سبز به مرکز خوشه‌ی خود (در مرحله‌ی قبلی) می‌روند و فاصله‌ی هر کدام از نمونه‌ها دوباره با نقاطِ قرمز و سبز (در محلِ جدید) محاسبه شده و هر کدام همرنگِ نزدیک‌ترین نقطه‌ی قرمز یا سبز می‌شود):

همان طور که می‌بینید در انتهای دورِ سوم، تغییری در خوشه‌ی هر کدام از نمونه‌ها رخ نداد. یعنی سبزها سبز ماندند و قرمزها، قرمز.این یکی از شروطی است که می‌تواند الگوریتم را خاتمه دهد. یعنی الگوریتمْ وقتی به این حالت رسید که در چند دورِ متوالی تغییری در خوشه‌ی نمونه‌ها (در این‌جا ماشین‌ها) به وجود نیامد، یعنی الگوریتمْ دیگر نمی‌تواند زیاد تغییر کند و این حالتِ پایانی برای خوشه‌هاست. البته می‌توان شرطی دیگر نیز برای پایان الگوریتم در نظر گرفت. برای مثال الگوریتمْ حداکثر در ۲۰دورِ متوالی می‌تواند عملیات را انجام دهد و دورِ ۲۰ام آخرین دورِ الگوریتم خواهد بود و الگوریتم دیگر بیشتر از آن پیشروی نخواهد کرد. به طور کل در الگوریتم‌های مبتنی بر دور (Iterative Algorithms) می‌توان تعدادِ دورها را محدود کرد تا الگوریتمْ بی‌نهایت دور نداشته باشد.

همان طور که دیدیم، این الگوریتم می‌تواند یک گروه‌بندیِ ذاتی برای داده‌ها بسازد، بدون اینکه برچسب داده‌ها یا نوع آن‌ها را بداند.

کاربردهای خوشه‌بندی بسیار زیاد است. برای مثال فرض کنید می‌خواهید مشتریانِ خود را (که هر کدام دارای ویژگی‌های مختلفی هستند) به خوشه‌های متفاوتی تقسیم کنید و هر کدام از خوشه‌ها را به صورتِ جزئی مورد بررسی قرار دهید. ممکن است با مطالعه‌ی خوشه‌هایی از مشتریان به این نتیجه برسید که برخی از آن‌ها که تعدادشان هم زیاد است، علارغم خرید با توالیِ زیاد، در هر بار خرید پول کمتری خرج می‌کنند. با این تحلیل‌هایی که از خوشه‌بندی به دست می‌آید یک مدیرِ کسب و کار می‌تواند به تحلیل‌داده‌ها و سپس تصمیم‌گیریِ درست‌تری برسد.

منبع


مروری بر الگوریتم K-Means

برای مشخص کردن شباهت داده‌ها از معیار و راه‌های مختلفی استفاده میشه که یکی از اونا فاصله اقلیدسی هست و در این‌جا هم ما از اون استفاده می‌کنیم.

اساس کار این الگوریتم به این صورت هست که اول باید تعداد خوشه‌هایی که مد نظر داریم رو مشخص کنیم. بعد از اون الگوریتم از مجموعه داده موجود، به تعداد خوشه‌هایی که مشخص کردیم میاد و به صورت تصادفی تعدادی رو به عنوان مرکز هر خوشه انتخاب میکنه. در مراحل بعدی به این خوشه‌ها داده‌های دیگری رو اضافه میکنه و میانگین داده‌های هر خوشه رو به عنوان مرکز اون خوشه در نظر می‌گیره. بعد از انتخاب مراکز خوشه جدید، داده‌های موجود در خوشه‌ها دوباره مشخص میشن. دلیلش هم این هست که در هر خوشه با انتخاب مرکز خوشه جدید ممکنه که بعضی از داده‌های اون خوشه از اون به بعد به خوشه(های) دیگه‌ای تعلق پیدا کنن.

در شکل زیر نمونه‌ای از خوشه‌بندی نشون داده شده که در اون داده‌ها به سه خوشه تقسیم‌ و به کمک سه رنگ نمایش داده شدن.

برای درک بهتر نحوه کار الگوریتم K-Means از مثال زیر استفاده می‌کنم:

فرض می‌کنیم که مجموعه داده‌ای داریم که شامل هر ۷ رکورد هست و همه رکوردهای اون ۲ ویژگی یا خصوصیت A و B رو دارن. (دز این‌جا میتونیم این ویژگی‌ها رو به عنوان طول و عرض در یک صفحه دو بعدی در نظر بگیریم)

رکورد A B
۱ ۱.۰ ۱.۰
۲ ۱.۵ ۲.۰
۳ ۳.۰ ۴.۰
۴ ۵.۰ ۷.۰
۵ ۳.۵ ۵.۰
۶ ۴.۵ ۵.۰
۷ ۳.۵ ۴.۵

فرض می‌کنیم که قراره داده‌ها به ۲ خوشه تقسیم بشن. پس برای این منظور به صورت تصادفی ۲ رکورد رو به عنوان مرکز این ۲ خوشه در نظر می‌گیریم.

رکورد مختصات
خوشه ۱ ۱ (۱.۰ و ۱.۰)
خوشه ۲ ۴ (۷.۰ و ۵.۰)

در ادامه الگوریتم داده‌ها رو به خوشه‌ای که فاصله اقلیدسی کمتری تا مرکز اون داره اختصاص میده. و هربار که داده جدیدی رو به یک خوشه اضافه می‌کنه مرکز اون خوشه رو هم دوباره محاسبه و مشخص میکنه.

خوشه ۱ خوشه ۲
گام رکورد مرکز خوشه رکورد مرکز خوشه
۱ ۱ (۱.۰ و ۱.۰) ۴ (۷.۰ و ۵.۰)
۲ ۱ و ۲ (۱.۵ و ۱.۲) ۴ (۷.۰ و ۵.۰)
۳ ۱ و ۲ و ۳ (۲.۳ و ۱.۸) ۴ (۷.۰ و ۵.۰)
۴ ۱ و ۲ و ۳ (۲.۳ و ۱.۸) ۴ و ۵ (۶.۰ و ۴.۲)
۵ ۱ و ۲ و ۳ (۲.۳ و ۱.۸) ۴ و ۵ و ۶ (۵.۷ و ۴.۳)
۶ ۱ و ۲ و ۳ (۲.۳ و ۱.۸) ۴ و ۵ و ۶ و ۷ (۵.۴ و ۴.۱)

پس در ادامه مرکزهای خوشه‌ها به صورت زیر در میان.

رکورد مرکز خوشه
خوشه ۱ ۱ و ۲ و ۳ (۲.۳ و ۱.۸)
خوشه ۲ ۴ و ۵ و ۶ و ۷ (۵.۴ و ۴.۱)

در ادامه فاصله داده‌ها تا این مرکز‌های خوشه‌های جدید به شکل جدول زیر در میان.

رکورد فاصله تا خوشه ۱ فاصله تا خوشه ۲
۱ ۱.۵ ۵.۴
۲ ۰.۴ ۴.۳
۳ ۲.۱ ۱.۸
۴ ۵.۷ ۱.۸
۵ ۳.۲ ۰.۷
۶ ۳.۸ ۰.۶
۷ ۲.۸ ۱.۱

در نتیجه و بر اساس این مراحل و اطلاعات مشاهده می‌کنیم رکورد ۳ که مربوط به خوشه ۱ بوده، فاصلش تا مرکز خوشه ۲ کمتر میشه. پس این رکورد رو باید به خوشه ۲ اختصاص بدیم.

رکورد مرکز خوشه
خوشه ۱ ۱ و ۲ خوشه ۱
خوشه ۲ ۳ و ۴ و ۵ و ۶ و ۷ خوشه ۲

و کل این فرایند و مراحل تا زمانی انجام میشه که تغییر و جابجایی در خوشه‌ها اتفاق نیفته.

این الگوریتم رو به راحتی و به کمک زبان‌های برنامه‌نویسی مختلفی میشه پیاده‌سازی کرد و در ادامه من پیاده‌سازی این الگوریتم رو برای همین مثال و به زبان جاوا و پایتون در این‌جا شرح میدم.

پیاده‌سازی الگوریتم  K-Means به زبان Java

 

import java.util.ArrayList;
public class KMeans_Ex {
    private static final int NUM_CLUSTERS = 2;    // Total clusters.
    private static final int TOTAL_DATA = 7;      // Total data points.
    private static final double SAMPLES[][] = new double[][]{{1.0, 1.0},
            {1.5, 2.0},
            {3.0, 4.0},
            {5.0, 7.0},
            {3.5, 5.0},
            {4.5, 5.0},
            {3.5, 4.5}};
    private static ArrayList    < Data >    dataSet = new ArrayList   < Data >  ();
    private static ArrayList   < Centroid >    centroids = new ArrayList   < Centroid >  ();
    private static void initialize() {
        System.out.println("Centroids initialized at:");
        centroids.add(new Centroid(1.0, 1.0)); // lowest set.
        centroids.add(new Centroid(5.0, 7.0)); // highest set.
        System.out.println("     (" + centroids.get(0).X() + ", " + centroids.get(0).Y() + ")");
        System.out.println("     (" + centroids.get(1).X() + ", " + centroids.get(1).Y() + ")");
        System.out.print("\n");
        return;
    }
    private static void kMeanCluster() {
        final double bigNumber = Math.pow(10, 10);    // some big number that's sure to be larger than our data range.
        double minimum = bigNumber;                   // The minimum value to beat.
        double distance = 0.0;                        // The current minimum value.
        int sampleNumber = 0;
        int cluster = 0;
        boolean isStillMoving = true;
        Data newData = null;
        // Add in new data, one at a time, recalculating centroids with each new one.
        while (dataSet.size()  <  TOTAL_DATA) {
            newData = new Data(SAMPLES[sampleNumber][0], SAMPLES[sampleNumber][1]);
            dataSet.add(newData);
            minimum = bigNumber;
            for (int i = 0; i  <  NUM_CLUSTERS; i++) {
                distance = dist(newData, centroids.get(i));
                if (distance < minimum) {
                    minimum = distance;
                    cluster = i;
                }
            }
            newData.cluster(cluster);
            // calculate new centroids.
            for (int i = 0; i  <  NUM_CLUSTERS; i++) {
                int totalX = 0;
                int totalY = 0;
                int totalInCluster = 0;
                for (int j = 0; j   < dataSet.size(); j++) { if (dataSet.get(j).cluster() == i) { totalX += dataSet.get(j).X(); totalY += dataSet.get(j).Y(); totalInCluster++; } } if (totalInCluster >    0) {
                    centroids.get(i).X(totalX / totalInCluster);
                    centroids.get(i).Y(totalY / totalInCluster);
                }
            }
            sampleNumber++;
        }
        // Now, keep shifting centroids until equilibrium occurs.
        while (isStillMoving) {
            // calculate new centroids.
            for (int i = 0; i  <  NUM_CLUSTERS; i++) {
                int totalX = 0;
                int totalY = 0;
                int totalInCluster = 0;
                for (int j = 0; j   < dataSet.size(); j++) { if (dataSet.get(j).cluster() == i) { totalX += dataSet.get(j).X(); totalY += dataSet.get(j).Y(); totalInCluster++; } } if (totalInCluster >   0) {
                    centroids.get(i).X(totalX / totalInCluster);
                    centroids.get(i).Y(totalY / totalInCluster);
                }
            }
            // Assign all data to the new centroids
            isStillMoving = false;
            for (int i = 0; i   <   dataSet.size(); i++) {
                Data tempData = dataSet.get(i);
                minimum = bigNumber;
                for (int j = 0; j   <   NUM_CLUSTERS; j++) {
                    distance = dist(tempData, centroids.get(j));
                    if (distance   <   minimum) {
                        minimum = distance;
                        cluster = j;
                    }
                }
                tempData.cluster(cluster);
                if (tempData.cluster() != cluster) {
                    tempData.cluster(cluster);
                    isStillMoving = true;
                }
            }
        }
        return;
    }
    /**
     * // Calculate Euclidean distance.
     *
     * @param d - Data object.
     * @param c - Centroid object.
     * @return - double value.
     */
    private static double dist(Data d, Centroid c) {
        return Math.sqrt(Math.pow((c.Y() - d.Y()), 2) + Math.pow((c.X() - d.X()), 2));
    }
    private static class Data {
        private double mX = 0;
        private double mY = 0;
        private int mCluster = 0;
        public Data() {
            return;
        }
        public Data(double x, double y) {
            this.X(x);
            this.Y(y);
            return;
        }
        public void X(double x) {
            this.mX = x;
            return;
        }
        public double X() {
            return this.mX;
        }
        public void Y(double y) {
            this.mY = y;
            return;
        }
        public double Y() {
            return this.mY;
        }
        public void cluster(int clusterNumber) {
            this.mCluster = clusterNumber;
            return;
        }
        public int cluster() {
            return this.mCluster;
        }
    }
    private static class Centroid {
        private double mX = 0.0;
        private double mY = 0.0;
        public Centroid() {
            return;
        }
        public Centroid(double newX, double newY) {
            this.mX = newX;
            this.mY = newY;
            return;
        }
        public void X(double newX) {
            this.mX = newX;
            return;
        }
        public double X() {
            return this.mX;
        }
        public void Y(double newY) {
            this.mY = newY;
            return;
        }
        public double Y() {
            return this.mY;
        }
    }
    public static void main(String[] args) {
        initialize();
        kMeanCluster();
        // Print out clustering results.
        for (int i = 0; i    <    NUM_CLUSTERS; i++) {
            System.out.println("Cluster " + i + " includes:");
            for (int j = 0; j    <    TOTAL_DATA; j++) {
                if (dataSet.get(j).cluster() == i) {
                    System.out.println("     (" + dataSet.get(j).X() + ", " + dataSet.get(j).Y() + ")");
                }
            } // j
            System.out.println();
        } // i
        // Print out centroid results.
        System.out.println("Centroids finalized at:");
        for (int i = 0; i    <    NUM_CLUSTERS; i++) {
            System.out.println("     (" + centroids.get(i).X() + ", " + centroids.get(i).Y() + ")");
        }
        System.out.print("\n");
        return;
    }

 

پیاده‌سازی الگوریتم K-Means به زبانPython

 

import math
NUM_CLUSTERS = 2
TOTAL_DATA = 7
LOWEST_SAMPLE_POINT = 0  # element 0 of SAMPLES.
HIGHEST_SAMPLE_POINT = 3  # element 3 of SAMPLES.
BIG_NUMBER = math.pow(10, 10)
SAMPLES = [[1.0, 1.0], [1.5, 2.0], [3.0, 4.0], [5.0, 7.0], [3.5, 5.0], [4.5, 5.0], [3.5, 4.5]]
data = []
centroids = []
class DataPoint:
    def __init__(self, x, y):
        self.x = x
        self.y = y
    def set_x(self, x):
        self.x = x
    def get_x(self):
        return self.x
    def set_y(self, y):
        self.y = y
    def get_y(self):
        return self.y
    def set_cluster(self, clusterNumber):
        self.clusterNumber = clusterNumber
    def get_cluster(self):
        return self.clusterNumber
class Centroid:
    def __init__(self, x, y):
        self.x = x
        self.y = y
    def set_x(self, x):
        self.x = x
    def get_x(self):
        return self.x
    def set_y(self, y):
        self.y = y
    def get_y(self):
        return self.y
def initialize_centroids():
    # Set the centoid coordinates to match the data points furthest from each other.
    # In this example, (1.0, 1.0) and (5.0, 7.0)
    centroids.append(Centroid(SAMPLES[LOWEST_SAMPLE_POINT][0], SAMPLES[LOWEST_SAMPLE_POINT][1]))
    centroids.append(Centroid(SAMPLES[HIGHEST_SAMPLE_POINT][0], SAMPLES[HIGHEST_SAMPLE_POINT][1]))
    print("Centroids initialized at:")
    print("(", centroids[0].get_x(), ", ", centroids[0].get_y(), ")")
    print("(", centroids[1].get_x(), ", ", centroids[1].get_y(), ")")
    print()
    return
def initialize_datapoints():
    # DataPoint objects' x and y values are taken from the SAMPLE array.
    # The DataPoints associated with LOWEST_SAMPLE_POINT and HIGHEST_SAMPLE_POINT are initially
    # assigned to the clusters matching the LOWEST_SAMPLE_POINT and HIGHEST_SAMPLE_POINT centroids.
    for i in range(TOTAL_DATA):
        newPoint = DataPoint(SAMPLES[i][0], SAMPLES[i][1])
        if (i == LOWEST_SAMPLE_POINT):
            newPoint.set_cluster(0)
        elif (i == HIGHEST_SAMPLE_POINT):
            newPoint.set_cluster(1)
        else:
            newPoint.set_cluster(None)
        data.append(newPoint)
    return
def get_distance(dataPointX, dataPointY, centroidX, centroidY):
    # Calculate Euclidean distance.
    return math.sqrt(math.pow((centroidY - dataPointY), 2) + math.pow((centroidX - dataPointX), 2))
def recalculate_centroids():
    totalX = 0
    totalY = 0
    totalInCluster = 0
    for j in range(NUM_CLUSTERS):
        for k in range(len(data)):
            if (data[k].get_cluster() == j):
                totalX += data[k].get_x()
                totalY += data[k].get_y()
                totalInCluster += 1
        if (totalInCluster    >     0):
            centroids[j].set_x(totalX / totalInCluster)
            centroids[j].set_y(totalY / totalInCluster)
    return
def update_clusters():
    isStillMoving = 0
    for i in range(TOTAL_DATA):
        bestMinimum = BIG_NUMBER
        currentCluster = 0
        for j in range(NUM_CLUSTERS):
            distance = get_distance(data[i].get_x(), data[i].get_y(), centroids[j].get_x(), centroids[j].get_y())
            if (distance     <     bestMinimum):
                bestMinimum = distance
                currentCluster = j
        data[i].set_cluster(currentCluster)
        if (data[i].get_cluster() is None or data[i].get_cluster() != currentCluster):
            data[i].set_cluster(currentCluster)
            isStillMoving = 1
    return isStillMoving
def perform_kmeans():
    isStillMoving = 1
    initialize_centroids()
    initialize_datapoints()
    while (isStillMoving):
        recalculate_centroids()
        isStillMoving = update_clusters()
    return
def print_results():
    for i in range(NUM_CLUSTERS):
        print("Cluster ", i, " includes:")
        for j in range(TOTAL_DATA):
            if (data[j].get_cluster() == i):
                print("(", data[j].get_x(), ", ", data[j].get_y(), ")")
        print()
    return
perform_kmeans()
print_results()

 

در این الگوریتم وقتی مرکز خوشه محاسبه میشه خیلی پیش میاد که این مرکز خوشه محاسبه‌شده در بین داده‌های واقعی موجود نباشه و صرفا یه میانگین محسوب میشه که همین موضوع باعث مقاوم نبودن این الگوریتم در برابر داده‌های پرت مبشه. برای حل این مشکل الگوریتمی پیشنهاد شده به نام K-Medoids که در این الگوریتم مرکز خوشه جدید وقتی محاسبه میشه خودش هم در بین داده‌های اصلی موجود هست. با کمی تغییر در الگوریتم K-Means می‌تونیم K-Medoids رو هم داشته باشیم.

این برنامه در سایت گیتلب قابل دسترس هست و شما می‌تونید اون رو تغییر بدین و بهترش کنید.

 

پیاده‌سازی الگوریتم KMEANS به زبان JAVA در گیتلب

پیاده‌سازی الگوریتم KMEANS به زبان PYTHON در گیتلب

منبع

از مهم‌ترین تکنیک‌های عملی داده‌کاوی که کاربرد زیادی در علوم مختلف دارد، می توان به «خوشه بندی k-میانگین» (K-means Clustering)  اشاره کرد، که با توجه به بار محاسباتی زیاد آن، استفاده از کامپیوتر در انجام این فرآیند، کمک شایانی به کاربران می‌کند. در این راستا زبان برنامه‌نویسی و محاسباتی R قابلیت انجام این گونه محاسبات را دارد و به محققین در تحلیل خوشه‌بندی تفکیکی بر مبنای روش K-میانگین، کمک شایانی می‌کند. در این متن به بررسی روش خوشه‌بندی با استفاده از دستورات مربوط به این زبان برنامه‌نویسی می‌پردازیم و با البته با مفاهیم اولیه خوشه‌بندی k-میانگین نیز آشنا می‌شویم.

خوشه‌بندی k-میانگین

روش‌‌ها و الگوریتم‌های متعددی برای تبدیل اشیاء به گروه‌های همشکل یا مشابه وجود دارد. الگوریتم k-میانگین یکی از ساده‌ترین و محبوب‌ترین الگوریتم‌هایی است که در «داده‌کاوی» (Data Mining) بخصوص در حوزه «یادگیری نظارت نشده» (Unsupervised Learning) به کار می‌رود.

معمولا در حالت چند متغیره، باید از ویژگی‌های مختلف اشیا به منظور طبقه‌بندی و خوشه‌ کردن آن‌ها استفاده کرد. به این ترتیب با داده‌های چند بعدی سروکار داریم که معمولا به هر بعد از آن، ویژگی یا خصوصیت گفته می‌شود. با توجه به این موضوع، استفاده از توابع فاصله مختلف در این جا مطرح می‌شود. ممکن است بعضی از ویژگی‌های اشیا کمی و بعضی دیگر کیفی باشند. به هر حال آنچه اهمیت دارد روشی برای اندازه‌گیری میزان شباهت یا عدم شباهت بین اشیاء است که باید در روش‌های خوشه‌بندی لحاظ شود.

الگوریتم خوشه‌بندی k-میانگین از گروه روش‌های خوشه‌بندی تفکیکی (Partitioning Clustering) محسوب می‌شود و درجه پیچیدگی محاسباتی آن برابر با O(ndk+1) است، به شرطی که n تعداد اشیاء، d بعد ویژگی‌ها و k تعداد خوشه‌ها باشد. همچنین پیچیدگی زمانی برای این الگوریتم برابر با O(nkdi) است، که البته منظور از i‌ تعداد تکرارهای الگوریتم برای رسیدن به جواب بهینه است.

در خوشه‌بندی k-میانگین از بهینه‌سازی یک تابع هدف (Object Function) استفاده می‌شود. پاسخ‌های حاصل از خوشه‌بندی در این روش، ممکن است به کمک کمینه‌سازی (Minimization) یا بیشینه‌سازی (Maximization) تابع هدف صورت گیرد. به این معنی که اگر ملاک «میزان فاصله» (Distance Measure) بین اشیاء باشد، تابع هدف براساس کمینه‌سازی خواهد بود پاسخ عملیات خوشه‌بندی، پیدا کردن خوشه‌هایی است که فاصله بین اشیاء هر خوشه کمینه باشد. در مقابل، اگر از تابع مشابهت (Dissimilarity Function) برای اندازه‌گیری مشابهت اشیاء استفاده شود، تابع هدف را طوری انتخاب می‌کنند که پاسخ خوشه‌بندی مقدار آن را در هر خوشه بیشینه کند.

خوشه‌بندی k-میانگین روش‌‌ها و الگوریتم‌های متعددی برای تبدیل اشیاء به گروه‌های همشکل یا مشابه وجود دارد. الگوریتم k-میانگین یکی از ساده‌ترین و محبوب‌ترین الگوریتم‌هایی است که در «داده‌کاوی» (Data Mining) بخصوص در حوزه «یادگیری نظارت نشده» (Unsupervised Learning) به کار می‌رود. معمولا در حالت چند متغیره، باید از ویژگی‌های مختلف اشیا به منظور طبقه‌بندی و خوشه‌ کردن آن‌ها استفاده کرد. به این ترتیب با داده‌های چند بعدی سروکار داریم که معمولا به هر بعد از آن، ویژگی یا خصوصیت گفته می‌شود. با توجه به این موضوع، استفاده از توابع فاصله مختلف در این جا مطرح می‌شود. ممکن است بعضی از ویژگی‌های اشیا کمی و بعضی دیگر کیفی باشند. به هر حال آنچه اهمیت دارد روشی برای اندازه‌گیری میزان شباهت یا عدم شباهت بین اشیاء است که باید در روش‌های خوشه‌بندی لحاظ شود. الگوریتم خوشه‌بندی k-میانگین از گروه روش‌های خوشه‌بندی تفکیکی (Partitioning Clustering) محسوب می‌شود و درجه پیچیدگی محاسباتی آن برابر با O ( n d k + 1 ) است، به شرطی که n تعداد اشیاء، d بعد ویژگی‌ها و k تعداد خوشه‌ها باشد. همچنین پیچیدگی زمانی برای این الگوریتم برابر با O ( n k d i ) است، که البته منظور از i‌ تعداد تکرارهای الگوریتم برای رسیدن به جواب بهینه است. در خوشه‌بندی k-میانگین از بهینه‌سازی یک تابع هدف (Object Function) استفاده می‌شود. پاسخ‌های حاصل از خوشه‌بندی در این روش، ممکن است به کمک کمینه‌سازی (Minimization) یا بیشینه‌سازی (Maximization) تابع هدف صورت گیرد. به این معنی که اگر ملاک «میزان فاصله» (Distance Measure) بین اشیاء باشد، تابع هدف براساس کمینه‌سازی خواهد بود پاسخ عملیات خوشه‌بندی، پیدا کردن خوشه‌هایی است که فاصله بین اشیاء هر خوشه کمینه باشد. در مقابل، اگر از تابع مشابهت (Dissimilarity Function) برای اندازه‌گیری مشابهت اشیاء استفاده شود، تابع هدف را طوری انتخاب می‌کنند که پاسخ خوشه‌بندی مقدار آن را در هر خوشه بیشینه کند. معمولا زمانی که هدف کمینه‌سازی باشد، تابع هدف را «تابع هزینه» (Cost Function) نیز می‌نامند. روش خوشه بندی k-میانگین، توسط «مک‌کوئین» (McQueen) جامعه شناس و ریاضیدان در سال ۱۹۶۵ ابداع و توسط دیگر دانشمندان توسعه و بهینه شد. برای مثال در سال 1957 نسخه‌ دیگری از این الگوریتم به عنوان الگوریتم استاندارد خوشه‌بندی k-میانگین، توسط «لوید» (Lloyd) در آزمایشگاه‌های بل (Bell Labs) برای کدگذاری پالس‌ها ایجاد شد که بعدها در سال 1982 منتشر گردید. این نسخه از الگوریتم خوشه‌بندی، امروزه در بیشتر نرم‌افزارهای رایانه‌ای که عمل خوشه‌بندی k-میانگین را انجام می‌دهند به صورت استاندارد اجرا می‌شود. در سال 1956 «فورجی» (W.Forgy) به طور مستقل همین روش را ارائه کرد و به همین علت گاهی این الگوریتم را با نام لوید-فورجی می‌شناسند. همچنین روش هارتیگان- ونگ (Hartigan-Wong) که در سال ۱۹۷۹ معرفی شد یکی از روش‌هایی است که در تحقیقات و بررسی‌های داده‌کاوی مورد استفاده قرار می‌گیرد. تفاوت در این الگوریتم‌ها در مرحله آغازین و شرط همگرایی الگوریتم‌ها است ولی در بقیه مراحل و محاسبات مانند یکدیگر عمل می‌کنند. به همین علت همگی را الگوریتم‌های خوشه‌بندی k-میانگین می‌نامند. روش خوشه‌بندی k-میانگین فرض کنید مشاهدات ( x 1 , x 2 , … , x n ) که دارای d بعد هستند را باید به k بخش یا خوشه تقسیم کنیم. این بخش‌ها یا خوشه‌ها را با مجموعه‌ای به نام S = { S 1 , S 2 , … , S k } می‌شناسیم. اعضای خوشه‌ها باید به شکلی از مشاهدات انتخاب شوند که تابع «مجموع مربعات درون خوشه‌ها» (within-cluster sum of squares- WCSS) که در حالت یک بعدی شبیه واریانس است، کمینه شود. بنابراین، تابع هدف در این الگوریتم به صورت زیر نوشته می‌شود. a r g m i n S k ∑ i = 1 ∑ x ∈ S i ∥ x − μ i ∥ 2 = a r g m i n S k ∑ i = 1 | S i | Var S i در اینجا منظور از μ i میانگین خوشه S i و | S i | تعداد اعضای خوشه iام است. البته می‌توان نشان داد که کمینه کردن این مقدار به معنی بیشینه‌سازی میانگین مربعات فاصله بین نقاط در خوشه‌های مختلف (between-Cluster sum of Squares- BCSS) است زیرا طبق قانون واریانس کل، با کم شدن مقدار WCSS، مقدار BCSS افزایش می‌یابد، زیرا واریانس کل ثابت است. در ادامه به بررسی روش خوشه بندی k-میانگین به روش لوید-فورجی (استاندارد) و هارتیگان-ونگ می‌پردازیم. خوشه‌بندی k-میانگین با الگوریتم لوید (Lloyd’s Algorithm) به عنوان یک الگوریتم استاندارد برای خوشه‌بندی k-میانگین از الگوریتم لوید بخصوص در زمینه علوم کامپیوتر، استفاده می‌شود. ابتدا به علائمی که در این رابطه به کار می‌رود، اشاره می‌کنیم. m ( i ) j : میانگین مقدارهای مربوط به خوشه jام در تکرار iام از الگوریتم را با این نماد نشان می‌دهیم. S ( i ) j : مجموعه اعضای خوشه jام در تکرار iام الگوریتم. الگوریتم لوید را با توجه به نمادهای بالا می‌توان به دو بخش تفکیک کرد. ۱- بخش مقدار دهی ( A s s i g n m e n t S t e p )، ۲- بخش به روز رسانی (Update Step). حال به بررسی مراحل اجرای این الگوریتم می‌پردازیم. در اینجا فرض بر این است که نقاط مرکزی اولیه یعنی m ( 1 ) 1 , m ( 1 ) 2 , ⋯ , m ( 1 ) k داده شده‌اند. بخش مقدار دهی: هر مشاهده یا شی را به نزدیکترین خوشه نسبت می‌دهیم. به این معنی که فاصله اقلیدسی هر مشاهده از مراکز، اندازه گرفته شده سپس آن مشاهده عضو خوشه‌ای خواهد شد که کمترین فاصله اقلیدسی را با مرکز آن خوشه دارد. این قانون را به زبان ریاضی به صورت S ( t ) i = { x p : ∥ ∥ x p − m ( t ) i ∥ ∥ 2 ≤ ∥ ∥ x p − m ( t ) j ∥ ∥ 2 ∀ j , 1 ≤ j ≤ k } می‌نویسیم. بخش به روز رسانی: میانگین خوشه‌های جدید محاسبه می‌شود. در این حالت داریم: m ( t + 1 ) i = 1 | S ( t ) i | ∑ x j ∈ S ( t ) i x j توجه داشته باشید که منظور از | S ( t ) i | تعداد اعضای خوشه iام است. الگوریتم زمانی متوقف می‌شود که مقدار برچسب عضویت مشاهدات تغییری نکند. البته در چنین حالتی هیچ تضمینی برای رسیدن به جواب بهینه (با کمترین مقدار برای تابع هزینه) وجود ندارد. کاملا مشخص است که در رابطه بالا،‌ فاصله اقلیدسی بین هر نقطه و مرکز خوشه ملاک قرار گرفته است. از این جهت از میانگین و فاصله اقلیدسی استفاده شده که مجموع فاصله اقلیدسی نقاط از میانگینشان کمترین مقدار ممکن نسبت به هر نقطه دیگر است. نکته: ممکن است فاصله اقلیدسی یک مشاهده از دو مرکز یا بیشتر، برابر باشد ولی در این حالت آن شئ فقط به یکی از این خوشه‌ها تعلق خواهد گرفت. تصویر زیر یک مثال برای همگرایی الگوریتم لوید محسوب می‌شود که مراحل اجرا در آن دیده می‌شود. همانطور که مشخص است الگوریتم با طی ۱۴ مرحله به همگرایی می‌رسد و دیگر میانگین خوشه‌ها تغییری نمی‌یابد. البته ممکن است که این نقاط نتیجه تابع هزینه را بطور کلی (Global) کمینه نکنند زیرا روش k-میانگین بهینه‌سازی محلی (Local Optimization) را به کمک مشتق‌گیری و محاسبه نقاط اکستریمم اجرا می‌کند. K-means_convergence همگرایی الگوریتم k-میانگین نکته: به نقاط مرکزی هر خوشه مرکز (Centroid) گفته می‌شود. ممکن است این نقطه یکی از مشاهدات یا غیر از آن‌ها باشد. مشخص است که در الگوریتم لوید، k مشاهده به عنوان مرکز خوشه‌ها (Centroids) در مرحله اول انتخاب شده‌اند ولی در مراحل بعدی، مقدار میانگین هر خوشه نقش مرکز را بازی می‌کند. خوشه‌بندی k-میانگین با الگوریتم هارتیگان-ونگ (Hartigan-Wong) یکی از روش‌های پیشرفته و البته با هزینه محاسباتی زیاد در خوشه‌بندی k-میانگین، الگوریتم هارتیگان-ونگ است. برای آشنایی با این الگوریتم بهتر است ابتدا در مورد نمادهایی که در ادامه خواهید دید توضیحی ارائه شود. ϕ ( S j ) : از این نماد برای نمایش «تابع هزینه» برای خوشه S j استفاده می‌کنیم. این تابع در خوشه‌بندی k-میانگین برابر است با: ϕ ( S i ) = ∑ x ∈ S j ( x − μ j ) 2 S j : از آنجایی که هدف از این الگوریتم، تفکیک اشیاء به k گروه مختلف است، گروه‌ها یا خوشه‌ها در مجموعه‌ای با نام S قرار دارند و داریم، S = { S 1 , S 2 , ⋯ , S k } . μ j : برای نمایش میانگین خوشهjام از این نماد استفاده می‌شود. بنابراین خواهیم داشت: μ j = ∑ x ∈ S j x n j n j : این نماد تعداد اعضای خوشه jام را نشان می‌دهد. بطوری که j = { 1 , 2 , ⋯ , k } است. البته مشخص است که در اینجا تعداد خوشه‌ها را با k‌ نشان داده‌ایم. مراحل اجرای الگوریتم در خوشه‌بندی k-میانگین با الگوریتم هارتیگان می‌توان مراحل اجرا را به سه بخش تقسیم کرد: ۱- بخش مقدار دهی اولیه ( A s s i g n m e n t S t e p ) ، ۲- بخش به روز رسانی ( U p d a t e S t e p )، ۳- بخش نهایی (Termination). در ادامه به بررسی این بخش‌ها پرداخته می‌شود. بخش مقدار دهی اولیه: در الگوریتم هارتیگان-ونگ، ابتدا مشاهدات و یا اشیاء به طور تصادفی به k گروه یا خوشه تقسیم می‌شوند. به این کار مجموعه S با اعضایی به صورت { S j } j ∈ { i , ⋯ , k } مشخص می‌شود. بخش به روز رسانی: فرض کنید که مقدارهای n و m از اعداد ۱ تا k انتخاب شده باشد. مشاهده یا شیئ از خوشه nام را در نظر بگیرید که تابع Δ ( m , n , x ) = ϕ ( S n ) + ϕ ( S m ) − Φ ( S n ∖ { x } ) − ϕ ( S m ∪ { x } ) را کمینه سازد، در چنین حالتی مقدار x از خوشه nام به خوشه mام منتقل می‌شود. به این ترتیب شی مورد نظر در S m قرار گرفته و خواهیم داشت x ∈ S m . بخش نهایی: زمانی که به ازای همه n,m,x مقدار Δ ( m , n , x ) بزرگتر از صفر باشد، الگوریتم خاتمه می‌یابد. نکته: منظور از نماد ϕ ( S n ∖ { x } ) محاسبه تابع هزینه در زمانی است که مشاهده x از مجموعه S n خارج شده باشد. همچنین نماد ϕ ( S m ∪ { x } ) به معنی محاسبه تابع هزینه در زمانی است که مشاهده x به خوشه S m اضافه شده باشد. در تصویر زیر مراحل اجرای الگوریتم هارتیگان به خوبی نمایش داده شده است. هر تصویر بیانگر یک مرحله از اجرای الگوریتم است. نقاط رنگی نمایش داده شده، همان مشاهدات هستند. هر رنگ نیز بیانگر یک خوشه است. در تصویر اول مشخص است که در بخش اول از الگوریتم به طور تصادفی خوشه‌بندی صورت پذیرفته. ولی در مراحل بعدی خوشه‌ها اصلاح شده و در انتها به نظر می‌رسد که بهترین تفکیک برای مشاهدات رسیده‌ایم. در تصویر آخر نیز مشخص است که مراکز خوشه‌ها، محاسبه و ثابت شده و دیگر بهینه‌سازی صورت نخواهد گرفت. به این ترتیب پاسخ‌های الگوریتم با طی تکرار ۵ مرحله به همگرایی می‌رسد. hartigan algorithm الگوریتم هارتیگان بخش مقدار دهی اولیه hartigan algorithm الگوریتم هارتیگان تکرار ۱ hartigan algorithm الگوریتم هارتیگان تکرار ۲ hartigan algorithm الگوریتم هارتیگان تکرار ۳ hartigan algorithm الگوریتم هارتیگان تکرار ۴ hartigan algorithm الگورییتم هارتیگان تکرار ۵ اجرای این الگوریتم‌ها با استفاده از دستورات زبان برنامه‌نویسی R برای استفاده از دستورات و فرمان‌های مربوط به خوشه‌بندی k-میانگین، باید بسته یا Package مربوط به خوشه‌بندی kmeans به اسم stats را در R نصب کرده باشد. البته از آنجایی این بسته بسیار پرکاربرد است،‌ معمولا به طور خودکار فراخوانی شده است. کدهای زیر نشانگر استفاده از الگوریتم خوشه‌بندی توسط روش‌های مختلف آن است. library(stats) data=iris[,1:4] method=c("Hartigan-Wong", "Lloyd", "MacQueen") k=3 kresults1=kmeans(data,k,algorithm = method[1]) kresults2=kmeans(data,k,algorithm=method[2]) kresults3=kmeans(data,k,algorithm=method[3]) kresults1 kresults2 kresults3 1 2 3 4 5 6 7 8 9 10 11 12 library(stats) data=iris[,1:4] method=c("Hartigan-Wong", "Lloyd", "MacQueen") k=3 kresults1=kmeans(data,k,algorithm = method[1]) kresults2=kmeans(data,k,algorithm=method[2]) kresults3=kmeans(data,k,algorithm=method[3]) kresults1 kresults2 kresults3 با توجه به داده‌های iris که مربوط به اندازه و ابعاد کاسبرگ و گلبرگ سه نوع گل مختلف است، خوشه‌بندی به سه دسته انجام شده است. اطلاعات مربوط به ۱۰ سطر اول این مجموعه داده،‌ به صورت زیر است. با اجرای کدهای نوشته شده، خوشه‌بندی انجام شده و نتابج تولید می‌شوند. به عنوان مثال می‌توان خروجی را برای kresult1 که انجام خوشه بندی توسط الگوریتم هارتیگان است به صورت زیر مشاهده کرد: iris clustering همانطور که دیده می‌شود، در سطر اول تعداد اعضای هر خوشه، نمایش داده شده است. در بخش دوم که با سطر ۱ و ۲ و ۳ مشخص شده،‌ مراکز هر سه خوشه برحسب ویژگی‌های (طول و عرض کاسبرگ و طول و عرض گلبرگ) محاسبه شده و در قسمت Cluster Vector نیز برچسب خوشه هر کدام از مشاهدات دیده می‌شود. در انتها نیز مجموع مربعات فاصله درون خوشه‌ای (مجموع فاصله هر مشاهده از مرکز خوشه) استخراج شده و درصد یا شاخص ارزیابی خوشه‌بندی بر اساس نسبت مربعات بین خوشه‌ها به مربعات کل دیده می‌شود. این مقدار برای این حالت برابر ۸۸.۴٪ است که نشان می‌دهد بیشتر پراکندگی (total_ss) توسط پراکندگی بین خوشه‌ها (between_ss) بیان شده است. پس به نظر خوشه‌بندی مناسب خواهد بود. پس اختلاف بین گروه‌ها ناشی از خوشه‌های است که مشاهدات را به دسته‌‌های جداگانه تفکیک کرده. همچنین در کدها مشخص است که تعداد خوشه‌های در متغیر k ثبت و به کار رفته است. در شکل دیگری از دستور kmeans می‌توان به جای معرفی تعداد خوشه‌ها از مراکز دلخواه که با تعداد خوشه‌ها مطابقت دارد، استفاده کرد. برای مثال اگر برنامه به صورت زیر نوشته شود، الگوریتم ابتدا نقاط معرفی شده را به عنوان نقاط مرکزی (Centroids) به کار گرفته و سپس مراحل بهینه سازی را دنبال می‌کند. از آنجا که سه نقطه مبنا قرار گرفته، الگوریتم متوجه می‌شود که باید مشاهدات به سه خوشه تفکیک شود. library(stats) data=iris[,1:4] method=c("Hartigan-Wong", "Lloyd", "MacQueen") c1=c(6,4,5,3) c2=c(5,3,1,0) c3=c(6,2,4,2) centers=rbind(c1,c2,c3) kresults1=kmeans(x = data,centers = centers,algorithm = method[1]) kresults2=kmeans(x = data,centers = centers,algorithm=method[2]) kresults3=kmeans(x = data,centers = centers,algorithm=method[3]) kresults1 kresults2 kresults3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 library(stats) data=iris[,1:4] method=c("Hartigan-Wong", "Lloyd", "MacQueen") c1=c(6,4,5,3) c2=c(5,3,1,0) c3=c(6,2,4,2) centers=rbind(c1,c2,c3) kresults1=kmeans(x = data,centers = centers,algorithm = method[1]) kresults2=kmeans(x = data,centers = centers,algorithm=method[2]) kresults3=kmeans(x = data,centers = centers,algorithm=method[3]) kresults1 kresults2 kresults3 در تصویر زیر نتیجه خوشه بندی k-میانگین را برای داده‌های iris توسط یک نمودار مشاهده می‌کنید. البته باید توجه داشت که این نمودار دو بعدی است در حالیکه داده‌ها، دارای چهار ویژگی هستند. به کمک روش‌های آماری مانند تجزیه به مولفه‌های اصلی (PCA) ابعاد مسئله کاهش یافته تا در سه بعد روی نمودار نمایش داده شود. سمت راست تصویر گروه‌های واقعی و سمت چپ نتیجه خوشه‌بندی دیده می‌شود. نقاطی که در خوشه‌ها به درستی تشخیص داده نشده‌اند، باعث افزایش خطای خوشه‌بندی خواهند شد. کاربردها از الگوریتم خوشه‌بندی k-میانگین در «بخش‌بندی بازار کسب و کار» (market Segmentation)، «دسته‌بندی مشتریان» (Customer Segmentation)، «بینایی رایانه‌ای» (Computer Vision) و «زمین‌آمار (Geostatistics) استفاده می شود. برای مثال در تشخیص تعداد رنگ و یا فشرده سازی تصاویر برحسب رنگ‌ها می‌توان از این الگوریتم‌ها استفاده کرد. در تصویر بالا گل رز زرد رنگی دیده می‌شود که در یک محیط سبز قرار گرفته است. با استفاده از الگوریتم‌های خوشه‌بندی می‌توان تعداد رنگ‌ها را کاهش داده و از حجم تصاویر کاست. در تصویر زیر دسته بندی رنگ‌های گل رز دیده می‌شود. در این تصویر، هر طیف رنگ براساس میزان رنگ قرمز و سبز، بوسیله «سلول‌های ورونوی» (Voronoi Cell) تقسیم‌بندی شده است. این تقسیم‌بندی می‌تواند توسط الگوریتم‌ها خوشه‌بندی k-میانگین صورت گرفته باشد. در کل تصویر نیز، طیف رنگ‌های مختلف برای تصویر گل رز در یک «نمودار ورونوی» (Voronoi diagram) نمایش داده شده است که خوشه‌ها را بیان می‌کند. معایب و مزایای خوشه‌بندی k-میانگین از آنجایی که در این روش خوشه‌بندی، محاسبه فاصله بین نقاط توسط تابع فاصله اقلیدسی انجام می‌شود، از این الگوریتم‌ها به صورت استاندارد، فقط برای مقدارهای عددی (و نه ویژگی‌های کیفی) می‌توان استفاده کرد. از طرف دیگر با توجه به محاسبات ساده و سریع آن‌ها،‌ پرکاربرد و موثر است. از طرف دیگر نسخه‌های تعمیم یافته از روش خوشه بندی k-میانگین نیز وجود دارد که با توابع فاصله دیگر مانند فاصله منهتن و یا فاصله‌هایی که برای داده‌های باینری قابل استفاده است، مراحل خوشه‌بندی را انجام می‌دهد. به منظور ارزیابی نتایج خوشه‌بندی از معیارهای متفاوتی کمک گرفته می‌شود. ممکن است از قبل برچسب خوشه‌ها مشخص باشد و بخواهیم کارایی الگوریتم را با توجه به مقایسه برچسب‌های واقعی و حاصل از خوشه‌بندی، اندازه‌گیری کنیم. در این حالت، شاخص‌های ارزیابی بیرونی، بهترین راهنما و معیار برای سنجش صحت نتایج خوشه‌بندی محسوب می‌شوند. معمولا به این برچسب‌ها، استاندارد طلایی (Golden Standard) و در کل چنین عملی را ارزیابی Benchmark می‌گویند. برای مثال شاخص رَند (Rand Index) یکی از این معیارها و شاخص‌های بیرونی است که از محبوبیت خاصی نیز برخوردار است. از طرف دیگر اگر هیچ اطلاعات اولیه از ساختار و دسته‌بندی مشاهدات وجود نداشته باشد، فقط ملاک ارزیابی، می‌تواند اندازه‌هایی باشد که میزان شباهت درون خوشه‌ها و یا عدم شباهت یا فاصله بین خوشه‌ها را اندازه می‌گیرند. بنابراین برای انتخاب بهتر و موثرترین روش خوشه‌بندی از میزان شباهت درون خوشه‌ها و شباهت بین خوشه‌ها استفاده می‌شود. روشی که دارای میزان شباهت بین خوشه‌ای کم و شباهت درون خوشه‌ای زیاد باشد مناسب‌ترین روش خواهد بود. این معیارها را به نام شاخص‌های ارزیابی درونی می‌شناسیم. به عنوان مثال شاخص نیم‌رخ (silhouette) یکی از این معیارها است که شاخصی برای سنجش مناسب بودن تعلق هر مشاهده به خوشه‌اش ارائه می‌دهد. به این ترتیب معیاری برای اندازه‌گیری کارایی الگوریتم خوشه‌بندی بدست می‌آید. اگر این مطلب برایتان مفید بوده است، آموزش‌های زیر نیز به شما پیشنهاد می‌شوند: مجموعه آموزش‌های یادگیری ماشین و بازشناسی الگو مجموعه آموزش‌های آمار، احتمالات و داده‌کاوی آموزش خوشه بندی K میانگین (K-Means) با نرم افزار SPSS آموزش خوشه بندی تفکیکی با نرم افزار R آموزش خوشه بندی سلسله مراتبی با SPSS آشنایی با خوشه‌بندی (Clustering) و شیوه‌های مختلف آن روش‌ های ارزیابی نتایج خوشه‌ بندی (Clustering Performance) — معیارهای درونی (Internal Index) روش‌ های ارزیابی نتایج خوشه‌ بندی (Clustering Performance) — معیارهای بیرونی (External Index) ^^ telegram twitter به اشتراک بگذارید: منبع وبلاگ فرادرسWikipedia بر اساس رای 1 نفر آیا این مطلب برای شما مفید بود؟ بلیخیر نظر شما چیست؟ نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند * متن نظر * نام شما * ایمیل شما * پایتخت ایران کدام شهر است؟ برچسب‌ها clusterClusteringclustering algorithmcost functiondata miningforgy algorithmhartigan-wong algorithmk-meanslloyd algorithmmaximizationMcQueen algorithmminimizationpartitioning algorithmunsupervise learningتابع هدفتابع هزینهتعداد خوشهخوشه بندیخوشه بندی K میانگینخوشه بندی در آمارخوشه‌بندیخوشه‌بندی k-میانگینمربعات بین خوشهمربعات درون خوشهمعیارهای ارزیابی خوشه عضویت در خبرنامه ایمیل * آموزش برنامه نویسی آموزش متلب Matlab نرم‌افزارهای مهندسی برق نرم‌افزارهای مهندسی عمران نرم‌افزارهای مهندسی مکانیک نرم‌افزارهای مهندسی صنایع

 

معمولا زمانی که هدف کمینه‌سازی باشد، تابع هدف را «تابع هزینه» (Cost Function) نیز می‌نامند.

روش خوشه بندی k-میانگین، توسط «مک‌کوئین» (McQueen) جامعه شناس و ریاضیدان در سال ۱۹۶۵ ابداع و توسط دیگر دانشمندان توسعه و بهینه شد. برای مثال در سال 1957 نسخه‌ دیگری از این الگوریتم به عنوان الگوریتم استاندارد خوشه‌بندی k-میانگین، توسط «لوید» (Lloyd) در آزمایشگاه‌های بل (Bell Labs) برای کدگذاری پالس‌ها ایجاد شد که بعدها در سال 1982 منتشر گردید. این نسخه از الگوریتم خوشه‌بندی، امروزه در بیشتر نرم‌افزارهای رایانه‌ای که عمل خوشه‌بندی k-میانگین را انجام می‌دهند به صورت استاندارد اجرا می‌شود. در سال 1956 «فورجی» (W.Forgy) به طور مستقل همین روش را ارائه کرد و به همین علت گاهی این الگوریتم را با نام لوید-فورجی می‌شناسند. همچنین روش هارتیگان- ونگ (Hartigan-Wong) که در سال ۱۹۷۹ معرفی شد یکی از روش‌هایی است که در تحقیقات و بررسی‌های داده‌کاوی مورد استفاده قرار می‌گیرد. تفاوت در این الگوریتم‌ها در مرحله آغازین و شرط همگرایی الگوریتم‌ها است ولی در بقیه مراحل و محاسبات مانند یکدیگر عمل می‌کنند. به همین علت همگی را الگوریتم‌های خوشه‌بندی k-میانگین می‌نامند.

روش خوشه‌بندی k-میانگین

فرض کنید مشاهدات  که دارای d بعد هستند را باید به k بخش یا خوشه تقسیم کنیم. این بخش‌ها یا خوشه‌ها را با مجموعه‌ای به نام  می‌شناسیم. اعضای خوشه‌ها باید به شکلی از مشاهدات انتخاب شوند که تابع «مجموع مربعات درون خوشه‌ها» (within-cluster sum of squares- WCSS) که در حالت یک بعدی شبیه واریانس است، کمینه شود.

بنابراین، تابع هدف در این الگوریتم به صورت زیر نوشته می‌شود.

الگوریتم K-means

در اینجا منظور از  میانگین خوشه  و   تعداد اعضای خوشه iام است. البته می‌توان نشان داد که کمینه کردن این مقدار به معنی بیشینه‌سازی میانگین مربعات فاصله بین نقاط در خوشه‌های مختلف (between-Cluster sum of Squares- BCSS) است زیرا طبق قانون واریانس کل، با کم شدن مقدار WCSS، مقدار BCSS افزایش می‌یابد، زیرا واریانس کل ثابت است.

در ادامه به بررسی روش خوشه بندی k-میانگین به روش لوید-فورجی (استاندارد) و هارتیگان-ونگ می‌پردازیم.

خوشه‌بندی k-میانگین با الگوریتم لوید (Lloyd’s Algorithm)

به عنوان یک الگوریتم استاندارد برای خوشه‌بندی k-میانگین از الگوریتم لوید بخصوص در زمینه علوم کامپیوتر، استفاده می‌شود. ابتدا به علائمی که در این رابطه به کار می‌رود، اشاره می‌کنیم.

mj(i): میانگین مقدارهای مربوط به خوشه jام در تکرار iام از الگوریتم را با این نماد نشان می‌دهیم.

Sj(i): مجموعه اعضای خوشه jام در تکرار iام الگوریتم.

الگوریتم لوید را با توجه به نمادهای بالا می‌توان به دو بخش تفکیک کرد. ۱- بخش مقدار دهی ()، ۲- بخش به روز رسانی (Update Step). حال به بررسی مراحل اجرای این الگوریتم می‌پردازیم. در اینجا فرض بر این است که نقاط مرکزی اولیه یعنی  داده شده‌اند.

  1. بخش مقدار دهی: هر مشاهده یا شی را به نزدیکترین خوشه نسبت می‌دهیم. به این معنی که فاصله اقلیدسی هر مشاهده از مراکز، اندازه گرفته شده سپس آن مشاهده عضو خوشه‌ای خواهد شد که کمترین فاصله اقلیدسی را با مرکز آن خوشه دارد. این قانون را به زبان ریاضی به صورت  فرمول 2  می‌نویسیم.
  2. بخش به روز رسانی: میانگین خوشه‌های جدید محاسبه می‌شود. در این حالت داریم:  فرمول 3

توجه داشته باشید که منظور از Si(t| تعداد اعضای خوشه iام است. الگوریتم زمانی متوقف می‌شود که مقدار برچسب عضویت مشاهدات تغییری نکند. البته در چنین حالتی هیچ تضمینی برای رسیدن به جواب بهینه (با کمترین مقدار برای تابع هزینه) وجود ندارد. کاملا مشخص است که در رابطه بالا،‌ فاصله اقلیدسی بین هر نقطه و مرکز خوشه ملاک قرار گرفته است. از این جهت از میانگین و فاصله اقلیدسی استفاده شده که مجموع فاصله اقلیدسی نقاط از میانگینشان کمترین مقدار ممکن نسبت به هر نقطه دیگر است.

نکته: ممکن است فاصله اقلیدسی یک مشاهده از دو مرکز یا بیشتر، برابر باشد ولی در این حالت آن شئ فقط به یکی از این خوشه‌ها تعلق خواهد گرفت.

تصویر زیر یک مثال برای همگرایی الگوریتم لوید محسوب می‌شود که مراحل اجرا در آن دیده می‌شود. همانطور که مشخص است الگوریتم با طی ۱۴ مرحله به همگرایی می‌رسد و دیگر میانگین خوشه‌ها تغییری نمی‌یابد. البته ممکن است که این نقاط نتیجه تابع هزینه را بطور کلی (Global) کمینه نکنند زیرا روش k-میانگین بهینه‌سازی محلی (Local Optimization) را به کمک مشتق‌گیری و محاسبه نقاط اکستریمم اجرا می‌کند.

 

K-means_convergence

همگرایی الگوریتم k-میانگین

 

نکته: به نقاط مرکزی هر خوشه مرکز (Centroid) گفته می‌شود. ممکن است این نقطه یکی از مشاهدات یا غیر از آن‌ها باشد. مشخص است که در الگوریتم لوید، k مشاهده به عنوان مرکز خوشه‌ها (Centroids) در مرحله اول انتخاب شده‌اند ولی در مراحل بعدی، مقدار میانگین هر خوشه نقش مرکز را بازی می‌کند.

خوشه‌بندی k-میانگین با الگوریتم هارتیگان-ونگ (Hartigan-Wong)

یکی از روش‌های پیشرفته و البته با هزینه محاسباتی زیاد در خوشه‌بندی k-میانگین، الگوریتم هارتیگان-ونگ است. برای آشنایی با این الگوریتم بهتر است ابتدا در مورد نمادهایی که در ادامه خواهید دید توضیحی ارائه شود.

فرمول 4  از این نماد برای نمایش «تابع هزینه» برای خوشه فرمول 5 استفاده می‌کنیم. این تابع در خوشه‌بندی k-میانگین برابر است با:

فرمول 6

 

فرمول 5 : از آنجایی که هدف از این الگوریتم، تفکیک اشیاء به k گروه مختلف است، گروه‌ها یا خوشه‌ها در مجموعه‌ای با نام S قرار دارند و داریم، فرمول 7

فرمول 8: برای نمایش میانگین خوشهjام از این نماد استفاده می‌شود. بنابراین خواهیم داشت:

فرمول 9

فرمول 11این نماد تعداد اعضای خوشه jام را نشان می‌دهد. بطوری که فرمول 10  است. البته مشخص است که در اینجا تعداد خوشه‌ها را با k‌ نشان داده‌ایم.

مراحل اجرای الگوریتم

در خوشه‌بندی k-میانگین با الگوریتم هارتیگان می‌توان مراحل اجرا را به سه بخش تقسیم کرد: ۱- بخش مقدار دهی اولیه (Assignment Step(   ،- ۲ بخش به روز رسانی (Update Step)، ۳- بخش نهایی (Termination). در ادامه به بررسی این بخش‌ها پرداخته می‌شود.

  1. بخش مقدار دهی اولیه: در الگوریتم هارتیگان-ونگ، ابتدا مشاهدات و یا اشیاء به طور تصادفی به k گروه یا خوشه تقسیم می‌شوند. به این کار مجموعه S با اعضایی به صورت فرمول 12  مشخص می‌شود.
  2. بخش به روز رسانی: فرض کنید که مقدارهای n و m از اعداد ۱ تا k انتخاب شده باشد. مشاهده یا شیئ از خوشه nام را در نظر بگیرید که تابع  فرمول 13 را کمینه سازد، در چنین حالتی مقدار x از خوشه nام به خوشه mام منتقل می‌شود. به این ترتیب شی مورد نظر در  فرمول 20 قرار گرفته و خواهیم داشت  فرمول 15 .
  3. بخش نهایی: زمانی که به ازای همه n,m,x مقدار  فرمول 16  بزرگتر از صفر باشد، الگوریتم خاتمه می‌یابد.

نکته: منظور از نماد  فرمول 17  محاسبه تابع هزینه در زمانی است که مشاهده x از مجموعه  فرمول 18  خارج شده باشد. همچنین نماد  فرمول 19 به معنی محاسبه تابع هزینه در زمانی است که مشاهده x به خوشه  فرمول 20  اضافه شده باشد.

در تصویر زیر مراحل اجرای الگوریتم هارتیگان به خوبی نمایش داده شده است. هر تصویر بیانگر یک مرحله از اجرای الگوریتم است. نقاط رنگی نمایش داده شده، همان مشاهدات هستند. هر رنگ نیز بیانگر یک خوشه است.

در تصویر اول مشخص است که در بخش اول از الگوریتم به طور تصادفی خوشه‌بندی صورت پذیرفته. ولی در مراحل بعدی خوشه‌ها اصلاح شده و در انتها به نظر می‌رسد که بهترین تفکیک برای مشاهدات رسیده‌ایم.

در تصویر آخر نیز مشخص است که مراکز خوشه‌ها، محاسبه و ثابت شده و دیگر بهینه‌سازی صورت نخواهد گرفت. به این ترتیب پاسخ‌های الگوریتم با طی تکرار ۵ مرحله به همگرایی می‌رسد.

 

hartigan-step-1

الگوریتم هارتیگان بخش مقدار دهی اولیه

hartigan-step-2

الگوریتم هارتیگان تکرار 1

 

hartigan-step-3

الگوریتم هارتیگان تکرار 2

 

hartigan-step-5

الگوریتم هارتیگان تکرار 3

 

hartigan-step-4

الگوریتم هارتیگان تکرار 4

 

hartigan-step-6

الگوریتم هارتیگان تکرار 5

 

اجرای این الگوریتم‌ها با استفاده از دستورات زبان برنامه‌نویسی R

برای استفاده از دستورات و فرمان‌های مربوط به خوشه‌بندی k-میانگین، باید بسته یا Package مربوط به خوشه‌بندی kmeans به اسم stats را در R نصب کرده باشد. البته از آنجایی این بسته بسیار پرکاربرد است،‌ معمولا به طور خودکار فراخوانی شده است. کدهای زیر نشانگر استفاده از الگوریتم خوشه‌بندی توسط روش‌های مختلف آن است.

library(stats)
data=iris[,1:4]
method=c("Hartigan-Wong", "Lloyd",
"MacQueen")
k=3
kresults1=kmeans(data,k,algorithm = method[1])
kresults2=kmeans(data,k,algorithm=method[2])
kresults3=kmeans(data,k,algorithm=method[3])

kresults1
kresults2
kresults3
با توجه به داده‌های iris که مربوط به اندازه و ابعاد کاسبرگ و گلبرگ سه نوع گل مختلف است، خوشه‌بندی به سه دسته انجام شده است. اطلاعات مربوط به ۱۰ سطر اول این مجموعه داده،‌ به صورت زیر است.

با اجرای کدهای نوشته شده، خوشه‌بندی انجام شده و نتابج تولید می‌شوند. به عنوان مثال می‌توان خروجی را برای kresult1 که انجام خوشه بندی توسط الگوریتم هارتیگان است به صورت زیر مشاهده کرد:

iris clustering

همانطور که دیده می‌شود، در سطر اول تعداد اعضای هر خوشه، نمایش داده شده است. در بخش دوم که با سطر ۱ و ۲ و ۳ مشخص شده،‌ مراکز هر سه خوشه برحسب ویژگی‌های (طول و عرض کاسبرگ و طول و عرض گلبرگ) محاسبه شده و در قسمت Cluster Vector نیز برچسب خوشه هر کدام از مشاهدات دیده می‌شود. در انتها نیز مجموع مربعات فاصله درون خوشه‌ای (مجموع فاصله هر مشاهده از مرکز خوشه) استخراج شده و درصد یا شاخص ارزیابی خوشه‌بندی بر اساس نسبت مربعات بین خوشه‌ها به مربعات کل دیده می‌شود. این مقدار برای این حالت برابر ۸۸.۴٪ است که نشان می‌دهد بیشتر پراکندگی (total_ss) توسط پراکندگی بین خوشه‌ها (between_ss) بیان شده است. پس به نظر خوشه‌بندی مناسب خواهد بود. پس اختلاف بین گروه‌ها ناشی از خوشه‌های است که مشاهدات را به دسته‌‌های جداگانه تفکیک کرده.

همچنین در کدها مشخص است که تعداد خوشه‌های در متغیر k ثبت و به کار رفته است. در شکل دیگری از دستور kmeans می‌توان به جای معرفی تعداد خوشه‌ها از مراکز دلخواه که با تعداد خوشه‌ها مطابقت دارد، استفاده کرد. برای مثال اگر برنامه به صورت زیر نوشته شود، الگوریتم ابتدا نقاط معرفی شده را به عنوان نقاط مرکزی (Centroids) به کار گرفته و سپس مراحل بهینه سازی را دنبال می‌کند. از آنجا که سه نقطه مبنا قرار گرفته، الگوریتم متوجه می‌شود که باید مشاهدات به سه خوشه تفکیک شود.

 

library(stats)
data=iris[,1:4]
method=c("Hartigan-Wong", "Lloyd",
         "MacQueen")
c1=c(6,4,5,3)
c2=c(5,3,1,0)
c3=c(6,2,4,2)
centers=rbind(c1,c2,c3)
kresults1=kmeans(x = data,centers = centers,algorithm = method[1])
kresults2=kmeans(x = data,centers = centers,algorithm=method[2])
kresults3=kmeans(x = data,centers = centers,algorithm=method[3])

kresults1
kresults2
kresults3
در تصویر زیر نتیجه خوشه بندی k-میانگین را برای داده‌های iris توسط یک نمودار مشاهده می‌کنید. البته باید توجه داشت که این نمودار دو بعدی است در حالیکه داده‌ها، دارای چهار ویژگی هستند. به کمک روش‌های آماری مانند تجزیه به مولفه‌های اصلی (PCA) ابعاد مسئله کاهش یافته تا در سه بعد روی نمودار نمایش داده شود. سمت راست تصویر گروه‌های واقعی و سمت چپ نتیجه خوشه‌بندی دیده می‌شود. نقاطی که در خوشه‌ها به درستی تشخیص داده نشده‌اند، باعث افزایش خطای خوشه‌بندی خواهند شد.

کاربردها

از الگوریتم خوشه‌بندی k-میانگین در «بخش‌بندی بازار کسب و کار» (market Segmentation)، «دسته‌بندی مشتریان» (Customer Segmentation)، «بینایی رایانه‌ای» (Computer Vision) و «زمین‌آمار (Geostatistics) استفاده می شود. برای مثال در تشخیص تعداد رنگ و یا فشرده سازی تصاویر برحسب رنگ‌ها می‌توان از این الگوریتم‌ها استفاده کرد.

 

در تصویر بالا گل رز زرد رنگی دیده می‌شود که در یک محیط سبز قرار گرفته است. با استفاده از الگوریتم‌های خوشه‌بندی می‌توان تعداد رنگ‌ها را کاهش داده و از حجم تصاویر کاست. در تصویر زیر دسته بندی رنگ‌های گل رز دیده می‌شود.

 

 

در این تصویر، هر طیف رنگ براساس میزان رنگ قرمز و سبز، بوسیله «سلول‌های ورونوی» (Voronoi Cell) تقسیم‌بندی شده است. این تقسیم‌بندی می‌تواند توسط الگوریتم‌ها خوشه‌بندی k-میانگین صورت گرفته باشد. در کل تصویر نیز، طیف رنگ‌های مختلف برای تصویر گل رز در یک «نمودار ورونوی» (Voronoi diagram) نمایش داده شده است که خوشه‌ها را بیان می‌کند.

 

خوشه بندی k میانگین (k-means Clustering) قسمت 1
خوشه بندی k میانگین (k-means Clustering) قسمت 2

چکیده

انطباق تصویر، یکی از زمینه های بسیار پرکاربرد در پردازش تصویر است که تحقیقات زیادی در این حوزه انجام شده اسـت. انطبـاق تصویر به معنای هم تراز و هم محورکردن دو یـا چنـد تصـویر از شـرایط مختلـف تصـویربرداری اسـت. از کاربردهـای آن مـی تـوان بـه شناسایی تغییرات بین تصاویر، ترکیب تصاویر، تشخیص اشیاء و موزاییک تصاویر اشاره کـرد. در ایـن مقاله، ضـمن معرفـی مفـاهیم انطباق تصویر، تحقیقات مختلف جمع آوری و دسته بندی شده و سوگیری تحقیقات در این زمینه مشخص شده است. عـلاوه بـر ایـن، از طریق چهار دسته آزمایش مختلف جنبه های مختلف انطباق تصویر مورد ارزیابی قرارگرفته است. ایـن مقالـه مـیتوانـد راه گشـای محققین پردازش تصویر در این زمینه بوده و سعی شده است تمام جنبه های این زمینه تحقیقاتی مورد کاوش قرار بگیرد.

ﮐﻠﯿﺪواژه ﻫﺎ

اﻧﻄﺒﺎق ﺗﺼﻮﯾﺮ، ﺷﻨﺎﺳﺎﯾﯽ وﯾﮋﮔﯽ ﻫﺎ، ﺗﻄﺒﯿﻖ، ﺑﺮآورد ﻣﺪل ﺗﺒﺪﯾﻞ، اﻟﮕﻮرﯾﺘﻢ SIFT

مقدمه

اﻧﻄﺒﺎق ﺗﺼﻮﯾﺮ، ﻓﺮآﯾﻨﺪ روی ﻫﻢ ﮔﺬاﺷﺘﻦ دو ﯾﺎ ﭼﻨﺪ ﺗﺼﻮﯾﺮ از ﯾﮏ صحنه است ﮐﻪ در ﺷﺮاﯾﻂ ﻣﺨﺘﻠﻒ ﺗﺼﻮﯾﺮﺑﺮداری (زﻣﺎن ﻫﺎی ﻣﺘﻔﺎوت، زواﯾﺎی ﻣﺘﻔﺎوت، ﺣﺴﮕﺮ ﻫﺎی ﻣﺘﻔﺎوت و ﻧﻮع و ﻣﺎﻫﯿِﺖ ﻣﻨﻄﻘﻪ ی ﺗﺼﻮﯾﺮﺑﺮداری ﺷﺪه) ﮔﺮﻓﺘﻪ ﺷﺪه اﻧﺪ و اﯾﻦ ﻓﺮآﯾﻨﺪ از ﻧﻈﺮ ﻫﻨﺪﺳﯽ، دو ﺗﺼﻮﯾﺮ ﻣﺮﺟﻊ و ﺣﺲ ﺷﺪه را ﻫﻢ ﺗﺮاز می ﮐﻨﺪ. اﯾﻦ ﻓﺮآﯾﻨﺪ، ﯾﮏ ﻣﺮﺣﻠﻪ ی ﭘﯿﺶ ﭘﺮدازش در ﺗﺤﻠﯿﻞ ﺗﺼﺎوﯾﺮاﺳﺖ.

در واﻗﻊ ﺷﺮاﯾﻂ ﻣﺨﺘﻠﻒ ﺗﺼﻮﯾﺮﺑﺮداری ﺳﺒﺐ اﯾﺠﺎد اﺧﺘﻼﻓﺎت ﻗﺎﺑﻞ ﺗﻮﺟﻪ ﺑﯿﻦ ﺗﺼﺎوﯾﺮمی ﺷﻮد و ﺑﻪ ﺻﻮرت ﮐﻠﯽ اﯾﻦ اﺧﺘﻼف را می ﺗﻮان ﺑﻪ ﭼﻬﺎردﺳﺘﻪ ی ﻫﻨﺪﺳﯽ، ﻣﺸﮑﻼت رادﯾﻮﻣﺘﺮی، ﻣﺸﮑﻼت ﺑﺎﻓﺖ و ﺗﻐﯿﯿﺮ ﻣﻨﺎﻇﺮ ﺗﻘﺴﯿﻢ ﮐﺮد. مشکلاتی ﻣﺎﻧﻨﺪ اﺧﺘﻼﻓﺎت ﻣﻘﯿﺎس ﺗﺼﺎوﯾﺮ، اﺧﺘﻼﻓﺎت ﭼﺮﺧﺸﯽ ﺗﺼﺎوﯾﺮ و ﺗﻐﯿﯿﺮ ﺷﮑﻞ ﻫﺎی ﻧﺎﺷﯽ از ﺗﻐﯿﯿﺮ ﻣﻮﻗﻌﯿﺖ اﺧﺬ ﺗﺼﻮﯾﺮ را مشکلات ﻫﻨﺪﺳﯽ ﻣﯽﮔﻮﯾﻨﺪ.
اﯾﻦ اﺧﺘﻼﻓﺎت در ﺗﺼﺎوﯾﺮ پزشکی، ﺑﺮ اﺳﺎس ﺣﺮﮐﺎت ﻏﯿﺮارادی (ﻣﺎﻧﻨﺪ ﺗﻨﻔﺲ، ﺿﺮﺑﺎن ﻗﻠﺐ و…) ﺣﺮﮐﺎت ارادی (ﻣﺎﻧﻨﺪ ﺟﺎﺑﺠﺎﯾﯽ ﺑﯿﻤﺎر) و در ﺗﺼﺎوﯾﺮ دﯾﮕﺮ ﺑﺮ اﺳﺎس ﺣﺮﮐﺖ دورﺑﯿﻦ ﺑﻪ وﺟﻮد ﻣﯽ آﯾﻨﺪ. ﻧﻮﯾﺰ، ﺗﻔﺎوت ﺷﺪت روﺷﻨﺎﯾﯽ، ﻣﻮﻗﻌﯿﺖ ﻣﻨﺎﺑﻊ روﺷﻨﺎﯾﯽ در ﺻﺤﻨﻪ و اﺧﺬ ﺗﺼﻮﯾﺮ درﺣﺴﮕﺮ ﻫﺎ و ﺑﺎﻧﺪﻫﺎی ﻃﯿﻔﯽ ﻣﺘﻔﺎوت، ﺳﺒﺐ اﯾﺠﺎد ﺗﻐﯿﯿﺮاﺗﯽ در ﺷﺪت روﺷﻨﺎﯾﯽ ﺗﺼﻮﯾﺮ می ﺷﻮد ﮐﻪ ﺑﻪ ﻣﺸﮑﻼت رادﯾﻮﻣﺘﺮی ﻣﻌﺮوف می ﺑﺎﺷﻨﺪ. ﺗﺼﺎوﯾﺮ، ﻣﻤﮑﻦ اﺳﺖ دارای ﺳﻄﻮﺣﯽ ﺑﺎ ﺑﺎﻓﺖ ﺿﻌﯿﻒ (ﻣﺎﻧﻨﺪ
درﯾﺎ ) ﺑﺪون ﺑﺎﻓﺖ و ﺑﺎﻓﺖ ﻫﺎی ﺗﮑﺮاری (ﻣﺎﻧﻨﺪ ﺳﺎﺧﺘﻤﺎن ﻫﺎی ﻣﺸﺎﺑﻪ) ﺑﺎﺷﺪ که مشکلات بافت نامیده می شوند. ویژگی های متحرک ( مانند حرکت وسایل نقلیه) و تغییراتی که در اثر گذر زمان در تصاویر (مانند تغییرات فصلی) وجود دارد، سبب تغییرات مناظر می شود. بر اساس مشکلات ذکر شده، جهت افزایش دقت در پردازش تصاویر، ضروری است فرآیند انطباق انجام شود. باید توجه کرد که هریک از الگوریتم های انطباق، تنها برای انطباق نوع مشخصی از تصاویر طراحی شده اند چرا که هر الگوریتم انطباق تصویر تنها برای حل نوع مشخصی از مشکلات هندسی، رادیو متری و مشکلات بافت و غیره کاربرد دارد.

انطباق تصویر، یک مرحله ی پیش پردازش است که در شناسایی تغییرات، ترکیب تصاویر، موازییک تصاویر و غیره کاربرد دارد. با توجه به کاربردهای این فرآیند، هر روز توجه دانشمندان بیشتری را به خود جلب می کند. شکل 1 نمودار تعداد مقالات ژورنالی که در پایگاه های ساینس دایرکت و IEEE بر حسب سال چاپ شده اند را نشان می دهد.

نمودار تعداد مقالات بر حسب سال

 

همانطور که در شکل 1 مشاهده می شود، هر سال مقالات بیشتری در زمینه ی انطباق تصویر نسبت به سال های قبل به چاپ رسیده است که این نشان دهنده اهمیت این موضوع می باشد. با این وجود، مقاله مروری فارسی در این زمینه وجود ندارد. هم چنین تعداد اندک مقالات مروری انگلیسی که در این زمینه وجود دارد، متاسفانه به شرح کلی روش ها پرداخته اند و بسیار قدیمی هستند. از طرف دیگر، مقالات مروری که اخیراً نوشته شده اند هم اکثراً مربوط به نوع خاصی از تصاویر پزشکی و در زمینه ی یکی از مراحل انطباق است. در این مقالات، به بررسی مزایا و معایب هریک از الگوریتم های مهم در تصاویر متفاوت (سنجش از دور، تصاویر پزشکی، تصاویر سنجش از دور SAR) پرداخته نشده است. اهمیت و کاربرد روزافزون این زمینه علمی، نشان می دهد که هر پنج سال یک بار باید یک مقاله مروری نوشته شود تا به شرح مزایا و معایب الگوریتم ها و معیارهای ارزیابی جدید در زمینه ی انطباق تصویر پرداخته شود تا بتواند دانشمندان را در جهت ارتقاء عملکرد فرآیند انطباق تصویر راهنمایی کند و راهگشای محققین جدید باشد. این موارد ذکر شده انگیزه ی نگارش مقاله مروری در این زمینه را فراهم می کند.

هدف ما در این مقاله، بررسی رویکردها، شرح روش ها و مراحل انطباق تصویر، توصیف بعضی الگوریتم های مهم و بهبودهایی که در زمینه ی ارتقاء دقت انطباق در آن ها انجام شده است. علاوه بر مرور روش های انطباق، یک سری آزمایش ها بر روی تصاویر طبیعی، تصاویر سنجش از دور اپتیکی و تصاویر چند مودی سنجش از دور جهت بررسی دقت تطبیق انجام می شود.

سازمان دهی مقاله به این صورت است که در بخش دوم به بررسی کاربردهای انطباق تصویر بر اساس شیوه امتساب، در بخش سوم به شرح جزئیات مراحل و روش های انطباق تصویر و در بخش های چهارم و پنجم به ترتیب، به دسته بندی انطباق و بررسی معیارهای ارزیابی انطباق پرداخته می شود.نتایج آزمایشات به منظور ارزیابی الگوریتم ها در بخش ششم و در نهایت به جمع بندی و جهت یابی آینده در بخش هفتم پرداخته می شود.

2- کاربردهای انطباق تصویر

انطباق تصویر، کاربردهای گسترده ای در تصاویر سنجش از دور اپتیکی، پزشکی، بینایی کامپیوتر، تصاویر سنجش از دور SAR و تصاویر طبیعی دارد. در کل، کاربردهای آن را می توان بر طبق شیوه اکتساب تصویر به چهار گروه اصلی، زوایای متفاوت، زمان های متفاوت، حسگرهای متفاوت و انطباق تصویر به مدل تقسیم کرد که در ادامه به شرح مختصر هر یک از آن ها پرداخته می شود.

1-2- زوایای متفاوت

در این دسته، هدف انطباق دو تصویر است که از یک صحنه در زاویای متفاوت گرفته شده اند. در این روش، هدف رسیدن به بعد سوم تصویر، شناسایی یک شیء در تصویر و به دست آوردن اطلاعات کامل تری در مورد آن شیء مدنظر است. از آنجایی که با محدود بودن عدسی های دوربین نمی توان تصاویر پانوراما ایجاد کرد، می توان با استفاده از این روش، چنین تصاویری را ایجاد نمود. در شکل 2 نمونه ای از این نوع انطباق مشاهده می شود.

2-2- زمان های متفاوت

در این دسته، هدف انطباق تصاویری است که از یک صحنه در زمان های متفاوت و تحت شرایط مختلفی گرفته شده است. در اینجا، هدف اصلی یافتن و ارزیابی تغییرات است. در این نوع تصاویر، انطباق تصویر به عنوان یک مرحله پیش پردازش در همه ی الگوریتم های شناسایی تغییرات استفاده می شود. برای مثال، در شبکیه چشم جهت تصویر برداری آنژیوگرافی فلورسین، یک یا دو تصویر قبل از تزریق رنگ سدیم فلورسین و چند عکس بعد از تزریق رنگ سدیم فلورسین در طول فواصل معین گرفته می شود که در شکل 3 نشان داده شده است. جهت شناسایی و ارزیابی آسیب هایی که در شبکیه ایجاد شده، لازم است فرآیند انطباق به عنوان یک مرحله ی پیش پردازش انجام شود.

یک نمونه از انطباق در زوایای مختلف

 

حسگرهای متفاوت

در این دسته، هدف انطباق تصاویری است که از یک صحنه به وسیله حسگرهای متفاوت و در یک زمان یکسان گرفته شده است که به این نوع تصاویر، تاویر چند مودی می گویند. در این دسته از روش ها، هدف اصلی به دست آوردن اطلاعات کامل تر و دقیق تری از یک صحنه است که در تصاویر پزشکی و سنجش از دور اپتیکی و سنجش از دور SAR کاربرد دارد. برای مثال، تعیین موقعیت آناتومی یک تومور در پزشکی بسیار مهم است. تمایز بین تومور و بافت پیرامون آن، در تصاویر سی تی اسکن(CT) کم است. از طرفی تصاویر MRI توانایی خوبی در به تصویر کشیدن بافت های نرم دارند، در حالی که CT بافت سخت و SPECT ،PET کارکردها و فیزیولوژی را به خوبی در بدن نشان می دهند. استفاده هم زمان از تصاویر چند مودی در کنار هم کمک شایانی در فرآیند تشخیص و درمان برای پزشکان دارد. در این زمینه، طی سالیان متمادی، روش های گوناگون و متنوعی ارائه شده است. در شکل 4 نمونه ای از این نوع انطباق مشاهده می شود.

حالت های متفاوت تصویر شبکیه

 

4-2- انطباق تصویر به مدل

در این دسته، هدف انطباق تصویری است که از یک صحنه با مدل آن گرفته شده است. مدل می تواند یک تصویر کامپیوتری از صحنه باشد. هدف اصلی در این نوع انطباق، مقایسه تصویر با مدل و تهیه اطلس است و برای رسیدن به این منظور، از انطباق بین موضوعی و درون شیوه ای استفاده می شود. یک نمونه ی کاربردی از این دسته، در تصویربرداری پزشکی جهت مقایسه تصویر بیمار با اطلس های دیجیتالی است. پس از بررسی کاربردهای فرآیند انطباق تصویر در این بخش، در بخش بعدی به شرح مراحل انطباق تصاویر پرداخته خواهد شد.

انطباق تصویر با حسگرهای متفاوت

 

3- انطباق تصاویر و مراحل آن

به صورت کلی، دو روش تعاملی(پایه) و خودکار برای انجام عمل انطباق وجود دارد. در روش تعاملی، یک مجموعه از نقاط کنترلی در تصاویر به صورت دستی انتخاب می شوند و سپس، از این نقاط برای برآورد تابع تبدیل میان دو تصویر و نمونه برداری مجدد استفاده می کنند. این روش نیاز به یک اپراتور ماهر دارد. همچنین، انجام آن خسته کننده، تکراری و بسیار زمان بر است و همچنین با مشکل محدودیت دقت مواجه می شود. یکی دیگر از مشکلات تعاملی، مسئله اختلاف دیدگاه بین متخصصین است که بدین معناست که ممکن است متخصصین در انتخاب نقاط کنترلی اختلاف نظر داشته باشند و نقاط به دست آمده توسط آن ها منحصر به فرد نباشد؛ بنابراین، وجود روش های خودکار در انطباق، یک مسئله ی مهم است و روش های متعددی در این زمینه ارائه شده اند. علیرغم اینکه روش های گوناگونی برای انجام انطباق خودکار تصویر وجود دارد، اما اکثریت آن ها از مراحلی که در شکل 5 مشاهده می شود، تشکیل شده اند که از مهم ترین مراحل انطباق تصویر، شناسایی ویژگی ها و تطبیق میان آن ها است. در ادامه به شرح هر یک از این مراحل پرداخته می شود.

دیاگرام مراحل انطباق تصویر

1-3- شناسایی ویژگی ها

به طور کلی روش های انطباق تصویر بر اساس نوع شناسایی ویژگی ها به دو دسته ی روش های مبتنی بر ناحیه و روش های مبتنی بر ویژگی در انطباق خودکار برای شناسایی ویژگی ها تقسیم می شوند که شکل 6 یک جفت تصویر که در آن ویژگی ها شناسایی شده اند را نشان می دهد. در ادامه به شرح هر یک از این روش ها پرداخته می شود.

شناسایی ویژگی ها در تصویر مرجع و حس شده

 

1-1-3- روش های مبتنی بر ناحیه

روش های مبتنی بر ناحیه، زمانی به کار می روند که تصاویر جزئیات مهم زیادی نداشته باشد. اطلاعات متمایز، به وسیله تفاوت شدت روشنایی مشخص می شوند. در این دسته از روش ها، هیچ ویژگی از تصویر شناسایی نمی شود و این روش ها روی مرحله تطبیق تصویر تأکید بیشتری دارند؛ بنابراین، اولین مرحله انطباق تصویر حذف می شوند. روش های مبتنی بر ناحیه نیاز به فضای جستجو و مقدار اولیه ی مناسب داشته و در مناطق با بافت یکنواخت ضعف دارند که جهت رفع این مشکل روش های مبتنی بر ویژگی پیشنهاد شد.

2-1-3- روش های مبتنی بر ویژگی

در این رویکرد، ویژگی های تصاویر شناسایی می شوند و سپس تطبیق میان آن ها انجام می شود. از این دسته از روش ها، معمولاً زمانی استفاده می شود که اطلاعات ساختار محلی مهم تر از اطلاعات شدت روشنایی باشد. این روش نسبت به انحراف های بین تصاویر پایدار است. یک وِیژگی مناسب برای فرآیند تطبیق این است که باید نسبت به همسایگی های خود متمایز بوده و در میان دیگر وِیژگی ها، منحصر به فرد باشد و مستقل از اعوجاج هندسی و رادیومتری و پایدار در برابر نویز باشد. نوع وِیژگی هایی که در تصاویر انتخاب می شود، بستگی به نوع تصاویر دارد. به طور کلی، در تصاویر سه نوع ویژگی وجود دارد: ویژگی های نقطه ای، ویژگی های خطی و ویژگی های ناحیه ای. در ادامه به شرح هریک از این ویژگی ها پرداخته می شود.

– ویژگی های نقطه ای

گوشه ها و نقاط را می توان به عنوان ویژگی های نقطه ای در نظر گرفت. گوشه ها، نقاطی از تصویر هستند مه تغییرات شدت روشنایی آن ها نسبت به سایر همسایه های آن ها بسیار زیاد است. به طور کلی، برای استخراج ویژگی های نقطه ای نیاز به شناساگرهای گوشه و شناساگرهای کلیدی می باشد که شناساگرهای مُراوِک و هریس و SIFT نمونه ای از این شناساگرها می باشند که در ادامه به بررسی آن ها پرداخته می شود.

شناساگر گوشه مُراوِک

ایده مُراوِک برای تشخیص گوشه، استفاده از یک پنجره ی باینری کوچک (برای مثال 3*3) با مرکزیت پیکسل مورد بررسی است. با حرکت دادن این پنجره در چهار جهت اصلی (u,v) = (1,0) , (1,1) , (-1,-1) , (0, 1) میزان تغییرات شدت روشنایی بررسی می شود. اگر این میزان، در چهار جهت بررسی شده نسبت به سایر همسایه ها بیشتر باشد، آن پیکسل به عنوان گوشه در نظر گرفته می شود. این شناساگر دارای نقاط ضعفی است عبارت اند از:

چون شناساگر مُراوِک از پنجره باینری استفاده می کند، اگر پیکسلی نویزی باشد در مقدار نهایی شدت روشنایی، اثر زیادی می گذارد و ممکن است نقاط گوشه به درستی شناسایی نشوند. شناساگر مُراوِک در چهار جهت، مقدار شدت روشنایی را بررسی می کند در صورتی که نقاط گوشه، نقاطی است که در همه جهات تغییرات شدت روشنایی آن زیاد باشد. برای برطرف کردن نقاط ضعف شناساگر مُراوِک، شناساگر دیگری به نام شناساگر هریس پیشنهاد شده است که در ادامه به بررسی آن پرداخته می شود.

شناساگر هریس

شناساگر هریس توسط کریس هریس در سال 1988 پیشنهاد شد. این شناساگر، برای شناسایی گوشه از یک پنجره دایره ای هموار برای مثال پنجره گوسی استفاده می کند و سپس با استفاده از بسط تیلور، پنجره را در تمام جهت ها حرکت می دهد و مقدار شدت روشنایی را در تمام جهان بررسی می کند. این شناساگر، نسبت به مقیاس تغییر پذیر است یعنی ممکن است یک پیکسل در یک مقیاس تصویر به عنوان گوشه در نظر گرفته شود، اما همان پیکسل در مقیاس دیگر همان تصویر به عنوان گوشه در نظر گرفته نشود. یانگ و همکاران در سال 2013 برای انطباق تصاویر از الگوریتم هریس برای شناسایی ویژگی ها استفاده کردند. ژانگ و همکاران در سال 2013 از الگوریتم هریس برای شناسایی ویژگی ها در انطباق غیر سخت تصاویر ریه که با CT گرفته شده اند، استفاده کردند.

برای حل مشکل نقطه ضعف ذکر شده شناساگر هریس، یک الگوریتم به نام تبدیل ویژگی مقیاس ثابت پیشنهاد شد. در ادامه به بررسی بیشتر این الگوریتم پرداخته می شود. 

الگوریتم تبدیل ویژگی مقیاس ثابت

این الگوریتم در سال 2004 توسط لاو جهت انجام فرآیند تشخیص الگو در تصاویر اپتیکی ارائه شده است. الگوریتم SIFT هم شناساگر و هم توصیفگر است که مرحله استخراج ویژگی در آن خود شامل سه مرحله است؛ که مرحله استخراج اکسترمم های فضای مقیاس، بهبود دقت موقعیت و حذف اکسترمم های ناپایدار و در آخر تخصیص جهت به هر ویژگی که ایجاد شده است. الگوریتم SIFT دارای محدودیت هایی است که برای بهبود دادن این الگوریتم جهت ارتقاء دقت انطباق باید به نوع تصویر هم توجه کرد، زیرا انحراف هایی که بین تصاویر وجود دارد، با توجه به ماهیت تصاویر ممکن است، متفاوت باشد. در تصاویر سنجش از دور SAR به دلیل وجود نویز اسپکل و همچنین استفاده از فضای مقیاس گوسی در SIFT باعث می شود اغلب لبه ها و جزئیات ظریف در تصویر از بین برود که تأثیر قابل توجهی در تشخیص ویژگی ها دارد. برای غلبه بر مشکلات ذکر شده در  تصاویر سنجش از دور SAR، بهبود هایی در الگوریتم SIFT انجام شده است که در ادامه به بعضی از آن ها اشاره می شود. 

فلورا دلینگر و همکاران در سال 2015 جهت بهبود الگوریتم SIFT در تصاویر سنجش از دور SAR روش SAR-SIFT را معرفی کردند. این روش از دو مرحله کلی تشکیل شده است که ابتدا از روش نسبت به جای روش تفاضل برای محاسبه گرادیان استفاده می کند که این سبب می شود مقدار گرادیان در مناطق همگن تحت شرایط بازتاب مختلف فرقی نداشته باشد. سپس برای تطبیق تصاویر سنجش از دور SAR از یک الگوریتم SIFT مانند استفاده می شود که در این الگوریتم، برای شناسایی نقاط کلیدی از فضای مقیاس لاپلاس گوسی و برای تعیین جهت و ایجاد توصیفگرها از یک پنجره ی مدور استفاده می کند. این روش جهت انطباق تصاویر با زاویه متفاوت مناسب نیست. وانگ و همکاران در سال 2012 روش BFSIFT برای انطباق تصاویر سنجش از دور SAR را پیشنهاد کردند. در این روش، برای حفظ جزئیات در تصاویر سنجش از دور SAR فضای مقیاس گوسی ناهمسانگرد جایگزین فضای مقیاس گوسی در الگوریتم SIFT شده است که این فضای مقیاس با استفاده از فیلتر دوطرفه ایجاد شده است. از مزایای این روش، کاهش اثر نویز اسپکل در انطباق تصویر است اما زمان اجرا آن زیاد می باشد. جیان وی فن و همکاران در سال 2015 روش تبدیل ویژگی مقیاس ثابت مبتنی بر انتشار غیرخطی و تجانس فاز را برای انطباق تصویر سنجش از دور SAR پیشنهاد کردند. در این روش از انتشار غیرخطی جهت حفظ جزئیات مهم و ظریف در تصویر و از عملگر نسبت میانگین وزن شده نمایی برای محاسبه اطلاعات گرادیان و سپس از تجانس فاز برای حذف نقاط پرت استفاده می کند. از مزایای این روش، اندازه گرادیان در مناطق همگن تحت شرایط بازتاب مختلف اندکی تفاوت دارد اما برای تعیین جهت گرادیان معیار مناسبی ندارد. فنگ وانگ و همکاران در سال 2015، روش تبدیل ویژگی مقیاس ثابت گوسی ناهمسانگرد وفقی را برای انطباق تصاویر سنجش از دور SAR پیشنهاد کردند. در این روش، از فیلتر گوسی ناهمسانگرد در فضای مقیاس SIFT و تطبیق پایداری جهت گیری متعادل به ترتیب برای حفظ لبه ها و جزئیات مهم تصویر و حذف تطبیق های نادرست استفاده می کند. در این روش لبه ها در تصویر سنجش از دور SAR حفظ می شوند و در نهایت باعث ارتقا دقت انطباق تصویر سنجش از دور SAR می شود اما در این روش اندازه گرادیان در مناطق همگن تحت شرایط بازتاب مختلف، متفاوت است.

الگوریتم SIFT، در تصاویر سنجش از دور اپتیکی، دارای دو مشکل اصلی است که عبارت از کنترل پذیری پایین آن در تعداد ویژگی ها و عدم توجه به کیفیت و توزیع ویژگی های استخراج شده می باشد. ییکی از پارامترهای موثر در کنترل تعداد ویژگی ها در الگوریتم SIFT، میزان آستانه تمایز ویژگی ها (Tc) است که به علت حساسیت بسیار بالای آن در تعداد ویژگی های نهایی استخراج شده، در تصاویر مناسب نیست. در ضمن به علت عدم توجه این الگوریتم به مسئله توزیع مکانی و توزیع مقیاس ویژگی ها در اغلب موارد، پراکندگی ویژگی های استخراج شده، نامناسب است. 

در روشی برای استخراج ویژگی های SIFT با توزیع مکانی پیشنهاد شده است که در این روش به جای استخراج اکسترمم های تصویر DOG در همسایگی 26 تایی خود، همسایگی های بزرگتری (66 تایی) پیشنهاد کردند. با وجود مزایای این همسایگی بزرگ عتر، این روش دارای معایبی نیز می باشد. یکی از معایب این است که احتمال دارد باعث حذف بعضی از ویژگی های با کیفیت ولی با ساختار کوچک تصویر شوند. همچنین افزایش پیچیدگی محاسباتی آن نیز، بیشتر از الگوریتم SIFT پایه است. در روش SIFT تکرارشونده 

 

مثال (۲) : بهبود کارایی الگوریتم سیستم ایمنی مصنوعی در مسائل بهینه‌سازی

برخی مسائل وجود دارند که به دلیل گستردگی و پیچیدگی بیش از حد فضای حالت مساله ، دستیابی به یک پاسخ بهینه در مدت زمان معقول و با استفاده از ابزارهای متعارف امکان پذیر نمی‌باشد. در این مثال الگوریتم های سبستم ایمنی به عنوان متاهیوریستیک استفاده شده است. همانند متاهیوریستیک‌های رایج الگوریتم سیستم ایمنی در گام‌های نخست ، ناحیه‌هایی از فضای حالت مساله که بهینه‌های محلی و سرارسری را در بر می گیرند را شناسایی نموده و در ادامه مسیر با همگرا شدن به بهینه‌های سراسری ، روند بهینه‌سازی متوقف می گردد. به بیان دیگر کاهش تنوع ژنتیکی در طی فرآیند تکامل باعث می‌شود تا روند جستجوی حالت مساله مختل گردد. دومین مشکلی که الگوریتم‌های سیستم ایمنی مصنوعی با آن مواجه می‌باشند ، عدم پایداری این الگوریتم‌ها در اجرا‌های مختلف می‌باشد. ماهیت اتفاقی بودن این الگوریتم ها باعث می شود تا کیفیت پاسخ‌هایی که الگوریتم در اجراهای مختلف نتیجه می‌دهد بسیار متنوع باشد.

در مثال ارائه شده جواد‌زاده و میبدی تلاش در تقویت الگوریتم‌های سیستم ایمنی مصنوعی با استفاده از استراتژی ترکیب دارند. بدین صورت که از یک هیوریستیک جستجوی محلی در آنتی‌بادی های حافظه استفاده می‌شود.

ترکیب الگوریتم سیستم ایمنی مصنوعی و جستجوی محلی

یکی از مهمترین جنبه‌های الگوریتم‌های سیستم ایمنی مصنوعی ، انتخاب و جامعه سلول‌هایی که بیشترین سطح تحریک را دارند که متناسب با میزان وابستگی آنتی‌ژنی است و همچنین از بین رفتن سلول‌هایی که تحریک نمی شوند می باشد. بر اساس این الگوریتم‌ها ، آنتی‌بادی‌ها بر اساس اعضاء جامعه با جهش و تکامی شناسگرهایشان تکامل می یابند و بهترین آنها وارد حافظه می شوند. به بیان دیگر آنتی بادی سلول های حافظه با استفاده از آنتی بادی هایی که در روند اجرای الگوریتم در برابر آنتی ژن ها ارزیابی و بهبود یافته اند ، بروزرسانی می شوند. بنابراین آنتی بادی سلول های حافظه بیشترین شایستگی را کسب می نمایند.

جهت بهبود دقت الگوریتم از روش جستجوی محلی در ناحیه آنتی بادی سلول های حافظه استفاده شده است. علت نامگذاری جستجو به جستجوی محلی ، انجام جستجو فقط در اطراف آنتی بادی سلول های حافظه در مقیاس کوچک می باشد. بنابراین با جستجوی محلی در ناحیه آنتی بادی های سلول های حافظه با مقیاس کوچک در اطراف بهترین آنتی بادی سلول های حافظه ، دقت الگوریتم افزایش یافته و شایستگی های آنتی بادی های سلول های حافظه افزایش یافته و بر سرعت همگرایی افزوده می شود.
جوادزاده و میبدی برای جستجوی محلی از جستجوی تپه نوردی و الگوریتم های ژنتیک استفاده نموده اند. در مسائلی که ابعاد فضای مسئله کوچک باشد جستجوی تپه نوردی دقت بالایی دارد و با بالا رفتن ابعاد فضای مسئله ، زمان اجراء به صورت نمایی افزایش می یابد. الگوریتم پیشنهادی به صورت زیر می باشد.

Code New Algorithm

 

در ادامه روند الگوریتم ، پس از بهبود آنتی بادی های سلول های حافظه ، علاوه بر اضافه نمودن تعداد آنتی بادی ها به صورت تصادفی به جمعیت آنتی بادی ها ، بخشی از آنتی بادی های حافظه برای افزایش سرعت همگرایی به جمعیت آنتی بادی ها افزوده می شود. برای اعمال عملگر ابرجهش از رابطه های (۷) و (۸) و برای تعیین اندازه جمعیت برای n آنتی بادی از رابطه (۹) استفاده شده است.

روابط 7 و8

 

 

 

 

در رابطه (۷) متغیر c’ تعداد آنتی بادی هایی است که تحت تاثیر عملگر ابرجهش قرار گرفته اند. و (N(0,1 عدد تصادفی تابع گوسین با میانگین صفر و انحراف معیار δ=1 می باشد.
در رابطه (۸) پارامتر β، پارامتری برای کنترل ضریب کاهش تابع نمایی و *f مقدار شایستگی است که در بازه [۰,۱] نرمال شده است.

روابط 9

 

 

 

در رابطه (۹) متغیر Nc مجموع اعضاء جمعیت تولید شده برای آنتی بادی ها، ضریب تکثیر، N تعداد آنتی بادی ها و ()round عملگری است که آرگومان ورودی خود را به نزدیکترین عدد گرد می نماید.

نتایج آزمایش ها

در این قسمت شبیه سازی راهکار پیشنهادی برای چهار تابع محک استاندارد یعنی روابط (۱۰) تا (۱۳) به ازاء کیفیت جواب بدست آمده بر اساس روش های مختلف جستجوی محلی توسط جوادزاده و میبدی مورد مطالعه قرار گرفته است.

روابط 10و11و12

 

 

 

 

 

 

روابط 13

 

جهت ارزیابی راهکارهای پیشنهادی (بجز در مورد جستجوی محلی تپه نوردی) توابع مورد آزمایش به صورت سی بُعدی و آنتی بادی ها به صورت اعداد حقیقی استفاده شده و راهکار پیشنهادی با ۱۰۰ بار تکرار برای بدست اوردن پاسخ بهینه مورد آزمون قرار گرفتند.

راهکار پیشنهادی با جستجوی محلی تپه نوردی

راهکار پیشنهادی از جستجوی تپه نوردی به عنوان جستجوی محلی استفاده می نماید و آنتی بادی های حافظه با استفاده از آن بهبود می یابند.جستجوی تپه نوردی مورد استفاده ، جستجوی تپه نوردی کامل است که در این روش مام همسایه ها در شعاع همسایگی معین بررسی و بهترین همسایه ، جایگزین حالت فعلی می گردد.

جواد زاده و میبدی در ادامه برای مطالعه روند همگرایی راهکار پیشنهادی با جستجوی محلی تپه نوردی ، بهترین ، بدترین ، میانگین و انحراف معیار ارزش تمام آنتی بادی های حافظه برای تمام توابع (روابط ۱۰ تا ۱۳) را آزمایش نموده اند. در جدول ۴ نتایج شیه سازی شده را برای راهکار پیشنهادی مشاهده می نمائید.

 

جدول 4

با توجه به این که تعداد تکرارهای مورد نیاز برای هربار اجرای جستجوی تپه نوردی از قبل قابل پیش بینی نبوده و پیچیدگی زمانی هر تکرار نیز نمایی می باشد ، زمان لازم برای اجرای الگوریتم در تکرارهای مختلف یکسان نبوده و حتی ممکن است در یک حالت خاص ، الگوریتم تقلیدی تبدیل به یک جستجوی کامل گردد و با بالا رفتن ابعاد فضای مسئله عملا این روش کارایی مناسبی نخواهد داشت.

بنابراین برای ارزیابی این راهکار پیشنهادی ، توابع مود آزمایش به صورا دو بعدی و آنتی بادی ها به صورت اعداد حقیقی کد گذاری می شوند.

راهکار پیشنهادی با جستجوی محلی ژنتیک

در این قسمت جوادزاده و میبدی از الگوریتم ژنتیکی استاندارد جهت جستجوی محلی استفاده نموده اند و آنتی بادی های حافظه را با استفاده از آن بهبود می بخشند. برای مطالعه روند همگرایی راهکار پیشنهادی با جستجوی محلی ژنتیک ، بهترین ، بدترین میانگین و انحراف معیار ارزش صآنتی باتدی های حافظه برای تمام توابع ۱۰ تا ۱۳ گزارش شده اند.

جدول ۵ نتایج شبیه سازی راهکار پیشنهادی را نشان می دهد. نتایج نشان می دهند که راهکار پیشنهادی با جستجوی محلی ژنتیک به جواب های بهینه همگرا می شوند و برای مقایسه ، نتایج الگوریتم سیستم ایمنی مصنوعی استاندارد در جدول ۶ مشاهده می شود.

 

جدول 5 و 6

در راهکار پیشنهادی از الگوریتم ژنتیکی استاندارد با مشخصات ارائه شده در جدول ۷ به منظور بهبود در آنتی بادی های حافظه استفاده شده است. همچنین در این الگوریتم از مکانیزم انتخاب چرخ رولت به منظور انتخاب والدها در عملگر پیوند استفاده شده است.

 

جدول 7

با توجه به نتایج حاصله در جدول های ۵ و ۶ جوادزاده و میبدی نتیجه گیری کرده اند که کارایی راهکار پیشنهادی نسبت به الگوریتم سیستم ایمنی مصنوعی تائید شده است.

نتیجه گیری

از مهمترین مشکلاتی که الگوریتم های سیستم ایمنی مصنوعی رایج با آن مواجه می باشند ، می توان به همگرایی کند به بهینه سراسری و همچنین عدم پایداری در اجراهای مختلف اشاره نمود. در مقاله جوادزاده و میبدی برای علبه بر این مشکلات از یک جستجوی محلی در اطراف آنتی بادی های حتافظه استفاده شده است. نتایج حاصل از شبیه سازی توسط این دو نفر نشان می دهد که این راهکار پاسخ های بهتری را در مقایسه با الگوریتم استاندارد یسیتم ایمنی مصنوعی نتیجه می دهد. اجرای مکرر شبیه سازی ها توسط این دو نفر نشان داده است که راهکار پیشنهادی از پایداری قابل قبولی برخوردار است.

 

برای دریافت مقاله به صورت pdf بر روی لینک کلیک کنید: Artificial-Immune-System-AIS

منبع


سیستم ایمنی مصنوعی به طور موفقیت آمیزی برای دامنه وسیعی از مسائل مانند تشخیص نفوذ به شبکه تا مدل های دسته بندی داده، یادگیری مفهوم، خوشه بندی داده، رباتیک، شناسایی الگو، داده کاوی، همچنین برای مقدار دهی اولیه وزن ها در شبکه عصبی و بهینه سازی توابع چند وجهی استفاده می شود.

هدف اصلی سیستم ایمنی طبیعی در بدن انسان، تمایز بین بافت خودی و عامل خارجی (غیر خودی یا آنتی ژن) است. سیستم ایمنی بدن، به مواد خارجی یا مواد بیماری زا (معروف به آنتی ژن) عکسل العمل نشان می دهد. در حین این واکنش، سیستم ایمنی برای تشخیص بهتر آنتی ژن دیده شده، تطبیق یافته و حافظه ای برای ثبت آنتی ژن های رایج ایجاد می کند. حافظه ایجاد شده باعث بهبود و سرعت بخشیدن به واکنش سیستم ایمنی تطبیق پذیر در برخوردهای آینده با همان آنتی ژن خواهد شد. شناسایی آنتی ژن ها منجر به تولید سلول های خاصی می شود که آنتی ژن را غیر فعال و یا نابود می کند. سیستم ایمنی بدن، همانند یک سیستم تشخیص الگو کار می کند، برای تشخیص الگوهای غیر خودی از الگوهای خودی.

در سیستم ایمنی طبیعی، آنتی ژن ها موادی هستند که می توانند پاسخ ایمنی را ایجاد کنند. پاسخ ایمنی واکنش بدن به آنتی ژن است، بنابراین از صدمه زدن آنتی ژن به بدن جلوگیری می کند. آنتی ژن ها می توانند باکتری، قارچ، انگل و یا ویروس باشند. یک آنتی ژن باید به عنوان یک خارجی تشخیص داده شود.

وظیفه تشخیص آنتی ژن ها بر عهده گلبول سفید با نام لنفوسیت است. دو نوع لنفوسیت وجود دارد: T-Cell و B-Cell، که هر دو در مغز استخوان تولید می شوند. B-Cell ها در تماس با آنتی ژن ها، آنتی بادی هایی تولید می کند که در مقابل آنتی ژن ها موثر است. آنتی بادی ها پروتئین های شیمیایی هستند و دارای شکل Y مانند هستند.

آنتی بادی ها دارای گیرنده های خاص برای تشخیص آنتی ژن ها هستند. زمانی که تماس بین آنتی بادی با یک B-Cell و آنتی ژن برقرار می شود، تکثیر کلونی در سطح B-Cell اتفاق می افتد و به کمک T-Cell تقویت می شود. در صورت آنکه یک آنتی بادی به جای تشخیص آنتی ژن، بافت خودی را به عنوان عامل خارجی تشخیص داد خودش را نابود می کند.

در حین تکثیر کلونی، دو نوع از سلول شکل می گیرد: سلول های پلاسما و سلول های حافظه. وظیفه سلول های حافظه تکثیر سلول های پلاسما برای واکنش سریعتر در مواجه تکراری با آنتی ژن ها و تولید آنتی بادی برای آن هاست. سلول پلاسما یک سلول B-Cell است که آنتی بادی تولید می کند.

بخش کوچکی از یک آنتی ژن اپیتپ و بخش کوچکی از آنتی بادی ها پاراتپ نامیده می شود. اپیتپ ها پاسخ ایمنی خاصی را طلب می کنند و پاراتپ ها در آنتی بادی ها می توانند به این اپیتپ با یک توان پیوند مشخص، پیوند بخورند. بعد از برقراری پیوند، بین پاراتپ یک آنتی بادی و اپیتپ یک آنتی ژن، ترکیب آنتی بادی-آنتی ژن تشکیل می شود که منجر به از کار افتادن آنتی ژن می شود.

از عملکرد سیستم ایمنی بدن در تشخیص و انهدام عوامل خارجی برای طراحی الگوریتم های متنوعی در بهینه سازی، یادگیری ماشین و شناسایی الگو بهره برداری شده است. سیستم ایمنی مصنوعی یا AIS مخفف Artificial Immune System است که اولین بار به عنوان یک الگوریتم توسط دی کاسترو و زوبن تحت نام الگوریتم کلونی ارائه شد.

ایده اصلی در سیستم ایمنی مصنوعی، برگرفته از فرآیند تکثیر سلولی پس از تشخیص عامل خارجی در سیستم ایمنی طبیعی است. این فرآیند در سیستم ایمنی مصنوعی با نام انتخاب کلونی شناخته می شود و شامل سه مرحله است. در مرحله اول، گروهی از بهترین سلول ها ( سلول هایی که آنتی بادی مربوط به آنها بیشترین تطابق را با آنتی ژن ها داشته باشد) انتخاب می شود. در اینجا عملا هر سلول معادل یه پاسخ مساله است همانند کروموزوم در یک الگوریتم ژنتیک. در مرحله دوم، سلول های انتخاب شده تحت عملیات کلون قرار گرفته و با توجه به یک پارامتر با نام نرخ تکثیر، مورد تکثیر واقع می شود. تعداد کپی هایی که از هر سلول تولید می شود بستگی به ارزش آن سلول دارد. هر چقدر برازش یک سلول بیشتر باشد، تعداد کپی های بیشتری از آن ایجاد خواهد شد. در مرحله سوم، سلول تکثیر شده تحت عملگری با نام فراجهش قرار می گیرد. این عملگر که مشابه عملگر جهش در الگوریتم ژنتیک است، با توجه به پارامتری با نام Pm که نرخ جهش است، تغییر کوچکی را به هر سلول تکثیر شده اعمال می کند. (شبیه عملگر جهش در GA). تفاوتی که عملگر فراجهش با عملگر جهش در GA دارد آن است که در فراجهش، اندازه تغییراتی که در سلول ایجاد می شود بستگی به برازش آن سلول دارد. هر چقدر یک سلول برازنده تر باشد، تغییرات کمتری به آن اعمال خواهد شد.

سیستم ایمنی مصنوعی به طور موفقیت آمیزی برای دامنه وسیعی از مسائل به کار رفته است. از مسائل تشخیص نفوذ به شبکه تا مدل های دسته بندی داده، یادگیری مفهوم، خوشه بندی داده، رباتیک، شناسایی الگو، داده کاوی، همچنین از سیستم ایمنی مصنوعی برای مقدار دهی اولیه وزن ها در شبکه عصبی و بهینه سازی توابع چند وجهی استفاده می شود.

خصوصیات مهم سیستم ایمنی مصنوعی به شرح زیر است:

1- استفاده از نمایش رشته بیتی

2- طول ثابت و یکسان برای هر سلول

3- به کارگیری یک جمعیت یا تعداد اعضا ثابت، البته در سیستم ایمنی مصنوعی می توان با تعریف طول عمر برای سلول های جمعیت، از یک جمعیت با تعداد اعضای متغیر نیز بهره برد.

4- در شبه کد، Selectionsize نشان گر تعداد سلول هایی است که برای انجام عملیات تکثیر، از جمعیت دور جاری در حلقه while انتخاب می شوند. به خاطر وجود همین مرحله در سیستم ایمنی مصنوعی، ماهیتی مشابه انتخاب داروینی وجود دارد.

5- برای تعیین عدد تکثیر سلولی برای یک سلول ایمنی انتخاب شده در تابع Clone از رابطه (Nc=Round(β,N,R استفاده می شود. در این رابطه Nc بیانگر تعداد کپی سلول β مبین نرخ تکثیرClonerate، همچنین N نشان گر تعداد سلول های جمعیت (Populationsize) و R بیانگر برازش مبتنی بر رتبه سلول مورد تکثیر است.

6- استفاده از جهش معکوش سازی بیت در عملگر فراجهش (عملگر جهش در AIS عملگر اصلی است).

7- برخلاف الگوریتم های تکاملی که معمولا احتمال جهش مقداری ثابت است، احتمال فراجهش Phm در سیستم ایمنی مصنوعی مقداری متغیر داشته و اندازه آن بستگی به برازش سلول ایمنی (عضو جمعیت) دارد. برای محاسبه احتمال فراجهش داریم: (Phm=exp(-Pm.f، در این رابطه Pm نرخ جهش بوده و f برازش سلول ایمنی مورد جهش است.

 

Code

 

منبع

 

 

سیستم ایمنی مصنوعی (AIS) قسمت 1
سیستم ایمنی مصنوعی (AIS) قسمت 2
سیستم ایمنی مصنوعی (AIS) قسمت 3
سیستم ایمنی مصنوعی (AIS) قسمت 4
سیستم ایمنی مصنوعی (AIS) قسمت 5
سیستم ایمنی مصنوعی (AIS) قسمت 6

دو مثال از کاربردهای سیستم ایمنی مصنوعی

الگوريتم هاي سيستم ايمني مصنوعي در گروه الگوريتم هاي بهينه سازي اتفاقي قرار دارند كه در آنها از قوانين موجود در سيستم ايمني بيولوژيکي به منظور بهينه سازي استفاده مي شود. اين الگوريتم ها در مسائل بهينه سازي که بيش از یک بهينه مورد نظر است نسبت به الگوريتم هاي ژنتيک کارايي بيشتري از خود نشان مي دهند. به دليل اينکه هيچ اطلاع قبلي از پاسخ بهينه سراسري وجود ندارد، الگوريتم هاي سيستم ايمني مصنوعي در تعيين مناسب نرخ ابر جهش دچار مشکل هستند که از اشکالات عمده اين الگوريتم ها مي توان به همگرايي کٌند به بهينه سراسري و عدم پايداري در اجراهاي مختلف اشاره نمود.

در اولین مثال ارائه شده، هدف از ارائه مدل، محلي کردن ارتباط بين آنتي بادي ها و استفاده از دانش خبره به منظور تعيين کاراي پارامترهاي اساسي اين الگوريتم بر اساس ارزيابي محلي مي باشد که علاوه بر سرعت بخشيدن به محاسبات مي تواند باعث بهبود کيفيت نتايج بدست آمده گردد. در اين مدل با کمک توابع تعلق فازی و در نظر گرفتن خاصيت محلي براي آنتي بادي ها با استفاده از اتوماتاي سلولي، نرخ ابر جهش به صورت کارا تعیین می شود. براي اعتبار سنجي راهکار پيشنهادي شبيه-سازي هايي توسط جوادزاده و میبدی صورت گرفته که نتايج آن ها نشان مي دهد راه کار پيشنهادي پاسخ هاي به مراتب بهتري نسبت به الگوريتم استاندارد سيستم ايمني مصنوعي نتيجه مي دهد.

مثال (۱) : مدل تركيبي مبتني بر سيستم ايمني مصنوعي و اتوماتاي سلولي فازی (FCA-AIS)

الگوريتم هاي سيستم ايمني مصنوعي در گروه الگوريتم هاي بهينه سازي اتفاقي قرار دارند كه در آنها از قوانين موجود در سيستم ايمني بيولوژيکي بمنظور بهينه سازي استفاده مي شود. رفتار الگوريتم سيستم ايمني مصنوعي وابستگي شديدي به پارامترهايي نظیر نحوه تعريف و احتمال عملگرهاي ابَرجهش، اندازه جامعه ايجاد شده براي هر آنتي بادي، اندازه جمعيت ها و تعداد دوره هاي توليد شده دارد.

تعريف نامناسب اين پارامترها باعث به دام افتادن الگوريتم در نقاط بهينه محلي مي شود به منظور رفع اين مشکل با استفاده از مفاهيم اتوماتاي سلولي فازي، توابع تعلق و همسايگي هاي مطرح در آن، عملگرهاي سيستم ايمني مصنوعي در مثال ارائه شده بومي سازي شده اند. همچنين بکارگيري مفاهيم اتوماتاي سلولي فازي تلاشي در جهت پياده سازي محاسبات موازي در الگوريتم هاي سيستم ايمني مصنوعي بوجود آورده است به دليل اينکه هيچ اطلاع قبلي از پاسخ بهينه سراسري وجود ندارد، الگوريتم هاي سيستم ايمني مصنوعي در تعيين مناسب نرخ ابرجهش دچار مشکل هستند.

سال ۲۰۰۳ تیمیس در مقاله ” A Comment on opt-AiNET: An Immune Network Algorithm for Optimisation” براي حل اين مشكل روشي ارائه نموده که با محاسبه ميزان وابستگي تناسبي، که با نرمال کردن مقادير وابستگي هر آنتي بادي در هر مرحله زماني بدست مي آيد تا اندازه اي اين مشکل حل شده است. همچنين جوادزاده در سال ۲۰۰۸ میلادی در مقاله “Hybrid Models based on Artificial Immune systems and Cellular Automata and Their Applications to Optimization Problems” مدل ترکيبيCA-AIS را به منظور تعيين پارامترهاي اساسي براساس ارزيابي وابستگي محلي توسط مفاهیم اتوماتای سلولی ارائه نموده است. اما هدف از ارائه مدل در مثال ارائه شده ، حل اين مشكل با استفاده از روش ارزيابي وابستگي محلي و همچنين دانش خبره مي باشد.

اتوماتای سلولی

اتوماتاي سلولي به عنوان مدلي براي بررسي رفتار سيستم‌هاي پيچيده پيشنهاد شده است. اتوماتاي سلولي در حقيقت سيستم‌هاي ديناميکي گسسته‌اي هستند که رفتارشان کاملاً بر اساس ارتباط محلي استوار است. در اتوماتاي سلولي، فضا به صورت يک شبکه تعريف مي‌گردد که به هر خانه آن يک سلول گفته مي‌شود. زمان بصورت گسسته پيش مي‌رود و قوانين آن به صورت سرتاسري است که از طريق آن در هر مرحله هر سلول، وضعيت جديد خود را با در نظر گرفتن همسايه‌هاي مجاور خود بدست مي‌آورد.

قوانين اتوماتاي سلولي، نحوه تأثير پذيرفتن سلول از سلول هاي همسايه خود را مشخص مي‌کند. يک سلول، همسايه سلول ديگر گفته مي شود هرگاه بتواند آن را در يک مرحله و براساس قانون حاکم تحت تأثير قرار دهد.

اتوماتاي سلولي فازی

مشکل عمده در مدلسازی سيستم هاي پيچيده توسط اتوماتاي سلولي، اين است که نمي‏توان رابطه دقيقي بين عمل و عکس‏ العمل رفتارهاي طبيعي تعريف کرد. تعريف دقيق رفتار سيستم مستلزم دانش دقيق از حالت هاي سيستم و تغيير حالت سيستم تحت ورودي هاي مختلف است. براي مقابله با اين مشکل راهبرد منطق فازي را مورد استفاده قرار مي ‏دهند، كه با استفاده از آن مي‏توان کميت هاي غير دقيق و مبهمي که در تصميم‏گيري درباره قوانين انتقال و تغيير حالت هاي سيستم موثرند را تعريف نمود.

با توجه به توانايي منطق فازي در پردازش داده هاي غير قطعي، ساختاري از CA معرفي شده است که در آن به جاي استفاده از مقادير قطعي در سلول ها و توابع انتقال شان از مقادير غير قطعي و فازي استفاده مي شود. تعاريف متفاوتي از اتوماتاي سلولي فازي ارائه شده است که هر يک باعث ايجاد ويژگيها و رفتار خاصي در اتوماتاي سلولي فازي مي شود.

مدل ترکيبي مبتنی بر سيستم ايمني مصنوعي و اتوماتاي سلولي فازي(FCA-AIS)

در روش پيشنهادي از اتوماتاي سلولي فازي به منظور تعيين مقادير مناسب نرخ ابر جهش براي آنتي بادي ها استفاده مي شود. قوانين فازي در هر سلول اتوماتاي سلولي فازي عهده دار تعيين مقدار مناسب نرخ ابر جهش براي آنتي بادي ها متناظر با آن سلول مي باشد. در واقع اتوماتاي سلولي فازي تعيين مي کند که براي کدام آنتي بادي ها نرخ ابرجهش بايستي پايين و براي کدام آنتي بادي ها نرخ ابرجهش بايستي بالا در نظر گرفته شود. براي اين منظور در موقعيت هايي كه ميزان وابستگي آنتي بادي ها نسبت به وابستگي بهترين آنتي بادي در همسايگي از ارزش بالايي برخوردار نيست بايد از مقادير بالا براي نرخ ابرجهش استفاده نمود و در مقابل در موقعيت هايي كه ميزان وابستگي آنتي بادي ها نسبت به وابستگي بهترين آنتي بادي در همسايگي از ارزش بالايي برخوردار است بايد از مقادير پايين براي نرخ ابر جهش آن آنتي بادي استفاده نمود.

هدف از ارائه اين مدل استفاده از مفاهيم اتوماتاي سلولي فازی است تا نرخ ابر جهش بطور مناسب و کارا انتخاب شود. همچنين با استفاده از مفاهيم توزيعي و توازي اتوماتاي سلولي، مي توان محاسبات را در اين مدل پيشنهادي به صورت موازي انجام داد. براي تعيين نرخ ابر جهش از يک اتوماتاي سلولي دو بعدي استفاده مي شود. هر آنتي بادي ها در سيستم ايمني مصنوعي به يکي از سلولهاي اتوماتاي سلولي فازي نگاشت مي شود (تصویر زیر).در اين مدل از همسايگي ون-نيومن با شعاع همسايگي يک استفاده شده است.

 

همسایگی ون نیومن

 

در تصویری که در زیر آورده شده نمايي از يک سلول را در مدل ترکيبي پيشنهادي به تصوير کشيده شده است. به دليل اينکه هيچ اطلاع قبلي از پاسخ بهينه سراسري وجود ندارد، الگوريتم هاي سيستم ايمني مصنوعي در تعيين مناسب نرخ ابر جهش دچار مشکل هستند. ايده اصلي اين راه کار اينست که از ارزيابي وابستگي محلي بصورت فازي استفاده شود. به منظور استفاده از دانش خبره، تئوري مجموعه هاي فازي و منطق فازي ابزار قدرتمندي براي ارائه و پردازش دانش بشري به شکل قوانين اگر-آنگاه فازي مي باشند.

نمایی از یک سلول در مدل ترکیبی FCA-AIS

براي تعيين نرخ ابر جهش با استفاده از FCA نياز به مشخص نمودن کيفيت وابستگي آنتي بادي ها، وجود دارد. براي اين منظور، از ميزان تعلق وابستگي آنتي بادي به مجموعه هاي فازي Near و Far استفاده مي شود که در نمودار ۱ نشان داده شده است. مرکز اين مجموعه ها بر ميزان وابستگي بهترين آنتي بادي در همسايگي آن آنتي بادي  منطبق شده است و ميزان ابر جهش بر اساس رابطه های (۱) و (۲) تعيين مي شود.

رابطه (۱) : If Affinity is Near then Mutatin is Low
رابطه (۲) : If Affinity is Far then Mutatin is High

 

توابع عضویت Near و Far

نمودار ۱ – توابع عضويت Near و Far

در توابع عضويت مجموعه هاي فازي Near و Far (نمودار ۱) ، Ab* بهترين آنتي بادي در همسايگي آنتي بادي مورد پردازش مي باشد، همچنين مقدار α برابر با قدرمطلق تفاضل بهترين و بدترين آنتي بادي  در همسايگي آنتي بادي  مورد نظر است. اين امر باعث مي شود دامنه توابع عضويت مجموعه هاي فازيNear و Far در روند تکاملي راه کار پيشنهادي به صورت پويا خود را با شرايط محيط وفق دهند. توابع عضويت Low و High در نمودار ۲ آمده است و نقاط a، b، c و d به ترتيب برابر مقادیر ۰، ۱ ، ۲ و ۳ انتخاب شده اند.

 

نمودار ۲ – توابع عضويت Low و Highنمودار ۲ – توابع عضويت Low و High

 

نتایج آزمایش ها

در اين بخش نتايج شبيه سازي سيستم ايمني مصنوعي مبتني بر اتوماتاي سلولي فازی (FCA-AIS)براي چهار تابع محك استاندارد (روابط ۳ تا ۶) که دارای بهینه سراسری در صفر است به ازاء كيفيت جواب بدست آمده در مقابل مدل ترکیبی سيستم ايمني مصنوعي ، اتوماتای سلولی و الگوريتم سيستم ايمني مصنوعي استاندارد مورد مطالعه قرار گرفته است.

براي ارزيابي راهکار پيشنهادي توابع مورد آزمايش به صورت سي بعدي و آنتي-بادي ها بصورت اعداد حقيقي کدگذاري شده اند و راهکار پيشنهادي با ۱۰۰ تکرار براي بدست آوردن پاسخ بهينه مورد آزمون قرار گرفته شده است. با توجه به ماهيت آزمون‌هاي آماري، پس از ۳۰ بار اجراي مكرر به ازاي هر تابع، از شاخص‌هاي بهترين پاسخ و ميانگين پاسخ‌ها براي مقايسه كارايي الگوريتم و از شاخص واريانس (كه يكي از شاخص‌هاي پراكندگي است) براي مقايسه پايداري استفاده شده است. نتايج شبيه‌سازي‌هاي انجام شده با استفاده از راه کار پيشنهادي، مدل ترکیبی سيستم ايمني مصنوعي و اتوماتای سلولی و الگوريتم سيستم ايمني مصنوعي به ترتيب در جدول های ۱ ، ۲ و ۳ آورده شده است.

 

روابط

 

همان گونه که در جدول های ۱ ، ۲ و ۳ در ستون بهترین نتیجه که حاصل بهترین نتیجه در ۱۰۰ اجرای مختلف و ستون میانگین که حاصل میانگین ۱۰۰ اجرای مختلف می باشد، بیانگر این است که، راهکار پیشنهادی در مقایسه با مدل ترکیبی سيستم ايمني مصنوعي، اتوماتای سلولی و الگوریتم استاندارد سیستم ایمنی مصنوعی در نقاط بهینه دارای دقت بسیار بالاتری می باشد. همچنین با توجه به ستون واریانس، که حاصل واریانس نتایج ۱۰۰ مرتبه اجرای مختلف می باشد بیانگر پايداري این مدل در اجراهاي مختلف و گریز از بهینه های محلی می باشد، که می تواند بهبودی بر کارایی سیستم ایمنی مصنوعی تلقی گردد. بر این اساس می توان کارايي راه کار پيشنهادي نسبت به مدل ترکیبی سيستم ايمني مصنوعي ، اتوماتای سلولی و الگوريتم استاندارد سيستم ايمني مصنوعي را تاييد کرد.

تعداد سلول ها، پارامتري مهم است كه بر كارايي مدل FCA-AIS تاثير مستقيم دارد .نمودار ۳ تاثير تعداد سلول ها را بر سرعت همگرايي مدل پيشنهادي در بهینه یابی تابع نشان داده است. هر نقطه نشان داده شده در اين نمودارها ارزش بهترين جواب بدست آمده در هر تكرار الگوريتم را نشان مي دهد. نتايج شبيه سازي ها نشان داد با افزايش تعداد سلول ها، روند همگرايي به بهينه سراسري شتاب بخشيده مي شود. اما تا حدي افزايش تعداد سلول ها مي تواند بر سرعت همگرايي بيافزايد و با افزايش تعداد سلول ها از تعداد ۳۶ سلول، تاثير چشمگيري در سرعت رسيدن به بهينه سراسري مشاهده نمي شود و با توجه به حجم محاسبات کمتر، مدل با ۳۶ سلول  پیشنهاد می شود.

به منظور مطالعه تاثير شعاع همسايگي بر كارايي مدل پيشنهادي چندين شبيه سازي با شعاع همسایگی ۱ تا ۴ انجام شده كه نتايج آن در بهینه یابی تابع در نمودار ۴ ارائه شده است. نتايج شبيه سازي ها نشان مي-دهد كه مدل پيشنهادي FCA-AIS با شعاع همسايگي ۱ جواب هايي با كيفيتي قابل قبول توليد مي كند که در مقايسه با ديگر شعاع هاي همسايگي به دليل حجم محاسبات کمتر، داراي امتياز است.

 

جدول 1       جدول 2

 

جدول 3

 

نمودار 3            نمودار 4

 

نتيجه‌گيري

در اين مثال ارائه شده ، مدل ترکيبي FCA-AIS به منظور محلي کردن ارتباط بين آنتي بادي ها و استفاده از دانش خبره در الگوريتم هاي سيستم ايمني مصنوعي به منظور تعيين کاراي پارامترهاي اساسي اين الگوريتم ارائه شده است. در اين الگوريتم آنتي بادي ها بروي يک شبکه سلولي در کنار يکديگر قرار مي گيرند. در هر زمان تمام سلول ها به صورت همزمان فعال مي شوند و بر اساس مقادير آنتي بادي خود و بهترين همسايه با استفاده از مجموعه ها و قوانين فازي نرخ ابرجهش را تعيين مي نمايند.

نتايج بدست آمده نشان مي دهد مدل پيشنهادي علاوه بر سرعت بخشيدن به محاسبات داراي دقت بيشتري نسبت به الگوريتم استاندارد سيستم ايمني مصنوعي مي باشد. اجراي مكرر شبيه‌سازي‌ها نيز نشان داد كه اين الگوريتم از پايداري بيشتري برخوردار مي‌باشد. همچنين به منظور مطالعه تاثير پارامترها بر روند همگرايي، پارامترهايي همچون تعداد سلول هاي شبکه و شعاع همسايگي مورد بررسي قرار گرفت که نتايج حاکي از آن است که با افزايش تعداد سلول ها، مدل ترکيبي پيشنهادي با سرعت بالاتري به بهينه سراسري نزديک مي شد اين در حالي است که در يک شبکه سلولي افزايش شعاع همسايگي تاثير چشمگيري بر سرعت همگرايي نداشته و اتوماتاي سلولي با شعاع همسايگي يک به دليل حجم محاسبات کمتر از مقبوليت بيشتري برخوردار است.

نحوه عملکرد الگوریتم های ایمنی مصنوعی

الگوریتم های مطرح شده در سیستم های ایمنی مصنوعی را می توان به سه دسته تقسیم بندی نمود. دسته اول الگوریتم هایی که بر مبنای انتخاب جامعه سلول های B ایجاد شده اند. دسته دوم الگوریتم هایی که بر مبنای انتخاب معکوس سلول های T ایجاد شده اند. دسته سوم الگوریتم هایی که بر مبنای تئوری شبکه ایمنی بوجود آمده اند.

الگوریتم انتخاب جامعه (Clonal Selection)

این الگوریتم بر مبنای انتخاب جامعه سلول های B ایجاد شده است.بخش های اصلی این الگوریتم شامل شناسایی آنتی ژن، تکثیر و جهش سلول های B (آنتی بادی ها) و ایجاد سلول های حافظه است. در این الگوریتم اکثر سلول ها برای تکثیر انتخاب می شوند اما از همه سلول ها به یک اندازه تکثیر نمی شوند؛ بلکه سلول هایی که میل ترکیبی بیشتری دارند ، بیشتر تکثیر می شوند.

از طرف دیگر سلول هایی که میل ترکیبی کمتری داشته اند بیشتر تغییر می یابند. به بیان دیگر تکثیر نسبت مستقیمی با میل ترکیبی و جهش نسبت عکس با میل ترکیبی دارد. بدین ترتیب میل ترکیبی سلول ها به مرور زمان افزایش یافته و تنوع نیز حفظ می شود.

مراحل الگوریتم انتخاب جامعه

مراحل الگوریتم انتخاب جامعه عبارتند از :

 

 

Code Clonal Selection

 

مراحل الگوریتم انتخاب جامعه

 

الگوریتم انتخاب معکوس (Negative Selection)

این الگوریتم بر مبنای سلول های T ایجاد شده است.سلول های T می توانند سلول های خودی و غیر خودی را از یکدیگر تشخیص دهند.الگوریتم انتخاب معکوس دو مرحله دارد. مرحله اول که مرحله یادگیری است مشابه کار تیموس را انجام می دهد. یعنی سلول هایی که سلول های خودی را شناسایی می کنند را حذف می کند. مرحله دوم، مرحله نظارت یا اجراء است. در این مرحله الگوها (آنتی ژن ها) با سلول های T باقیمانده از مرحله اول مقایسه شده و در صورت شناسایی حذف می شوند. این الگوریتم در شناسایی الگو و امنیت نظارتی کاربرد دارد.

مراحل الگوریتم انتخاب معکوس

فرض می کنیم S مجموعه الگوهای خودی باشد که باید محافظت شده و مجموعه A نیز محافظ ها می باشند.

 

با توجه به مراحل فوق این الگوریتم دارای قابلیت یادگیری است. پس از یادگیری از مجموعه A در مرحله نظارت یا اجراء استفاده می شود.در این مرحله هر الگوی ورودی با الگوهای جدیددر مجموعه A مقایسه می شود و در صورتی که میل ترکیبی آنها از یک حد آستانه ای بیشتر شود ، الگوی ورودی به عنوان یک الگوی غیرخودی حذف می شود.

الگوریتم شبکه ایمنی (Immune Network)

الگوریتم انتخاب جامعه دارای چند مشکل است. اول اینکه آنتی بادی های حاصل از این الگوریتم نسبت به آخرین داده های ورودی یعنی آنتی ژن ها تنظیم می شوند. دوم اینکه آنتی بادی ها تمایل دارند که در نزدیکی یکدیگر تجمع کنند.به بیان دیگر چندین آنتی بادی مقداری نزدیک به هم بدست می آورند. الگوریتم شبکه ایمنی مصنوعی این دو نقص الگوریتم انتخاب جامعه را برطرف می نماید.

در یک شبکه ایمنی مصنوعی ، برای آنتی بادی بجز میل ترکیبی با آنتی ژن ، معیارهای ارزیابی دیگری نیز وجود دارد.معیار ارزیابی اصلی در شبکه ایمنی مصنوعی میزان تحریک شدن آنتی بادی است.میزان تحریک آنتی بادی بر مبنای میل ترکیبی آنتی بادی با آنتی بادی های دیگر و میل ترکیبی سایر آنتی بادی ها با آنتی بادی مورد نظر محاسبه می شود.در صورتیکه یک آنتی بادی ، آنتی بادی دیگر یا آنتی ژن را شناسایی کند ، تحریک می شود اما از طرف دیگر شناسایی شدن یک آنتی بادی توسط آنتی بادی دیگر تاثیر بازدارندگی بر روی آن دارد. میزان تحریک یک آنتی بادی بطور کلی از رابطه زیر بدست می آید:

S = Nt – ct + Ag

Nt : میزان تحریک شدن آنتی بادی توسط شبکه است.
ct : میزان بازدارندگی شبکه ای آنتی بادی می باشد.
A : میزان تحریک آنتی بادی توسط آنتی ژن است.

به دلیل هزینه محاسباتی زیاد رابطه فوق ، الگوریتم های مختلفی برای شبکه ایمنی مصنوعی ارائه شده که از نسخه ساده شده رابطه فوق استفاده می نمایند.

مراحل الگوریتم شبکه ایمنی مصنوعی

الگوریتم شبکه ایمنی مصنوعی را می توان بطور کلی به صورت زیر تعریف کرد:

Code Immune Network

مراحل الگوریتم شبکه ایمنی مصنوعی

الگوریتم aiNET

الگوریتم های متفاوتی برای شبکه ایمنی مصنوعی مطرح شده است که هر یک از آنها بخش های مختلف را به روش خود تعریف کرده اند. یکی از الگوریتم های معروف؛ الگوریتم aiNET می باشد. طبق تعریف aiNET گرافی وزن دار است که ممکن است کاملا همبند نباشد. گره های این گراف را آنتی بادی ها تشکیل می دهند و وزن لبه ها نمایانگر استحکام ارتباط میان دو گره می باشد. مراحل الگوریتم aiNET عبارتند از :

مراحل الگوریتم aiNETمراحل الگوریتم aiNET

مراحل ۱،۲ تا ۸،۲ در الگوریتم فوق انتخاب جامعه می باشد. در مرحله ۴،۲ جهش از رابطه   فرمول جهش   بدست می آید که در آن c’ ماتریس آنتی ژن، c جامعه آنتی بادی ها و ضریب یادگیری یا نرخ جهش است. نرخ جهش در این الگوریتم از حاصل ضرب یک عدد ثابت و یک عدد تصادفی با توزیع یکنواخت در بازه صفرو یک در فاصله آنتی بادی و آنتی ژن بدست می آید.

در الگوریتم فوق، جامعه سازی متناسب با میل ترکیبی باعث می شود که عمل استخراج در نزدیکی پاسخ به خوبی انجام شود زیرا هرچه آنتی بادی به آنتی ژن نزدیک تر باشد، نمونه های مشابه بیشتری تولید می کند و در نتیجه عمل استخراج بهتری انجام می شود.

جهش نیز با توجه به رابطه ای که بیان شد، منتاسب با عکس میل ترکیبی است. یعنی هرچه میل ترکیبی بیشتر باشد (فاصله کمتر)، جهش ها کوچکتر می شود و عمل استخراج صورت می پذیرد و هرچه میل ترکیبی کمتر باشد (فاصله بیشتر) در نتیجه جهش های برزگتری انجام می شود. بدین ترتیب آنتی بادی هایی که از جواب دور هستند عمل اکتشاف و آنتی بادی هایی که نزدیک جواب هستند عمل استخراج را انجام خواهند داد.

مراحل ۹،۲ و ۴ به ترتیب اعمال بازدارندگی جامعه و شبکه را انجام خواهند داد. در مرحله ۹،۲ الگوریتم عمل بازدارندگی روی مجموعه اعضاء جامعه ایجاد شده برای هر آنتی زن جاری انجام می گیرد و در مرحله ۴ این عمل بر روی تمامی آنتی بادی های شبکه انجام می شود. این دو مرحله باعث می شوند آنتی بادی هایی که آنتی ژن های مشابهی را شناسایی می کنند، حذف شوند.

پارامتر حد آستانه، انعطاف پذیری شبکه، دقت خوشه بندی و میزان اختصاص بودن هر یک از آنتی بادی ها را تعیین می کند. هرچه مقدار کوچکتر باشد، آنتی بادی های شبکه می توانند به هم نزدیکتر شوند و در نتیجه دقت خوشه بندی شبکه و میزان اختصاص بودن بیشتر می شود. از طرف دیگر هرچه اتدازه بزرگتر شود، هر آنتی بادی محدوده بزرگتری را شناسایی می کند و در نتیجه شبکه از نظر حاصل از نظر تعداد آنتی بادی کوچک تر می شود و دقت خوشه بندی آن کمتر می شود.

پس از مرحله ۵ الگوریتم، خروجی شبکه به صورت مجموعه ای از آنتی بادی ها (گره های گراف) و میل ترکیبی آنها (لبه های گراف) بدست می آید که یک گراف کامل است. به منظور انجام عمل خوشه بندی، باید تعدادی از یال های گراف حذف شوند تا گراف خوشه های مختلف گراف از یکدیگر جدا شوند. برای این منظور می توان از مقدار آستانه استفاده کرد اما این روش کارایی ندارد.

در سال ۲۰۰۰ میلادی کاسترو در همایش شبکه های عصبی مصنوعی در ریودژانیروی برزیل، روش دیگری ارائه نمود. در روش کاسترو ابتدا درخت پوشای مینیمم گراف محاسبه شده و سپس یال هایی که مقدار آنها از یال های هم جوارشان به صورت مشخصی بیشتر است حذف می شوند. گره های باقیمانده به یک کلاس تعلق دارند.

 

Code aiNET Algorithm

 

معرفی انواع کاربرد سیستم های ایمنی مصنوعی

به طور کلی، سیستم‌های ایمنی مصنوعی جزء الگوریتم‌های الهام گرفته شده از بیولوژی هستند. این نوع الگوریتم‌ها، الگوریتم‍ هایی کامپیوتری هستند که اصول و ویژگی‌های آنها نتیجه بررسی در خواص وفقی و مقاومت نمونه‌ها بیولوژیکی است. سیستم ایمنی مصنوعی نوعی الگو برای یادگیری ماشین است. یادگیری ماشین، توانایی کامپیوتر برای انجام یک کار با یادگیری داده‌ها یا از روی تجربه است. تعریف کاسترو از سیستم ایمنی عبارتست از :

“سيستم هاي وفقي كه با الهام از ايمونولوژي نظري و توابع، اصول و مدل هاي ايمني مشاهده شده به وجود آمده‌اند و برای حل مسائل مورد استفاده قرار می‌گیرند.”

كاسترو و تيميس سه ویژگی زیر را برای الگوريتم ايمني مصنوعي معرفی نموده اند:

۱٫ در هر الگوريتم ايمني مصنوعي، حداقل بايد يك جزء ايمني مانند لنفوسيت ها وجود داشته باشد.
۲٫ در هر الگوريتم ايمني مصنوعي بايد ايده اي برگرفته از بيولوژي نظري يا تجربي استفاده شود.
۳٫ الگوريتم ايمني مصنوعي طراحي شده بايد به حل مسئله اي كمك كند.

بر اساس سه ویژگی فوق، كاسترو و تيميس، اولين الگوريتم هاي ايمني مصنوعي را در سال ۱۹۸۶ طراحي كردند. در همان سال فارمر مدلی برای تئوری شبکه ایمنی ارائه کرد و بر اساس این مدل اعلام کرد که “سیستم ایمنی قادر به یادگیری، به خاطر سپردن و تشخیص الگوست.” بعد از نظر فارمر، توجه به سیستم ایمنی مصنوعی به عنوان یک مکانیزم یادگیری ماشین شروع شد. پس از آن به تدریج سیستم ایمنی مصنوعی ، در زمینه‌های مختلف وفق پذیر و جذاب بودن خود را نشان داد.

سیستم ایمنی علاوه بر توانایی تشخیص الگو، صفات دیگری از قبیل یادگیری، حافظه، خود سازماندهی و از منظر مهندسی، خصوصیات دیگری مانند تشخیص بی‌قاعدگی، تحمل خطا، توزیع‌پذیری و مقاومت بالا دارا می باشد. از زمان آغاز بحث سیستم ایمنی مصنوعی ، این سیستم برای اهداف متنوعی به کار گرفته شده است. این کاربردها را می توان تحت ۹ عنوان کاربردی دسته‌بندی نمود. این عناوین کاربردی عبارتند از :

۱٫ تشخیص عیب (Fault Detection)
۲٫ تشخیص ناهنجاری (Anomaly Detection)
۳٫ تشخیص نفوذ (Intrusion Detection)
۴٫ امنیت اطلاعات (Information Security)
۵٫ مسائل بهینه سازی (Optimization Problems)
۶٫ دسته بندی الگوها (Patterns Classification)
۷٫ زمانبندی (Scheduling)
۸٫ خوشه بندی (Clustering)
۹٫ سیستم های یادگیرنده (Learning Systems)

در ادامه به تشریح دو مثال از کاربردهای سیستم ایمنی مصنوعی می پردازیم.

سیستم ایمنی مصنوعی (AIS) قسمت 1
سیستم ایمنی مصنوعی (AIS) قسمت 2
سیستم ایمنی مصنوعی (AIS) قسمت 3
سیستم ایمنی مصنوعی (AIS) قسمت 4
سیستم ایمنی مصنوعی (AIS) قسمت 5
سیستم ایمنی مصنوعی (AIS) قسمت 6

فرآیند فعال شدن سیستم ایمنی بدن انسان

در بدن انسان برای تولید سلول های B و T از الگوریتم انتخاب منفی استفاده می شود. این سلول ها در مغز استخوان و تیموس به صورت تصادفی ساخته می شوند. در این دو محیط فقط سلول های خودی دیده می شود. این سلول ها اگر با یک سلول خودی منطبق شدند از بین می روند و در غیر این صورت وارد بدن می شوند. این سلول ها دارای ویژگی خود تحمل پذیری کامل می باشند. آین ویژگی بدین معنا است که سلول B یا T تنها با آنتی ژن سلول های غیرخودی منطبق می شوند.سلول های B دارای ویژگی خود تحمل پذیری کامل نمی باشند زیرا نمونه همه سلول های بدن در مغز استخوان وجود ندارد ولی سلول های T به دلیل تکامل و بالغ شدن در تیموس دارای این ویژگی می باشند. اگر آنتی بادی یک سلول B با آنتی ژن یک سلول غیرخودی منطبق شود یک سیگنال اولیه ایجاد می شود.بنابراین اگر یک سلول B با یک سلول غیرخودی مواجه شود آن را می بلعد.اگر گیرنده های TCR موجود بر روی یک سلول T با الگوهای یک سلول B بتواند منطبق شود و در صورتی که سلول T قبلا فعال شده باشد آنگاه سلول T سیگنال دوم یا سیگنال کمک را منتشر می کند. این سیگنال دوم نشان می دهد که یک سلول غیرخودی تشخیص داده شده است و سپس الگوریتم انتخاب با تکثیر آغاز می شود.

 

الگوریتم انتخاب با تکثیر

الگوریتم انتخاب با تکثیر

 

در الگوریتم انتخاب با تکثیر ، بدن شروع به ایجاد سلول های B جدید از روی سلول های B که با آنتی ژن سلول بیگانه جفت شده است ، می کند.سلول های تازه ایجاد شده با سلول قبلی کمی تفاوت دارند و بهتر با آنتی ژن مورد نظر جفت می شوند.تعدادی از این سلول ها به سلول های حافظه تبدیل می شوند و مدت زمان بیشتری در بدن زنده می مانند و می توانند مرحله تشخیص را در حمله های بعدی تسریع نمایند.معمولا برای آغاز شدن الگوریتم انتخاب با تکثیر به هر دو سیگنال اول و دوم نیاز است. البته الگوریتم انتخاب با تکثیر در یک حالت می تواند بدون وجود سیگنال دوم شروع شود. این حالت هنگامی رخ می دهد که میزان تطبیق سلول B و سلول غیرخودی از حد آستانه بیشتر باشد. این مورد در صورتی اتفاق می افتد که جفت شدن با یک سلول حافظه صورت پذیرد.

سلول T در صورتی فعال می شود که یک سیگنال تائید کننده از یک سلول عرضه کننده آنتی ژن دریافت نماید.این سیگنال تائید، سیگنال هم تحریک نامیده می شود. سلول عرضه کننده آنتی ژن در صورتی این سیگنال را می دهد که از یک سلول خودی یا یک سلول امنیتی سیگنال خطر را دریافت نماید. سلول خودی در شرایطی که به خاطر وجود پاتوژن یا سلول غیرخودی بیماری زا احساس خطر نماید این سیگنال را ارسال می کند.

اصلی ترین هدف سیستم ایمنی طبیعی ، تمایز میان خودی و غیر خودی است. با توجه به عملکردها و واکنش های خاص سیستم ایمنی در برخی موارد ، امکان توضیح این واکنش ها با مدل تمایز میان خودی و غیرخودی وجود ندارد. برای توضیح این واکنش ها تئوری خطر مطرح گردید. مبنای تئوری خطر سیگنال های بین سلولی است. سلول T هنگامی فعال می شود که یک سیگنال تائید کننده از سلولی از نوع سلول عرضه کننده آنتی ژن دریافت کند.

سلول عرضه کننده آنتی ژن در صورتی این سیگنال را می دهد که از یک سلول خودی یا یک سلول امنیتی سیگنال خطر دریافت نماید. سلول خودی در شرایطی مانند وجود سلول غیرخودی بیماری زا ، سیگنال خطر را ارسال می نماید. سیگنال خطر هر نوع نشانه ای از مرگ غیر طبیعی سلول های خودی است که به صورت محلی در اطراف سلول مُرده ایجاد می شود.عواملی که توسط سلول های عرضه کننده آنتی ژن به عنوان سیگنال خطر قلمداد می شوند همگی مواد و ترکیبات داخل سلول ها هستند که به دلیل مرگ غیر طبیعی و با پاره شدن غشای سلول بدون حضور سلول بیگانه خوار در محیط اطراف سلول مُرده پخش می شوند.

هر رویداد الکتروشیمیایی که در خارج سلول رخ دهد و توسط گیرنده های سلول به داخل آن منتقل شود و باعث ایجاد رفتاری در سلول شود، یک سیگنال سلولی نامیده می شود.ارتباط سیگنالی بین سلول ها می تواند توسط ارتباط هایی با فواصل طولانی حاصل از ترشح هورمون ها یا ارتباط های محلی میان مولکول های سطح سلول های مجاور ، برقرار گردد.

سیگنال سازی سلول ها به دو دسته هورمونی و فیزیکی تقسیم بندی می شود. سیگنال سازی هورمونی امکان ارتباط بین سلول های دور از هم را بوسیله مولکول های کوچک و قابل حمل فراهم می سازد. سیگنال سازی فیزیکی ارتباط بین سلول ها را به صورت فیزیکی و مستقیم فراهم می سازد. این نوع سیگنال سازی بین سلول های T و سلول های عرضه کننده آنتی ژن امکان پذیر است. این روش با کمک سایتوکین ها صورت می پذیرد.

سایتوکین ها موادی با ساختار پروتئینی هستند که نقش انتقال پیام ها را در سیستم ایمنی برعهده دارند. مبداء سایتوکین یک سلول تحریک شده است. سایتوکین ها پس از انتشار بر روی سلول های مقصد در مجاورت و حتی خود سلول مبداء تاثیر می گذارند. تعداد کمی از انواع سایتوکین ها قابلیت انشار به مقاصد دور و جریان یافت در شریان ها را دارا می باشند.هورمون ها گروه دیگری از مواد شیمیایی هستند که برای انتقال پیام در بدن استفاده می شوند. هومون ها قابلیت بالایی برای انتشار در شریان های بدن و راهیابی به فواصل دور در بدن دارند.

معرفی و تعریف سیستم های ایمنی مصنوعی

سیستم ایمنی مصنوعی به سیستم های سازگار گفته می شود که از ایده مکانیزم دفاعی بدن انسان الهام گرفته و راه حلی برای مسائل پیچیده ارائه نموده اند. کاربرد سیستم ایمنی مصنوعی را می توان به صورت ذیل طبقه بندی نمود:

۱٫ تشخیص عیب (Fault Detection)
۲٫ تشخیص ناهنجاری (Anomaly Detection)
۳٫ تشخیص نفوذ (Intrusion Detection)
۴٫ امنیت اطلاعات (Information Security)
۵٫ مسائل بهینه سازی (Optimization Problems)
۶٫ دسته بندی الگوها (Patterns Classification)
۷٫ زمانبندی (Scheduling)
۸٫ خوشه بندی (Clustering)
۹٫ سیستم های یادگیرنده (Learning Systems)

سیستم ایمنی بدن و بالطبع سیستم ایمنی مصنوعی دارای ویژگی های ذیل است:

1.توازی : این ویژگی بدین معنا است که سیستم ایمنی از جزءهای کوچکی تشکیل شده که با همکاری یکدیگر به حفظ امنیت بدن می پردازند. هرکدام از این اجزاء کوچک توان تشخیص و طول عمر کمی دارند ولی از ترکیب آنها یک سیستم قدرتمند بوجود می آید.

2. توزیع شدگی : توزیع شدگی در سیستم ایمنی بدین معنا است که هر کدام از سلول های ایمنی و در کنار آنها هرکدام از دستگاه های ایمنی ، قدرت تصمیم گیری برای کار خود را دارا می باشند و نیازی به یک مرکز پردازشی وجود ندارد. تمام دستگاه ها و سلول ها با یکدیگر در ارتباط بوده و برای این ارتباط نیازی به سیستمی واحد و متمرکز نیست.

3. تطبیق پذیری : تطبیق پذیری ریشه در یادگیر بودن سیستم ایمنی دارد. بدن انسان با محیط طبیعی خود ارتباط داشته و با آن در تعامل است.بنابراین مواد مفید ، مضر یا بیماری زایی که وارد بدن انسان می شوند نیز متغیر هستند. در ضمن بدن انسان نیز به طور مداوم در حال نوسازی و تغییر است. به همین دلایل سیستم ایمنی به صورتی طراحی شده است که با تغییرات به صورت پویا برخورد نماید و با وجود تغییر ، عوامل بیماری زا را عامل های سالم تشخیص داده و با آنها مبارزه نماید.

4. قابلیت تشخیص الگو : در سیستم ایمنی قابلیت تشخیص الگو توسط آنتی بادی ها وجود دارد. این تشخیص الگو با استفاده از یک سطح آستانه انجام می شود.

5. قابلیت یادگیری : سیستم ایمنی قادر است عوامل بیماری زای جدیدی را که مشاهده می کند به خاطر بسپارد.

6. همکاری گروهی : در سیستم ایمنی سلول ها به صورت گروهی ، موازی و توزیع شده برای تشخیص و انهدام همکاری دارند.

7. چند لایه ای بودن : هیج موجودیتی در سیستم ایمنی و بدن انسان ، یک مکانیزم کامل امنیتی و دفاعی را فراهم نمی کند. بلکه هر لایه سیستم ایمنی به صورت مستقل عمل کرده و و با بقیه لایه ها در ارتباط است.

8. تنوع و گوناگونی : سیستم ایمنی در برابر انواع مختلفی از نفوذها مقاومت کرده و تسلیم نمی شود.

9. بهینه بودن منابع : در سیستم ایمنی با ایجاد مرگ و تکثیر سلولی ، همواره یک نمونه فضای کوچکی از فضای جستجوی آنتی ژن ها در هر زمان نگهداری می شود.

10. پاسخ انتخابی : در سیستم ایمنی ، پس از شناسایی یک آنتی ژن ، پاسخ های متفاوتی داه می شود و همواره به یک شکل عمل نمی شود.

برای حل یک مسئله با استفاده از سیستم ایمنی مصنوعی باید سه مرحله ذیل انجام پذیرد.
(۱) نحوه نمایش داده های مسئله یا تعریف فضای شکل.
(۲) معیار اندازه گیری میل ترکیبی.
(۳) انتخاب یک الگوریتم ایمنی مصنوعی برای حل مسئله.

در سیستم ایمنی همه چیز بر مبنای شناسایی الگو یا شناسایی شکل آنتی ژن است. سیستم ایمنی را می توان به فضایی مملو از شکل های مختلف تشبیه نمود. هدف در این فضا پیدا کردن مکمل شکل ها و شناسایی آنها است. در واقع آنچه سیستم های ایمنی مصنوعی دنبال می کنند پیدا کردن تعدادی شکل بهینه (آنتی بادی) در فضای شکل است که مکمل تمامی شکل های موجود در داده های مسئله (آنتی ژن ها) باشند.
به بیان دیگر در سیستم ایمنی مصنوعی هدف این است که برای N الگو یا آنتی ژن ، M آنتی بادی پیدا شود. البته M خیلی کوچکتر از N است.شکل ها یا آنتی ژن ها به صورت آرایه ای از اعداد نمایش داده می شوند. این آرایه می تواند اعداد باینری ، صحیح یا حقیقی باشد.هر شیوه ای که برای نمایش آنتی ژن استفاده شود برای نمایش آنتی بادی نیز استفاده می شود.

مسئله دیگر نحوه محاسبه میل ترکیبی یک آنتی ژن و آنتی بادی است.عنوان شد که هرچه آنتی بادی میل ترکیبی بیشتری با آنتی ژن داشته باشد ، مکمل بهتری برای آن آنتی ژن است.اگر هر شکل در فضای شکل به صورت صورت یک آرایه از اعداد نمایش داده شود ، میل ترکیبی را می توان معادل شباهت آرایه ها در نظر گرفت. از طرفی هرچه فاصله کمتر شود ، شباهت بیشتر می شود.به بیان دیگر هرچه فاصله انتی بادی با آنتی ژن کمتر شود ، آنتی بادی مکمل بهتری برای آنتی ژن است. بر همین مبنا در الگوریتم های ایمنی مصنوعی از فاصله به عنوان معیار ارزیابی خوب یا بد بودن یک آنتی بادی استفاده می شود.

با توجه به دو تعریف فضای شکل و میل ترکیبی مکمل بودن یک آنتی بادی و یک آنتی ژن ، شناسایی یک آنتی ژن توسط آنتی بادی با استفاده از مقدار آستانه میل ترکیبی تعریف می شود. اگر میزان میل ترکیبی یک آنتی بادی با یک آنتی ژن بیشتر از حد آستانه میل ترکیبی باشد آنگاه آنتی ژن در محدوده شناسایی آنتی بادی قرار گرفته است. به بین دیگر اگر فاصله یک آنتی بادی و یک آنتی ژن از حد آستانه شناسایی کمتر باشد ، آنتی بادی ، آنتی ژن را شناسایی می کند.بنابراین هر آنتی بادی می تواند تعدادی آنتی ژن را که تفاوت های اندکی با یکدیگر دارند شناسایی کند و در نتیجه تعداد آنتی بادی ها می تواند کمتر از آنتی ژن ها باشد.

تاریخچه سیستم های ایمنی مصنوعی

پایه های مدل سازی ریاضی بخش هایی از دستگاه ایمنی بدن در سال ۱۹۷۴ میلادی توسط نیلز جِرن انجام پذیرفته است.اولین ایده استفاده از فرآیندهای دستگاه ایمنی بدن در کاربردهای محاسباتی در سال ۱۹۸۶ میلادی توسط جان فارمر، نورمن پاکارد و آلن پِرِلسون مطرح گردید. آنها رفتار پویای سیستم ایمنی را با معادلات دیفرانسیل مدل کرده و نشان دادند که می توان از این مدل برای یادگیری مسائل استفاده نمود.

تا اوایل دهه ۹۰ میلادی بیشتر کاربردهای دستگاه ایمنی بدن در سیستم های محاسباتی ، شامل یکسری شبیه سازی هایی مانند شبیه سازی بیماری ایدز و مدلسازی ارتباطات سلولی بود و در ادامه با کارهای استفانی فارِست، هوگوس بِرسینی، جاناتان تیمیس، مارک نیل، دیپانکار داسگوپتا، لیندرو دی کاسترو بطور گسترده تری پیگیری شد.

در سال ۱۹۹۰ میلادی هوگوس بِرسینی و فراسیسکو وارِلا ایده شبکه های ایمنی که پیشتر توسط نیلز جِرن و آلن پرلسون در زمینه دستگاه ایمنی مطرح شده بود را برای سیستم های محاسباتی مطرح کردند.

فارِست و داسگوپتا تاکنون مطالعات گسترده ای درباره الگوریتم انتخاب منفی انجام داده اند و دی کاسترو مطالعاتی روی انتخاب مبتنی بر تکثیر انجام داده است. اولین کتاب درباره سیستم های ایمنی مصنوعی نیز در سال ۱۹۹۹ میلادی توسط داسگوپتا منتشر گردید.

در سال ۲۰۰۳ میلادی یووی آیلکین به همراه تیمی از اساتید و دانشجویان رشته های علوم کامپیوتر و ایمنی شناسی دانشگاه ناتینگهام انگلستان نظریه خطر را ارائه نموند که تاکنون این تیم گزارشات و مقالات متعددی در زمینه کاربرد نظریه خطر در سیستم های محاسباتی منتشر نموده اند.
سیستم ایمنی مصنوعی (AIS) قسمت 1
سیستم ایمنی مصنوعی (AIS) قسمت 2
سیستم ایمنی مصنوعی (AIS) قسمت 3
سیستم ایمنی مصنوعی (AIS) قسمت 4
سیستم ایمنی مصنوعی (AIS) قسمت 5
سیستم ایمنی مصنوعی (AIS) قسمت 6

سیستم‌های ایمنی مصنوعی جزء الگوریتم‌های الهام گرفته شده از بیولوژی هستند. این نوع الگوریتم‌ها، الگوریتم هایی کامپیوتری هستند که اصول و ویژگی‌های آنها نتیجه بررسی در خواص وفقی و مقاومت نمونه‌ها بیولوژیکی است. سیستم ایمنی مصنوعی نوعی الگو برای یادگیری ماشین است. یادگیری ماشین، توانایی کامپیوتر برای انجام یک کار با یادگیری داده‌ها یا از روی تجربه است. در این پروژه ابتدا سیستم ایمنی انسان تشریح شده زیرا در سیستم های ایمنی مصنوعی از مدل ایمنی طبیعی پیروی می شود. سپس سیستم ایمنی مصنوعی معرفی و تعریف می گردد. در ادامه به تاریخچه و نحوه عملکرد الگوریتم خواهیم پرداخت و انواع کاربردهای الگوریتم سیستم ایمنی مصنوعی معرفی شده و دو مثال از بین کاربردها تشریح خواهند شد.

سیستم ایمنی بدن انسان

محیط اطراف بدن انسان حاوی انواع عوامل نظیر ویروس ها ، باکتری ها و قارچ ها است. اگر این عوامل وارد بدن انسان یا میزبان شوند و موقعیت تکثیر پیدا نمایند می توانند میزبان را از پا در آورند. البته بیشتر این عوامل به دلیل وجود واکنش‌هایی از طرف بدن میزبان چنین موقعیتی را پیدا نمی کنند و پس از مدت کوتاهی از بین می‌روند.واکنش‌هایی که باعث مبارزه با عوامل ذکر شده می شوند توسط سیستمی یکپارچه به نام دستگاه ایمنی صورت می‌گیرند. در بدن انسان دستگاه ایمنی شامل مولکول‌ها ، سلول ها و بافت هایی است که در برابر عوامل بیماری زا و عفونت حاصله از آنها مقاومت ایجاد نموده و مانع رشد آنها می شود.دستگاه ایمنی بدن انسان دارای پیچیدگی های زیادی است که وجود این پیچیدگی ها منجر به وجود علم ایمنی شناسی شده است. این علم به مطالعه دستگاه ایمنی بدن انسان و پاسخ های آن در برابر عوامل بیماری زا می پردازد.

خطوط دفاعی بدن انسان

اولین خط دفاعی بدن انسان یک حصار فیزیکی مانند پوست است. پس از آن سیستم ایمنی ذاتی است که از هنگام به دنیا آمدن به صورت طبیعی در بدن وجود دارد.خط سوم دفاعی سیستم ایمنی تطبیقی می باشد که قابلیت یادگیری و بهبود مکانیزم دفاعی را دارا می باشد. ایمنی تطبیقی نسبت به ایمنی ذاتی آهسته تر بوجود می آید ولی ایمنی موثرتری را فراهم می نماید.

 

سیستم تطبیقی بدن انسان

سیستم تطبیقی بدن انسان

 

سیستم ایمنی تطبیقی از دو نوع سلول به نام های سلول B و سلول T تشکیل شده است. سطح این سلول ها از پروتئین های آنتی بادی پوشیده شده است. بر روی تمام سلول های دیگر بدن پروتئین های آنتی ژن وجود دارد.آنتی بادی ها با آنتی ژن ها واکنش شیمیایی می دهند و می توانند به هم متصل شوند.

سیستم ایمنی تطبیقی به دو دسته عمده تقسیم می شود : ایمنی همورال و ایمنی با واسطه سلولی.
هریک از این انواع ایمنی تطبیقی ، بوسیله سلول ها و مولکول های متفاوتی اداره می شوند و به ترتیب برای دفاع در برابر میکروب های خارج سلولی و داخل سلولی طراحی شده اند.ایمنی همورال ، با استفاده از پروتئین هایی که آنتی بادی هستند و بوسیله سلول های B ساخته می شوند ، نقش خود را ایفاء می کنند.آنتی بادی ها به درون سیستم گردش خون و ترشحات مخاطی ترشح می شوند و میکروب ها و سموم میکروبی را که به خون و حفرات اندام های مخاطی مانند
مجاری تنفسی و روده ای راه یافته اند را حذف و خنثی می نمایند. یکی از مهمترین وظایف آنتی بادی ها ، مهار دسترسی و متمرکز شدن میکروب هایی است که از سطوح مخاطی و و خون به سلول های میزبان و بافت های همبند حمله ور می شوند.بدین ترتیب آنتی بادی ها از استقرار و ادامه عفونت جلوگیری می نمایند. آنتی بادی ها به به میکروب هایی که درون سلول آلوده وجود دارند و تکثیر می شوند دستیابی ندارند. این مشکل میکروب های درون سلولی توسط ایمنی با واسطه سلولی برطرف می شود. این ایمنی با واسطه سلول های T بوجود می آید.برخی از سلول های T ، سلول های بیگانه خوار را برای از بین بردن میکروب هایی که بوسیله سلول ها بلعیده شده اند را فعال می کند. سلول های بیگانه خوار در اصل گلبول های سفید خون هستند که سلول های تصویر بیگانه موجود در بدن را می بلعند. سایر سلول های T هر نوع سلول میزبان دارای میکروب درون سیتوپلاسم را از بین می برند. بنابراین سلول های B و T به ترتیب برای شناسایی اختصاصی آنتی زن های میکروب های خارج سلولی و درون سلولی طراحی شده اند. تفاوت دیگر این دو سلول در این است که سلول های T فقط آنتی ژن های پروتئینی میکروب ها را شناسایی می کنند اما سلول های B قادر هستند انواع متفاوتی از مولکول های میکروبی را شناسایی نمایند.

سلول B

سلول B

 

آشنایی با مفاهیم اولیه سیستم ایمنی بدن انسان

مهمترین ارگان های سیستم دفاعی بدن انسان عبارتند از : مغز استخوان، تیموس، طحال، رگ های لنفی، گره های لنفی، لوزه و آدونوئید. در تصویر زیر جایگاه هرکدام از ارگان های سیستم دفاعی بدن انسان را مشاهده می نمائید.

 

ارگان های سیستم دفاعی بدن انسان

ارگان های سیستم دفاعی بدن انسان

 

تیموس و مغز استخوان بافت های لنفاوی زاینده نامیده می شوند زیرا در تولید سلول های دستگاه ایمنی (گلبول های سفید) و بلوغ آنها نقش اساسی دارند. این دو ارگان اعضای لنفاوی اصلی نیز نامیده می شوند. تیموس غده ای در اطراف جناغ سینه و گردن انسان است که در بلوغ سلول های T نقش اساسی دارد. این غده تا دوران بلوغ رشد کرده و پس از آن به مرور کوچک تر می شود تا در دوران کهنسالی به غده ای از چربی تبدیل می شود.نقش مهم این غده در آموزش سلول های T برای تشخیص خودی از غیر خودی و ایجاد تحمل ایمنی می باشد. طحال نیز در تولید گلبول های سفید خون نقش دارد و گلبول های قرمز پیر را از بین می برد.

رگ های لنفاوی کانال ارتباطی میان دیگر ارگان ها هستند.گلبول های سفید علاوه بر این که می توانند توسط رگ های خونی در تمام بدن حرکت کنند ، می توانند در سیستمی از رگ های لنفی که به موازات رگ های خونی وجود دارند و به گره های لنفی منتهی می شوند ، نیز حرکت کنند. گره های لنفاوی یکی از مهمترین مولفه های سیستم ایمنی هستند. این گره ها در سرتاسر شریان های لنفی و به تعداد زیاد وجود دارند.گلبول های سفید بالغ به اندام های لنفاوی محیطی رفته و در آنجا به آنتی ژن های خارجی واکنش نشان می دهند و از آنجا وارد خون و رگ های لنفی می شوند. سیستم مخاطی ، طحال و رگ ها و گره های لنفاوی جزء بافت های لنفاوی ثانویه محسوب می شوند.

سلول های B

سلول های B از سلول های ریشه ای مغر استخوان نشات گرفته و در مجاورت سلول های نمدی مغز استخوان مراحل اولیه تکامل را سپری می کنند. سپس از سلول های نمدی جدا شده و مرحله دوم تکامل خود را در مغز استخوان به پایان می رسانند. اگر سلول تشکیل شده ، سلولی سالم باشد و علیه سلول های خودی بدن واکنش نشان ندهد ، از مغز استخوان خارج شده و برای شناسایی و مقابله با آنتی ژن ها وارد بدن می شود.سلول های B پس از تحریک شدن تکثیر یافته و به سلول های حافظه تبدیل می شوند. تحریک سلول های B می تواند در اثر سیگنال های رسیده از جانب سلول های T توسط مولکول های سایتوکین یا مستقیما توسط آنتی ژن ها صورت بپذیرد.

سلول های T

سلول های T دارای نوع های مختلف با عملکردهای متفاوت می باشند.گروهی از سلول های T از طریق واکنش متقابل با سلول های بیگانه خوار تک هسته ای ، به آنها در جهت تخریب عوامل بیماری زای داخل سلولی کمک می کنند.این دسته از سلول های T ، سلول های T کمکی یا TH نامیده می شوند.این گروه از سلول های T می توانند با سلول های B نیز واکنش متقابل داشته و به آنها در جهت تقسیم ، تمایز و تولید آنتی بادی کمک کنند.دسته ای دیگر از سلول هایT وظیفه تخریب آن دسته از سلول های میزبان را که با ویروس یا عوامل بیماری زای داخل سلولی آلوده شده اند را برعهده دارند. این نوع از سلول های T را سلول T کُشنده یا TK می نامند.گروه سوم از سلول های T وظیفه تنظیم پاسخ ایمنی بدن و تعدیل آن پس از برطرف شدن عامل بیماری زا را برعهده دارند.این گروه از سلول های T را سلول T بازدارنده یا TS می نامند.سلول های T در مغز استخوان تولید شده و برای بلوغ و تکامل به تیموس مهاجرت می کنند.سلول های T روی سطح خود دارای مولکول های به عنوان گیرنده هستند که TCR نامیده می شوند.این گیرنده ها با مولکول های دیگری به نام هم گیرنده های TCR، در شناسایی آنتی ژن ها نقش اساسی را ایفا می کنند.

به اجتماع گیرنده ها و هم گیرنده های هر سلول T ، مجموعه TCR گفته می شود. سلول های T در مجموعه TCR متفاوت هستند. به عنوان مثال هم گیرنده های سلول های T کمکی از نوع CD4+ و هم گیرنده های سلول های T کُشنده از نوع CD8+ می باشند. نوع سلول T ، در تیموس و در خلال فرآیندهای انتخاب مشخص می شود. بنابراین یک سلول T هنگامی بالغ است که هم گیرنده آن مشخص شده باشد.گیرنده های TCR ، پیش از بلوغ روی سلول های T قراردارند ولی هم گیرنده آن طی فرآیند بلوغ مشخص می شود.

 

عملکرد سلول T

عملکرد سلول T

آنتی بادی

عنوان شد که پس از تحریک سلول های B توسط آنتی ژن ها و یا سلول های T ، این سلول ها به سلول های حافظه تبدیل می شوند. در این مرحله سلول های حافظه مقادیر زیادی از مولکول های گیرنده از نوع محلول که قابل ترشح است را می سازند.این ماده به عنوان آنتی بادی شناخته می شود زیرا آنتی بادی ها مشابه مولکول اصلی گیرنده هستند و به آنتی ژن هایی که در آغاز سلول B را فعال کرده است متصل می شوند.

آنتی ژن

کلمه آنتی ژن به معنی تولید کننده آنتی بادی است. هر مولکولی که به صورت اختصاصی توسط اجزای سیستم ایمنی مانند سلول های B و T و یا هردو شناسایی شود آنتی ژن محسوب می شود.

انواع مرگ سلول

مرگ برنامه ریزی شده سلول به هر شکلی از مردن یک سلول گفته می شود که بر اساس یک برنامه درون سلولی انجام می شود.مرگ طبیعی سلول راهی کلیدی برای خودپایداری سیستم ایمنی بشمار می رود و عاملی مهم برای تغییرات فیزیولوژیک عمومی سلول مانند تغییرات ریختی و تجزیه سلول به اجزای تشکیل دهنده اش برای ثابت نگاه داشتن حضور خود آنتی ژن ها است. فرآیند مرگ طبیعی سلول ها در طی یک روز برای افراد بالغ حدودا بین پنجاه تا هفتاد میلیارد بار اتفاق می افتد.
شکل دیگری از مرگ برنامه ریزی شده سلول ها ، نکروزیس می باشد که به مرگ غیرطبیعی سلول گفته می شود.نکروزیس باعث ایجاد واکنش های التهابی در اطراف سلول مرده می شود.

پاکسازی سلول های مرده

پاکسازی سلول های مرده توسط سلول های بیگانه خوار انجام می شود.این سلول ها نوعی از سلول های ایمنی هستند که سلول های میکروبی و سلول های مرده را طی فرآیند فاگوسیتوز با بلعیدن و هضم کردن از بین می برند. عوامل زیادی برای جلوگیری از فرآیند فاگوسیتوز بر سلول های سالم و خودی بدن وجود دارد. ساختارهای طبیعی بدن در بافت ها ، سطحی هموار دارند که در برابر سلول های بیگانه خوار مقاوم هستند. اما اگر سطح ذره ای نا هموار باشد احتمال انجام فاگوسیتوز بر روی آن افزایش می یابد. بیشتر مواد طبیعی بدن دارای پوشش حفاظتی پروتئینی هستند که سلول های بیگانه خوار را از خود دور می کنند.بافت های مرده و ذرات خارجی عموما فاقد پوشش حفاظتی هستند که آنها را در معرض سلول های بیگانه خوار قرار می دهد. از طرفی سیستم ایمنی بدن انسان هنگام ورود مواد عفونی نظیر باکتری ها به بدن ، آنتی بادی تولید می کند. آنتی بادی های تولید شده به غشاء باکتری ها چسبیده و و آنها را نسبت به سلول های بیگانه خوار حساس می کنند.
سیستم ایمنی مصنوعی (AIS) قسمت 1
سیستم ایمنی مصنوعی (AIS) قسمت 2
سیستم ایمنی مصنوعی (AIS) قسمت 3
سیستم ایمنی مصنوعی (AIS) قسمت 4
سیستم ایمنی مصنوعی (AIS) قسمت 5
سیستم ایمنی مصنوعی (AIS) قسمت 6

بافت‌نگار

در علم آمار هیستوگرام یا بافت‌نگار یک نمودار ستونی و پله‌ای برای نشان دادن داده‌ها است.

برای نمونه بافت‌نگار فراوانی، نمودار مستطیلی با پایه‌ای به پهنای یک واحد بر روی هر مقدار مشاهده شده‌است که ارتفاع هر ستون آن برابر با فراوانی داده مورد نظر همخوانی دارد

نمودار بافت‌نگار همانند نمودار ستونی است و یگانه اختلافی که بین این دو وجود دارد، نمایش ستون‌هاست.

در پردازش تصویرها بافت‌نگار تصویر نموداری است که توسط آن تعداد پیکسل‌های هر سطح روشنایی در تصویر ورودی مشخص می‌شود.

بافت‌نگار

Iris Petal Length Histogram.svg

One of the Seven Basic Tools of Quality

معرفی‌کننده نخست : کارل پیرسون

کاربرد : توزیع احتمال. To roughly assess the  of a given variable by depicting the frequencies of observations occurring in certain ranges of values

 

نمونه‌ای از یک بافت‌نگار

نمونه‌ای از یک بافت‌نگار

 در عکاسی

بافت‌نگار (هیستوگرام) در عکاسی، به عنوان یک عملگر کاربردی مصطلح است و یکی از ابزارهای مفید و کارآمد در دوربین‌های عکاسی دیجیتالبه‌شمار می‌رود. که با این نام (برای این عملگر) چنین در بین کاربران مصطلح شده‌است و ارتباطی با کارکرد علمی آن ندارد.

بافت‌نگار به نموداری گفته می‌شود که فراوانی عناصری که در محور افقی آن قرار دارند را در محور عمودی نشان می‌دهد. بافت‌نگار عکس، شدت نور را، از کمترین مقدار تا بیشترین مقدار، در محور افقی و تعداد پیکسل‌های هرکدام از آن‌ها را در محور عمودی نشان می‌دهد.
توجه به بافت‌نگار، راه بسیار خوبی برای کنترل نوردهیدوربین و تصویر بوجود آمده‌ است

 منبع


هیستوگرام تصویر

یک هیستوگرام تصویر از یک تصویر T1 فیلتر شده از یک مغز، پردازش شده توسط نرم‌افزار مانگو. ۳ قلهٔ مشهود در این نمودار ستونی متعلق به ماده سفید، ماده خاکستری، و CSF (آب نخاع) می‌باشند. دم سمت چپ متعلق به بقایای جمجمه و چربی پس از حذف به روش پردازش (فیلترینگ) بدست آمده است.

در یک تصویر دیجیتال، مقادیر پیکسل‌ها بیانگر ویژگی‌های آن تصویر (مانند میزان روشنایی تصویر و وضوح تصویر) است. هیستوگرام یک تصویر در حقیقت بیان گرافیکی میزان روشنایی تصویر می‌باشد. مقادیر روشنایی (برای مثال ۰-۲۵۵) در طول محور X بیان شده و میزان فراوانی هر مقدار در محور Y بیان می‌گردد.

تصویر ۸ بیتی (۰-۲۵۵) در بالا و هیستوگرام همان تصویر در پایین. محور افقی بین ۰ تا ۲۵۵ و محور قائم نشانگر تعداد پیکسل‌ها است.

 

تصویر T1 فیلتر شده از یک مغز، پردازش شده توسط نرم‌افزار مانگو

تصویری که هیستوگرام زیر از آن گرفته شده‌است

 هیستوگرام تصویر T1 فیلتر شده از یک مغز، پردازش شده توسط نرم‌افزار مانگو.

منبع


 

نمودار هیستوگرام تصویر نموداری است که در آن تعداد پیکسل های هر سطح روشنایی در تصویر ورودی مشخص می شود. فرض کنید تصویر ورودی یک تصویر Grayscale با 256 سطح روشنایی باشد ، بنابراین هریک از پیکسل های تصویر در شدت روشنایی در بازه [0..255] می توانند داشته باشند. برای به دست آوردن هیستوگرام تصویر ، با پیمایش پیکسل های تصویر ، تعداد پیکسل های هر سطح روشنایی را محاسبه می کنیم .

 

یک تصویر Grayscale و محاسبه هیستوگرام آن

هیستوگرام نرمال نیز از تقسیم کردن مقادیر هیستوگرام به تعداد کل پیکسل های تصویر به دست می آید. نرمال سازی هیستوگرام موجب می شود که مقادیر هیستوگرام در بازه [0,1] قرار گیرند. شکل زیر تصویری را به همراه هیستوگرام نرمال آن نشان می دهد :

 

 

دانه های برنج     هیستوگرام نرمال تصویر دانه های برنج

 

تعدیل هیستوگرام ( Histogram Equalization )

به تصویر زیر توجه کنید :

 

تصویر دانه های برنج با کنتراست پایین   هیستوگرام تصویر دانه های برنج با کنتراست پایین

 

همانطور که از شکل و هیستوگرام تصویر مشخص است ، کنتراست تصویر فوق پایین می باشد. بدین مفهوم که اختلاف کمترین و بیشترین شدت روشنایی کم است. با تعدیل سازی هیستوگرام تصویر با کنتراست پایین ، تصویری با کنتراست بالا به دست می آید :

 

تعدیل سازی هیستوگرام تصویر با کنتراست پایین و تولید تصویر با کنتراست بالا    تصویر دانه های برنج با کنتراست پایین

هیستوگرام تعدیل سازی هیستوگرام تصویر با کنتراست پایین و تولید تصویر با کنتراست بالا  هیستوگرام تصویر دانه های برنج با کنتراست پایین

 

شکل فوق تصویر قبلی پس از انجام تعدیل سازی هیستوگرام را نشان می دهد. الگوریتم زیر روش تعدیل سازی یکنواخت هیستوگرام را نشان می دهد :

1 ) هیستوگرام تصویر را محاسبه می کنیم. فرض کنید مقادیر هیستوگرام در آرایه hist قرار گیرد.

  2 ) با استفاده از فرمول زیر فراوانی هیستوگرام را محاسبه می کنیم :

histCum[ i ] = histCum[ i-1 ] + hist[ i ]

  3 ) از فرمول زیر استفاده کرده و هیستوگرام تعدیل شده را محاسبه می کنیم :

eqHist[i] = Truncate( [(L * histCum[i]) – N]/N  )

که در این فرمول L تعداد سطوح خاسکتری و N تعداد کل پیکسل ها را نشان می دهد

  4 ) در مرحله نهایی مقادیر جدید پیکسل ها را به صورت زیر مقدار دهی می کنیم :

Result[ i , j ]  = eqHist[  input[ i , j ] ]

که Result تصویر خروجی و input تصویر ورودی را نشان می دهد

منبع


 

هیستوگرام به معنی نشان دادن میزان فراوانی مقادیر بر روی نمودار است. در تصویر شما با شدت نور سر و کار دارید که بازه آن برای تصویر خاکستری از 0 تا 255 است یعنی تعداد level ها یا bin ها 256 تا است.

 

یک تصویر grayscale و هیستوگرام آن

 

حال اگر تصویر رنگی باشد 3 کانال مجزای خاکستری خواهد بود.

 

تصویر رنگی و سه کانال هیستوگرام آن

 

برای محاسبه هیستوگرام می بایست تعداد تکرار یا همون فرکانس شدت ها رو در تصویر محاسبه کرد یعنی تعداد هر شدت نور را در تصویر شمارش کرده و در level یا bin مربوط قرار داد.

نکته ای که وجود دارد این است که همیشه قرار نیست 256 تا bin وجود داشته باشد. می توان 10 تا bin تعریف کرد و در هر بازه هر bin فراوانی ها را با هم جمع کرد.

بین ها

در OpenCV برای محاسبه هیستوگرام می توان از تابع calcHist استفاده کرد. تابع calcHist می تواند در چند کانال یا چند بعد هم هیستوگرام را محاسبه می کند و بایستی در هر کانال تعداد bin ها را مشخص کرد.

یک مثال عملی از کاربردهای هیستوگرام که ی توان بیان کرد: در فریم های متوالی هیستوگرام را مقایسه کنید مثلا شما قصد دارید چهره شخص را بدون detection در هر فریم تعقیب کنید برای اینکار می توانید از انواع ویژگی های تصویر استفاده کنید از جمله آنها انتقال اطلاعات گردایان بر روی هیستوگرام و هم انتقال اطلاعات شدت نور در کانال ها بر روی هیستوگرام و سپس مقایسه این هیستوگرام با فریم های قبلی.

 

تعقیب چهره شخص بدون detection در هر فریم

منبع

 


منابع

  1. https://fa.wikipedia.org
  2. https://fa.wikipedia.org
  3. http://smpro.blogfa.com
  4. http://www.7khatcode.com

برنامه نویسی Parallel در سی شارپ و آشنایی با کلاس Task در سی شارپ

در قسمت قبل گفتیم که بوسیله کلاس Parallel و متدهای For و ForEach عملیات پردازش بر روی مجموعه ها را به صورت Parallel انجام دهیم. اما بحث Parallel Programming به همین جا ختم نمی شود و راه های دیگری نیز برای برنامه نویسی Parallel وجود دارد. یکی از این روش ها استفاده از کلاس Task است که این کلاس نیز در فضای نام System.Threading.Tasks قرار دارد. حالت های مختلفی برای استفاده از این کلاس وجود دارد که ساده ترین آن استفاده از خصوصیت Factory و متد StartNew است که در زیر نمونه ای از نحوه ایجاد یک Task را مشاهده می کنید:

 
Task.Factory.StartNew(()  = >
{
    Console.WriteLine("Task Started in Thread {0}", Thread.CurrentThread.ManagedThreadId);
    for (int i = 1; i  < =  100; i++)
    {
        Console.WriteLine(i);
        Thread.Sleep(500);
    }
});

بوسیله کد بالا، یک Task جدید ایجاد شده که اعداد 1 تا 100 را در یک thread جداگانه در خروجی چاپ می شود. دقت کنید که بعد از اجرای برنامه شناسه Thread ای که Task در آن اجرا می شود با شناسه Thread اصلی برنامه متفاوت است. راهکار بعدی ایجاد یک شئ از روی کلاس Task و ارجرای آن است، در کد زیر Task بالا را به صورت ایجاد شئ ایجاد می کنیم:

 
Task task = new Task(()  = >
{
    Console.WriteLine("Task Started in Thread {0}", Thread.CurrentThread.ManagedThreadId);
    for (int i = 1; i  < = 100; i++)
    {
        Console.WriteLine(i);
        Thread.Sleep(500);
    }
});
 
task.Start();
Console.ReadKey();

زمانی که Task جدیدی ایجاد می کنید بوسیله متد Start که برای کلاس Task تعریف شده است می توانید عملیات اجرای Task را شروع کنید. یکی از خصوصیت های تعریف شده در کلاس Task، خصوصیت IsCompleted است که بوسیله آن می توان تشخیص داد که Task در حال اجراست یا خیر:

 
Task task = new Task(()  = >
{
    Console.WriteLine("Task Started in Thread {0}", Thread.CurrentThread.ManagedThreadId);
    for (int i = 1; i < =  100; i++)
    {
        Console.WriteLine(i);
        Thread.Sleep(500);
    }
});
 
task.Start();
while (!task.IsCompleted)
{
                 
}

دریافت خروجی از کلاس Task

می توان برای کلاس Task یک خروجی مشخص کرد، فرض کنید می خواهیم Task ای بنویسیم که میانگین حاصل جمع اعداد 1 تا 100 را حساب کرده و به عنوان خروجی بازگرداند. برای اینکار باید از کلاس Task که یک پارامتر جنریک دارد استفاده کنیم. ابتدا یک متد به صورت زیر تعریف می کنیم:

 
public static int CalcAverage()
{
    int sum = 0;
 
    for (int i = 1; i < = 100; i++)
    {
        sum += i;
    }
 
    return sum/100;
}

در قدم بعدی می بایست یک Task جنریک از نوع int تعریف کنیم و به عنوان سازنده نام متد تعریف شده را به آن ارسال کنیم:

 
Task < int >  task = new Task < int > (CalcAverage);
task.Start();
 
Console.WriteLine("Average: {0}", task.Result);

در کلاس بالا بعد از Start کردن Task، بوسیله خصوصیت Result می توانیم نتیجه خروجی از Task را بگیریم، دقت کنید که زمانی که می خواهیم مقدار خروجی را از Task بگیریم، برنامه منتظر می شود تا عملیات Task به پایان برسد و سپس نتیجه در خروجی چاپ می شود.

به این موضوع توجه کنید که بوسیله متد StartNew نیز می توان Task هایی که پارامتر خروجی دارند تعریف کرد:

 
var task = Task.Factory.StartNew < int > (CalcAverage);

کد بالا دقیقاً کار نمونه قبلی را انجام می دهد، فقط به جای ایجاد شئ Task و فراخوانی آن، از متد StartNew استفاده کردیم.

ارسال پارامتر به Task ها

یکی از قابلیت های Task ها امکان ارسال State به متدی است که قرار است به عنوان Task اجرا شود. برای مثال، فرض کنید در مثال قبلی که Task ایجاد شده حاصل میانگین را حساب کرده و به عنوان خروجی بر میگرداند می خواهیم عدد شروع و پایان را مشخص کنیم، برای اینکار ابتدا یک کلاس به صورت زیر تعریف می کنیم:

 
public class TaskParameters
{
    public int Start { get; set; }
    public int Finish { get; set; }
}

در ادامه کد متد CalcAverage را به صورت زیر تغییر می دهیم:

 
public static int CalcAverage(object state)
{
    var parameters = (TaskParameters) state;
    int sum = 0;
 
    for (int i = parameters.Start; i < = parameters.Finish; i++)
    {
        sum += i;
    }
 
    return sum/100;
}

در قدم بعدی باید روند ساخت شئ Task را به گونه ای تغییر دهیم که پارامترهای مورد نظر به عنوان state به متد CalcAverage ارسال شوند، برای اینکار به عنوان پارامتر دوم سازنده کلاس Task شئ ای از نوع TaskParameters به صورت زیر ارسال می کنیم:

 
Task < int > task = new Task < int > (CalcAverage, new TaskParameters()
{
    Start = 100,
    Finish = 1000
});

با انجام تغییرات بالا، توانستیم شئ ای را به عنوان State به Task ارسال کنیم، همچنین توجه کنید که امکان ارسال State بوسیله متد StartNew در خصوصیت Factory نیز وجود دارد. در این بخش با کلاس Task آشنا شدیم، در قسمت بعدی با نحوه متوقف کردن Task ها در زمان اجرا و کلاس CancellationToken آشنا می شویم.

منبع


قسمت اول آموزش-برنامه نویسی Asynchronous – آشنایی با Process ها، Thread ها و AppDomain ها

قسمت دوم آموزش- آشنایی با ماهیت Asynchronous در Delegate ها

قسمت سوم آموزش-آشنایی با فضای نام System.Threading و کلاس Thread

قسمت چهارم آموزش- آشنایی با Thread های Foreground و Background در دات نت

قسمت پنجم آموزش- آشنایی با مشکل Concurrency در برنامه های Multi-Threaded و راهکار های رفع این مشکل

قسمت ششم آموزش- آشنایی با کلاس Timer در زبان سی شارپ

قسمت هفتم آموزش-آشنایی با CLR ThreadPool در دات نت

قسمت هشتم آموزش- مقدمه ای بر Task Parallel Library و کلاس Parallel در دات نت

قسمت نهم آموزش- برنامه نویسی Parallel:آشنایی با کلاس Task در سی شارپ

قسمت دهم آموزش-برنامه نویسی Parallel در سی شارپ :: متوقف کردن Task ها در سی شارپ – کلاس CancellationToken

قسمت یازدهم آموزش- برنامه نویسی Parallel در سی شارپ :: کوئری های Parallel در LINQ

قسمت دوازدهم آموزش- آشنایی با کلمات کلیدی async و await در زبان سی شارپ

قسمت سیزدهم آموزش- استفاده از متد WhenAll برای اجرای چندین Task به صورت همزمان در سی شارپ